diff --git a/src/RobustAdaptiveMetropolis.jl b/src/RobustAdaptiveMetropolis.jl index 59b8d8c..4e0d213 100644 --- a/src/RobustAdaptiveMetropolis.jl +++ b/src/RobustAdaptiveMetropolis.jl @@ -58,7 +58,7 @@ julia> # Set the seed so get some consistency. julia> # Sample! chain = sample(model, RAM(), 10_000; chain_type=Chains, num_warmup, progress=false, initial_params=zeros(2)); -julia> norm(cov(Array(chain)) - [1.0 0.5; 0.5 1.0]) < 0.2 +julia> isapprox(cov(Array(chain)), model.A; rtol = 0.2) true ``` @@ -134,15 +134,14 @@ function step_inner( # Sample the proposal. x = state.x - U = randn(rng, d) - x_new = x + state.S * U + U = randn(rng, eltype(x), d) + x_new = muladd(state.S, U, x) # Compute the acceptance probability. lp = state.logprob lp_new = LogDensityProblems.logdensity(f, x_new) logα = min(lp_new - lp, zero(lp)) # `min` because we'll use this for updating - # TODO: use `randexp` instead. - isaccept = log(rand(rng)) < logα + isaccept = randexp(rng) > -logα return x_new, lp_new, U, logα, isaccept end @@ -177,13 +176,14 @@ function AbstractMCMC.step( d = LogDensityProblems.dimension(f) # Initial parameter state. - x = initial_params === nothing ? rand(rng, d) : initial_params + T = initial_params === nothing ? eltype(sampler.γ) : Base.promote_type(eltype(sampler.γ), eltype(initial_params)) + x = initial_params === nothing ? rand(rng, T, d) : convert(AbstractVector{T}, initial_params) # Initialize the Cholesky factor of the covariance matrix. - S = LowerTriangular(sampler.S === nothing ? diagm(0 => ones(eltype(sampler.γ), d)) : sampler.S) + S = LowerTriangular(sampler.S === nothing ? diagm(0 => ones(T, d)) : convert(AbstractMatrix{T}, sampler.S)) - # Constuct the initial state. + # Construct the initial state. lp = LogDensityProblems.logdensity(f, x) - state = RAMState(x, lp, S, 0.0, 0, 1, true) + state = RAMState(x, lp, S, zero(T), 0, 1, true) return AdvancedMH.Transition(x, lp, true), state end @@ -207,7 +207,7 @@ function valid_eigenvalues(S, lower_bound, upper_bound) (lower_bound == 0 && upper_bound == Inf) && return true # Note that this is just the diagonal when `S` is triangular. eigenvals = LinearAlgebra.eigvals(S) - return all(lower_bound .<= eigenvals .<= upper_bound) + return all(x -> lower_bound <= x <= upper_bound, eigenvals) end function AbstractMCMC.step_warmup(