diff --git a/Project.toml b/Project.toml index 88d16731..ec6bf439 100644 --- a/Project.toml +++ b/Project.toml @@ -3,7 +3,7 @@ uuid = "c7f686f2-ff18-58e9-bc7b-31028e88f75d" keywords = ["markov chain monte carlo", "probablistic programming"] license = "MIT" desc = "Chain types and utility functions for MCMC simulations." -version = "5.6.0" +version = "5.6.1" [deps] AbstractMCMC = "80f14c24-f653-4e6a-9b94-39d6b0f70001" diff --git a/test/rstar_tests.jl b/test/rstar_tests.jl index 4b190ab6..bbe66578 100644 --- a/test/rstar_tests.jl +++ b/test/rstar_tests.jl @@ -31,6 +31,6 @@ classif = DecisionTreeClassifier() chn_notmixed = Chains(val) # Restuling R value should be close to two, i.e. the classifier should be able to learn an almost perfect decision boundary between chains. - R = rstar(classif, chn_notmixed) + R = rstar(classif, chn_notmixed; split_chains=1) @test mean(R) ≈ 2 atol=0.1 end