@@ -115,7 +115,9 @@ This method handles adaptation and warm-up for adaptive Hamiltonian samplers.
115115
116116- `initial_params`: Initial parameter values for sampling. See `DynamicPPL.initialstep` for details.
117117
118- Additional keyword arguments are passed to the underlying sampling implementation.
118+ Additional keyword arguments (e.g., `verbose`, `progress`, `chain_type`) are passed to the underlying
119+ sampling implementation. For more information on available options, see the
120+ [sampling options documentation](https://turinglang.org/docs/usage/sampling-options).
119121
120122# Note
121123
@@ -233,17 +235,12 @@ and performs the first sampling step.
233235
234236# Keyword Arguments
235237
236- - `initial_params`: Initial parameter values to use for sampling. If `nothing` (the default),
237- parameters are resampled from the prior until valid initial values with finite log probability
238- and gradient are found. If provided, these values are used directly without validation.
239- Must be in the same format as the model's parameters.
238+ For common keyword arguments like `initial_params` and `verbose`, see the generic
239+ `DynamicPPL.initialstep` documentation.
240240
241241- `nadapts::Int`: Number of adaptation steps to be performed. Used internally to set up adaptation.
242242 Defaults to `0`.
243243
244- - `verbose::Bool`: Whether to print informative messages (e.g., the automatically determined step size).
245- Defaults to `true`.
246-
247244# Note
248245
249246If automatic initial parameter search fails after many attempts, an error is raised with
@@ -408,7 +405,7 @@ setting path lengths in Hamiltonian Monte Carlo." Journal of Machine Learning
408405Research 15, no. 1 (2014): 1593-1623.
409406"""
410407struct HMCDA{AD,metricT<: AHMC.AbstractMetric } <: AdaptiveHamiltonian
411- n_adapts:: Int # number of samples with adaption for ϵ
408+ n_adapts:: Int # number of samples with adaptation for ϵ
412409 δ:: Float64 # target accept rate
413410 λ:: Float64 # target leapfrog length
414411 ϵ:: Float64 # (initial) step size
@@ -460,7 +457,7 @@ Usage:
460457
461458```julia
462459NUTS() # Use default NUTS configuration.
463- NUTS(1000, 0.65) # Use 1000 adaption steps, and target accept ratio 0.65.
460+ NUTS(1000, 0.65) # Use 1000 adaptation steps, and target accept ratio 0.65.
464461```
465462
466463# Arguments
@@ -474,7 +471,7 @@ NUTS(1000, 0.65) # Use 1000 adaption steps, and target accept ratio 0.65.
474471 If not specified, `ForwardDiff` is used, with its `chunksize` automatically determined.
475472"""
476473struct NUTS{AD,metricT<: AHMC.AbstractMetric } <: AdaptiveHamiltonian
477- n_adapts:: Int # number of samples with adaption for ϵ
474+ n_adapts:: Int # number of samples with adaptation for ϵ
478475 δ:: Float64 # target accept rate
479476 max_depth:: Int # maximum tree depth
480477 Δ_max:: Float64
0 commit comments