-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn.py
125 lines (111 loc) · 3.75 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os
import pickle
from keras.layers import Dense, Dropout, BatchNormalization, Flatten
from keras.models import Sequential, load_model
from keras.layers.convolutional import Conv2D
from keras.preprocessing.image import ImageDataGenerator
import numpy as np
from PIL import Image
from keras.utils import np_utils
from sklearn.preprocessing import LabelBinarizer
MODEL = 'model.hdf5'
CLASSES = 'classes.data'
class CNN(object):
def __init__(self, image_size=32, letters=33):
self.image_size = image_size
self.letters_count = letters
if os.path.isfile(MODEL):
self.model = load_model(MODEL)
if os.path.isfile(CLASSES):
self.classes = pickle.load(open(CLASSES, 'rb'))
def __create_model(self):
network = Sequential()
network.add(Conv2D(
filters=32,
kernel_size=3,
input_shape=(self.image_size, self.image_size, 1),
padding='same',
activation='relu'
))
network.add(Conv2D(
filters=32,
kernel_size=3,
padding='same',
activation='relu'
))
network.add(Conv2D(
filters=32,
kernel_size=5,
padding='same',
strides=2,
activation='relu'
))
network.add(Dropout(0.4))
network.add(Conv2D(
filters=64,
kernel_size=3,
padding='same',
activation='relu'
))
network.add(Conv2D(
filters=64,
kernel_size=3,
padding='same',
activation='relu'
))
network.add(Conv2D(
filters=64,
kernel_size=5,
padding='same',
strides=2,
activation='relu'
))
network.add(Dropout(0.4))
network.add(Flatten())
network.add(Dense(units=128, activation='relu'))
network.add(Dropout(0.4))
network.add(Dense(units=self.letters_count, activation='softmax'))
network.compile(
loss="categorical_crossentropy",
optimizer="adam",
metrics=["accuracy"]
)
return network
def train_and_save(self, image_file_names, letters):
lb = LabelBinarizer()
letters = lb.fit_transform(letters)
self.classes = list(lb.classes_)
pickle.dump(self.classes, open(CLASSES, 'wb'))
# letters = np_utils.to_categorical(letters)
images = np.array(
[np.array(Image.open(name)).reshape((self.image_size, self.image_size)) for name in image_file_names])
images = images.reshape((-1, self.image_size, self.image_size, 1))
images = images / 255
imagegen = ImageDataGenerator(
rotation_range=10,
width_shift_range=1,
height_shift_range=1,
zoom_range=0.1
)
network = self.__create_model()
network.fit_generator(
imagegen.flow(images, letters, batch_size=32),
epochs=100,
verbose=1,
steps_per_epoch=images.shape[0] // 32,
# callbacks=[EarlyStopping(monitor='val_loss', patience=0, restore_best_weights=True)],
validation_data=(images, letters)
)
network.save(MODEL)
self.model = network
def predict(self, image, return_probs=False):
image = np.array(image).reshape((-1, self.image_size, self.image_size, 1)) / 255
prob = self.model.predict(image)
pos = np.argmax(prob)
if return_probs:
probs_dict = {}
for i in range(len(self.classes)):
probs_dict[self.classes[i]] = prob[0][i]
return self.classes[pos], probs_dict
else:
return self.classes[pos]