-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathgui.py
863 lines (798 loc) · 38.6 KB
/
gui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
import FreeSimpleGUI as sg
import torch, librosa, threading, pickle
import numpy as np
from torch.nn import functional as F
from torchaudio.transforms import Resample
from modules.vocoder import load_model, load_onnx_model
from modules.extractors import F0Extractor, VolumeExtractor, UnitsEncoder
from modules.extractors.common import upsample
import sys
import argparse
import time
import gui_locale
if len(sys.argv) <= 1:
import sounddevice as sd
flag_vc = False
def phase_vocoder(a, b, fade_out, fade_in):
window = torch.sqrt(fade_out * fade_in)
fa = torch.fft.rfft(a * window)
fb = torch.fft.rfft(b * window)
absab = torch.abs(fa) + torch.abs(fb)
n = a.shape[0]
if n % 2 == 0:
absab[1:-1] *= 2
else:
absab[1:] *= 2
phia = torch.angle(fa)
phib = torch.angle(fb)
deltaphase = phib - phia
deltaphase = deltaphase - 2 * np.pi * torch.floor(deltaphase / 2 / np.pi + 0.5)
w = 2 * np.pi * torch.arange(n // 2 + 1).to(a) + deltaphase
t = torch.arange(n).unsqueeze(-1).to(a) / n
result = a * (fade_out ** 2) + b * (fade_in ** 2) + torch.sum(absab * torch.cos(w * t + phia), -1) * window / n
return result
class SvcDDSP:
def __init__(self) -> None:
self.model = None
self.units_encoder = None
self.encoder_type = None
self.encoder_ckpt = None
self.enhancer = None
self.enhancer_type = None
self.enhancer_ckpt = None
self.spk_info = None
self.spk_embeds = None
self.pitch_extractor = None
self.select_pitch_extractor = None
self.pitch_extractor_sample_rate = None
self.args = None
def update_model(self, model_path):
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
# load ddsp model
if self.model is None or self.model_path != model_path:
model_path_ext = model_path.split('.')[-1]
if model_path_ext == 'onnx':
self.model, self.args, self.spk_info = load_onnx_model(
model_path, providers=['CPUExecutionProvider']) # TODO: make providers selectable
self.device = 'cpu'
else:
self.model, self.args, self.spk_info = load_model(model_path, device=self.device)
self.model_path = model_path
# load units encoder
if self.units_encoder is None or self.args.data.encoder != self.encoder_type or self.args.data.encoder_ckpt != self.encoder_ckpt:
self.units_encoder = UnitsEncoder(
self.args.data.encoder,
self.args.data.encoder_ckpt,
self.args.data.encoder_sample_rate,
self.args.data.encoder_hop_size,
device=self.device,
extract_layers=self.args.model.units_layers)
self.encoder_type = self.args.data.encoder
self.encoder_ckpt = self.args.data.encoder_ckpt
if self.spk_info is not None:
# update speaker embeds
self.spk_embeds = {
i: {
'spk_embed': torch.from_numpy(self.spk_info[i].item()['spk_embed']).float().to(self.device).unsqueeze(0),
'spk_name': self.spk_info[i].item()['name'],
}
for i in self.spk_info.files
}
else:
self.spk_embeds = None
return self.device
def update_pitch_extractor(self, pitch_extractor_type, sample_rate):
if self.args is not None:
hop_size = self.args.data.block_size * sample_rate / self.args.data.sampling_rate
self.pitch_extractor = F0Extractor(
pitch_extractor_type,
sample_rate,
hop_size,
self.args.data.f0_min,
self.args.data.f0_max)
self.select_pitch_extractor = pitch_extractor_type
self.pitch_extractor_sample_rate = sample_rate
def infer(self,
audio,
sample_rate,
spk_id=1,
threhold=-45,
pitch_adjust=0,
use_spk_mix=False,
spk_mix_dict=None,
pitch_extractor_type='crepe',
f0_min=50,
f0_max=1100,
intonation=1.0,
intonation_base=220.0,
safe_prefix_pad_length=0,
):
# print("Infering...")
# load input
# audio, sample_rate = librosa.load(input_wav, sr=None, mono=True)
hop_size = self.args.data.block_size * sample_rate / self.args.data.sampling_rate
# safe front silence
if safe_prefix_pad_length > 0.03:
silence_front = safe_prefix_pad_length - 0.03
else:
silence_front = 0
# extract f0
# pitch_extractor = F0Extractor(
# pitch_extractor_type,
# sample_rate,
# hop_size,
# self.args.data.f0_min,
# self.args.data.f0_max)
# f0 = self.pitch_extractor.extract(audio, uv_interp=True, device=self.device, silence_front=silence_front)
f0 = self.pitch_extractor.extract(audio, uv_interp=False, device=self.device, silence_front=silence_front)
f0 = torch.from_numpy(f0).float().to(self.device).unsqueeze(-1).unsqueeze(0)
f0_uv = f0 == 0
f0[f0_uv] = torch.rand_like(f0[f0_uv])*float(self.args.data.sampling_rate/self.args.data.block_size) + float(self.args.data.sampling_rate/self.args.data.block_size)
f0[~f0_uv] = f0[~f0_uv] * 2 ** (float(pitch_adjust) / 12)
# intonation curve
if intonation != 1.0:
f0[~f0_uv] = f0[~f0_uv] * intonation ** (((f0[~f0_uv] - f0_min)/(f0_max - f0_min))*(float(f0_max) - intonation_base) / float(f0_max))
# extract volume
volume_extractor = VolumeExtractor(hop_size, self.args.data.volume_window_size)
volume = volume_extractor.extract(audio)
mask = (volume > 10 ** (float(threhold) / 20)).astype('float')
mask = np.pad(mask, (4, 4), constant_values=(mask[0], mask[-1]))
mask = np.array([np.max(mask[n: n + 9]) for n in range(len(mask) - 8)])
mask = torch.from_numpy(mask).float().to(self.device).unsqueeze(-1).unsqueeze(0)
mask = upsample(mask, self.args.data.block_size).squeeze(-1)
volume = torch.from_numpy(volume).float().to(self.device).unsqueeze(-1).unsqueeze(0)
# extract units
audio_t = torch.from_numpy(audio).float().unsqueeze(0).to(self.device)
units = self.units_encoder.encode(audio_t, sample_rate, hop_size)
# spk_id or spk_mix_dict
if self.spk_info is None:
if use_spk_mix:
spk_id = torch.LongTensor(np.array([int(k) for k in spk_mix_dict.keys()])).to(self.device)
spk_mix = torch.tensor([[[float(v) for v in spk_mix_dict.values()]]]).transpose(-1, 0).to(self.device)
else:
spk_id = torch.LongTensor(np.array([spk_id])).to(self.device)
spk_mix = torch.tensor([[[1.]]]).to(self.device)
else:
if use_spk_mix:
spk_id = torch.stack([self.spk_embeds[str(k)]['spk_embed'] for k in spk_mix_dict.keys()]).to(self.device)
spk_mix = torch.tensor([[[float(v) for v in spk_mix_dict.values()]]]).transpose(-1, 0).to(self.device)
else:
spk_id = self.spk_embeds.get(str(spk_id))
if spk_id is None:
spk_id = list(self.spk_embeds.values())[0]
spk_id = spk_id['spk_embed'].unsqueeze(0)
spk_mix = torch.tensor([[[1.]]]).to(self.device)
# forward and return the output
with torch.no_grad():
output = self.model(units, f0, volume, spk_id=spk_id, spk_mix=spk_mix)
output *= mask
output_sample_rate = self.args.data.sampling_rate
output = output.squeeze()
return output, output_sample_rate
class Config:
def __init__(self) -> None:
self.samplerate = 44100 # Hz
# self.block_time = 0.3 # s
self.block_time = 64 # frames
self.sub_block_size = 32
self.f_pitch_change: float = 0.0 # float(request_form.get("fPitchChange", 0))
self.f_intonation: float = 1.0
self.f_intonation_base: float = 200.0
self.spk_id = 1 # 默认说话人。
self.spk_mix_dict = None # {1:0.5, 2:0.5} 表示1号说话人和2号说话人的音色按照0.5:0.5的比例混合
self.use_vocoder_based_enhancer = True
self.use_phase_vocoder = False
self.checkpoint_path = ''
self.threhold = -45
self.crossfade_time = 0.04
self.extra_time = 1.5
self.select_pitch_extractor = 'harvest' # F0预测器["parselmouth", "dio", "harvest", "crepe", "rmvpe", "fcpe"]
self.use_spk_mix = False
self.sounddevices = ['', '']
def save(self, path):
with open(path + '\\config.pkl', 'wb') as f:
pickle.dump(vars(self), f)
def load(self, path) -> bool:
try:
with open(path + '\\config.pkl', 'rb') as f:
self.update(pickle.load(f))
return True
except:
print('config.pkl does not exist')
return False
def update(self, data_dict):
for key, value in data_dict.items():
setattr(self, key, value)
class GUI:
def __init__(self) -> None:
self.config = Config()
self.block_frame = 0
self.crossfade_frame = 0
self.sola_search_frame = 0
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.svc_model: SvcDDSP = SvcDDSP()
self.fade_in_window: np.ndarray = None # crossfade计算用numpy数组
self.fade_out_window: np.ndarray = None # crossfade计算用numpy数组
self.input_wav: np.ndarray = None # 输入音频规范化后的保存地址
self.output_wav: np.ndarray = None # 输出音频规范化后的保存地址
self.sola_buffer: torch.Tensor = None # 保存上一个output的crossfade
self.f0_mode_list = ["dio", "harvest", "crepe", "rmvpe", "fcpe"] # F0预测器
self.f_safe_prefix_pad_length: float = 0.0
self.resample_kernel = {}
self.stream = None
self.input_devices = None
self.output_devices = None
self.input_devices_indices = None
self.output_devices_indices = None
self.update_devices()
self.default_input_device = self.input_devices[self.input_devices_indices.index(sd.default.device[0])]
self.default_output_device = self.output_devices[self.output_devices_indices.index(sd.default.device[1])]
self.launcher() # start
def launcher(self):
'''窗口加载'''
sg.theme('DarkAmber') # 设置主题
# 界面布局
layout = [
[sg.Frame(layout=[
[sg.Input(key='sg_model', default_text='models\\pretrained\\mnp-svc\\vctk-full\\pytorch_model.bin'),
sg.FileBrowse(i18n('选择模型文件'), key='choose_model')]
], title=i18n('模型:.pt格式(自动识别同目录下config.yaml)')),
sg.Frame(layout=[
[sg.Text(i18n('选择配置文件所在目录')), sg.Input(key='config_file_dir', default_text='exp'),
sg.FolderBrowse(i18n('打开文件夹'), key='choose_config')],
[sg.Button(i18n('读取配置文件'), key='load_config'), sg.Button(i18n('保存配置文件'), key='save_config')]
], title=i18n('快速配置文件'))
],
[sg.Frame(layout=[
[sg.Text(i18n("输入设备")),
sg.Combo(self.input_devices, key='sg_input_device', default_value=self.default_input_device,
enable_events=True)],
[sg.Text(i18n("输出设备")),
sg.Combo(self.output_devices, key='sg_output_device', default_value=self.default_output_device,
enable_events=True)]
], title=i18n('音频设备'))
],
[sg.Frame(layout=[
[sg.Text(i18n("说话人id")), sg.Input(key='spk_id', default_text='1'), sg.Text("", key='spk_name')],
[sg.Text(i18n("响应阈值")),
sg.Slider(range=(-60, 0), orientation='h', key='threhold', resolution=1, default_value=-50,
enable_events=True)],
[sg.Text(i18n("变调")),
sg.Slider(range=(-24, 24), orientation='h', key='pitch', resolution=1, default_value=0,
enable_events=True)],
[sg.Text(i18n('抑扬')),
sg.Slider(range=(0.0, 3.0), orientation='h', key='intonation', resolution=0.01, default_value=1.0,
enable_events=True)],
[sg.Text(i18n('抑扬基(Hz)')),
sg.Slider(range=(50, 400), orientation='h', key='intonation_base', resolution=1, default_value=200,
enable_events=True)],
[sg.Text(i18n("采样率")), sg.Input(key='samplerate', default_text='44100')],
[sg.Checkbox(text=i18n('启用捏音色功能'), default=False, key='spk_mix', enable_events=True),
sg.Button(i18n("设置混合音色"), key='set_spk_mix')]
], title=i18n('普通设置')),
sg.Frame(layout=[
[sg.Text(i18n("音频切分大小")),
# sg.Slider(range=(0.05, 3.0), orientation='h', key='block', resolution=0.01, default_value=0.3,
sg.Slider(range=(32, 320), orientation='h', key='block', resolution=1, default_value=50,
enable_events=True)],
[sg.Text(i18n("音频切分子分割大小")),
sg.Slider(range=(1, 32), orientation='h', key='block_div', resolution=1, default_value=1,
enable_events=True)],
[sg.Text(i18n("交叉淡化时长")),
# sg.Slider(range=(0.0, 0.15), orientation='h', key='crossfade', resolution=0.005,
# default_value=0.04, enable_events=True)],
# default_value=0.0, enable_events=True)],
sg.Slider(range=(0.0, 0.5), orientation='h', key='crossfade', resolution=0.005,
default_value=0.03, enable_events=True)],
[sg.Text(i18n("额外推理时长")),
# sg.Slider(range=(0.05, 5), orientation='h', key='extra', resolution=0.01, default_value=2.0,
sg.Slider(range=(0.0, 5.), orientation='h', key='extra', resolution=0.01, default_value=0.8,
enable_events=True)],
[sg.Text(i18n("f0预测模式")),
sg.Combo(values=self.f0_mode_list, key='f0_mode', default_value=self.f0_mode_list[-1],
enable_events=True)],
[sg.Checkbox(text=i18n('启用相位声码器'), default=False, key='use_phase_vocoder', enable_events=True)]
], title=i18n('性能设置')),
],
[sg.Button(i18n("开始音频转换"), key="start_vc"), sg.Button(i18n("停止音频转换"), key="stop_vc"),
sg.Text(i18n('推理所用时间(ms):')), sg.Text('0', key='infer_time')]
]
# 创造窗口
self.window = sg.Window('MNP-SVC - GUI', layout, finalize=True)
self.window['spk_id'].bind('<Return>', '')
self.window['samplerate'].bind('<Return>', '')
self.event_handler()
def event_handler(self):
'''事件处理'''
global flag_vc
while True: # 事件处理循环
event, values = self.window.read()
print('event: ' + event)
if event == sg.WINDOW_CLOSED: # 如果用户关闭窗口
flag_vc = False
exit()
elif event == "start_vc" and not flag_vc:
# preload model
self.device = self.svc_model.update_model(values['sg_model']) # read values{} is not good practice but for avoid circulate ref.
# set values 和界面布局layout顺序一一对应
self.set_values(values)
print('block_time:' + str(self.config.block_time))
print('crossfade_time:' + str(self.config.crossfade_time))
print("extra_time:" + str(self.config.extra_time))
print("samplerate:" + str(self.config.samplerate))
print("prefix_pad_length:" + str(self.f_safe_prefix_pad_length))
print("mix_mode:" + str(self.config.spk_mix_dict))
print("enhancer:" + str(self.config.use_vocoder_based_enhancer))
print('using_cuda:' + str(torch.cuda.is_available()))
self.start_vc()
elif event == 'spk_id':
self.update_spk(values['spk_id'])
elif event == 'threhold':
self.config.threhold = values['threhold']
elif event == 'pitch':
self.config.f_pitch_change = values['pitch']
elif event == 'intonation':
self.config.f_intonation = values['intonation']
elif event == 'intonation_base':
self.config.f_intonation_base = values['intonation_base']
elif event == 'spk_mix':
self.config.use_spk_mix = values['spk_mix']
elif event == 'set_spk_mix':
spk_mix = sg.popup_get_text(message='示例:1:0.3,2:0.5,3:0.2', title="设置混合音色,支持多人")
if spk_mix != None:
self.config.spk_mix_dict = eval("{" + spk_mix.replace(',', ',').replace(':', ':') + "}")
elif event == 'f0_mode':
self.config.select_pitch_extractor = values['f0_mode']
self.svc_model.update_pitch_extractor(values['f0_mode'], self.config.samplerate)
elif event == 'use_phase_vocoder':
self.config.use_phase_vocoder = values['use_phase_vocoder']
elif event == 'load_config' and not flag_vc:
if self.config.load(values['config_file_dir']):
self.update_values()
elif event == 'save_config' and not flag_vc:
self.set_values(values)
self.config.save(values['config_file_dir'])
elif event != 'start_vc' and flag_vc:
self.stop_stream()
def set_values(self, values):
self.set_devices(values["sg_input_device"], values['sg_output_device'])
self.config.sounddevices = [values["sg_input_device"], values['sg_output_device']]
self.config.checkpoint_path = values['sg_model']
self.config.spk_id = int(values['spk_id'])
self.config.threhold = values['threhold']
self.config.f_pitch_change = values['pitch']
self.config.f_intonation = values['intonation']
self.config.f_intonation_base = values['intonation_base']
self.config.samplerate = int(values['samplerate'])
# self.config.block_time = float(values['block'])
self.config.block_time = int(values['block'])
self.config.crossfade_time = float(values['crossfade'])
self.config.extra_time = float(values['extra'])
self.config.select_pitch_extractor = values['f0_mode']
self.config.use_phase_vocoder = values['use_phase_vocoder']
self.config.use_spk_mix = values['spk_mix']
self.config.sub_block_size = int(values['block_div'])
self.block_frame = int(self.config.block_time * self.svc_model.args.data.block_size + 0.5)
# self.callback_blocksize = max(self.block_frame//16, self.svc_model.args.data.block_size)
# self.callback_blocksize = max(self.block_frame//16, 1)
self.callback_blocksize = max(self.block_frame//self.config.sub_block_size, 1)
# self.crossfade_frame = int(self.config.crossfade_time * self.config.samplerate)
self.crossfade_frame = int(self.config.crossfade_time * self.block_frame + 0.5)
self.sola_search_frame = int(0.005 * self.config.samplerate)
self.last_delay_frame = int(0.01 * self.config.samplerate)
# self.last_delay_frame = 1
self.extra_frame = int(self.config.extra_time * self.config.samplerate)
self.input_frame = max(
self.block_frame + self.crossfade_frame + self.sola_search_frame + 2 * self.last_delay_frame,
self.block_frame + self.extra_frame)
self.f_safe_prefix_pad_length = self.config.extra_time - self.config.crossfade_time - 0.005 - 0.01
def update_values(self):
self.window['sg_model'].update(self.config.checkpoint_path)
self.window['sg_input_device'].update(self.config.sounddevices[0])
self.window['sg_output_device'].update(self.config.sounddevices[1])
self.window['spk_id'].update(self.config.spk_id)
self.window['threhold'].update(self.config.threhold)
self.window['pitch'].update(self.config.f_pitch_change)
self.window['intonation'].update(self.config.f_intonation)
self.window['intonation_base'].update(self.config.f_intonation_base)
self.window['samplerate'].update(self.config.samplerate)
self.window['spk_mix'].update(self.config.use_spk_mix)
self.window['block'].update(self.config.block_time)
self.window['block_div'].update(self.config.sub_block_size)
self.window['crossfade'].update(self.config.crossfade_time)
self.window['extra'].update(self.config.extra_time)
self.window['f0_mode'].update(self.config.select_pitch_extractor)
def update_spk(self, spk_id):
self.config.spk_id = int(spk_id)
if self.svc_model.spk_embeds is not None:
if str(spk_id) not in self.svc_model.spk_embeds.keys():
self.config.spk_id = int(list(self.svc_model.spk_embeds.keys())[0])
self.window['spk_name'].update(self.svc_model.spk_embeds[str(self.config.spk_id)]['spk_name'])
else:
self.window['spk_name'].update(str(self.config.spk_id))
def start_vc(self):
'''开始音频转换'''
torch.cuda.empty_cache()
self.device = self.svc_model.update_model(self.config.checkpoint_path)
self.update_spk(self.config.spk_id)
self.svc_model.update_pitch_extractor(self.config.select_pitch_extractor, self.config.samplerate)
self.input_wav = np.zeros(self.input_frame, dtype='float32')
if self.crossfade_frame > 0:
self.fade_in_window = torch.sin(
np.pi * torch.arange(0, 1, 1 / self.crossfade_frame, device=self.device) / 2) ** 2
self.fade_out_window = 1 - self.fade_in_window
self.sola_buffer = torch.zeros(self.crossfade_frame, device=self.device)
else:
self.sola_search_frame = 0
self.last_delay_frame = 0
self.fade_in_window = 0
self.fade_out_window = 1
self.sola_buffer = None
# self.sola_buffer = torch.zeros(self.crossfade_frame, device=self.device)
# self.fade_in_window = torch.sin(
# np.pi * torch.arange(0, 1, 1 / self.crossfade_frame, device=self.device) / 2) ** 2
# self.fade_out_window = 1 - self.fade_in_window
self.start_stream()
def start_stream(self):
global flag_vc
if not flag_vc:
flag_vc = True
self.stream = sd.Stream(
channels=2,
callback=self.audio_callback,
# blocksize=self.block_frame,
# blocksize=max(self.block_frame//8, 32),
blocksize=self.callback_blocksize,
latency='low',
samplerate=self.config.samplerate,
dtype="float32")
self.stream.start()
def stop_stream(self):
global flag_vc
if flag_vc:
flag_vc = False
if self.stream is not None:
self.stream.stop()
self.stream.close()
self.stream = None
def audio_callback(self, indata: np.ndarray, outdata: np.ndarray, frames, times, status):
'''
音频处理
'''
start_time = time.perf_counter()
# print("\nStarting callback")
block_size = frames
self.input_wav[:] = np.roll(self.input_wav, -block_size)
self.input_wav[-block_size:] = librosa.to_mono(indata.T)
# infer
_audio, _model_sr = self.svc_model.infer(
self.input_wav,
self.config.samplerate,
spk_id=self.config.spk_id,
threhold=self.config.threhold,
pitch_adjust=self.config.f_pitch_change,
use_spk_mix=self.config.use_spk_mix,
spk_mix_dict=self.config.spk_mix_dict,
pitch_extractor_type=self.config.select_pitch_extractor,
intonation=self.config.f_intonation,
intonation_base=self.config.f_intonation_base,
safe_prefix_pad_length=self.f_safe_prefix_pad_length,
)
# debug sola
'''
_audio, _model_sr = self.input_wav, self.config.samplerate
rs = int(np.random.uniform(-200,200))
print('debug_random_shift: ' + str(rs))
_audio = np.roll(_audio, rs)
_audio = torch.from_numpy(_audio).to(self.device)
'''
if _model_sr != self.config.samplerate:
key_str = str(_model_sr) + '_' + str(self.config.samplerate)
if key_str not in self.resample_kernel:
self.resample_kernel[key_str] = Resample(_model_sr, self.config.samplerate,
lowpass_filter_width=128).to(self.device)
_audio = self.resample_kernel[key_str](_audio)
# temp_wav = _audio[
# - self.callback_blocksize - self.crossfade_frame - self.sola_search_frame - self.last_delay_frame: - self.last_delay_frame]
temp_wav = _audio[
- block_size - self.crossfade_frame - self.sola_search_frame - self.last_delay_frame: - self.last_delay_frame]
# temp_wav = _audio[:self.block_frame + self.crossfade_frame + self.sola_search_frame]
# temp_wav = _audio[self.input_wav.shape[0] - self.block_frame - self.crossfade_frame - self.sola_search_frame:]
# print(_audio.shape, temp_wav.shape, outdata.shape, self.crossfade_frame)
if self.sola_buffer is not None:
# sola shift
# if False:
conv_input = temp_wav[None, None, : self.crossfade_frame + self.sola_search_frame]
cor_nom = F.conv1d(conv_input, self.sola_buffer[None, None, :])
cor_den = torch.sqrt(
F.conv1d(conv_input ** 2, torch.ones(1, 1, self.crossfade_frame, device=self.device)) + 1e-8)
sola_shift = torch.argmax(cor_nom[0, 0] / cor_den[0, 0])
# else:
# sola_shift = 0
# temp_wav = temp_wav[sola_shift: sola_shift + self.block_frame + self.crossfade_frame]
# temp_wav = temp_wav[sola_shift: sola_shift + self.callback_blocksize + self.crossfade_frame]
temp_wav = temp_wav[sola_shift: sola_shift + block_size + self.crossfade_frame]
print(f'\rsola_shift: {int(sola_shift):4}', end="")
else:
print(f'\rsola_shift: {0:4}', end="")
# phase vocoder
if self.config.use_phase_vocoder:
temp_wav[: self.crossfade_frame] = phase_vocoder(
self.sola_buffer,
temp_wav[: self.crossfade_frame],
self.fade_out_window,
self.fade_in_window)
elif self.crossfade_frame > 0:
temp_wav[: self.crossfade_frame] *= self.fade_in_window
temp_wav[: self.crossfade_frame] += self.sola_buffer * self.fade_out_window
if self.crossfade_frame > 0:
self.sola_buffer = temp_wav[- self.crossfade_frame:]
outdata[:] = temp_wav[: - self.crossfade_frame, None].repeat(1, 2).cpu().numpy()
else:
# outdata[:] = _audio[: self.block_frame, None].repeat(1, 2).cpu().numpy()
outdata[:] = _audio[: block_size, None].repeat(1, 2).cpu().numpy()
end_time = time.perf_counter()
print(f' infer_time: {end_time - start_time:.5f}', end="")
if flag_vc:
self.window['infer_time'].update(int((end_time - start_time) * 1000))
def update_devices(self):
'''获取设备列表'''
sd._terminate()
sd._initialize()
devices = sd.query_devices()
hostapis = sd.query_hostapis()
for hostapi in hostapis:
for device_idx in hostapi["devices"]:
devices[device_idx]["hostapi_name"] = hostapi["name"]
self.input_devices = [
f"{d['name']} ({d['hostapi_name']})"
for d in devices
if d["max_input_channels"] > 0
]
self.output_devices = [
f"{d['name']} ({d['hostapi_name']})"
for d in devices
if d["max_output_channels"] > 0
]
self.input_devices_indices = [d["index"] for d in devices if d["max_input_channels"] > 0]
self.output_devices_indices = [
d["index"] for d in devices if d["max_output_channels"] > 0
]
def set_devices(self, input_device, output_device):
'''设置输出设备'''
sd.default.device[0] = self.input_devices_indices[self.input_devices.index(input_device)]
sd.default.device[1] = self.output_devices_indices[self.output_devices.index(output_device)]
print("input device:" + str(sd.default.device[0]) + ":" + str(input_device))
print("output device:" + str(sd.default.device[1]) + ":" + str(output_device))
def parse_args(args=None, namespace=None):
"""Parse command-line arguments."""
parser = argparse.ArgumentParser()
parser.add_argument(
"-m",
"--model_path",
type=str,
required=True,
help="path to the model file",
)
parser.add_argument(
"-d",
"--device",
type=str,
default=None,
required=False,
help="cpu or cuda, auto if not set")
parser.add_argument(
"-i",
"--input",
type=str,
required=True,
help="path to the input audio file",
)
parser.add_argument(
"-o",
"--output",
type=str,
required=True,
help="path to the output audio file",
)
parser.add_argument(
"-id",
"--spk_id",
type=int,
required=False,
default=1,
help="speaker id (for multi-speaker model) | default: 1",
)
parser.add_argument(
"-semb",
"--spk_embed",
type=str,
required=False,
default="None",
help="speaker embed .npz file (for multi-speaker with spk_embed_encoder model) | default: None",
)
parser.add_argument(
"-mix",
"--spk_mix_dict",
type=str,
required=False,
default="None",
help="mix-speaker dictionary (for multi-speaker model) | default: None",
)
parser.add_argument(
"-intb",
"--intonation_base",
type=float,
required=False,
default=220.0,
help="base freq of intonation changed | default: 220.0",
)
parser.add_argument(
"-into",
"--intonation",
type=float,
required=False,
default=1.0,
help="intonation changed (above 1.0 for exciter, below for calmer) | default: 1.0",
)
parser.add_argument(
"-k",
"--key",
type=int,
required=False,
default=0,
help="key changed (number of semitones) | default: 0",
)
parser.add_argument(
"-pe",
"--pitch_extractor",
type=str,
required=False,
default='rmvpe',
help="pitch extrator type: dio, harvest, crepe, fcpe, rmvpe (default)",
)
parser.add_argument(
"-fmin",
"--f0_min",
type=float,
required=False,
default=50,
help="min f0 (Hz) | default: 50",
)
parser.add_argument(
"-fmax",
"--f0_max",
type=float,
required=False,
default=1200,
help="max f0 (Hz) | default: 1200",
)
parser.add_argument(
"-th",
"--threhold",
type=float,
required=False,
default=-45,
help="response threhold (dB) | default: -45",
)
# parser.add_argument(
# "-bt",
# "--block_time",
# type=float,
# default=0.3,
# )
parser.add_argument(
"-bf",
"--block_frame",
type=int,
default=64,
)
# parser.add_argument(
# "-ct",
# "--crossfade_time",
# type=float,
# # default=0.04,
# default=0.,
# )
parser.add_argument(
"-cf",
"--crossfade_frame",
type=int,
# default=0.04,
default=16,
)
parser.add_argument(
"-et",
"--extra_time",
type=float,
# default=1.5,
# default=0.,
default=0.8,
)
parser.add_argument(
"-pb" ,
"--phase_vocoder",
action="store_true",
)
return parser.parse_args(args=args, namespace=namespace)
class OfflineRenderer(GUI):
def __init__(self, cmd, sr=44100) -> None:
self.cmd = cmd
self.config = Config()
self.block_frame = 0
self.crossfade_frame = 0
self.sola_search_frame = 0
if cmd.device is None:
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
else:
self.device = cmd.device
self.svc_model: SvcDDSP = SvcDDSP()
self.fade_in_window: np.ndarray = None # crossfade计算用numpy数组
self.fade_out_window: np.ndarray = None # crossfade计算用numpy数组
self.input_wav: np.ndarray = None # 输入音频规范化后的保存地址
self.output_wav: np.ndarray = None # 输出音频规范化后的保存地址
self.sola_buffer: torch.Tensor = None # 保存上一个output的crossfade
self.f0_mode_list = ["dio", "harvest", "crepe", "rmvpe", "fcpe"] # F0预测器
self.f_safe_prefix_pad_length: float = 0.0
self.resample_kernel = {}
self.stream = None
self.config.checkpoint_path = cmd.model_path
self.config.spk_id = cmd.spk_id
self.config.threhold = cmd.threhold
self.config.f_pitch_change = cmd.key
self.config.f_intonation = cmd.intonation
self.config.f_intonation_base = cmd.intonation_base
self.config.samplerate = sr
# self.config.block_time = cmd.block_time
self.config.extra_time = cmd.extra_time
self.config.select_pitch_extractor = cmd.pitch_extractor
self.config.use_phase_vocoder = cmd.phase_vocoder
self.config.use_spk_mix = cmd.spk_mix_dict != "None"
self.config.spk_mix_dict = eval("{" + cmd.spk_mix_dict.replace(',', ',').replace(':', ':') + "}")
self.sola_search_frame = int(0.01 * self.config.samplerate)
self.last_delay_frame = int(0.02 * self.config.samplerate)
self.extra_frame = int(self.config.extra_time * self.config.samplerate)
self.device = self.svc_model.update_model(self.config.checkpoint_path)
self.config.block_time = cmd.block_frame*self.svc_model.args.data.block_size / self.config.samplerate
self.block_frame = int(self.config.block_time * self.config.samplerate + 0.5)
self.config.crossfade_time = cmd.crossfade_frame * self.svc_model.args.data.block_size / self.config.samplerate
self.crossfade_frame = int(self.config.crossfade_time * self.config.samplerate + 0.5)
self.input_frame = max(
self.block_frame + self.crossfade_frame + self.sola_search_frame + 2 * self.last_delay_frame,
self.block_frame + self.extra_frame)
self.f_safe_prefix_pad_length = self.config.extra_time - self.config.crossfade_time - 0.01 - 0.02
self.svc_model.update_pitch_extractor(self.config.select_pitch_extractor, self.config.samplerate)
self.input_wav = np.zeros(self.input_frame, dtype='float32')
if self.crossfade_frame > 0:
self.fade_in_window = torch.sin(
np.pi * torch.arange(0, 1, 1 / self.crossfade_frame, device=self.device) / 2) ** 2
self.fade_out_window = 1 - self.fade_in_window
self.sola_buffer = torch.zeros(self.crossfade_frame, device=self.device)
else:
self.sola_search_frame = 0
self.last_delay_frame = 0
# self.fade_in_window = torch.sin(
# np.pi * torch.arange(0, 1, 1 / self.crossfade_frame, device=self.device) / 2) ** 2
# self.fade_out_window = 1 - self.fade_in_window
def render(self, indata: np.ndarray, outdata: np.ndarray):
super().audio_callback(indata, outdata, 0, 0, None)
if __name__ == "__main__":
if len(sys.argv) <= 1:
# launch GUI
i18n = gui_locale.I18nAuto()
gui = GUI()
else:
# offline rendering
import soundfile as sf
cmd = parse_args()
info = sf.info(cmd.input)
renderer = OfflineRenderer(cmd, info.samplerate)
# blocksize = int(cmd.block_time * info.samplerate)
blocksize = int(renderer.block_frame)
print(f"blocksize: {blocksize}")
buffer_frames = int(info.frames//blocksize + 1) * blocksize
result = np.zeros((1, buffer_frames, 2), dtype=np.float64)
for idx, block in enumerate(sf.blocks(cmd.input, blocksize=blocksize, fill_value=0.0)):
renderer.render(block, result[:, idx*blocksize:(idx+1)*blocksize])
delayed_frames = renderer.sola_search_frame + renderer.crossfade_frame + renderer.last_delay_frame
sf.write(cmd.output, result[:, delayed_frames:info.frames+delayed_frames, 0].squeeze(0), info.samplerate)