-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwordcloud.R
59 lines (46 loc) · 2.13 KB
/
wordcloud.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# responses from the MEDS Class of 2022 Mural Inspiration survey: https://forms.gle/XESirQia4UapPPbZ9
# specifically using responses to the following 2 questions:
# What 5 words would you use to describe the MEDS Class of 2022 Cohort?
# What 5 words describe the MEDS Program?
#..........................load packages.........................
library(tidyverse)
library(wordcloud)
library(RColorBrewer)
#............................load data...........................
data <- read_csv(here::here("responses.csv"))
#..........................wrangle data..........................
cohort <- data %>% select(five_words_cohort) %>%
mutate(five_words_cohort = strsplit(as.character(five_words_cohort), ", ")) %>%
unnest(five_words_cohort) %>%
drop_na() %>%
mutate(five_words_cohort = str_to_lower(five_words_cohort)) %>%
select(word = five_words_cohort) #%>%
#count(word, sort = TRUE)
program <- data %>% select(five_words_program) %>%
mutate(five_words_program = strsplit(as.character(five_words_program), ", ")) %>%
unnest(five_words_program) %>%
drop_na() %>%
mutate(five_words_program = str_to_lower(five_words_program),
five_words_program_new = gsub(pattern = ",", x = five_words_program, replacement = "")) %>%
select(word = five_words_program_new) #%>%
#count(word, sort = TRUE)
# combine into same df
all <- rbind(cohort, program) %>%
count(word, sort = TRUE)
#........................create wordcloud........................
# set.seed(100)
# wordcloud(words = cohort$word, freq = cohort$n,
# min.freq = 1, max.words = 50,
# random.order = FALSE, rot.per = 0.35)
# set.seed(100)
# wordcloud(program$word, freq = program$n,
# min.freq = 1, max.words = 50,
# random.order = FALSE, rot.per = 0.35)
jpeg('meds2022.jpeg', width = 500, height = 500, quality = 100)
set.seed(100)
meds2022<- wordcloud(all$word, freq = all$n,
min.freq = 1, max.words = 85,
random.order = FALSE, rot.per = 0.35,
scale=c(4,.5), colors=brewer.pal(8, "Dark2"))
dev.off()
# can't figure out how to improve resolution of saved jpeg??