diff --git a/episodes/04-data-types-and-format.md b/episodes/04-data-types-and-format.md index 7a930e9f3..ebb04710b 100644 --- a/episodes/04-data-types-and-format.md +++ b/episodes/04-data-types-and-format.md @@ -72,7 +72,8 @@ is in the table below: | --------------------- | ------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------- | | object | string | The most general dtype. Will be assigned to your column if column has mixed types (numbers and strings). | | int64 | int | Numeric characters. 64 refers to the memory allocated to hold this character. | -| float64 | float | Numeric characters with decimals. If a column contains numbers and NaNs (see below), pandas will default to float64, in case your missing value has a decimal. | +| float64 | float | Numeric characters with decimals. If a column contains numbers and NaNs (see below), pandas will default to float64, in case your missing value has a decimal. | +| bool | bool | True/False values | | datetime64, timedelta[ns] | N/A (but see the [datetime] module in Python's standard library) | Values meant to hold time data. Look into these for time series experiments. | ## Checking the format of our data