-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheast.py
229 lines (179 loc) · 7.86 KB
/
east.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import cv2
import depthai
import numpy as np
_conf_threshold = 0.5
def get_cv_rotated_rect(bbox, angle):
x0, y0, x1, y1 = bbox
width = abs(x0 - x1)
height = abs(y0 - y1)
x = x0 + width * 0.5
y = y0 + height * 0.5
return ([x.tolist(), y.tolist()], [width.tolist(), height.tolist()], np.rad2deg(angle))
def rotated_Rectangle(bbox, angle):
X0, Y0, X1, Y1 = bbox
width = abs(X0 - X1)
height = abs(Y0 - Y1)
x = int(X0 + width * 0.5)
y = int(Y0 + height * 0.5)
pt1_1 = (int(x + width / 2), int(y + height / 2))
pt2_1 = (int(x + width / 2), int(y - height / 2))
pt3_1 = (int(x - width / 2), int(y - height / 2))
pt4_1 = (int(x - width / 2), int(y + height / 2))
t = np.array([[np.cos(angle), -np.sin(angle), x - x * np.cos(angle) + y * np.sin(angle)],
[np.sin(angle), np.cos(angle), y - x * np.sin(angle) - y * np.cos(angle)],
[0, 0, 1]])
tmp_pt1_1 = np.array([[pt1_1[0]], [pt1_1[1]], [1]])
tmp_pt1_2 = np.dot(t, tmp_pt1_1)
pt1_2 = (int(tmp_pt1_2[0][0]), int(tmp_pt1_2[1][0]))
tmp_pt2_1 = np.array([[pt2_1[0]], [pt2_1[1]], [1]])
tmp_pt2_2 = np.dot(t, tmp_pt2_1)
pt2_2 = (int(tmp_pt2_2[0][0]), int(tmp_pt2_2[1][0]))
tmp_pt3_1 = np.array([[pt3_1[0]], [pt3_1[1]], [1]])
tmp_pt3_2 = np.dot(t, tmp_pt3_1)
pt3_2 = (int(tmp_pt3_2[0][0]), int(tmp_pt3_2[1][0]))
tmp_pt4_1 = np.array([[pt4_1[0]], [pt4_1[1]], [1]])
tmp_pt4_2 = np.dot(t, tmp_pt4_1)
pt4_2 = (int(tmp_pt4_2[0][0]), int(tmp_pt4_2[1][0]))
points = np.array([pt1_2, pt2_2, pt3_2, pt4_2])
return points
def non_max_suppression(boxes, probs=None, angles=None, overlapThresh=0.3):
# if there are no boxes, return an empty list
if len(boxes) == 0:
return [], []
# if the bounding boxes are integers, convert them to floats -- this
# is important since we'll be doing a bunch of divisions
if boxes.dtype.kind == "i":
boxes = boxes.astype("float")
# initialize the list of picked indexes
pick = []
# grab the coordinates of the bounding boxes
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
# compute the area of the bounding boxes and grab the indexes to sort
# (in the case that no probabilities are provided, simply sort on the bottom-left y-coordinate)
area = (x2 - x1 + 1) * (y2 - y1 + 1)
idxs = y2
# if probabilities are provided, sort on them instead
if probs is not None:
idxs = probs
# sort the indexes
idxs = np.argsort(idxs)
# keep looping while some indexes still remain in the indexes list
while len(idxs) > 0:
# grab the last index in the indexes list and add the index value to the list of picked indexes
last = len(idxs) - 1
i = idxs[last]
pick.append(i)
# find the largest (x, y) coordinates for the start of the bounding box and the smallest (x, y) coordinates for the end of the bounding box
xx1 = np.maximum(x1[i], x1[idxs[:last]])
yy1 = np.maximum(y1[i], y1[idxs[:last]])
xx2 = np.minimum(x2[i], x2[idxs[:last]])
yy2 = np.minimum(y2[i], y2[idxs[:last]])
# compute the width and height of the bounding box
w = np.maximum(0, xx2 - xx1 + 1)
h = np.maximum(0, yy2 - yy1 + 1)
# compute the ratio of overlap
overlap = (w * h) / area[idxs[:last]]
# delete all indexes from the index list that have overlap greater than the provided overlap threshold
idxs = np.delete(idxs, np.concatenate(([last], np.where(overlap > overlapThresh)[0])))
# return only the bounding boxes that were picked
return boxes[pick].astype("int"), angles[pick]
def decode_predictions(scores, geometry1, geometry2):
# grab the number of rows and columns from the scores volume, then
# initialize our set of bounding box rectangles and corresponding
# confidence scores
(numRows, numCols) = scores.shape[2:4]
rects = []
confidences = []
angles = []
# loop over the number of rows
for y in range(0, numRows):
# extract the scores (probabilities), followed by the
# geometrical data used to derive potential bounding box
# coordinates that surround text
scoresData = scores[0, 0, y]
xData0 = geometry1[0, 0, y]
xData1 = geometry1[0, 1, y]
xData2 = geometry1[0, 2, y]
xData3 = geometry1[0, 3, y]
anglesData = geometry2[0, 0, y]
# loop over the number of columns
for x in range(0, numCols):
# if our score does not have sufficient probability,
# ignore it
if scoresData[x] < _conf_threshold:
continue
# compute the offset factor as our resulting feature
# maps will be 4x smaller than the input image
(offsetX, offsetY) = (x * 4.0, y * 4.0)
# extract the rotation angle for the prediction and
# then compute the sin and cosine
angle = anglesData[x]
cos = np.cos(angle)
sin = np.sin(angle)
# use the geometry volume to derive the width and height
# of the bounding box
h = xData0[x] + xData2[x]
w = xData1[x] + xData3[x]
# compute both the starting and ending (x, y)-coordinates
# for the text prediction bounding box
endX = int(offsetX + (cos * xData1[x]) + (sin * xData2[x]))
endY = int(offsetY - (sin * xData1[x]) + (cos * xData2[x]))
startX = int(endX - w)
startY = int(endY - h)
# add the bounding box coordinates and probability score
# to our respective lists
rects.append((startX, startY, endX, endY))
confidences.append(scoresData[x])
angles.append(angle)
# return a tuple of the bounding boxes and associated confidences
return (rects, confidences, angles)
def decode_east(nnet_packet, **kwargs):
scores = nnet_packet.get_tensor(0)
geometry1 = nnet_packet.get_tensor(1)
geometry2 = nnet_packet.get_tensor(2)
bboxes, confs, angles = decode_predictions(scores, geometry1, geometry2
)
boxes, angles = non_max_suppression(np.array(bboxes), probs=confs, angles=np.array(angles))
boxesangles = (boxes, angles)
return boxesangles
def show_east(boxesangles, frame, **kwargs):
bboxes = boxesangles[0]
angles = boxesangles[1]
for ((X0, Y0, X1, Y1), angle) in zip(bboxes, angles):
width = abs(X0 - X1)
height = abs(Y0 - Y1)
cX = int(X0 + width * 0.5)
cY = int(Y0 + height * 0.5)
rotRect = ((cX, cY), ((X1 - X0), (Y1 - Y0)), angle * (-1))
points = rotated_Rectangle(frame, rotRect, color=(255, 0, 0), thickness=1)
cv2.polylines(frame, [points], isClosed=True, color=(255, 0, 0), thickness=1, lineType=cv2.LINE_8)
return frame
def order_points(pts):
rect = np.zeros((4, 2), dtype="float32")
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
return rect
def four_point_transform(image, pts):
rect = order_points(pts)
(tl, tr, br, bl) = rect
widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
maxWidth = max(int(widthA), int(widthB))
heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
maxHeight = max(int(heightA), int(heightB))
dst = np.array([
[0, 0],
[maxWidth - 1, 0],
[maxWidth - 1, maxHeight - 1],
[0, maxHeight - 1]], dtype="float32")
M = cv2.getPerspectiveTransform(rect, dst)
warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
return warped