-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdatasources.py
123 lines (102 loc) · 4.73 KB
/
datasources.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import numpy as np
import pandas as pd
import os
from urbansim_defaults import datasources
from urbansim_defaults import utils
from urbansim.utils import misc
import urbansim.sim.simulation as sim
@sim.table('jobs', cache=True)
def jobs(store):
df = store['jobs']
df = df[df.building_id > 0]
return df
@sim.table('fee_schedule', cache=True)
def fee_schedule(store):
df = store['fee_schedule']
return df
@sim.table('parcel_fee_schedule', cache=True)
def parcel_fee_schedule(store):
df = store['parcel_fee_schedule']
return df
@sim.table('zoning', cache=True)
def zoning(store):
df = store['zoning']
return df
@sim.table('zoning_allowed_uses', cache=True)
def zoning_allowed_uses(store, parcels):
parcels_allowed = store['zoning_allowed_uses']
parcels = sim.get_table('parcels').to_frame(columns = ['zoning_id',])
allowed_df = pd.DataFrame(index = parcels.index)
for devtype in np.unique(parcels_allowed.development_type_id):
devtype_allowed = parcels_allowed[parcels_allowed.development_type_id == devtype].set_index('zoning_id')
allowed = misc.reindex(devtype_allowed.development_type_id, parcels.zoning_id)
df = pd.DataFrame(index=allowed.index)
df['allowed'] = False
df[~allowed.isnull()] = True
allowed_df[devtype] = df.allowed
return allowed_df
@sim.table('households', cache=True)
def households(store):
df = store['households']
df = df[df.building_id > 0] ##Revisit the allocation and remove GQ from synthetic population?
p = store['parcels']
b = store['buildings']
b['luz'] = misc.reindex(p.luz_id, b.parcel_id)
df['base_luz'] = misc.reindex(b.luz, df.building_id)
df['segmentation_col'] = 1
return df
@sim.table('buildings', cache=True)
def buildings(store):
df = store['buildings']
df['res_price_per_sqft'] = 0.0
df['nonres_rent_per_sqft'] = 0.0
#df.residential_units = df.residential_units*2 ##For testing HLCM luz supply constraints only
return df
@sim.table('parcels', cache=True)
def parcels(store):
df = store['parcels']
df['acres'] = df.parcel_acres
#Delete duplicate index (parcel_id)
df['rownum'] = df.index
df = df.drop_duplicates(cols='rownum', take_last=True)
del df['rownum']
return df
@sim.table('annual_household_control_totals', cache=True)
def annual_household_control_totals():
pecas_hh_controls = pd.read_csv('data/pecas_hh_controls.csv')
pecas_hh_controls = pecas_hh_controls[pecas_hh_controls.activity_name.isin(['Households less than 25k annual income and 2 or less people',
'Households 25 to 150k annual income and 2 or less people',
'Households 150k or more annual income and 2 or less people',
'Households less than 25k annual income and 3 or more people',
'Households 25 to 150k annual income and 3 or more people',
'Households 150k or more annual income and 3 or more people'])]
pecas_hh_controls = pecas_hh_controls.rename(columns = {'yr':'year', 'Total_HH_Controls':'total_number_of_households', 'luz_id':'base_luz'})
pecas_hh_controls.total_number_of_households = np.ceil(pecas_hh_controls.total_number_of_households).astype('int32')
pecas_hh_controls = pecas_hh_controls[['year', 'activity_id', 'base_luz', 'total_number_of_households']].set_index('year')
return pecas_hh_controls
@sim.injectable('building_sqft_per_job', cache=True)
def building_sqft_per_job(settings):
return settings['building_sqft_per_job']
# non-residential rent data
@sim.table('costar', cache=True)
def costar(store):
df = store['costar']
return df
# residential price data
@sim.table('assessor_transactions', cache=True)
def assessor_transactions(store):
df = store['assessor_transactions']
df["index"] = df.index
df.drop_duplicates(cols='index', take_last=True, inplace=True)
del df["index"]
return df
# luz price from pecas
@sim.table('pecas_prices', cache=True)
def pecas_prices(store):
df = store['pecas_prices']
return df
# this specifies the relationships between tables
sim.broadcast('nodes', 'costar', cast_index=True, onto_on='node_id')
sim.broadcast('parcels', 'costar', cast_index=True, onto_on='parcel_id')
sim.broadcast('nodes', 'assessor_transactions', cast_index=True, onto_on='node_id')
sim.broadcast('parcels', 'assessor_transactions', cast_index=True, onto_on='parcel_id')