-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathload_data.py
91 lines (70 loc) · 4.73 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
'''
Dataset loading and data transformation classes.
'''
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
class FashionMNIST:
def __init__(self, data_path, batch_size, shuffle, num_workers=4, rotation_degrees=30, translate=(0,0.2), scale=(0.95,1.2)):
self.data_path = data_path
self.batch_size = batch_size
self.shuffle = shuffle
self.num_workers = num_workers
self.rotation = rotation_degrees
self.translate = translate
self.scale = scale
self.img_size = 28
self.num_class = 10
def __call__(self):
train_loader = DataLoader(datasets.FashionMNIST(root=self.data_path,
train=True,
download=True,
transform=transforms.Compose([transforms.RandomAffine(
degrees=self.rotation,
translate=self.translate,
scale=self.scale
), transforms.ToTensor()])),
batch_size=self.batch_size,
shuffle=self.shuffle,
num_workers=self.num_workers)
test_loader = DataLoader(datasets.FashionMNIST(root=self.data_path,
train=False,
download=True,
transform=transforms.ToTensor()),
batch_size=self.batch_size,
shuffle=self.shuffle,
num_workers=self.num_workers)
return train_loader, test_loader, self.img_size, self.num_class
class Cifar10:
def __init__(self, data_path, batch_size, shuffle, num_workers=4, rotation_degrees=30, translate=(0,0.2), scale=(0.95, 1.2)):
self.data_path = data_path
self.batch_size = batch_size
self.shuffle = shuffle
self.num_workers = num_workers
self.rotation = rotation_degrees
self.translate = translate
self.scale = scale
self.img_size = 28
self.num_class = 10
def __call__(self):
train_loader = DataLoader(datasets.CIFAR10(root=self.data_path,
train=True,
download=True,
transform=transforms.Compose([transforms.RandomAffine(
degrees=self.rotation,
translate=self.translate,
scale=self.scale
), transforms.Grayscale(), transforms.Resize(self.img_size), transforms.ToTensor()])),
batch_size=self.batch_size,
shuffle=self.shuffle,
num_workers=self.num_workers)
test_loader = DataLoader(datasets.CIFAR10(root=self.data_path,
train=False,
download=True,
transform=transforms.Compose([
transforms.Grayscale(),
transforms.Resize(self.img_size),
transforms.ToTensor()])),
batch_size=self.batch_size,
shuffle=self.shuffle,
num_workers=self.num_workers)
return train_loader, test_loader, self.img_size, self.num_class