"
- ],
- "text/plain": [
- " replicate mean_price\n",
- "0 0 208.250\n",
- "1 1 205.800\n",
- "2 2 183.925\n",
- "3 3 211.600\n",
- "4 4 239.475\n",
- "... ... ...\n",
- "19995 19995 176.725\n",
- "19996 19996 217.450\n",
- "19997 19997 204.600\n",
- "19998 19998 216.900\n",
- "19999 19999 198.375\n",
- "\n",
- "[20000 rows x 2 columns]"
- ]
- },
- "execution_count": 16,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"# Calculate the mean price for each bootstrap sample (replicate)\n",
"boot_means = boot20000.groupby('replicate')['price'].mean().reset_index(name='mean_price')\n",
- "boot_means"
+ "# boot_means"
]
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAIhCAYAAAC48qAWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABkuUlEQVR4nO3deVhUdf//8dcIwyqgyJ5IZG6JWWoqtqiZmOaW3bcVd6ZoZuWSpbdmfbvF7rKyO1us1MrQcqvu1BaLwtwyNbfMNFMrJBcQUgQFhQHO749u5tfIKnIYkefjurgu58xnznmfN4cjL86Zz1gMwzAEAAAAAKhW9ZxdAAAAAABcighbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsATDV//nxZLBb7l4eHh0JCQtS9e3c9++yzSk9PL/Ga+Ph4WSyW89pObm6u4uPjtXbt2vN6XWnbuvzyy9W3b9/zWk9FFi9erJdffrnU5ywWi+Lj46t1e9Xt66+/VocOHeTt7S2LxaIVK1aUOu7o0aOKj4/Xzp07Szw3bNgw1a9f39xCa3A7pSnv+1yRn376SfHx8Tp48GC11lTXdevWTd26dXN2GQDqKMIWgBqRkJCgTZs2KSkpSa+//rquueYaPf/882rVqpVWrVrlMPa+++7Tpk2bzmv9ubm5mjZt2nmHrapsqyrK+yV806ZNuu+++0yvoaoMw9DgwYNltVr1ySefaNOmTeratWupY48ePapp06aVGrbqggsNW9OmTSNsAcAlxNXZBQCoG6KiotShQwf74zvuuEOPPPKIbrjhBg0aNEgHDhxQcHCwJKlx48Zq3LixqfXk5ubKy8urRrZVkc6dOzt1+xU5evSoTpw4odtvv109evRwdjn4n+JjGABw8eLKFgCnadKkiV588UWdOnVKc+fOtS8v7da+1atXq1u3bmrUqJE8PT3VpEkT3XHHHcrNzdXBgwcVGBgoSZo2bZr9lsVhw4Y5rG/Hjh3629/+poYNG6pp06ZlbqvY8uXLdfXVV8vDw0NXXHGFXn31VYfni2+RPPdKxNq1a2WxWOxX2bp166aVK1cqJSXF4ZbKYqXdRrh7924NGDBADRs2lIeHh6655hotWLCg1O0sWbJETzzxhMLCwuTr66tbbrlF+/btK7vxf7Fhwwb16NFDPj4+8vLyUpcuXbRy5Ur78/Hx8fYwOnnyZFksFl1++eWlrmvt2rW67rrrJElxcXH2/Tx333755Rf16dNH9evXV3h4uCZMmKC8vDyHMfn5+Xr66afVsmVLubu7KzAwUHFxccrIyKjUfknSnj171KNHD3l7eyswMFBjxoxRbm6uw5izZ89qypQpioyMlJubmy677DKNHj1aJ0+edBhXVFSkGTNm2OsJCgrSvffeq8OHD9vHVPR9nj17ttq2bav69evLx8dHLVu21OOPPy7pz2Pp73//uySpe/fu9tfOnz/fvu6oqCitX79eXbp0kZeXl4YPHy5Jev/99xUTE6PQ0FB5enqqVatWeuyxx5STk+OwD8W3V1amL6X5/vvv1bdvXwUFBcnd3V1hYWG67bbbHHrw+uuv66abblJQUJC8vb3Vpk0bzZgxQzabzWFdxfuzadMmdenSRZ6enrr88suVkJAgSVq5cqXatWsnLy8vtWnTRomJiQ6vL/65/f777zVo0CD5+vrKz89P99xzT6WOkQs5vor7+PPPP6tXr17y9vZWaGionnvuOUnS5s2bdcMNN8jb21vNmzcv8XMrSWlpaRo1apQaN24sNzc3RUZGatq0aSooKHAYN23aNHXq1En+/v7y9fVVu3btNG/ePBmG4TCu+NbnxMREtWvXTp6enmrZsqXeeecdh3G5ubmaOHGiIiMj5eHhIX9/f3Xo0EFLliypcL8BVA1XtgA4VZ8+feTi4qL169eXOebgwYO67bbbdOONN+qdd95RgwYNdOTIESUmJio/P1+hoaFKTEzUrbfeqhEjRthvySsOYMUGDRqku+66Sw888ECJX0TPtXPnTo0fP17x8fEKCQnRokWL9PDDDys/P18TJ048r3184403dP/99+vXX3/V8uXLKxy/b98+denSRUFBQXr11VfVqFEjLVy4UMOGDdOxY8c0adIkh/GPP/64rr/+er399tvKzs7W5MmT1a9fP+3du1cuLi5lbmfdunXq2bOnrr76as2bN0/u7u5644031K9fPy1ZskR33nmn7rvvPrVt21aDBg3S2LFjFRsbK3d391LX165dOyUkJCguLk7/93//p9tuu02SHK4c2mw29e/fXyNGjNCECRO0fv16/fvf/5afn5/+9a9/Sfoz2AwYMEDffPONJk2apC5duiglJUVTp05Vt27dtG3bNnl6epbbQ5vNpj59+mjUqFF67LHHtHHjRj399NNKSUnRp59+KunP2yMHDhyor7/+WlOmTNGNN96oXbt2aerUqdq0aZM2bdpk39cHH3xQb775psaMGaO+ffvq4MGDevLJJ7V27Vrt2LFDAQEB5X6fly5dqoceekhjx47Vf/7zH9WrV0+//PKLfvrpJ0nSbbfdpunTp+vxxx/X66+/rnbt2kmS/Y8CkpSamqp77rlHkyZN0vTp01Wv3p9/Lz1w4ID69Omj8ePHy9vbWz///LOef/55bdmyRatXrz7vvpQmJydHPXv2VGRkpF5//XUFBwcrLS1Na9as0alTp+zjfv31V8XGxtrD6w8//KBnnnlGP//8c4lf/NPS0hQXF6dJkyapcePGmjVrloYPH65Dhw7pv//9rx5//HH5+fnpqaee0sCBA/Xbb78pLCzMYR233367Bg8erAceeEB79uzRk08+qZ9++knfffedrFZrqftSXcfXoEGD9MADD+if//ynFi9erClTpig7O1sfffSRJk+ebN+nYcOGKSoqSu3bt7fvd8eOHVWvXj3961//UtOmTbVp0yY9/fTTOnjwoD1wSn+e+0aNGqUmTZpI+jPIjR07VkeOHLH/vBT74YcfNGHCBD322GMKDg7W22+/rREjRujKK6/UTTfdJEl69NFH9d577+npp5/Wtddeq5ycHO3evVvHjx8vd38BXAADAEyUkJBgSDK2bt1a5pjg4GCjVatW9sdTp041/np6+u9//2tIMnbu3FnmOjIyMgxJxtSpU0s8V7y+f/3rX2U+91cRERGGxWIpsb2ePXsavr6+Rk5OjsO+JScnO4xbs2aNIclYs2aNfdltt91mRERElFr7uXXfddddhru7u/H77787jOvdu7fh5eVlnDx50mE7ffr0cRj3wQcfGJKMTZs2lbq9Yp07dzaCgoKMU6dO2ZcVFBQYUVFRRuPGjY2ioiLDMAwjOTnZkGS88MIL5a7PMAxj69athiQjISGhxHNDhw41JBkffPCBw/I+ffoYLVq0sD9esmSJIcn46KOPSl33G2+8UW4Nxdt55ZVXHJY/88wzhiRjw4YNhmEYRmJioiHJmDFjhsO4999/35BkvPnmm4ZhGMbevXsNScZDDz3kMO67774zJBmPP/64fVlZ3+cxY8YYDRo0KLfuDz/8sMRxU6xr166GJOPrr78udx1FRUWGzWYz1q1bZ0gyfvjhB/tzle1LabZt22ZIMlasWFHu9v+qsLDQsNlsxrvvvmu4uLgYJ06cKLE/27Ztsy87fvy44eLiYnh6ehpHjhyxL9+5c6chyXj11Vfty4p/bh955BGHbS5atMiQZCxcuNBhW127drU/rq7j66+vt9lsRmBgoCHJ2LFjR4l9evTRR+3LRo0aZdSvX99ISUlxWO9//vMfQ5KxZ8+eUrdb3M+nnnrKaNSokf3n0zD+PGd5eHg4rPPMmTOGv7+/MWrUKPuyqKgoY+DAgeXuH4DqxW2EAJzOOOeWmHNdc801cnNz0/33368FCxbot99+q9J27rjjjkqPbd26tdq2beuwLDY2VtnZ2dqxY0eVtl9Zq1evVo8ePRQeHu6wfNiwYcrNzS0xoUf//v0dHl999dWSpJSUlDK3kZOTo++++05/+9vfHGbuc3Fx0ZAhQ3T48OFK34p4PiwWi/r161ei3r/W+tlnn6lBgwbq16+fCgoK7F/XXHONQkJCKj0Jyj/+8Q+Hx7GxsZKkNWvWSJL9qk/x7abF/v73v8vb21tff/21w/hzx3Xs2FGtWrWyjytPx44ddfLkSd199936+OOP9ccff1RqH/6qYcOGuvnmm0ss/+233xQbG6uQkBC5uLjIarXaJzDZu3dvifEV9aU0V155pRo2bKjJkydrzpw59ity5/r+++/Vv39/NWrUyF7Lvffeq8LCQu3fv99hbGhoqP1qjyT5+/srKChI11xzjcMVrFatWkkq/Xg+d18GDx4sV1fXcvelOo4vi8WiPn362B+7urrqyiuvVGhoqK699toS+3Tu8d29e3eFhYU5bL93796S/rziXGz16tW65ZZb5OfnZ+/nv/71Lx0/frzETK7XXHON/QqYJHl4eKh58+YO2+7YsaO++OILPfbYY1q7dq3OnDlT4b4CuDCELQBOlZOTo+PHj5e4PeivmjZtqlWrVikoKEijR49W06ZN1bRpU73yyivnta3Q0NBKjw0JCSlzmdm33Bw/frzUWot7dO72GzVq5PC4+Na38n6RyszMlGEY57Wd6uDl5SUPDw+HZe7u7jp79qz98bFjx3Ty5Em5ubnJarU6fKWlpVUqqLi6upboy7nfv+PHj8vV1bXE7aYWi0UhISEO46TSj5+wsLBK9WnIkCF65513lJKSojvuuENBQUHq1KmTkpKSKnxtsdK2f/r0ad1444367rvv9PTTT2vt2rXaunWrli1bJqnkMVCZvpTGz89P69at0zXXXKPHH39crVu3VlhYmKZOnWp/P9bvv/+uG2+8UUeOHNErr7yib775Rlu3btXrr79eai3+/v4ltuPm5lZiuZubmyQ5HCPn1n7u/pW3L9VxfJV2HJdWe/Hyc4/vTz/9tMS2W7duLUn27W/ZskUxMTGSpLfeekvffvuttm7dqieeeEJSyX6e+32V/vzZ+uu4V199VZMnT9aKFSvUvXt3+fv7a+DAgTpw4ECF+wyganjPFgCnWrlypQoLCyv8HJwbb7xRN954owoLC7Vt2zbNmjVL48ePV3BwsO66665Kbet8PrsrLS2tzGXFv9QU/7J17uQOVblq8VeNGjVSampqieVHjx6VJAUEBFzQ+qU/r5LUq1fP9O1URUBAgBo1alRiUoRiPj4+Fa6joKBAx48fd/gF9NzvX6NGjVRQUKCMjAyHwGUYhtLS0uyTfRSPT01NLTFz5dGjRyvdp7i4OMXFxSknJ0fr16/X1KlT1bdvX+3fv18REREVvr6043f16tU6evSo1q5d6zAd/7kTfBSrTF/K0qZNGy1dulSGYWjXrl2aP3++nnrqKXl6euqxxx7TihUrlJOTo2XLljnsj5kfA5CWlqbLLrvM/ri0/TtXdRxfFyIgIEBXX321nnnmmVKfL/5jx9KlS2W1WvXZZ585BLuyPuOuMry9vTVt2jRNmzZNx44ds1/l6tevn37++ecqrxdA2biyBcBpfv/9d02cOFF+fn4aNWpUpV7j4uKiTp062f9aXnxLX2Wu5pyPPXv26IcffnBYtnjxYvn4+NgnLyielW/Xrl0O4z755JMS6zv3L8zl6dGjh/2X6L9699135eXlVS1TxXt7e6tTp05atmyZQ11FRUVauHChGjdurObNm5/3eqvj+9C3b18dP35chYWF6tChQ4mvFi1aVGo9ixYtcni8ePFiSbIH++Jp7BcuXOgw7qOPPlJOTo79+eJb984dt3XrVu3du9dhOvzKfJ+9vb3Vu3dvPfHEE8rPz9eePXvsr5XOr3fFAezcSUv+OrvnuSrqS2W22bZtW7300ktq0KCB/WewtFoMw9Bbb71VqfVWxbn78sEHH6igoKDcfamu46uq+vbtq927d6tp06albr84bFksFrm6ujpMcnPmzBm999571VJHcHCwhg0bprvvvlv79u2r1IyUAM4fV7YA1Ijdu3fb35uQnp6ub775RgkJCXJxcdHy5ctL3Mr1V3PmzNHq1at12223qUmTJjp79qx9ZrNbbrlF0p9/jY6IiNDHH3+sHj16yN/fXwEBAWVOU16RsLAw9e/fX/Hx8QoNDdXChQuVlJSk559/3v7ZRtddd51atGihiRMnqqCgQA0bNtTy5cu1YcOGEutr06aNli1bptmzZ6t9+/aqV6+ew+eO/dXUqVPt7+v417/+JX9/fy1atEgrV67UjBkz5OfnV6V9Otezzz6rnj17qnv37po4caLc3Nz0xhtvaPfu3VqyZMl5XQks1rRpU3l6emrRokVq1aqV6tevr7CwsHJvEz3XXXfdpUWLFqlPnz56+OGH1bFjR1mtVh0+fFhr1qzRgAEDdPvtt5e7Djc3N7344os6ffq0rrvuOvuse71799YNN9wgSerZs6d69eqlyZMnKzs7W9dff719NsJrr71WQ4YMkSS1aNFC999/v2bNmqV69eqpd+/e9tkIw8PD9cgjj9i3W9b3eeTIkfL09NT111+v0NBQpaWl6dlnn5Wfn5/9ClpUVJQk6c0335SPj488PDwUGRlZ7lWaLl26qGHDhnrggQc0depUWa1WLVq0qMQfCs6nL6X57LPP9MYbb2jgwIG64oorZBiGli1bppMnT6pnz572frq5uenuu+/WpEmTdPbsWc2ePVuZmZnlfq8uxLJly+Tq6qqePXvaZyNs27atBg8eXOZrquP4uhBPPfWUkpKS1KVLF40bN04tWrTQ2bNndfDgQX3++eeaM2eOGjdurNtuu00zZ85UbGys7r//fh0/flz/+c9/ypwNtDI6deqkvn376uqrr1bDhg21d+9evffee4qOjuYz2wCzOHN2DgCXvuIZ+4q/3NzcjKCgIKNr167G9OnTjfT09BKvOXeGwE2bNhm33367ERERYbi7uxuNGjUyunbtanzyyScOr1u1apVx7bXXGu7u7oYkY+jQoQ7ry8jIqHBbhvHnzF633Xab8d///tdo3bq14ebmZlx++eXGzJkzS7x+//79RkxMjOHr62sEBgYaY8eONVauXFliVrkTJ04Yf/vb34wGDRoYFovFYZsqZRbFH3/80ejXr5/h5+dnuLm5GW3bti0xw1/xbIQffvihw/Li2QNLmxHwXN98841x8803G97e3oanp6fRuXNn49NPPy11fZWZjdAw/pztrWXLlobVanXYt6FDhxre3t4lxpf2PbDZbMZ//vMfo23btoaHh4dRv359o2XLlsaoUaOMAwcOlLv94u3s2rXL6Natm+Hp6Wn4+/sbDz74oHH69GmHsWfOnDEmT55sREREGFar1QgNDTUefPBBIzMz02FcYWGh8fzzzxvNmzc3rFarERAQYNxzzz3GoUOHHMaV9X1esGCB0b17dyM4ONhwc3MzwsLCjMGDBxu7du1yeP3LL79sREZGGi4uLg7fw65duxqtW7cudX83btxoREdHG15eXkZgYKBx3333GTt27ChxDJxPX871888/G3fffbfRtGlTw9PT0/Dz8zM6duxozJ8/32Hcp59+av+eXXbZZcY///lP44svvijx81DW/hT/7J1LkjF69Gj74+JjZvv27Ua/fv2M+vXrGz4+Psbdd99tHDt2zOG1585GaBjVc3yd63z2KSMjwxg3bpwRGRlpWK1Ww9/f32jfvr3xxBNPOHwv3nnnHaNFixaGu7u7ccUVVxjPPvusMW/evBKzoJbVt3P3/bHHHjM6dOhgNGzY0L7ORx55xPjjjz/K3WcAVWcxjAqmAQMAALXesGHD9N///lenT592dikXLD4+XtOmTVNGRobT3lsIAJXBe7YAAAAAwASELQAAAAAwAbcRAgAAAIAJuLIFAAAAACYgbAEAAACACQhbAAAAAGACPtS4koqKinT06FH5+PhU6YM+AQAAAFwaDMPQqVOnFBYWpnr1yr5+RdiqpKNHjyo8PNzZZQAAAAC4SBw6dEiNGzcu83nCViX5+PhI+rOhvr6+Tq6mdrPZbPrqq68UExMjq9Xq7HIuGfTVPPTWPPTWHPTVPPTWPPTWHPTVHNnZ2QoPD7dnhLIQtiqp+NZBX19fwtYFstls8vLykq+vLz/01Yi+mofemofemoO+mofemofemoO+mquitxcxQQYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACp4at2bNn6+qrr5avr698fX0VHR2tL774wv68YRiKj49XWFiYPD091a1bN+3Zs8dhHXl5eRo7dqwCAgLk7e2t/v376/Dhww5jMjMzNWTIEPn5+cnPz09DhgzRyZMna2IXAQAAANRRTg1bjRs31nPPPadt27Zp27ZtuvnmmzVgwAB7oJoxY4Zmzpyp1157TVu3blVISIh69uypU6dO2dcxfvx4LV++XEuXLtWGDRt0+vRp9e3bV4WFhfYxsbGx2rlzpxITE5WYmKidO3dqyJAhNb6/AAAAAOoOV2duvF+/fg6Pn3nmGc2ePVubN2/WVVddpZdffllPPPGEBg0aJElasGCBgoODtXjxYo0aNUpZWVmaN2+e3nvvPd1yyy2SpIULFyo8PFyrVq1Sr169tHfvXiUmJmrz5s3q1KmTJOmtt95SdHS09u3bpxYtWtTsTgMAAACoE5watv6qsLBQH374oXJychQdHa3k5GSlpaUpJibGPsbd3V1du3bVxo0bNWrUKG3fvl02m81hTFhYmKKiorRx40b16tVLmzZtkp+fnz1oSVLnzp3l5+enjRs3lhm28vLylJeXZ3+cnZ0tSbLZbLLZbNW9+3VKcf/oY/Wir+aht+aht+agr+aht+aht+agr+aobD+dHrZ+/PFHRUdH6+zZs6pfv76WL1+uq666Shs3bpQkBQcHO4wPDg5WSkqKJCktLU1ubm5q2LBhiTFpaWn2MUFBQSW2GxQUZB9TmmeffVbTpk0rsfyrr76Sl5fX+e0kSpWUlOTsEi5J9NU89NY89NYc9NU89NY89NYc9LV65ebmVmqc08NWixYttHPnTp08eVIfffSRhg4dqnXr1tmft1gsDuMNwyix7FznjiltfEXrmTJlih599FH74+zsbIWHhysmJka+vr4V7hfKZrPZlJSUpJ49e8pqtTq7nEsGfTUPvTUPvTUHfTUPvTUPvTUHfTVH8V1vFXF62HJzc9OVV14pSerQoYO2bt2qV155RZMnT5b055Wp0NBQ+/j09HT71a6QkBDl5+crMzPT4epWenq6unTpYh9z7NixEtvNyMgocdXsr9zd3eXu7l5iudVq5UCtJvTSHPTVPHWttxkZGZX+z6SqiiczOnz4sFxcXMoc5+vrq8DAQFNruRTVtWO2JtFb89Bbc9DX6lXZXjo9bJ3LMAzl5eUpMjJSISEhSkpK0rXXXitJys/P17p16/T8889Lktq3by+r1aqkpCQNHjxYkpSamqrdu3drxowZkqTo6GhlZWVpy5Yt6tixoyTpu+++U1ZWlj2QAQAcZWRk6J64+3TiVOVuk6gqNzerJo0ZpbjR45WfX/b97/4+XlqY8DaBCwBQqzg1bD3++OPq3bu3wsPDderUKS1dulRr165VYmKiLBaLxo8fr+nTp6tZs2Zq1qyZpk+fLi8vL8XGxkqS/Pz8NGLECE2YMEGNGjWSv7+/Jk6cqDZt2thnJ2zVqpVuvfVWjRw5UnPnzpUk3X///erbty8zEQJAGbKzs3XiVK4Co++Qt3/ZdwFcKOv/PoAkotdI2YpKH5Nz4pgyNn2k7OxswhYAoFZxatg6duyYhgwZotTUVPn5+enqq69WYmKievbsKUmaNGmSzpw5o4ceekiZmZnq1KmTvvrqK/n4+NjX8dJLL8nV1VWDBw/WmTNn1KNHD82fP9/hdpRFixZp3Lhx9lkL+/fvr9dee61mdxYAaiFv/2D5BjU2bf2uKpKUJp+AMBWU89GPGaZVAACAeZwatubNm1fu8xaLRfHx8YqPjy9zjIeHh2bNmqVZs2aVOcbf318LFy6sapkAUGNq4n1SlZGSkqICW4GzywAAoFa76N6zBQB1VU29T6oyzp7J1eEjqWrC57IAAFBlhC0AuEjU1PukKiP9191KOfSOCgsIWwAAVBVhCwAuMma/T6oyTh8v+0PfAQBA5ZT9bmQAAAAAQJURtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAE7g6uwAAcKaMjAxlZ2eXO6awsFCSlJycLBcXF9NqSUlJUYGtwLT1AwCAmkXYAlBnZWRk6J64+3TiVG6549zcrJo0ZpTiRo9Xfr7NtHrOnsnV4SOpamIzbxsAAKDmELYA1FnZ2dk6cSpXgdF3yNs/uMxx1v/dcB3Ra6RsRebVk/7rbqUcekeFBYQtAAAuBU4NW88++6yWLVumn3/+WZ6enurSpYuef/55tWjRwj5m2LBhWrBggcPrOnXqpM2bN9sf5+XlaeLEiVqyZInOnDmjHj166I033lDjxo3tYzIzMzVu3Dh98sknkqT+/ftr1qxZatCggbk7CeCi5+0fLN+gxmU+76oiSWnyCQhTgYlvdT19PM20dQMAgJrn1Aky1q1bp9GjR2vz5s1KSkpSQUGBYmJilJOT4zDu1ltvVWpqqv3r888/d3h+/PjxWr58uZYuXaoNGzbo9OnT6tu3r/19FpIUGxurnTt3KjExUYmJidq5c6eGDBlSI/sJAAAAoO5x6pWtxMREh8cJCQkKCgrS9u3bddNNN9mXu7u7KyQkpNR1ZGVlad68eXrvvfd0yy23SJIWLlyo8PBwrVq1Sr169dLevXuVmJiozZs3q1OnTpKkt956S9HR0dq3b5/DlTQAAAAAqA4X1Xu2srKyJEn+/v4Oy9euXaugoCA1aNBAXbt21TPPPKOgoCBJ0vbt22Wz2RQTE2MfHxYWpqioKG3cuFG9evXSpk2b5OfnZw9aktS5c2f5+flp48aNpYatvLw85eXl2R8Xz1Zms9lk483rF6S4f/SxetHX81dYWCg3N6us9YpvFSxd8XPljakOVheLPDzcK6ynJtRULZXprbXen5OUFBYWcnxXEucD89Bb89Bbc9BXc1S2nxbDMAyTa6kUwzA0YMAAZWZm6ptvvrEvf//991W/fn1FREQoOTlZTz75pAoKCrR9+3a5u7tr8eLFiouLcwhGkhQTE6PIyEjNnTtX06dP1/z587V//36HMc2bN1dcXJymTJlSop74+HhNmzatxPLFixfLy8urmvYaAAAAQG2Tm5ur2NhYZWVlydfXt8xxF82VrTFjxmjXrl3asGGDw/I777zT/u+oqCh16NBBERERWrlypQYNGlTm+gzDkMVisT/+67/LGvNXU6ZM0aOPPmp/nJ2drfDwcMXExJTbUFTMZrMpKSlJPXv2lNVqdXY5lwz6ev6Sk5MVN3q8InqNlE9AWJnjXFWkmIbp+iozyNQJMlL3f6/NS17W9cOfVFD4laZt52KqpTK9PfXHUaV8+ZYSXn9ZkZGRptVyKeF8YB56ax56aw76ao6KPqOz2EURtsaOHatPPvlE69evd5hBsDShoaGKiIjQgQMHJEkhISHKz89XZmamGjZsaB+Xnp6uLl262MccO3asxLoyMjIUHFz6dM/u7u5yd3cvsdxqtXKgVhN6aQ76WnkuLi7Kz7fJVqRKhagC1TM1bNkKDZ09m1fpesxU07WU11tbkZSfb5OLiwvH9nnifGAeemseemsO+lq9KttLp/5vbhiGxowZo2XLlmn16tWV+ovl8ePHdejQIYWGhkqS2rdvL6vVqqSkJPuY1NRU7d692x62oqOjlZWVpS1bttjHfPfdd8rKyrKPAQAAAIDq5NQrW6NHj9bixYv18ccfy8fHR2lpf37GjJ+fnzw9PXX69GnFx8frjjvuUGhoqA4ePKjHH39cAQEBuv322+1jR4wYoQkTJqhRo0by9/fXxIkT1aZNG/vshK1atdKtt96qkSNHau7cuZKk+++/X3379mUmQgAAAACmcGrYmj17tiSpW7duDssTEhI0bNgwubi46Mcff9S7776rkydPKjQ0VN27d9f7778vHx8f+/iXXnpJrq6uGjx4sP1DjefPny8XFxf7mEWLFmncuHH2WQv79++v1157zfydBAAAAFAnOTVsVTQRoqenp7788ssK1+Ph4aFZs2Zp1qxZZY7x9/fXwoULz7tGAAAAAKiKi2KCDAAAymPLz1dKSoqzy5Ak+fr6KjAw0NllAABqAcIWAOCilnc6SweTf9P4x+NLnSW2pvn7eGlhwtsELgBAhQhbAICLmi3vjIosrgroPEiNwiKcWkvOiWPK2PSRsrOzCVsAgAoRtgAAtYJXw0D5BpX/WYw1IcPZBQAAag3nfmomAAAAAFyiCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJjAqWHr2Wef1XXXXScfHx8FBQVp4MCB2rdvn8MYwzAUHx+vsLAweXp6qlu3btqzZ4/DmLy8PI0dO1YBAQHy9vZW//79dfjwYYcxmZmZGjJkiPz8/OTn56chQ4bo5MmTZu8iAAAAgDrKqWFr3bp1Gj16tDZv3qykpCQVFBQoJiZGOTk59jEzZszQzJkz9dprr2nr1q0KCQlRz549derUKfuY8ePHa/ny5Vq6dKk2bNig06dPq2/fviosLLSPiY2N1c6dO5WYmKjExETt3LlTQ4YMqdH9BQAAAFB3uDpz44mJiQ6PExISFBQUpO3bt+umm26SYRh6+eWX9cQTT2jQoEGSpAULFig4OFiLFy/WqFGjlJWVpXnz5um9997TLbfcIklauHChwsPDtWrVKvXq1Ut79+5VYmKiNm/erE6dOkmS3nrrLUVHR2vfvn1q0aJFze44AAAAgEueU8PWubKysiRJ/v7+kqTk5GSlpaUpJibGPsbd3V1du3bVxo0bNWrUKG3fvl02m81hTFhYmKKiorRx40b16tVLmzZtkp+fnz1oSVLnzp3l5+enjRs3lhq28vLylJeXZ3+cnZ0tSbLZbLLZbNW743VMcf/oY/Wir+evsLBQbm5WWetJrioqc1zxc+WNqQ5WF4s8PNwrrKcm1FQtlentRdWXepKbm1WFhYUX9c8a5wPz0Fvz0Ftz0FdzVLafFsMwDJNrqRTDMDRgwABlZmbqm2++kSRt3LhR119/vY4cOaKwsDD72Pvvv18pKSn68ssvtXjxYsXFxTkEI0mKiYlRZGSk5s6dq+nTp2v+/Pnav3+/w5jmzZsrLi5OU6ZMKVFPfHy8pk2bVmL54sWL5eXlVR27DAAAAKAWys3NVWxsrLKysuTr61vmuIvmytaYMWO0a9cubdiwocRzFovF4bFhGCWWnevcMaWNL289U6ZM0aOPPmp/nJ2drfDwcMXExJTbUFTMZrMpKSlJPXv2lNVqdXY5lwz6ev6Sk5MVN3q8InqNlE9AWJnjXFWkmIbp+iozSAUmvtU1df/32rzkZV0//EkFhV9p2nYuploq09uLqS+n/jiqlC/fUsLrLysyMtKptZSH84F56K156K056Ks5iu96q8hFEbbGjh2rTz75ROvXr1fjxo3ty0NCQiRJaWlpCg0NtS9PT09XcHCwfUx+fr4yMzPVsGFDhzFdunSxjzl27FiJ7WZkZNjXcy53d3e5u7uXWG61WjlQqwm9NEdt6GtGRkalT1JmOnz4sHJzzshWpEqFqALVMzVs2QoNnT2bV+l6zFTTtZTX24uqL0VSfr5NLi4uF/3PmVQ7zge1Fb01D701B32tXpXtpVPDlmEYGjt2rJYvX661a9eW+CthZGSkQkJClJSUpGuvvVaSlJ+fr3Xr1un555+XJLVv315Wq1VJSUkaPHiwJCk1NVW7d+/WjBkzJEnR0dHKysrSli1b1LFjR0nSd999p6ysLHsgA1AzMjIydE/cfTpxKtfZpejsmVwdPpKqJtzHDgAATODUsDV69GgtXrxYH3/8sXx8fJSWliZJ8vPzk6enpywWi8aPH6/p06erWbNmatasmaZPny4vLy/Fxsbax44YMUITJkxQo0aN5O/vr4kTJ6pNmzb22QlbtWqlW2+9VSNHjtTcuXMl/fm+r759+zITIVDDsrOzdeJUrgKj75C3f+lXlmtK+q+7lXLoHRUWELYAAED1c2rYmj17tiSpW7duDssTEhI0bNgwSdKkSZN05swZPfTQQ8rMzFSnTp301VdfycfHxz7+pZdekqurqwYPHqwzZ86oR48emj9/vlxcXOxjFi1apHHjxtlnLezfv79ee+01c3cQQJm8/YPlG9S44oEmOn08zanbBwAAlzan30ZYEYvFovj4eMXHx5c5xsPDQ7NmzdKsWbPKHOPv76+FCxdWpUwAAAAAOG/OfacxAAAAAFyiCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACZw6GyEAALWNLT9fKSkpzi7DztfXV4GBgc4uAwBQCsIWAACVlHc6SweTf9P4x+Pl7u7u7HIkSf4+XlqY8DaBCwAuQoQtAAAqyZZ3RkUWVwV0HqRGYRHOLkc5J44pY9NHys7OJmwBwEWIsAUAwHnyahgo36DGzi5DkpTh7AIAAGViggwAAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABNUKWwlJydXdx0AAAAAcEmpUti68sor1b17dy1cuFBnz56t7poAAAAAoNarUtj64YcfdO2112rChAkKCQnRqFGjtGXLluquDQAAAABqrSqFraioKM2cOVNHjhxRQkKC0tLSdMMNN6h169aaOXOmMjIyqrtOAAAAAKhVLmiCDFdXV91+++364IMP9Pzzz+vXX3/VxIkT1bhxY917771KTU2trjoBAAAAoFa5oLC1bds2PfTQQwoNDdXMmTM1ceJE/frrr1q9erWOHDmiAQMGVFedAAAAAFCruFblRTNnzlRCQoL27dunPn366N1331WfPn1Ur96f2S0yMlJz585Vy5Ytq7VYAAAAAKgtqhS2Zs+ereHDhysuLk4hISGljmnSpInmzZt3QcUBAAAAQG1VpbB14MCBCse4ublp6NChVVk9AAAAANR6VXrPVkJCgj788MMSyz/88EMtWLDggosCAAAAgNquSmHrueeeU0BAQInlQUFBmj59+gUXBQAAAAC1XZXCVkpKiiIjI0ssj4iI0O+//37BRQEAAABAbVelsBUUFKRdu3aVWP7DDz+oUaNGF1wUAAAAANR2VQpbd911l8aNG6c1a9aosLBQhYWFWr16tR5++GHddddd1V0jAAAAANQ6VZqN8Omnn1ZKSop69OghV9c/V1FUVKR7772X92wBAAAAgKoYttzc3PT+++/r3//+t3744Qd5enqqTZs2ioiIqO76AAAAAKBWqlLYKta8eXM1b968umoBAAAAgEtGlcJWYWGh5s+fr6+//lrp6ekqKipyeH716tXVUhwAAAAA1FZVClsPP/yw5s+fr9tuu01RUVGyWCzVXRcAAAAA1GpVCltLly7VBx98oD59+lR3PQAAAABwSajS1O9ubm668sorq7sWAAAAALhkVClsTZgwQa+88ooMw6juegAAAADgklCl2wg3bNigNWvW6IsvvlDr1q1ltVodnl+2bFm1FAcAAAAAtVWVwlaDBg10++23V3ctAAAAAHDJqFLYSkhIqO46AAAAAOCSUqX3bElSQUGBVq1apblz5+rUqVOSpKNHj+r06dPVVhwAAAAA1FZVurKVkpKiW2+9Vb///rvy8vLUs2dP+fj4aMaMGTp79qzmzJlT3XUCAAAAQK1SpStbDz/8sDp06KDMzEx5enral99+++36+uuvq604AAAAAKitqjwb4bfffis3NzeH5RERETpy5Ei1FAYAAAAAtVmVrmwVFRWpsLCwxPLDhw/Lx8fngosCAAAAgNquSmGrZ8+eevnll+2PLRaLTp8+ralTp6pPnz7VVRsAAAAA1FpVuo3wpZdeUvfu3XXVVVfp7Nmzio2N1YEDBxQQEKAlS5ZUd40AAAAAUOtUKWyFhYVp586dWrJkiXbs2KGioiKNGDFC//jHPxwmzAAAAACAuqpKYUuSPD09NXz4cA0fPrw66wEAAACAS0KVwta7775b7vP33ntvlYoBAAAAgEtFlcLWww8/7PDYZrMpNzdXbm5u8vLyImwBAAAAqPOqNBthZmamw9fp06e1b98+3XDDDUyQAQAAAACqYtgqTbNmzfTcc8+VuOoFAAAAAHVRtYUtSXJxcdHRo0erc5UAAAAAUCtVKWx98sknDl8ff/yx5syZoyFDhuj666+v9HrWr1+vfv36KSwsTBaLRStWrHB4ftiwYbJYLA5fnTt3dhiTl5ensWPHKiAgQN7e3urfv78OHz7sMCYzM1NDhgyRn5+f/Pz8NGTIEJ08ebIquw4AAAAAlVKlCTIGDhzo8NhisSgwMFA333yzXnzxxUqvJycnR23btlVcXJzuuOOOUsfceuutSkhIsD92c3NzeH78+PH69NNPtXTpUjVq1EgTJkxQ3759tX37drm4uEiSYmNjdfjwYSUmJkqS7r//fg0ZMkSffvpppWsFAAAAgPNRpbBVVFRULRvv3bu3evfuXe4Yd3d3hYSElPpcVlaW5s2bp/fee0+33HKLJGnhwoUKDw/XqlWr1KtXL+3du1eJiYnavHmzOnXqJEl66623FB0drX379qlFixalrjsvL095eXn2x9nZ2ZL+nHnRZrOd977i/yvuH32sXrWlr4WFhXJzs8paT3JV9ZxLqsrqYpGHh3uFtRQ/Z3a9la2nJtRULZXpbV3sS6XrqSe5uVlVWFjo8LNfW84HtRG9NQ+9NQd9NUdl+2kxDMMwuZZKsVgsWr58ucNVs2HDhmnFihVyc3NTgwYN1LVrVz3zzDMKCgqSJK1evVo9evTQiRMn1LBhQ/vr2rZtq4EDB2ratGl655139Oijj5a4bbBBgwZ66aWXFBcXV2o98fHxmjZtWonlixcvlpeX14XvMAAAAIBaKTc3V7GxscrKypKvr2+Z46p0ZevRRx+t9NiZM2dWZROS/rzy9fe//10RERFKTk7Wk08+qZtvvlnbt2+Xu7u70tLS5Obm5hC0JCk4OFhpaWmSpLS0NHs4+6ugoCD7mNJMmTLFYT+zs7MVHh6umJiYchuKitlsNiUlJalnz56yWq3OLueSUVv6mpycrLjR4xXRa6R8AsKcWkvq/u+1ecnLun74kwoKv7LMca4qUkzDdH2VGaSC6p1XqEr11ISaqqUyva2LfamsU38cVcqXbynh9ZcVGRlpX15bzge1Eb01D701B301R/FdbxWpUtj6/vvvtWPHDhUUFNhvw9u/f79cXFzUrl07+ziLxVKV1dvdeeed9n9HRUWpQ4cOioiI0MqVKzVo0KAyX2cYhsO2S6vj3DHncnd3l7u7e4nlVquVA7Wa0EtzXOx9dXFxUX6+TbYimRpcKsNWaOjs2bxK11KgeqbWfL71mKmmaymvt3W5LxXWUyTl59vk4uJS6s/9xX4+qM3orXnorTnoa/WqbC+rFLb69esnHx8fLViwwH5VKTMzU3Fxcbrxxhs1YcKEqqy2QqGhoYqIiNCBAwckSSEhIcrPz1dmZqbD1a309HR16dLFPubYsWMl1pWRkaHg4GBT6gQAAACAKv1Z7sUXX9Szzz7rEHAaNmyop59++rxmIzxfx48f16FDhxQaGipJat++vaxWq5KSkuxjUlNTtXv3bnvYio6OVlZWlrZs2WIf89133ykrK8s+BgAAAACqW5WubGVnZ+vYsWNq3bq1w/L09HSdOnWq0us5ffq0fvnlF/vj5ORk7dy5U/7+/vL391d8fLzuuOMOhYaG6uDBg3r88ccVEBCg22+/XZLk5+enESNGaMKECWrUqJH8/f01ceJEtWnTxj47YatWrXTrrbdq5MiRmjt3rqQ/p37v27dvmTMRAgAAAMCFqlLYuv322xUXF6cXX3zR/iHDmzdv1j//+c9y30t1rm3btql79+72x8UTUgwdOlSzZ8/Wjz/+qHfffVcnT55UaGiounfvrvfff18+Pj7217z00ktydXXV4MGDdebMGfXo0UPz58+3f8aWJC1atEjjxo1TTEyMJKl///567bXXqrLrAAAAAFApVQpbc+bM0cSJE3XPPffY55h3dXXViBEj9MILL1R6Pd26dVN5M89/+eWXFa7Dw8NDs2bN0qxZs8oc4+/vr4ULF1a6LgAAAAC4UFUKW15eXnrjjTf0wgsv6Ndff5VhGLryyivl7e1d3fUBAAAAQK10QfPWpqamKjU1Vc2bN5e3t3e5V6kAAAAAoC6pUtg6fvy4evTooebNm6tPnz5KTU2VJN13332mTfsOAAAAALVJlcLWI488IqvVqt9//11eXl725XfeeacSExOrrTgAAAAAqK2q9J6tr776Sl9++aUaN27ssLxZs2ZKSUmplsIAAAAAoDar0pWtnJwchytaxf744w+5u7tfcFEAAAAAUNtVKWzddNNNevfdd+2PLRaLioqK9MILLzh8bhYAAAAA1FVVuo3whRdeULdu3bRt2zbl5+dr0qRJ2rNnj06cOKFvv/22umsEAAAAgFqnSle2rrrqKu3atUsdO3ZUz549lZOTo0GDBun7779X06ZNq7tGAAAAAKh1zvvKls1mU0xMjObOnatp06aZURMAAAAA1HrnfWXLarVq9+7dslgsZtQDAAAAAJeEKt1GeO+992revHnVXQsAAAAAXDKqNEFGfn6+3n77bSUlJalDhw7y9vZ2eH7mzJnVUhwAAAAA1FbnFbZ+++03XX755dq9e7fatWsnSdq/f7/DGG4vBAAAAIDzDFvNmjVTamqq1qxZI0m688479eqrryo4ONiU4gAAAACgtjqv92wZhuHw+IsvvlBOTk61FgQAAAAAl4IqTZBR7NzwBQAAAAD403mFLYvFUuI9WbxHCwAAAABKOq/3bBmGoWHDhsnd3V2SdPbsWT3wwAMlZiNctmxZ9VUIAAAAALXQeYWtoUOHOjy+5557qrUYAAAAALhUnFfYSkhIMKsOAAAAALikXNAEGQAAAACA0p3XlS0AAHBxseXnKyUlxWFZYWGhJCk5OVkuLi41Vouvr68CAwNrbHsAcLEjbAEAUEvlnc7SweTfNP7xePvkVZLk5mbVpDGjFDd6vPLzbTVWj7+PlxYmvE3gAoD/IWwBAFBL2fLOqMjiqoDOg9QoLMK+3Pq/NwlE9BopW1HN1JJz4pgyNn2k7OxswhYA/A9hCwCAWs6rYaB8gxrbH7uqSFKafALCVFCDb8/OqLEtAUDtwAQZAAAAAGACwhYAAAAAmIDbCIE6IiMjQ9nZ2c4uQykpKSqwFTi7DAAAANMRtoA6ICMjQ/fE3acTp3KdXYrOnsnV4SOpamKruRnSAAAAnIGwBdQB2dnZOnEqV4HRd8jbP9iptaT/ulsph95RYQFhCwAAXNoIW0Ad4u0f7DBjmTOcPp7m1O0DAADUFCbIAAAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAETg1b69evV79+/RQWFiaLxaIVK1Y4PG8YhuLj4xUWFiZPT09169ZNe/bscRiTl5ensWPHKiAgQN7e3urfv78OHz7sMCYzM1NDhgyRn5+f/Pz8NGTIEJ08edLkvQMAAABQlzk1bOXk5Kht27Z67bXXSn1+xowZmjlzpl577TVt3bpVISEh6tmzp06dOmUfM378eC1fvlxLly7Vhg0bdPr0afXt21eFhYX2MbGxsdq5c6cSExOVmJionTt3asiQIabvHwAAAIC6y9WZG+/du7d69+5d6nOGYejll1/WE088oUGDBkmSFixYoODgYC1evFijRo1SVlaW5s2bp/fee0+33HKLJGnhwoUKDw/XqlWr1KtXL+3du1eJiYnavHmzOnXqJEl66623FB0drX379qlFixY1s7MAAAAA6hSnhq3yJCcnKy0tTTExMfZl7u7u6tq1qzZu3KhRo0Zp+/btstlsDmPCwsIUFRWljRs3qlevXtq0aZP8/PzsQUuSOnfuLD8/P23cuLHMsJWXl6e8vDz74+zsbEmSzWaTzWar7t2tU4r7Rx+rV3l9LSwslJubVdZ6kquKaro0B1YXizw83GtVLcXPmV1vbezNhapMb+tiXy60npo6Zh1qqSe5uVlVWFh4SZ/f+T/MPPTWHPTVHJXtp8UwDMPkWirFYrFo+fLlGjhwoCRp48aNuv7663XkyBGFhYXZx91///1KSUnRl19+qcWLFysuLs4hFElSTEyMIiMjNXfuXE2fPl3z58/X/v37HcY0b95ccXFxmjJlSqn1xMfHa9q0aSWWL168WF5eXhe4twAAAABqq9zcXMXGxiorK0u+vr5ljrtor2wVs1gsDo8Nwyix7FznjiltfEXrmTJlih599FH74+zsbIWHhysmJqbchqJiNptNSUlJ6tmzp6xWq7PLuWSU19fk5GTFjR6viF4j5RMQVsYaakbq/u+1ecnLun74kwoKv7JW1OKqIsU0TNdXmUEqMPGtrrWxNxeqMr2ti3250Hpq6pj9q1N/HFXKl28p4fWXFRkZWSPbdAb+DzMPvTUHfTVH8V1vFblow1ZISIgkKS0tTaGhofbl6enpCg4Oto/Jz89XZmamGjZs6DCmS5cu9jHHjh0rsf6MjAz7ekrj7u4ud3f3EsutVisHajWhl+Yora8uLi7Kz7fJVqQa+8WrLLZCQ2fP5tXKWgpUz9Saa3NvLlR5va3LfbnQesw+Zh1qKZLy821ycXGpE+d2/g8zD701B32tXpXtpfP/pyhDZGSkQkJClJSUZF+Wn5+vdevW2YNU+/btZbVaHcakpqZq9+7d9jHR0dHKysrSli1b7GO+++47ZWVl2ccAAAAAQHVz6pWt06dP65dffrE/Tk5O1s6dO+Xv768mTZpo/Pjxmj59upo1a6ZmzZpp+vTp8vLyUmxsrCTJz89PI0aM0IQJE9SoUSP5+/tr4sSJatOmjX12wlatWunWW2/VyJEjNXfuXEl/vu+rb9++zEQIAAAAwDRODVvbtm1T9+7d7Y+L3yM1dOhQzZ8/X5MmTdKZM2f00EMPKTMzU506ddJXX30lHx8f+2teeuklubq6avDgwTpz5ox69Oih+fPny8XFxT5m0aJFGjdunH3Wwv79+5f52V4AAAAAUB2cGra6deum8iZDtFgsio+PV3x8fJljPDw8NGvWLM2aNavMMf7+/lq4cOGFlAoAAAAA5+Wifc8WAAAAANRmhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATuDq7AAAAcGmw5ecrJSXF2WVIknx9fRUYGOjsMgDUcYQtAABwwfJOZ+lg8m8a/3i83N3dnV2O/H28tDDhbQIXAKcibAEAgAtmyzujIourAjoPUqOwCKfWknPimDI2faTs7GzCFgCnImwBAIBq49UwUL5BjZ1dhjKcXQAAiAkyAAAAAMAUhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAEzg6uwCgEtZRkaGsrOza2RbhYWFkqTk5GS5uLg4PJeSkqICW0GN1AEAAIA/EbYAk2RkZOieuPt04lRujWzPzc2qSWNGKW70eOXn2xyeO3smV4ePpKqJzVbGqwEAAFDdCFuASbKzs3XiVK4Co++Qt3+w6duz/u+m4IheI2Urcnwu/dfdSjn0jgoLCFsAAAA1hbAFmMzbP1i+QY1N346riiSlyScgTAXnvB3z9PE007cPAAAAR0yQAQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmOCiDlvx8fGyWCwOXyEhIfbnDcNQfHy8wsLC5OnpqW7dumnPnj0O68jLy9PYsWMVEBAgb29v9e/fX4cPH67pXQEAAABQx1zUYUuSWrdurdTUVPvXjz/+aH9uxowZmjlzpl577TVt3bpVISEh6tmzp06dOmUfM378eC1fvlxLly7Vhg0bdPr0afXt21eFhYXO2B0AAAAAdYSrswuoiKurq8PVrGKGYejll1/WE088oUGDBkmSFixYoODgYC1evFijRo1SVlaW5s2bp/fee0+33HKLJGnhwoUKDw/XqlWr1KtXrxrdFwAAAAB1x0Uftg4cOKCwsDC5u7urU6dOmj59uq644golJycrLS1NMTEx9rHu7u7q2rWrNm7cqFGjRmn79u2y2WwOY8LCwhQVFaWNGzeWG7by8vKUl5dnf5ydnS1JstlsstlsJuxp3VHcv0u9j4WFhXJzs8paT3JVkenbK95Gaduyuljk4eFeY7WUpzbWUl5vnVFPTaipWirT27rYlwutp6aO2crU4gzWen/eunPw4MFqv5OleH2//PKLXFxcKvUaHx8fBQQEVGsdl6K68vtBTaOv5qhsPy2GYRgm11JlX3zxhXJzc9W8eXMdO3ZMTz/9tH7++Wft2bNH+/bt0/XXX68jR44oLCzM/pr7779fKSkp+vLLL7V48WLFxcU5hCZJiomJUWRkpObOnVvmtuPj4zVt2rQSyxcvXiwvL6/q20kAAAAAtUpubq5iY2OVlZUlX1/fMsdd1Fe2evfubf93mzZtFB0draZNm2rBggXq3LmzJMlisTi8xjCMEsvOVZkxU6ZM0aOPPmp/nJ2drfDwcMXExJTbUFTMZrMpKSlJPXv2lNVqdXY5pklOTlbc6PGK6DVSPgFhFb/gArmqSDEN0/VVZpAKznk7Zur+77V5ycu6fviTCgq/0vRaylMbaymvt86opybUVC2V6W1d7MuF1lNTx2xlanGG4lraDXpQ/qFNqnXdrvWkO5rW00e/FqmgEhfwcjLT9ceWj5Xw+suKjIys1louNXXl94OaRl/NUXzXW0Uu6rB1Lm9vb7Vp00YHDhzQwIEDJUlpaWkKDQ21j0lPT1dwcLAkKSQkRPn5+crMzFTDhg0dxnTp0qXcbbm7u8vd3b3EcqvVyoFaTS71Xrq4uCg/3yZbkWrslx3pz22duz1boaGzZ/NqvJbS1OZaSuutM+sxU03XUl5v63JfLrQes4/Z86mlJhXX4uobIM+AxtW67j9vkUyTp39YpfbTViTl59vk4uJySf+fV50u9d8PnIW+Vq/K9tL5/1Och7y8PO3du1ehoaGKjIxUSEiIkpKS7M/n5+dr3bp19iDVvn17Wa1WhzGpqanavXt3hWELAAAAAC7ERX1la+LEierXr5+aNGmi9PR0Pf3008rOztbQoUNlsVg0fvx4TZ8+Xc2aNVOzZs00ffp0eXl5KTY2VpLk5+enESNGaMKECWrUqJH8/f01ceJEtWnTxj47IQAAAACY4aIOW4cPH9bdd9+tP/74Q4GBgercubM2b96siIgISdKkSZN05swZPfTQQ8rMzFSnTp301VdfycfHx76Ol156Sa6urho8eLDOnDmjHj16aP78+ZWeQQgAAAAAquKiDltLly4t93mLxaL4+HjFx8eXOcbDw0OzZs3SrFmzqrk6AAAAAChbrXrPFgAAAADUFoQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAErs4uAKhOGRkZys7OdnYZkqSUlBQV2AqcXQYAAACchLCFS0ZGRobuibtPJ07lOrsUSdLZM7k6fCRVTWw2Z5cCAHAiW36+UlJSnF2GJMnX11eBgYHOLgOoMwhbuGRkZ2frxKlcBUbfIW//YGeXo/Rfdyvl0DsqLCBsAUBdlXc6SweTf9P4x+Pl7u7u7HLk7+OlhQlvE7iAGkLYwiXH2z9YvkGNnV2GTh9Pc3YJAAAns+WdUZHFVQGdB6lRWIRTa8k5cUwZmz5SdnY2YQuoIYQtAAAAk3k1DLwo/hCY4ewCgDqG2QgBAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATODq7AIAAABQM2z5+UpJSXF2GXa+vr4KDAx0dhmAaQhbAAAAdUDe6SwdTP5N4x+Pl7u7u7PLkST5+3hpYcLbBC5csghbAAAAdYAt74yKLK4K6DxIjcIinF2Ock4cU8amj5SdnU3YwiWLsAUAAFCHeDUMlG9QY2eXIUnKcHYBgMmYIAMAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwARNk4IJlZGQoOzu70uMLCwslScnJyXJxcam2OlJSUlRgK6i29QEAAAAXgrCFC5KRkaF74u7TiVO5lX6Nm5tVk8aMUtzo8crPt1VbLWfP5OrwkVQ1sVXfOgEAgHn++iHLZv0xtrL4gGWYgbCFC5Kdna0Tp3IVGH2HvP2DK/Ua6/9uXo3oNVK2ouqrJf3X3Uo59I4KCwhbAABc7M79kGWz/hhbWXzAMsxA2EK18PYPrvRndriqSFKafALCVFCNbxs8fTyt2tYFAADMde6HLJv1x9jK4AOWYRbCFgAAAJym+EOWzfpjbGXxAcswA7MRAgAAAIAJ6lTYeuONNxQZGSkPDw+1b99e33zzjbNLAgAAAHCJqjO3Eb7//vsaP3683njjDV1//fWaO3euevfurZ9++klNmjRxdnnn7XynWzcL060DAIBLwV9nRnS2/Px8ubm5Vcu6LnSWR2ZpvDB1JmzNnDlTI0aM0H333SdJevnll/Xll19q9uzZevbZZ51c3fmpynTrZmG6dQAAUNudOzOiM9ny83Xk9xQ1joiUq/XCf1W/0Fke67u56PlnnlKjRo0uuJbqUNvCX50IW/n5+dq+fbsee+wxh+UxMTHauHFjqa/Jy8tTXl6e/XFWVpYk6cSJE7I5OVgcOnRIJ3NyVb9ZJ7nX93NqLSdTU+RyLF05qclyMyrXF5d6Uq57PWUd/UWF1Tjb0NkTR+Xm5qqzGYeVXfMfz+H0esrr68XUm9pYi1nHbFXrqQk1VUtlelsX+3Kh9dTUMVuZWpzBzFrOt7d1pS/VUY8zjttip1J/lau7h+o37yxff+f+In8yNUXG0aPyvPK6aqnF6mJRbm6u/K++WbZC47xeeyojTXu+WaEHxk+S1d16wbVUhwbeXpo18wWnh79Tp05Jkgyj/J5ajIpGXAKOHj2qyy67TN9++626dOliXz59+nQtWLBA+/btK/Ga+Ph4TZs2rSbLBAAAAFCLHDp0SI0bl/3xR3XiylYxi8Xi8NgwjBLLik2ZMkWPPvqo/XFRUZFOnDihRo0alfkaVE52drbCw8N16NAh+fr6OrucSwZ9NQ+9NQ+9NQd9NQ+9NQ+9NQd9NYdhGDp16pTCwsLKHVcnwlZAQIBcXFyUlub4obfp6ekKDg4u9TXu7u4l7tlt0KCBWSXWSb6+vvzQm4C+mofemofemoO+mofemofemoO+Vj8/v4rfzlMnpn53c3NT+/btlZSU5LA8KSnJ4bZCAAAAAKgudeLKliQ9+uijGjJkiDp06KDo6Gi9+eab+v333/XAAw84uzQAAAAAl6A6E7buvPNOHT9+XE899ZRSU1MVFRWlzz//XBEREc4urc5xd3fX1KlTnT616qWGvpqH3pqH3pqDvpqH3pqH3pqDvjpXnZiNEAAAAABqWp14zxYAAAAA1DTCFgAAAACYgLAFAAAAACYgbAEAAACACQhbqBbr169Xv379FBYWJovFohUrVjg8P2zYMFksFoevzp07O4zJy8vT2LFjFRAQIG9vb/Xv31+HDx+uwb24OFXU23P7Wvz1wgsv2Md069atxPN33XVXDe/JxeXZZ5/VddddJx8fHwUFBWngwIHat2+fwxjDMBQfH6+wsDB5enqqW7du2rNnj8MYjltHFfXVZrNp8uTJatOmjby9vRUWFqZ7771XR48edVgPx2xJlTlmOddWTWV6y7n2/M2ePVtXX321/cN0o6Oj9cUXX9if5xxbdeX1lvPsxYWwhWqRk5Ojtm3b6rXXXitzzK233qrU1FT71+eff+7w/Pjx47V8+XItXbpUGzZs0OnTp9W3b18VFhaaXf5FraLe/rWnqampeuedd2SxWHTHHXc4jBs5cqTDuLlz59ZE+RetdevWafTo0dq8ebOSkpJUUFCgmJgY5eTk2MfMmDFDM2fO1GuvvaatW7cqJCREPXv21KlTp+xjOG4dVdTX3Nxc7dixQ08++aR27NihZcuWaf/+/erfv3+JdXHMOqrMMStxrq2KyvSWc+35a9y4sZ577jlt27ZN27Zt080336wBAwbYAxXn2Korr7ecZy8yBlDNJBnLly93WDZ06FBjwIABZb7m5MmThtVqNZYuXWpfduTIEaNevXpGYmKiSZXWPqX19lwDBgwwbr75ZodlXbt2NR5++GHzCrsEpKenG5KMdevWGYZhGEVFRUZISIjx3HPP2cecPXvW8PPzM+bMmWMYBsdtZZzb19Js2bLFkGSkpKTYl3HMVqy03nKurR6VOW4511ZNw4YNjbfffptzrAmKe1sazrPOw5Ut1Ji1a9cqKChIzZs318iRI5Wenm5/bvv27bLZbIqJibEvCwsLU1RUlDZu3OiMcmulY8eOaeXKlRoxYkSJ5xYtWqSAgAC1bt1aEydOdPjLIaSsrCxJkr+/vyQpOTlZaWlpDseku7u7unbtaj8mOW4rdm5fyxpjsVjUoEEDh+Ucs+Urq7ecay9cRcct59rzV1hYqKVLlyonJ0fR0dGcY6vRub0tDedZ53F1dgGoG3r37q2///3vioiIUHJysp588kndfPPN2r59u9zd3ZWWliY3Nzc1bNjQ4XXBwcFKS0tzUtW1z4IFC+Tj46NBgwY5LP/HP/6hyMhIhYSEaPfu3ZoyZYp++OEHJSUlOanSi4thGHr00Ud1ww03KCoqSpLsx11wcLDD2ODgYKWkpNjHcNyWrbS+nuvs2bN67LHHFBsbK19fX/tyjtnyldVbzrUXrjLHLefayvvxxx8VHR2ts2fPqn79+lq+fLmuuuoqe1jiHFt1ZfX2XJxnnYuwhRpx55132v8dFRWlDh06KCIiQitXrizxn9VfGYYhi8VSEyVeEt555x394x//kIeHh8PykSNH2v8dFRWlZs2aqUOHDtqxY4fatWtX02VedMaMGaNdu3Zpw4YNJZ479/irzDHJcfun8voq/fkm7rvuuktFRUV64403HJ7jmC1fWb3lXHvhKjpuJc6156NFixbauXOnTp48qY8++khDhw7VunXr7M9zjq26snr718DFedb5uI0QThEaGqqIiAgdOHBAkhQSEqL8/HxlZmY6jEtPTy/xVy+U7ptvvtG+fft03333VTi2Xbt2slqt9v7XZWPHjtUnn3yiNWvWqHHjxvblISEhklTir6d/PSY5bstWVl+L2Ww2DR48WMnJyUpKSnL4a2tpOGb/v4p6+1eca89PZXrLufb8uLm56corr1SHDh307LPPqm3btnrllVc4x1aDsnpbjPPsxYGwBac4fvy4Dh06pNDQUElS+/btZbVaHS5dp6amavfu3erSpYuzyqxV5s2bp/bt26tt27YVjt2zZ49sNpu9/3WRYRgaM2aMli1bptWrVysyMtLh+eJbK/56TObn52vdunX2Y5LjtqSK+ir9/18ADhw4oFWrVqlRo0YVrpdjtnK9PRfn2so5n95yrr0whmEoLy+Pc6wJinsrcZ69qNT8nBy4FJ06dcr4/vvvje+//96QZMycOdP4/vvvjZSUFOPUqVPGhAkTjI0bNxrJycnGmjVrjOjoaOOyyy4zsrOz7et44IEHjMaNGxurVq0yduzYYdx8881G27ZtjYKCAifumfOV19tiWVlZhpeXlzF79uwSr//ll1+MadOmGVu3bjWSk5ONlStXGi1btjSuvfbaOt3bBx980PDz8zPWrl1rpKam2r9yc3PtY5577jnDz8/PWLZsmfHjjz8ad999txEaGspxW46K+mqz2Yz+/fsbjRs3Nnbu3OkwJi8vzzAMjtmyVNRbzrVVV5nzgWFwrj1fU6ZMMdavX28kJycbu3btMh5//HGjXr16xldffWUYBufYC1FebznPXlwIW6gWa9asMSSV+Bo6dKiRm5trxMTEGIGBgYbVajWaNGliDB061Pj9998d1nHmzBljzJgxhr+/v+Hp6Wn07du3xJi6qLzeFps7d67h6elpnDx5ssTrf//9d+Omm24y/P39DTc3N6Np06bGuHHjjOPHj9fgXlx8SuupJCMhIcE+pqioyJg6daoREhJiuLu7GzfddJPx448/OqyH49ZRRX1NTk4uc8yaNWsMw+CYLUtFveVcW3WVOR8YBufa8zV8+HAjIiLCcHNzMwIDA40ePXrYg5ZhcI69EOX1lvPsxcViGIZR/dfLAAAAAKBu4z1bAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAgCrp1q2bxo8f7+wyaszBgwdlsVi0c+fOSr9m/vz5atCgQbXVcPz4cQUFBengwYMlnouPjy91ubNMnDhR48aNc3YZAOBUhC0AqOOGDRsmi8Uii8Uiq9WqK664QhMnTlROTk65r1u2bJn+/e9/11CVzhceHq7U1FRFRUVV63qHDRumgQMHVmrss88+q379+unyyy+v9PrLC3wNGjTQ/Pnz7Y/XrFmj7t27y9/fX15eXmrWrJmGDh2qgoICSdLatWvtx0q9evXk5+ena6+9VpMmTVJqaqrDuidNmqSEhAQlJydXulYAuNQQtgAAuvXWW5WamqrffvtNTz/9tN544w1NnDix1LE2m02S5O/vLx8fn5oss1oU13++XFxcFBISIldX12quqHLOnDmjefPm6b777nNY/uGHH6p9+/Z64YUXdN1116lz58766KOPznv9e/bsUe/evXXddddp/fr1+vHHHzVr1ixZrVYVFRU5jN23b5+OHj2qrVu3avLkyVq1apWioqL0448/2scEBQUpJiZGc+bMqdoOA8AlgLAFAJC7u7tCQkIUHh6u2NhY/eMf/9CKFSsk/Xl72jXXXKN33nlHV1xxhdzd3WUYRonbCPPy8jRp0iSFh4fL3d1dzZo107x58+zP//TTT+rTp4/q16+v4OBgDRkyRH/88UeZNRVfkVmxYoWaN28uDw8P9ezZU4cOHXIY9+mnn6p9+/by8PDQFVdcoWnTptmvxEiSxWLRnDlzNGDAAHl7e+vpp58udXuXX365pk+fruHDh8vHx0dNmjTRm2++aX++tNsIP/nkEzVr1kyenp7q3r27FixYIIvFopMnTzqs+8svv1SrVq1Uv359e7At7u2CBQv08ccf268YrV27ttT6vvjiC7m6uio6Otq+bP/+/br77rt12223adiwYUpISNDo0aOrFCiTkpIUGhqqGTNmKCoqSk2bNtWtt96qt99+W25ubg5jg4KCFBISoubNm+uuu+7St99+q8DAQD344IMO4/r3768lS5acdy0AcKkgbAEASvD09HT4hf2XX37RBx98oI8++qjM9yzde++9Wrp0qV599VXt3btXc+bMUf369SVJqamp6tq1q6655hpt27ZNiYmJOnbsmAYPHlxuHbm5uXrmmWe0YMECffvtt8rOztZdd91lf/7LL7/UPffco3Hjxumnn37S3LlzNX/+fD3zzDMO65k6daoGDBigH3/8UcOHDy9zey+++KI6dOig77//Xg899JAefPBB/fzzz6WOPXjwoP72t79p4MCB2rlzp0aNGqUnnnii1H34z3/+o/fee0/r16/X77//br9qOHHiRA0ePNgewFJTU9WlS5dSt7d+/Xp16NDBYdmuXbtUr149TZs2TYGBgYqKitKQIUMcelRZISEhSk1N1fr168/7tZ6ennrggQf07bffKj093b68Y8eOOnTokFJSUs57nQBwKXDOvRAAgIvWli1btHjxYvXo0cO+LD8/X++9954CAwNLfc3+/fv1wQcfKCkpSbfccosk6YorrrA/P3v2bLVr107Tp0+3L3vnnXcUHh6u/fv3q3nz5qWu12az6bXXXlOnTp0kSQsWLFCrVq20ZcsWdezYUc8884wee+wxDR061L7Nf//735o0aZKmTp1qX09sbGy5IatYnz599NBDD0mSJk+erJdeeklr165Vy5YtS4ydM2eOWrRooRdeeEGS1KJFC+3evbtE0LPZbJozZ46aNm0qSRozZoyeeuopSVL9+vXl6empvLw8hYSElFvbwYMHFRYW5rCsffv2qlevnv75z3+WuJp2vv7+97/ryy+/VNeuXRUSEqLOnTurR48euvfee+Xr61vh64t7dPDgQQUFBUmSLrvsMvuyiIiIC6oPAGojrmwBAPTZZ5+pfv368vDwUHR0tG666SbNmjXL/nxERESZQUuSdu7cKRcXF3Xt2rXU57dv3641a9aofv369q/iX85//fXXMtfr6urqcDWnZcuWatCggfbu3Wtf71NPPeWw3pEjRyo1NVW5ubn21517RagsV199tf3fFotFISEhDldq/mrfvn267rrrHJZ17NixxDgvLy970JKk0NDQMtdZnjNnzsjDw8NhWWRkpJKSkrR7924tWbJE7dq1U2xsbLk9LYuLi4sSEhJ0+PBhzZgxQ2FhYXrmmWfUunXrEpNflMYwDEl/9q2Yp6enJDl8LwCgLuHKFgBA3bt31+zZs2W1WhUWFiar1erwvLe3d7mvL/6luixFRUXq16+fnn/++RLPhYaGlvvav/7yfu6yoqIiTZs2TYMGDSox5q/BpKL6i5273xaLpcTkEMUMwyhRW3HgqGidpY2rSEBAgDIzM0ssv/HGG5WYmKj4+Hi1bt1a8+bN080336xff/1Vrq6u8vX11enTp1VYWCgXFxf76woLC3X69Gn5+fk5rO+yyy7TkCFDNGTIED399NNq3ry55syZo2nTppVbX3EA/utMiSdOnJCkcoM6AFzKCFsAAHl7e+vKK6+s8uvbtGmjoqIirVu3zn4b4V+1a9dOH330kS6//PLzms2voKBA27Zts18x2rdvn06ePGm/KtauXTvt27fvgmqvqpYtW+rzzz93WLZt27bzXo+bm5sKCwsrHHfttddq4cKF5Y657rrr1LJlS1199dVKSUlR06ZN1bJlSxUWFur77793uMK3Y8cOFRYWqkWLFmWur2HDhgoNDa3wYwDOnDmjN998UzfddJNDsNq9e7esVqtat25d4f4BwKWI2wgBABfs8ssv19ChQzV8+HCtWLFCycnJWrt2rT744ANJ0ujRo3XixAndfffd2rJli3777Td99dVXGj58eLlBw2q1auzYsfruu++0Y8cOxcXFqXPnzvbw9a9//Uvvvvuu4uPjtWfPHu3du1fvv/++/u///s/0fR41apR+/vlnTZ482f6eteLPrCrtalxZLr/8cu3atUv79u3TH3/8UeZMgr169dKePXscrm4lJibqpZde0m+//aaioiKlp6fr1VdfVUBAgJo0aSJJuuqqq9S7d28NHz5cq1atUnJyslatWqURI0aod+/euuqqqyRJc+fO1YMPPqivvvpKv/76q/bs2aPJkydrz5496tevn0Mt6enpSktL04EDB7R06VJdf/31+uOPPzR79myHcd98841uvPHGCq98AsClirAFAKgWs2fP1t/+9jc99NBDatmypUaOHGm/IhIWFqZvv/1WhYWF6tWrl6KiovTwww/Lz89P9eqV/V+Rl5eXJk+erNjYWEVHR8vT01NLly61P9+rVy999tlnSkpKsn/G1MyZM2tkMobIyEj997//1bJly3T11Vdr9uzZ9tkI3d3dK72ekSNHqkWLFurQoYMCAwP17bffljquTZs26tChgz3ASn8Gte+++0433XSTpk+frh49emjv3r367LPPHG5fXLp0qW655RY9+OCDuuqqq/Tggw+qR48eDtOyd+zYUadPn9YDDzyg1q1bq2vXrtq8ebNWrFhR4r14LVq0UFhYmNq3b6/nnntOt9xyi3bv3m0PbsWWLFmikSNHVroXAHCpsRhVuXEcAACTzZ8/X+PHj7/gWfZq0jPPPKM5c+aU+Cyw6vL5559r4sSJ2r17d4mQGh8fr2HDhjm8Z8qZVq5cqX/+85/atWuX0z4IGgCcjbMfAABV9MYbb+i6665To0aN9O233+qFF17QmDFjTNtenz59dODAAR05ckTh4eGmbac65OTkKCEhgaAFoE7jyhYA4KJUG65sPfLII3r//fd14sQJNWnSREOGDNGUKVMIGAAASYQtAAAAADAFE2QAAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACb4f3bm9zKXWoWNAAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAIjCAYAAAD1OgEdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABoA0lEQVR4nO3deVhUdf//8dcIDJsioiySiCTue1bKXam5gMudlnaXabnkkoaaWtltd5naYqtL5dLmUmap7bnjnomZFllaloaYiUguIKIwwPn90Zf5NbKIOIcReT6ui6vmzGfOeZ83h5EX55zPWAzDMAQAAAAAcKpKri4AAAAAAK5GhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQBXnMmTJ8tisZTJtjp06KAOHTrYH2/evFkWi0UfffRRmWx/0KBBqlOnTplsq7QyMjI0dOhQhYSEyGKxaOzYsZe8jvzv6V9//eX8Al2wHVz5yvJ9BACKQtgCYKqFCxfKYrHYv7y8vBQaGqqYmBi9+uqrOnPmjFO2c/ToUU2ePFkJCQlOWZ8zXcm1lcRzzz2nhQsXauTIkXrvvfd03333FTv2s88+K7viriBLlizRzJkzS/Xa7du3a/LkyTp9+rRTawIAuBZhC0CZmDp1qt577z3NnTtXo0ePliSNHTtWzZo10549exzGPvHEEzp37twlrf/o0aOaMmXKJQeadevWad26dZf0mktVXG1vvfWW9u/fb+r2L9fGjRvVtm1bPfXUU7r33nvVunXrIscStmaW6rXbt2/XlClTCFsAcJVxd3UBACqGbt266frrr7c/njhxojZu3Kh///vf6tmzp37++Wd5e3tLktzd3eXubu7bU2Zmpnx8fGS1Wk3dzsV4eHi4dPslcfz4cTVu3NjVZeD/5OXlKTs7W15eXq4uBQBwEZzZAuAyHTt21JNPPqmkpCQtXrzYvrywey3i4uJ08803y9/fX5UrV1aDBg30+OOPS/r7PqsbbrhBkjR48GD7JYsLFy6U9Pd9WU2bNtXu3bvVrl07+fj42F974T1b+XJzc/X4448rJCREvr6+6tmzp/744w+HMXXq1NGgQYMKvPaf67xYbYXds3X27Fk9/PDDCgsLk6enpxo0aKCXX35ZhmE4jLNYLBo1apQ+++wzNW3aVJ6enmrSpInWrFlTeMMvcPz4cQ0ZMkTBwcHy8vJSixYttGjRIvvz+fevJSYmauXKlfbaDx06VOj6LBaLzp49q0WLFtnHXtif06dPa9CgQfL391fVqlU1ePBgZWZmFljX4sWL1bp1a3l7eysgIEB9+/Yt0P/i/PXXX7rrrrvk5+en6tWr66GHHtL58+cdxuTk5Ojpp59W3bp15enpqTp16ujxxx9XVlZWgfXNmTNHTZo0kaenp0JDQxUbG+twFqpDhw5auXKlkpKS7Pv+z+/ra6+9piZNmsjHx0fVqlXT9ddfryVLlkj6+3h/9NFHJUkREREF+pz/fX7//fftNeR/j19++WX961//UvXq1eXt7a3WrVsXer/hP9fRoEEDeXl5qXXr1tq6dWuJ+llc/ZKUlJSkBx98UA0aNJC3t7eqV6+u//znPwWOlfzLirdt26YxY8YoMDBQ/v7+euCBB5Sdna3Tp09rwIABqlatmqpVq6YJEyY4HPeHDh2SxWLRyy+/rBkzZig8PFze3t5q3769fvrppxLtS2mPrfz3pV9//VX33nuvqlatqsDAQD355JMyDEN//PGHevXqJT8/P4WEhOiVV14psI6srCw99dRTioyMlKenp8LCwjRhwoQCx9yCBQvUsWNHBQUFydPTU40bN9bcuXMLrK9OnTr697//rW3btunGG2+Ul5eXrr32Wr377rsO42w2m6ZMmaJ69erJy8tL1atX180336y4uLgS9QxA6XFmC4BL3XfffXr88ce1bt06DRs2rNAxe/fu1b///W81b95cU6dOlaenpw4cOKCvv/5aktSoUSNNnTpVkyZN0vDhw3XLLbdIkv71r3/Z13HixAl169ZNffv21b333qvg4OBi63r22WdlsVj02GOP6fjx45o5c6Y6d+6shIQE+xm4kihJbf9kGIZ69uypTZs2aciQIWrZsqXWrl2rRx99VH/++admzJjhMH7btm365JNP9OCDD6pKlSp69dVX1adPHx0+fFjVq1cvsq5z586pQ4cOOnDggEaNGqWIiAgtX75cgwYN0unTp/XQQw+pUaNGeu+99zRu3DjVqlVLDz/8sCQpMDCw0HW+9957Gjp0qG688UYNHz5cklS3bl2HMXfddZciIiI0bdo0fffdd3r77bcVFBSkF154wT7m2Wef1ZNPPqm77rpLQ4cOVWpqql577TW1a9dO33//vfz9/Ytv+v9tp06dOpo2bZp27NihV199VadOnXL4JXTo0KFatGiR7rzzTj388MP65ptvNG3aNP3888/69NNP7eMmT56sKVOmqHPnzho5cqT279+vuXPn6ttvv9XXX38tDw8P/e9//1NaWpqOHDli/x5VrlxZ0t+Xio4ZM0Z33nmnPfTt2bNH33zzjfr166fevXvr119/1QcffKAZM2aoRo0aBfq8ceNGLVu2TKNGjVKNGjXsQW7WrFnq2bOn+vfvr+zsbH344Yf6z3/+oxUrVqhHjx4OPdmyZYuWLl2qMWPGyNPTU3PmzFHXrl21c+dONW3atMheXqx+Sfr222+1fft29e3bV7Vq1dKhQ4c0d+5cdejQQfv27ZOPj4/DOkePHq2QkBBNmTJFO3bs0Jtvvil/f39t375dtWvX1nPPPadVq1bppZdeUtOmTTVgwACH17/77rs6c+aMYmNjdf78ec2aNUsdO3bUjz/+WOzPtjOOrbvvvluNGjXS888/r5UrV+qZZ55RQECA3njjDXXs2FEvvPCC3n//fT3yyCO64YYb1K5dO0l/n5Hs2bOntm3bpuHDh6tRo0b68ccfNWPGDP36668Ol9/OnTtXTZo0Uc+ePeXu7q4vv/xSDz74oPLy8hQbG+tQz4EDB3TnnXdqyJAhGjhwoObPn69BgwapdevWatKkiaS/j+Fp06bZfz7T09O1a9cufffdd+rSpctF9xnAZTAAwEQLFiwwJBnffvttkWOqVq1qtGrVyv74qaeeMv759jRjxgxDkpGamlrkOr799ltDkrFgwYICz7Vv396QZMybN6/Q59q3b29/vGnTJkOScc011xjp6en25cuWLTMkGbNmzbIvCw8PNwYOHHjRdRZX28CBA43w8HD7488++8yQZDzzzDMO4+68807DYrEYBw4csC+TZFitVodlP/zwgyHJeO211wps659mzpxpSDIWL15sX5adnW1ERUUZlStXdtj38PBwo0ePHsWuL5+vr2+hPcn/nt5///0Oy++44w6jevXq9seHDh0y3NzcjGeffdZh3I8//mi4u7sXWF7Udnr27Omw/MEHHzQkGT/88INhGIaRkJBgSDKGDh3qMO6RRx4xJBkbN240DMMwjh8/blitViM6OtrIzc21j3v99dcNScb8+fPty3r06OHwvczXq1cvo0mTJsXW/dJLLxmSjMTExALPSTIqVapk7N27t8BzmZmZDo+zs7ONpk2bGh07diywDknGrl277MuSkpIMLy8v44477ii2tpLUf2EdhmEY8fHxhiTj3XfftS/Lfz+IiYkx8vLy7MujoqIMi8VijBgxwr4sJyfHqFWrlsPPUmJioiHJ8Pb2No4cOWJf/s033xiSjHHjxtmXXfg+4qxja/jw4QVqtFgsxvPPP29ffurUKcPb29vhZ+G9994zKlWqZHz11VcO6503b54hyfj666/tywrrZ0xMjHHttdc6LAsPDzckGVu3brUvO378uOHp6Wk8/PDD9mUtWrQo8c8wAOfiMkIALle5cuViZyXM/2vz559/rry8vFJtw9PTU4MHDy7x+AEDBqhKlSr2x3feeadq1qypVatWlWr7JbVq1Sq5ublpzJgxDssffvhhGYah1atXOyzv3Lmzw9mj5s2by8/PT7///vtFtxMSEqJ77rnHvszDw0NjxoxRRkaGtmzZ4oS9KWjEiBEOj2+55RadOHFC6enpkqRPPvlEeXl5uuuuu/TXX3/Zv0JCQlSvXj1t2rSpRNu58K//+ZOy5H//8v87fvx4h3H5Z+9WrlwpSVq/fr2ys7M1duxYVar0///JHDZsmPz8/OzjiuPv768jR47o22+/LVHthWnfvn2h98398yzrqVOnlJaWpltuuUXfffddgbFRUVEOk5vUrl1bvXr10tq1a5Wbm3tZ9f+zDpvNphMnTigyMlL+/v6F1jJkyBCHS4XbtGkjwzA0ZMgQ+zI3Nzddf/31hR7Lt99+u6655hr74xtvvFFt2rQp9ufTWcfW0KFDC9R4Ye3+/v5q0KCBQ+3Lly9Xo0aN1LBhQ4ftd+zYUZIctv/Pfqalpemvv/5S+/bt9fvvvystLc2hnsaNG9vPmEt/nxG9cNv+/v7au3evfvvttxLtIwDnIWwBcLmMjAyHYHOhu+++WzfddJOGDh2q4OBg9e3bV8uWLbuk4HXNNddc0mQY9erVc3hssVgUGRlZ5P1KzpKUlKTQ0NAC/WjUqJH9+X+qXbt2gXVUq1ZNp06duuh26tWr5xAgituOs1xYb7Vq1STJXu9vv/0mwzBUr149BQYGOnz9/PPPOn78eIm2c+H3r27duqpUqZL9+5eUlKRKlSopMjLSYVxISIj8/f3t+5//3wYNGjiMs1qtuvbaa0vUp8cee0yVK1fWjTfeqHr16ik2NtZ+CWxJRUREFLp8xYoVatu2rby8vBQQEKDAwEDNnTu3wC/kUsGeSFL9+vWVmZmp1NTUy6r/3LlzmjRpkv0+wxo1aigwMFCnT58utJYLj4OqVatKksLCwgosL+xYLmpfivv5dNaxVVjtXl5e9ss/i6r9t99+0969ewtsu379+pLksP2vv/5anTt3lq+vr/z9/RUYGGi/z/TCfpbkPWDq1Kk6ffq06tevr2bNmunRRx8tMAssAHNwzxYAlzpy5IjS0tIK/NL7T97e3tq6das2bdqklStXas2aNVq6dKk6duyodevWyc3N7aLbuZT7rEqqqA9Mzc3NLVFNzlDUdowLJtO4Ulys3ry8PFksFq1evbrQsfn3QV2qor5XZfGht40aNdL+/fu1YsUKrVmzRh9//LHmzJmjSZMmacqUKSVaR2HH71dffaWePXuqXbt2mjNnjmrWrCkPDw8tWLDAYfKKsqh/9OjRWrBggcaOHauoqChVrVpVFotFffv2LfSPIkUdB4Utd9ax7Kxjq7DXluTnMC8vT82aNdP06dMLHZsfNA8ePKhOnTqpYcOGmj59usLCwmS1WrVq1SrNmDGjQD9Lsu127drp4MGD+vzzz7Vu3Tq9/fbbmjFjhubNm+dwpg6A8xG2ALjUe++9J0mKiYkpdlylSpXUqVMnderUSdOnT9dzzz2n//3vf9q0aZM6d+7s9F+aL7zcxjAMHThwQM2bN7cvq1atWqGfi5SUlKRrr73W/vhSagsPD9f69et15swZh7Nbv/zyi/15ZwgPD9eePXuUl5fncHbrcrdzud+HunXryjAMRURE2P/iXxq//fabw9mgAwcOKC8vzz6xRHh4uPLy8vTbb7/Zz+ZJUkpKik6fPm3f//z/7t+/3+F7mp2drcTERHXu3Nm+rLh99/X11d133627775b2dnZ6t27t5599llNnDhRXl5eperbxx9/LC8vL61du1aenp725QsWLCh0fGGXkP3666/y8fEpctKTktb/0UcfaeDAgQ4z8J0/f960zw0ral8unNnzn5x1bJVW3bp19cMPP6hTp07Ffr+//PJLZWVl6YsvvnA4a1XSyxyLEhAQoMGDB2vw4MHKyMhQu3btNHnyZMIWYDIuIwTgMhs3btTTTz+tiIgI9e/fv8hxJ0+eLLCsZcuWkmSfMtnX11eSnPbLXf5sZ/k++ugjJScnq1u3bvZldevW1Y4dO5SdnW1ftmLFigLTSF9Kbd27d1dubq5ef/11h+UzZsyQxWJx2P7l6N69u44dO6alS5fal+Xk5Oi1115T5cqV1b59+1Kt19fX97K+B71795abm5umTJlS4IyGYRg6ceJEidYze/Zsh8evvfaaJNn71717d0kq8CHE+Wcd8mfy69y5s6xWq1599VWHet555x2lpaU5zPjn6+tb6CVzF9ZstVrVuHFjGYYhm81mf610acevm5ubLBaLw/1Whw4dKvJDpePj4x3un/rjjz/0+eefKzo6utgzsSWp383NrcD367XXXiv2XrDL8dlnn+nPP/+0P965c6e++eabYn8+nHVsldZdd92lP//8U2+99VaB586dO6ezZ89K+v9nqv5ZY1paWpEhuiQu3LfKlSsrMjKy0I85AOBcnNkCUCZWr16tX375RTk5OUpJSdHGjRsVFxen8PBwffHFF8V+QOvUqVO1detW9ejRQ+Hh4Tp+/LjmzJmjWrVq6eabb5b0d/Dx9/fXvHnzVKVKFfn6+qpNmzZF3utyMQEBAbr55ps1ePBgpaSkaObMmYqMjHSYnn7o0KH66KOP1LVrV9111106ePCgFi9eXGC680up7bbbbtOtt96q//3vfzp06JBatGihdevW6fPPP9fYsWMLrLu0hg8frjfeeEODBg3S7t27VadOHX300Uf6+uuvNXPmzGLvoStO69attX79ek2fPl2hoaGKiIhQmzZtSvz6unXr6plnntHEiRN16NAh3X777apSpYoSExP16aefavjw4XrkkUcuup7ExET17NlTXbt2VXx8vBYvXqx+/fqpRYsWkqQWLVpo4MCBevPNN3X69Gm1b99eO3fu1KJFi3T77bfr1ltvlfT3ZAMTJ07UlClT1LVrV/Xs2VP79+/XnDlzdMMNN+jee+912PelS5dq/PjxuuGGG1S5cmXddtttio6OVkhIiG666SYFBwfr559/1uuvv64ePXrY+5w/ccX//vc/9e3bVx4eHrrtttvsIawwPXr00PTp09W1a1f169dPx48f1+zZsxUZGVno/ThNmzZVTEyMw9Tvki56KWNJ6v/3v/+t9957T1WrVlXjxo0VHx+v9evXF/vxA5cjMjJSN998s0aOHKmsrCzNnDlT1atX14QJE4p8jbOOrdK67777tGzZMo0YMUKbNm3STTfdpNzcXP3yyy9atmyZ1q5dq+uvv17R0dGyWq267bbb9MADDygjI0NvvfWWgoKClJycXKptN27cWB06dFDr1q0VEBCgXbt26aOPPtKoUaOcvJcACijLqQ8BVDz5Uz3nf1mtViMkJMTo0qWLMWvWLIcpxvNdOGXzhg0bjF69ehmhoaGG1Wo1QkNDjXvuucf49ddfHV73+eefG40bNzbc3d0dplpv3759kVNXFzX1+wcffGBMnDjRCAoKMry9vY0ePXoYSUlJBV7/yiuvGNdcc43h6elp3HTTTcauXbsKrLO42i6c+t0wDOPMmTPGuHHjjNDQUMPDw8OoV6+e8dJLLzlMlW0Yf0/nHRsbW6Cmoqakv1BKSooxePBgo0aNGobVajWaNWtW6PT0lzL1+y+//GK0a9fO8Pb2NiTZ68j/nl44fX/+8XHhlOcff/yxcfPNNxu+vr6Gr6+v0bBhQyM2NtbYv39/sdvP386+ffuMO++806hSpYpRrVo1Y9SoUca5c+ccxtpsNmPKlClGRESE4eHhYYSFhRkTJ040zp8/X2C9r7/+utGwYUPDw8PDCA4ONkaOHGmcOnXKYUxGRobRr18/w9/f35Bk/76+8cYbRrt27Yzq1asbnp6eRt26dY1HH33USEtLc3j9008/bVxzzTVGpUqVHHpS1PfZMAzjnXfeMerVq2d4enoaDRs2NBYsWFDg5+ef61i8eLF9fKtWrYxNmzYV28+S1n/q1Cn7sVS5cmUjJibG+OWXXwoci0V9FERRx8fAgQMNX19f++P8qd9feukl45VXXjHCwsIMT09P45ZbbrFP63/hOi90ucfWxWrMV9j7TnZ2tvHCCy8YTZo0MTw9PY1q1aoZrVu3NqZMmeLQzy+++MJo3ry54eXlZdSpU8d44YUXjPnz5xf4WSnqZ/PC96BnnnnGuPHGGw1/f3/D29vbaNiwofHss88a2dnZxe4zgMtnMYwr9C5qAADgFBaLRbGxsQUuTy1vDh06pIiICL300kumnoUCAGfhni0AAAAAMAFhCwAAAABMQNgCAAAAABNwzxYAAAAAmIAzWwAAAABgAsIWAAAAAJiADzUugby8PB09elRVqlSRxWJxdTkAAAAAXMQwDJ05c0ahoaGqVKn4c1eErRI4evSowsLCXF0GAAAAgCvEH3/8oVq1ahU7hrBVAlWqVJH0d0P9/PxcXE35ZrPZtG7dOkVHR8vDw8PV5VxV6K156K056Kt56K156K056Kt56K3zpaenKywszJ4RikPYKoH8Swf9/PwIW5fJZrPJx8dHfn5+/MA7Gb01D701B301D701D701B301D701T0luL2KCDAAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwAQuDVtz585V8+bN5efnJz8/P0VFRWn16tX258+fP6/Y2FhVr15dlStXVp8+fZSSkuKwjsOHD6tHjx7y8fFRUFCQHn30UeXk5DiM2bx5s6677jp5enoqMjJSCxcuLIvdAwAAAFCBuTRs1apVS88//7x2796tXbt2qWPHjurVq5f27t0rSRo3bpy+/PJLLV++XFu2bNHRo0fVu3dv++tzc3PVo0cPZWdna/v27Vq0aJEWLlyoSZMm2cckJiaqR48euvXWW5WQkKCxY8dq6NChWrt2bZnvLwAAAICKw92VG7/tttscHj/77LOaO3euduzYoVq1aumdd97RkiVL1LFjR0nSggUL1KhRI+3YsUNt27bVunXrtG/fPq1fv17BwcFq2bKlnn76aT322GOaPHmyrFar5s2bp4iICL3yyiuSpEaNGmnbtm2aMWOGYmJiynyfAQAAAFQMLg1b/5Sbm6vly5fr7NmzioqK0u7du2Wz2dS5c2f7mIYNG6p27dqKj49X27ZtFR8fr2bNmik4ONg+JiYmRiNHjtTevXvVqlUrxcfHO6wjf8zYsWOLrCUrK0tZWVn2x+np6ZIkm80mm83mpD2umPL7Rx+dj96ah96ag76ah96ah96ag76ah94636X00uVh68cff1RUVJTOnz+vypUr69NPP1Xjxo2VkJAgq9Uqf39/h/HBwcE6duyYJOnYsWMOQSv/+fznihuTnp6uc+fOydvbu0BN06ZN05QpUwosX7dunXx8fEq9r/j/4uLiXF3CVYvemofemoO+mofemofemoO+mofeOk9mZmaJx7o8bDVo0EAJCQlKS0vTRx99pIEDB2rLli0urWnixIkaP368/XF6errCwsIUHR0tPz8/F1ZW/tlsNsXFxalLly7y8PBwdTlXFXprHnprDvpqHnprHnprDvpqHnrrfPlXvZWEy8OW1WpVZGSkJKl169b69ttvNWvWLN19993Kzs7W6dOnHc5upaSkKCQkRJIUEhKinTt3Oqwvf7bCf465cAbDlJQU+fn5FXpWS5I8PT3l6elZYLmHhwcHqZPQS/PQW/NUpN6mpqZe0j8mpZGbmytJOnLkiNzc3Iod6+fnp8DAQFPruRpVpGO2rNFbc9BX89Bb57mUPro8bF0oLy9PWVlZat26tTw8PLRhwwb16dNHkrR//34dPnxYUVFRkqSoqCg9++yzOn78uIKCgiT9fYrUz89PjRs3to9ZtWqVwzbi4uLs6wAAOEpNTdW9g4fq5JmSXyZRGlarhyaMekCDY8cqO7v4698Dqvho8YK3CVwAgHLFpWFr4sSJ6tatm2rXrq0zZ85oyZIl2rx5s9auXauqVatqyJAhGj9+vAICAuTn56fRo0crKipKbdu2lSRFR0ercePGuu+++/Tiiy/q2LFjeuKJJxQbG2s/MzVixAi9/vrrmjBhgu6//35t3LhRy5Yt08qVK1256wBwxUpPT9fJM5kKjOoj34Dgi7+glDz+78NHwmOGyZZX9LizJ1OUGv+x0tPTCVsAgHLFpWHr+PHjGjBggJKTk1W1alU1b95ca9euVZcuXSRJM2bMUKVKldSnTx9lZWUpJiZGc+bMsb/ezc1NK1as0MiRIxUVFSVfX18NHDhQU6dOtY+JiIjQypUrNW7cOM2aNUu1atXS22+/zbTvAHARvgHB8guqZdr63ZUn6Ziq1AhVzkU+9jHVtCoAADCPS8PWO++8U+zzXl5emj17tmbPnl3kmPDw8AKXCV6oQ4cO+v7770tVIwCUlbK4T6okkpKSlGPLcXUZAACUe1fcPVsAUBGV1X1SJXH+XKaO/Jms2nwmCwAAl4WwBQBXgLK6T6okjh/8SUl/zFduDmELAIDLQdgCgCuI2fdJlUTGiWMu3T4AAFeL4u9IBgAAAACUCmELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADCBu6sLAABXSk1NVXp6erFjcnNzJUmJiYlyc3MzpY6kpCTl2HJMWTcAAHANwhaACis1NVX3Dh6qk2cyix1ntXpowqgHNDh2rLKzbabUcv5cpo78mazaNnPWDwAAyh5hC0CFlZ6erpNnMhUY1Ue+AcFFjvP4vwuuw2OGyZZnTi3HD/6kpD/mKzeHsAUAwNXCpfdsTZs2TTfccIOqVKmioKAg3X777dq/f7/DmA4dOshisTh8jRgxwmHM4cOH1aNHD/n4+CgoKEiPPvqocnIcL8fZvHmzrrvuOnl6eioyMlILFy40e/cAlBO+AcHyC6pV5FeVGqGSpCo1QosddzlfPv41XNwFAADgbC4NW1u2bFFsbKx27NihuLg42Ww2RUdH6+zZsw7jhg0bpuTkZPvXiy++aH8uNzdXPXr0UHZ2trZv365FixZp4cKFmjRpkn1MYmKievTooVtvvVUJCQkaO3ashg4dqrVr15bZvgIAAACoWFx6GeGaNWscHi9cuFBBQUHavXu32rVrZ1/u4+OjkJCQQtexbt067du3T+vXr1dwcLBatmypp59+Wo899pgmT54sq9WqefPmKSIiQq+88ookqVGjRtq2bZtmzJihmJgY83YQAAAAQIV1Rd2zlZaWJkkKCAhwWP7+++9r8eLFCgkJ0W233aYnn3xSPj4+kqT4+Hg1a9ZMwcH//36LmJgYjRw5Unv37lWrVq0UHx+vzp07O6wzJiZGY8eOLbSOrKwsZWVl2R/nz1Rms9lk4+b1y5LfP/rofPT20uXm5spq9ZBHJcldRd+Mlf9ccWMul4ebRV5enhetpSyUVS0l7atHpb8nKcnNzeX4LiHeD8xDb81BX81Db53vUnppMQzDMLGWEsvLy1PPnj11+vRpbdu2zb78zTffVHh4uEJDQ7Vnzx499thjuvHGG/XJJ59IkoYPH66kpCSHSwIzMzPl6+urVatWqVu3bqpfv74GDx6siRMn2sesWrVKPXr0UGZmpry9vR1qmTx5sqZMmVKgxiVLlthDHgAAAICKJzMzU/369VNaWpr8/PyKHXvFnNmKjY3VTz/95BC0pL/DVL5mzZqpZs2a6tSpkw4ePKi6deuaUsvEiRM1fvx4++P09HSFhYUpOjr6og1F8Ww2m+Li4tSlSxd5eHi4upyrCr29dImJiRocO1bhMcPsk2AUxl15iq52XOtOBSnHpFtdk3/9Xjs+mKmb7n9SQWGRpmzjSqulpH0989dRJa19Swtmz1RERIRp9VxNeD8wD701B301D711vot9Puc/XRFha9SoUVqxYoW2bt2qWrVqFTu2TZs2kqQDBw6obt26CgkJ0c6dOx3GpKSkSJL9Pq+QkBD7sn+O8fPzK3BWS5I8PT3l6elZYLmHhwcHqZPQS/PQ25Jzc3NTdrZNtjyVKETlqJJpYcuWa+j8+awS12Kmsq7lYn215UnZ2Ta5ublxbF8i3g/MQ2/NQV/NQ2+d51L66NJ/0Q3D0KhRo/Tpp59q48aNJfqLZUJCgiSpZs2akqSoqCj9+OOPOn78uH1MXFyc/Pz81LhxY/uYDRs2OKwnLi5OUVFRTtoTAAAAAHDk0rAVGxurxYsXa8mSJapSpYqOHTumY8eO6dy5c5KkgwcP6umnn9bu3bt16NAhffHFFxowYIDatWun5s2bS5Kio6PVuHFj3Xffffrhhx+0du1aPfHEE4qNjbWfnRoxYoR+//13TZgwQb/88ovmzJmjZcuWady4cS7bdwAAAABXN5eGrblz5yotLU0dOnRQzZo17V9Lly6VJFmtVq1fv17R0dFq2LChHn74YfXp00dffvmlfR1ubm5asWKF3NzcFBUVpXvvvVcDBgzQ1KlT7WMiIiK0cuVKxcXFqUWLFnrllVf09ttvM+07AAAAANO49J6ti02EGBYWpi1btlx0PeHh4Vq1alWxYzp06KDvv//+kuoDAAAAgNK6IibIAACgOLbsbCUlJbm6DEmSn5+fAgMDXV0GAKAcIGwBAK5oWRlpOpT4u8Y+PrnQmWLLWkAVHy1e8DaBCwBwUYQtAMAVzZZ1TnkWd9Vo21vVQ8NdWsvZkylKjf9Y6enphC0AwEURtgAA5YJPtUD5BRX/WYxlIdXVBQAAyg3XfnImAAAAAFylCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJjApWFr2rRpuuGGG1SlShUFBQXp9ttv1/79+x3GnD9/XrGxsapevboqV66sPn36KCUlxWHM4cOH1aNHD/n4+CgoKEiPPvqocnJyHMZs3rxZ1113nTw9PRUZGamFCxeavXsAAAAAKjCXhq0tW7YoNjZWO3bsUFxcnGw2m6Kjo3X27Fn7mHHjxunLL7/U8uXLtWXLFh09elS9e/e2P5+bm6sePXooOztb27dv16JFi7Rw4UJNmjTJPiYxMVE9evTQrbfeqoSEBI0dO1ZDhw7V2rVry3R/AQAAAFQc7q7c+Jo1axweL1y4UEFBQdq9e7fatWuntLQ0vfPOO1qyZIk6duwoSVqwYIEaNWqkHTt2qG3btlq3bp327dun9evXKzg4WC1bttTTTz+txx57TJMnT5bVatW8efMUERGhV155RZLUqFEjbdu2TTNmzFBMTEyZ7zcAAACAq59Lw9aF0tLSJEkBAQGSpN27d8tms6lz5872MQ0bNlTt2rUVHx+vtm3bKj4+Xs2aNVNwcLB9TExMjEaOHKm9e/eqVatWio+Pd1hH/pixY8cWWkdWVpaysrLsj9PT0yVJNptNNpvNKftaUeX3jz46H729dLm5ubJaPeRRSXJXXpHj8p8rbszl8nCzyMvL86K1lIWyqqWkfb2ielNJslo9lJube0X/rPF+YB56aw76ah5663yX0kuLYRiGibWUWF5ennr27KnTp09r27ZtkqQlS5Zo8ODBDsFHkm688UbdeuuteuGFFzR8+HAlJSU5XBKYmZkpX19frVq1St26dVP9+vU1ePBgTZw40T5m1apV6tGjhzIzM+Xt7e2w/smTJ2vKlCkFalyyZIl8fHycudsAAAAAypHMzEz169dPaWlp8vPzK3bsFXNmKzY2Vj/99JM9aLnSxIkTNX78ePvj9PR0hYWFKTo6+qINRfFsNpvi4uLUpUsXeXh4uLqcqwq9vXSJiYkaHDtW4THDVKVGaJHj3JWn6GrHte5UkHJMutU1+dfvteODmbrp/icVFBZpyjautFpK2tcrqTdn/jqqpLVvacHsmYqIiHBpLcXh/cA89NYc9NU89Nb58q96K4krImyNGjVKK1as0NatW1WrVi378pCQEGVnZ+v06dPy9/e3L09JSVFISIh9zM6dOx3Wlz9b4T/HXDiDYUpKivz8/Aqc1ZIkT09PeXp6Flju4eHBQeok9NI85aG3qampl/RGZZYjR44o8+w52fJUohCVo0qmhS1brqHz57NKXIuZyrqWi/X1iupNnpSdbZObm9sV/3MmlY/3g/KK3pqDvpqH3jrPpfTRpWHLMAyNHj1an376qTZv3lzgr4StW7eWh4eHNmzYoD59+kiS9u/fr8OHDysqKkqSFBUVpWeffVbHjx9XUFCQJCkuLk5+fn5q3LixfcyqVasc1h0XF2dfB4Cyk5qaqnsHD9XJM5muLkXnz2XqyJ/Jqs117AAAwAQuDVuxsbFasmSJPv/8c1WpUkXHjh2TJFWtWlXe3t6qWrWqhgwZovHjxysgIEB+fn4aPXq0oqKi1LZtW0lSdHS0GjdurPvuu08vvviijh07pieeeEKxsbH2s1MjRozQ66+/rgkTJuj+++/Xxo0btWzZMq1cudJl+w5UVOnp6Tp5JlOBUX3kGxB88ReY6PjBn5T0x3zl5hC2AACA87k0bM2dO1eS1KFDB4flCxYs0KBBgyRJM2bMUKVKldSnTx9lZWUpJiZGc+bMsY91c3PTihUrNHLkSEVFRcnX11cDBw7U1KlT7WMiIiK0cuVKjRs3TrNmzVKtWrX09ttvM+074EK+AcHyC6p18YEmyjhxzKXbBwAAVzeXX0Z4MV5eXpo9e7Zmz55d5Jjw8PAClwleqEOHDvr+++8vuUYAAAAAKA3X3mkMAAAAAFcpwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgApfORggAQHljy85WUlKSq8uQJPn5+SkwMNDVZQAAikDYAgCghLIy0nQo8XeNfXyyPD09XV2OAqr4aPGCtwlcAHCFImwBAFBCtqxzyrO4q0bb3qoeGu7SWs6eTFFq/MdKT08nbAHAFYqwBQDAJfKpFii/oFquLkOpri4AAFAsJsgAAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADBBqcLW77//7uw6AAAAAOCqUqqwFRkZqVtvvVWLFy/W+fPnnV0TAAAAAJR7pQpb3333nZo3b67x48crJCREDzzwgHbu3Ons2gAAAACg3CpV2GrZsqVmzZqlo0ePav78+UpOTtbNN9+spk2bavr06UpNTXV2nQAAAABQrlzWBBnu7u7q3bu3li9frhdeeEEHDhzQI488orCwMA0YMEDJycnOqhMAAAAAypXLClu7du3Sgw8+qJo1a2r69Ol65JFHdPDgQcXFxeno0aPq1auXs+oEAAAAgHLFvTQvmj59uhYsWKD9+/ere/fuevfdd9W9e3dVqvR3douIiNDChQtVp04dZ9YKAAAAAOVGqcLW3Llzdf/992vQoEGqWbNmoWOCgoL0zjvvXFZxAAAAAFBelSps/fbbbxcdY7VaNXDgwNKsHgAAAADKvVLds7VgwQItX768wPLly5dr0aJFl10UAAAAAJR3pQpb06ZNU40aNQosDwoK0nPPPXfZRQEAAABAeVeqsHX48GFFREQUWB4eHq7Dhw9fdlEAAAAAUN6VKmwFBQVpz549BZb/8MMPql69+mUXBQAAAADlXanC1j333KMxY8Zo06ZNys3NVW5urjZu3KiHHnpIffv2dXaNAAAAAFDulGo2wqefflqHDh1Sp06d5O7+9yry8vI0YMAA7tkCAAAAAJUybFmtVi1dulRPP/20fvjhB3l7e6tZs2YKDw93dn0AAAAAUC6VKmzlq1+/vurXr++sWgAAAADgqlGqsJWbm6uFCxdqw4YNOn78uPLy8hye37hxo1OKAwAAAIDyqlRh66GHHtLChQvVo0cPNW3aVBaLxdl1AQAAAEC5Vqqw9eGHH2rZsmXq3r27s+sBAAAAgKtCqaZ+t1qtioyMdHYtAAAAAHDVKFXYevjhhzVr1iwZhuHsegAAAADgqlCqywi3bdumTZs2afXq1WrSpIk8PDwcnv/kk0+cUhwAAAAAlFelClv+/v664447nF0LAAAAAFw1ShW2FixY4Ow6AAAAAOCqUqp7tiQpJydH69ev1xtvvKEzZ85Iko4ePaqMjAynFQcAAAAA5VWpzmwlJSWpa9euOnz4sLKystSlSxdVqVJFL7zwgrKysjRv3jxn1wkAAAAA5Uqpzmw99NBDuv7663Xq1Cl5e3vbl99xxx3asGGD04oDAAAAgPKqVGe2vvrqK23fvl1Wq9VheZ06dfTnn386pTAAAAAAKM9KdWYrLy9Pubm5BZYfOXJEVapUueyiAAAAAKC8K1XYio6O1syZM+2PLRaLMjIy9NRTT6l79+7Oqg0AAAAAyq1SXUb4yiuvKCYmRo0bN9b58+fVr18//fbbb6pRo4Y++OADZ9cIAAAAAOVOqcJWrVq19MMPP+jDDz/Unj17lJGRoSFDhqh///4OE2YAAAAAQEVVqrAlSe7u7rr33nudWQsAAAAAXDVKFbbefffdYp8fMGBAqYoBAAAAgKtFqcLWQw895PDYZrMpMzNTVqtVPj4+hC0AAAAAFV6pZiM8deqUw1dGRob279+vm2++mQkyAAAAAEClDFuFqVevnp5//vkCZ70AAAAAoCJyWtiS/p404+jRo85cJQAAAACUS6UKW1988YXD1+eff6558+bp3nvv1U033VTi9WzdulW33XabQkNDZbFY9Nlnnzk8P2jQIFksFoevrl27Oow5efKk+vfvLz8/P/n7+2vIkCHKyMhwGLNnzx7dcsst8vLyUlhYmF588cXS7DYAAAAAlFipJsi4/fbbHR5bLBYFBgaqY8eOeuWVV0q8nrNnz6pFixa6//771bt370LHdO3aVQsWLLA/9vT0dHi+f//+Sk5OVlxcnGw2mwYPHqzhw4dryZIlkqT09HRFR0erc+fOmjdvnn788Ufdf//98vf31/Dhw0tcKwAAAABcilKFrby8PKdsvFu3burWrVuxYzw9PRUSElLocz///LPWrFmjb7/9Vtdff70k6bXXXlP37t318ssvKzQ0VO+//76ys7M1f/58Wa1WNWnSRAkJCZo+fXqRYSsrK0tZWVn2x+np6ZL+nnXRZrOVZlfxf/L7Rx+dr7z0Njc3V1arhzwqSe5yzntJaXm4WeTl5XnRWvKfM7PektZSFsqqlpL2tSL2pkS1VJKsVg/l5uYW+LkvL+8H5RG9NQd9NQ+9db5L6aXFMAzDxFpKzGKx6NNPP3U4azZo0CB99tlnslqtqlatmjp27KhnnnlG1atXlyTNnz9fDz/8sE6dOmV/TU5Ojry8vLR8+XLdcccdGjBggNLT0x0uUdy0aZM6duyokydPqlq1agVqmTx5sqZMmVJg+ZIlS+Tj4+O8nQYAAABQrmRmZqpfv35KS0uTn59fsWNLdWZr/PjxJR47ffr00mxC0t+XEPbu3VsRERE6ePCgHn/8cXXr1k3x8fFyc3PTsWPHFBQU5PAad3d3BQQE6NixY5KkY8eOKSIiwmFMcHCw/bnCwtbEiRMd9jE9PV1hYWGKjo6+aENRPJvNpri4OHXp0kUeHh6uLueqUl56m5iYqMGxYxUeM0xVaoS6tJbkX7/Xjg9m6qb7n1RQWGSR49yVp+hqx7XuVJBynDuv0CXXUhbKqpaS9rUi9qYkzvx1VElr39KC2TML/DtXXt4PyiN6aw76ah5663z5V72VRKnC1vfff6/vv/9eNptNDRo0kCT9+uuvcnNz03XXXWcfZ7FYSrN6u759+9r/v1mzZmrevLnq1q2rzZs3q1OnTpe17uJ4enoWuDdMkjw8PDhInYRemudK762bm5uys22y5cm04FJStlxD589nlbiWHFUyreZLrcVMZV3LxfpakXtTbC15Una2TW5ubkX+zF/p7wflGb01B301D711nkvpY6nC1m233aYqVapo0aJF9jNDp06d0uDBg3XLLbfo4YcfLs1qL+raa69VjRo1dODAAXXq1EkhISE6fvy4w5icnBydPHnSfp9XSEiIUlJSHMbkPy7qXjAAAAAAuFyl+rPcK6+8omnTpjlcgletWjU988wzlzQb4aU6cuSITpw4oZo1a0qSoqKidPr0ae3evds+ZuPGjcrLy1ObNm3sY7Zu3epwI1tcXJwaNGhQ6CWEAAAAAOAMpQpb6enpSk1NLbA8NTVVZ86cKfF6MjIylJCQoISEBEl/38uRkJCgw4cPKyMjQ48++qh27NihQ4cOacOGDerVq5ciIyMVExMjSWrUqJG6du2qYcOGaefOnfr66681atQo9e3bV6Ghf98L0q9fP1mtVg0ZMkR79+7V0qVLNWvWrEu67wwAAAAALlWpwtYdd9yhwYMH65NPPtGRI0d05MgRffzxxxoyZEiRn5dVmF27dqlVq1Zq1aqVpL8n3mjVqpUmTZokNzc37dmzRz179lT9+vU1ZMgQtW7dWl999ZXD/VTvv/++GjZsqE6dOql79+66+eab9eabb9qfr1q1qtatW6fExES1bt1aDz/8sCZNmsRnbAEAAAAwVanu2Zo3b54eeeQR9evXz355nru7u4YMGaKXXnqpxOvp0KGDipt5fu3atRddR0BAgP0DjIvSvHlzffXVVyWuCwAAAAAuV6nClo+Pj+bMmaOXXnpJBw8elCTVrVtXvr6+Ti0OAAAAAMqry5q3Njk5WcnJyapXr558fX2LPUsFAAAAABVJqcLWiRMn1KlTJ9WvX1/du3dXcnKyJGnIkCGmTfsOAAAAAOVJqcLWuHHj5OHhocOHD8vHx8e+/O6779aaNWucVhwAAAAAlFelumdr3bp1Wrt2rWrVquWwvF69ekpKSnJKYQAAAABQnpXqzNbZs2cdzmjlO3nypMO07AAAAABQUZUqbN1yyy1699137Y8tFovy8vL04osv6tZbb3VacQAAAABQXpXqMsIXX3xRnTp10q5du5Sdna0JEyZo7969OnnypL7++mtn1wgAAAAA5U6pzmw1bdpUv/76q26++Wb16tVLZ8+eVe/evfX999+rbt26zq4RAAAAAMqdSz6zZbPZ1LVrV82bN0//+9//zKgJAAAAAMq9Sz6z5eHhoT179phRCwAAAABcNUp1GeG9996rd955x9m1AAAAAMBVo1QTZOTk5Gj+/Plav369WrduLV9fX4fnp0+f7pTiAAAAAKC8uqSw9fvvv6tOnTr66aefdN1110mSfv31V4cxFovFedUBAAAAQDl1SWGrXr16Sk5O1qZNmyRJd999t1599VUFBwebUhwAAAAAlFeXdM+WYRgOj1evXq2zZ886tSAAAAAAuBqUaoKMfBeGLwAAAADA3y4pbFkslgL3ZHGPFgAAAAAUdEn3bBmGoUGDBsnT01OSdP78eY0YMaLAbISffPKJ8yoEAAAAgHLoksLWwIEDHR7fe++9Ti0GAAAAAK4WlxS2FixYYFYdAAAAAHBVuawJMgAAAAAAhbukM1sAAODKYcvOVlJSUoHlubm5kqTExES5ubmVSS1+fn4KDAwsk20BQHlB2AIAoBzKykjTocTfNfbxyfaJq/JZrR6aMOoBDY4dq+xsW5nUE1DFR4sXvE3gAoB/IGwBAFAO2bLOKc/irhpte6t6aLjDcx7/d5NAeMww2fLMr+XsyRSlxn+s9PR0whYA/ANhCwCAcsynWqD8gmo5LHNXnqRjqlIjVDlldHt2aplsBQDKFybIAAAAAAATELYAAAAAwARcRghUEKmpqUpPT3d1GUpKSlKOLcfVZQAAAJiOsAVUAKmpqbp38FCdPJPp6lJ0/lymjvyZrNq2spkhDQAAwFUIW0AFkJ6erpNnMhUY1Ue+AcEureX4wZ+U9Md85eYQtgAAwNWNsAVUIL4BwQVmLStrGSeOuXT7AAAAZYUJMgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwgUvD1tatW3XbbbcpNDRUFotFn332mcPzhmFo0qRJqlmzpry9vdW5c2f99ttvDmNOnjyp/v37y8/PT/7+/hoyZIgyMjIcxuzZs0e33HKLvLy8FBYWphdffNHsXQMAAABQwbk0bJ09e1YtWrTQ7NmzC33+xRdf1Kuvvqp58+bpm2++ka+vr2JiYnT+/Hn7mP79+2vv3r2Ki4vTihUrtHXrVg0fPtz+fHp6uqKjoxUeHq7du3frpZde0uTJk/Xmm2+avn8AAAAAKi53V268W7du6tatW6HPGYahmTNn6oknnlCvXr0kSe+++66Cg4P12WefqW/fvvr555+1Zs0affvtt7r++uslSa+99pq6d++ul19+WaGhoXr//feVnZ2t+fPny2q1qkmTJkpISND06dMdQhkAAAAAOJNLw1ZxEhMTdezYMXXu3Nm+rGrVqmrTpo3i4+PVt29fxcfHy9/f3x60JKlz586qVKmSvvnmG91xxx2Kj49Xu3btZLVa7WNiYmL0wgsv6NSpU6pWrVqBbWdlZSkrK8v+OD09XZJks9lks9nM2N0KI79/9NH5iuttbm6urFYPeVSS3JVX1qU58HCzyMvLs1zVkv+cmfWWx75crpL2tSL25nJrKYtj1qGWSpLV6qHc3Nyr/v2df8fMQV/NQ2+d71J6aTEMwzCxlhKzWCz69NNPdfvtt0uStm/frptuuklHjx5VzZo17ePuuusuWSwWLV26VM8995wWLVqk/fv3O6wrKChIU6ZM0ciRIxUdHa2IiAi98cYb9uf37dunJk2aaN++fWrUqFGBWiZPnqwpU6YUWL5kyRL5+Pg4aY8BAAAAlDeZmZnq16+f0tLS5OfnV+zYK/bMlitNnDhR48ePtz9OT09XWFiYoqOjL9pQFM9msykuLk5dunSRh4eHq8u5qhTX28TERA2OHavwmGGqUiPURRX+LfnX77Xjg5m66f4nFRQWWS5qcVeeoqsd17pTQcox6VbX8tiXy1XSvlbE3lxuLWVxzP7Tmb+OKmntW1owe6YiIiJM354r8e+YOeireeit8+Vf9VYSV2zYCgkJkSSlpKQ4nNlKSUlRy5Yt7WOOHz/u8LqcnBydPHnS/vqQkBClpKQ4jMl/nD/mQp6envL09Cyw3MPDg4PUSeileQrrrZubm7KzbbLlqUx+8SqOLdfQ+fNZ5bKWHFUyreby3JfLdbG+VuTeXG4tZh6zDrXkSdnZNrm5uVWY93b+HTMHfTUPvXWeS+njFfs5WxEREQoJCdGGDRvsy9LT0/XNN98oKipKkhQVFaXTp09r9+7d9jEbN25UXl6e2rRpYx+zdetWh2sr4+Li1KBBg0Lv1wIAAAAAZ3Bp2MrIyFBCQoISEhIk/X2pU0JCgg4fPiyLxaKxY8fqmWee0RdffKEff/xRAwYMUGhoqP2+rkaNGqlr164aNmyYdu7cqa+//lqjRo1S3759FRr696VS/fr1k9Vq1ZAhQ7R3714tXbpUs2bNcrhMEAAAAACczaWXEe7atUu33nqr/XF+ABo4cKAWLlyoCRMm6OzZsxo+fLhOnz6tm2++WWvWrJGXl5f9Ne+//75GjRqlTp06qVKlSurTp49effVV+/NVq1bVunXrFBsbq9atW6tGjRqaNGkS074DAAAAMJVLw1aHDh1U3GSIFotFU6dO1dSpU4scExAQoCVLlhS7nebNm+urr74qdZ0AAAAAcKmu2Hu2AAAAAKA8I2wBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYwN3VBQAAgPLPlp2tpKQkV5dh5+fnp8DAQFeXAaCCI2wBAIDLkpWRpkOJv2vs45Pl6enp6nIkSQFVfLR4wdsELgAuRdgCAACXxZZ1TnkWd9Vo21vVQ8NdXY7OnkxRavzHSk9PJ2wBcCnCFgAAcAqfaoHyC6rl6jIkSamuLgAAxAQZAAAAAGAKwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACwhYAAAAAmICwBQAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACZwd3UBwNUqNTVV6enpZba93NxcSVJiYqLc3NwcnktKSlKOLafMagEAAABhCzBFamqq7h08VCfPZJbZNq1WD00Y9YAGx45VdrbN4bnz5zJ15M9k1bbZing1AAAAnI2wBZggPT1dJ89kKjCqj3wDgstkmx7/d1FweMww2fIcnzt+8Ccl/TFfuTmELQAAgLJC2AJM5BsQLL+gWmWyLXflSTqmKjVClXPB7ZgZJ46VSQ0AAAD4/5ggAwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMMEVHbYmT54si8Xi8NWwYUP78+fPn1dsbKyqV6+uypUrq0+fPkpJSXFYx+HDh9WjRw/5+PgoKChIjz76qHJycsp6VwAAAABUMO6uLuBimjRpovXr19sfu7v//5LHjRunlStXavny5apatapGjRql3r176+uvv5Yk5ebmqkePHgoJCdH27duVnJysAQMGyMPDQ88991yZ7wsAAACAiuOKD1vu7u4KCQkpsDwtLU3vvPOOlixZoo4dO0qSFixYoEaNGmnHjh1q27at1q1bp3379mn9+vUKDg5Wy5Yt9fTTT+uxxx7T5MmTZbVay3p3AAAAAFQQV3zY+u233xQaGiovLy9FRUVp2rRpql27tnbv3i2bzabOnTvbxzZs2FC1a9dWfHy82rZtq/j4eDVr1kzBwcH2MTExMRo5cqT27t2rVq1aFbrNrKwsZWVl2R+np6dLkmw2m2w2m0l7WjHk9+9q72Nubq6sVg95VJLclVcm28zfTmHb83CzyMvLs0zrKUp5rKW43pZ1LWWhrGopaV8rYm8ut5ayOGZLWosreFT6+z6JQ4cOKTc316nrzl/fgQMH5ObmVqLXVKlSRTVq1HBqHVebivL7gSvQW+e7lF5aDMMwTKzlsqxevVoZGRlq0KCBkpOTNWXKFP3555/66aef9OWXX2rw4MEOoUiSbrzxRt1666164YUXNHz4cCUlJWnt2rX25zMzM+Xr66tVq1apW7duhW538uTJmjJlSoHlS5YskY+Pj3N3EgAAAEC5kZmZqX79+iktLU1+fn7Fjr2iz2z9Mww1b95cbdq0UXh4uJYtWyZvb2/Ttjtx4kSNHz/e/jg9PV1hYWGKjo6+aENRPJvNpri4OHXp0kUeHh6uLsc0iYmJGhw7VuExw1SlRmiZbNNdeYqudlzrTgUp54K5b5J//V47Ppipm+5/UkFhkWVST1HKYy3F9basaykLZVVLSftaEXtzubWUxTFb0lpcIb+e63qPVEDN2k5dt3slqU/dSvr4YJ5ySnAS7+yp4/pr5+daMHumIiIinFrL1aSi/H7gCvTW+fKveiuJKzpsXcjf31/169fXgQMH1KVLF2VnZ+v06dPy9/e3j0lJSbHf4xUSEqKdO3c6rCN/tsLC7gPL5+npKU9PzwLLPTw8OEid5GrvpZubm7KzbbLlqUx+0fmnHFUqsE1brqHz57NcUs+FynMthfXWVbWYqaxruVhfK3JvLrcWM4/ZS62lLOXX4+5XQ941ajl13X9fJnlM3gGhJdpXW56UnW2Tm5vbVf3vnrNc7b8fuBK9dZ5L6aPr3xEvQUZGhg4ePKiaNWuqdevW8vDw0IYNG+zP79+/X4cPH1ZUVJQkKSoqSj/++KOOHz9uHxMXFyc/Pz81bty4zOsHAAAAUHFc0We2HnnkEd12220KDw/X0aNH9dRTT8nNzU333HOPqlatqiFDhmj8+PEKCAiQn5+fRo8eraioKLVt21aSFB0drcaNG+u+++7Tiy++qGPHjumJJ55QbGxsoWeuAAAAAMBZruiwdeTIEd1zzz06ceKEAgMDdfPNN2vHjh0KDAyUJM2YMUOVKlVSnz59lJWVpZiYGM2ZM8f+ejc3N61YsUIjR45UVFSUfH19NXDgQE2dOtVVuwQAAACggriiw9aHH35Y7PNeXl6aPXu2Zs+eXeSY8PBwrVq1ytmlAQAAAECxytU9WwAAAABQXhC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATELYAAAAAwASELQAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABIQtAAAAADABYQsAAAAATEDYAgAAAAATuLu6AMCZUlNTlZ6e7uoylJSUpBxbjqvLAAAAgAsRtnDVSE1N1b2Dh+rkmUxXl6Lz5zJ15M9k1bbZXF0KAMDFbNnZSkpKcnUZkiQ/Pz8FBga6ugygwiBs4aqRnp6uk2cyFRjVR74BwS6t5fjBn5T0x3zl5hC2AKAiy8pI06HE3zX28cny9PR0dTkKqOKjxQveJnABZYSwhauOb0Cw/IJqubSGjBPHXLp9AMCVwZZ1TnkWd9Vo21vVQ8NdWsvZkylKjf9Y6enphC2gjBC2AAAATOZTLdDlfwiUpFRXFwBUMMxGCAAAAAAmIGwBAAAAgAkIWwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAAAAAGACd1cXAAAAgLJhy85WUlKSq8uQJPn5+SkwMNDVZQCmImwBAABUAFkZaTqU+LvGPj5Znp6eri5HAVV8tHjB2wQuXNUIWwAAABWALeuc8izuqtG2t6qHhru0lrMnU5Qa/7HS09MJW7iqEbYAAAAqEJ9qgfILquXqMpTq6gKAMsAEGQAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJmCADly01NVXp6eklGpubmytJSkxMlJubm1PrSEpKUo4tx6nrBAAAAEqLsIXLkpqaqnsHD9XJM5klGm+1emjCqAc0OHassrNtTq3l/LlMHfkzWbVtzl0vAABwvn9+wLKZf4wtCT5gGWYhbOGypKen6+SZTAVG9ZFvQPBFx3v834Wr4THDZMtzbi3HD/6kpD/mKzeHsAUAwJXswg9YNvOPsSXBByzDLIQtOIVvQHCJPrPDXXmSjqlKjVDlOPmWwYwTx5y6PgAAYI4LP2DZzD/GXgwfsAwzEbYAAADgEvkfsGzmH2NLgg9YhlmYjRAAAAAATFChwtbs2bNVp04deXl5qU2bNtq5c6erSwIAAABwlaowlxEuXbpU48eP17x589SmTRvNnDlTMTEx2r9/v4KCglxd3iW7lOnWzcR06wAAoLz758yIV4Ls7GxZrVanrOtyZ3pkpsbLU2HC1vTp0zVs2DANHjxYkjRv3jytXLlS8+fP13//+18XV3dpLnW6dTMx3ToAACjPLpwZ0dVs2dn683CSaoVHyN3j8n9Vv9yZHitb3fTCs1NVvXr1y67lcpXH4FchwlZ2drZ2796tiRMn2pdVqlRJnTt3Vnx8fIHxWVlZysrKsj9OS0uTJJ08eVK2KyBU/PHHHzp9NlOV67WRZ+WqLq3ldHKS3FKO62xyoqzGxXvjVknK9KyktKMHlOvk2YbOnzwqq9Vd51OPKL3sP6LD5bUU19uK3pvLrcXM4/ZSaykLZVVLSftaEXtzubWUxTFb0lpcwcx6LrW3V1JvruRayvqY/aczyQfl7umlyvXbyi/A9b/In05OknH0qLwjb3BKPR5uFmVmZiqgeUfZco1Leu2Z1GPa+9VnGjF2gjw8PS67lsvl7+uj16a/5PLgd+bMGUmSYVy8nxajJKPKuaNHj+qaa67R9u3bFRUVZV8+YcIEbdmyRd98843D+MmTJ2vKlCllXSYAAACAcuKPP/5QrVrFf/RRhTizdakmTpyo8ePH2x/n5eXp5MmTql69uiwWiwsrK//S09MVFhamP/74Q35+fq4u56pCb81Db81BX81Db81Db81BX81Db53PMAydOXNGoaGhFx1bIcJWjRo15ObmppSUFIflKSkpCgkJKTDe09OzwDW7/v7+ZpZY4fj5+fEDbxJ6ax56aw76ah56ax56aw76ah5661xVq5bsVp4KMfW71WpV69attWHDBvuyvLw8bdiwweGyQgAAAABwlgpxZkuSxo8fr4EDB+r666/XjTfeqJkzZ+rs2bP22QkBAAAAwJkqTNi6++67lZqaqkmTJunYsWNq2bKl1qxZo+DgYFeXVqF4enrqqaeeuiKmVr3a0Fvz0Ftz0Ffz0Fvz0Ftz0Ffz0FvXqhCzEQIAAABAWasQ92wBAAAAQFkjbAEAAACACQhbAAAAAGACwhYAAAAAmICwBafYunWrbrvtNoWGhspiseizzz5zeH7QoEGyWCwOX127dnUYc/LkSfXv319+fn7y9/fXkCFDlJGRUYZ7ceW5WF8v7Gn+10svvWQfU6dOnQLPP//882W8J1eWadOm6YYbblCVKlUUFBSk22+/Xfv373cYc/78ecXGxqp69eqqXLmy+vTpU+CD0Q8fPqwePXrIx8dHQUFBevTRR5WTk1OWu3LFuVhvT548qdGjR6tBgwby9vZW7dq1NWbMGKWlpTmsp7Dj+sMPPyzr3bmilOS47dChQ4G+jRgxwmEMx62ji/X10KFDRb7XLl++3D6OY7aguXPnqnnz5vYP042KitLq1avtz/M+W3rF9Zb32SsLYQtOcfbsWbVo0UKzZ88uckzXrl2VnJxs//rggw8cnu/fv7/27t2ruLg4rVixQlu3btXw4cPNLv2KdrG+/rOfycnJmj9/viwWi/r06eMwburUqQ7jRo8eXRblX7G2bNmi2NhY7dixQ3FxcbLZbIqOjtbZs2ftY8aNG6cvv/xSy5cv15YtW3T06FH17t3b/nxubq569Oih7Oxsbd++XYsWLdLChQs1adIkV+zSFeNivT169KiOHj2ql19+WT/99JMWLlyoNWvWaMiQIQXWtWDBAofj9vbbby/jvbmylOS4laRhw4Y59O3FF1+0P8dxW9DF+hoWFlbgvXbKlCmqXLmyunXr5rAujllHtWrV0vPPP6/du3dr165d6tixo3r16qW9e/dK4n32chTXW95nrzAG4GSSjE8//dRh2cCBA41evXoV+Zp9+/YZkoxvv/3Wvmz16tWGxWIx/vzzT5MqLV8K6+uFevXqZXTs2NFhWXh4uDFjxgzzCrsKHD9+3JBkbNmyxTAMwzh9+rTh4eFhLF++3D7m559/NiQZ8fHxhmEYxqpVq4xKlSoZx44ds4+ZO3eu4efnZ2RlZZXtDlzBLuxtYZYtW2ZYrVbDZrPZl5XkeK/oCutt+/btjYceeqjI13DcXlxJjtmWLVsa999/v8MyjtmSqVatmvH222/zPmuC/N4WhvdZ1+HMFsrM5s2bFRQUpAYNGmjkyJE6ceKE/bn4+Hj5+/vr+uuvty/r3LmzKlWqpG+++cYV5ZY7KSkpWrlyZaF/uXr++edVvXp1tWrVSi+99BKXYFwg/9KKgIAASdLu3btls9nUuXNn+5iGDRuqdu3aio+Pl/T3MdusWTOHD0aPiYlRenq6/a+2KNjbosb4+fnJ3d3dYXlsbKxq1KihG2+8UfPnz5fBx0I6KKq377//vmrUqKGmTZtq4sSJyszMtD/HcXtxFztmd+/erYSEhELfazlmi5abm6sPP/xQZ8+eVVRUFO+zTnRhbwvD+6zruF98CHD5unbtqt69eysiIkIHDx7U448/rm7duik+Pl5ubm46duyYgoKCHF7j7u6ugIAAHTt2zEVVly+LFi1SlSpVHC7BkKQxY8bouuuuU0BAgLZv366JEycqOTlZ06dPd1GlV5a8vDyNHTtWN910k5o2bSpJOnbsmKxWq/z9/R3GBgcH24/HY8eOOfwCkP98/nMovLcX+uuvv/T0008XuGR46tSp6tixo3x8fLRu3To9+OCDysjI0JgxY8qi9CteUb3t16+fwsPDFRoaqj179uixxx7T/v379cknn0jiuL2Ykhyz77zzjho1aqR//etfDss5Zgv3448/KioqSufPn1flypX16aefqnHjxkpISOB99jIV1dsL8T7rWoQtlIm+ffva/79Zs2Zq3ry56tatq82bN6tTp04urOzqMX/+fPXv319eXl4Oy8ePH2///+bNm8tqteqBBx7QtGnT5OnpWdZlXnFiY2P1008/adu2ba4u5apzsd6mp6erR48eaty4sSZPnuzw3JNPPmn//1atWuns2bN66aWX+CXg/xTV23/+MtWsWTPVrFlTnTp10sGDB1W3bt2yLrPcudgxe+7cOS1ZssTh+MzHMVu4Bg0aKCEhQWlpafroo480cOBAbdmyxdVlXRWK6u0/Axfvs67HZYRwiWuvvVY1atTQgQMHJEkhISE6fvy4w5icnBydPHlSISEhriixXPnqq6+0f/9+DR069KJj27Rpo5ycHB06dMj8wq5wo0aN0ooVK7Rp0ybVqlXLvjwkJETZ2dk6ffq0w/iUlBT78RgSElJg1qz8xxyzRfc235kzZ9S1a1dVqVJFn376qTw8PIpdX5s2bXTkyBFlZWWZVXK5cbHe/lObNm0kyeG9luO2cCXp60cffaTMzEwNGDDgouvjmP2b1WpVZGSkWrdurWnTpqlFixaaNWsW77NOUFRv8/E+e2UgbMEljhw5ohMnTqhmzZqSpKioKJ0+fVq7d++2j9m4caPy8vLsvyygaO+8845at26tFi1aXHRsQkKCKlWqVOCyzYrEMAyNGjVKn376qTZu3KiIiAiH51u3bi0PDw9t2LDBvmz//v06fPiw/Xr4qKgo/fjjjw5/JIiLi5Ofn1+hl3FUFBfrrfT3X1qjo6NltVr1xRdfFDgbW5iEhARVq1atQp+NLUlvL5SQkCBJDu+1HLeOLqWv77zzjnr27KnAwMCLrpdjtnB5eXnKysrifdYE+b2VeJ+9orhwcg5cRc6cOWN8//33xvfff29IMqZPn258//33RlJSknHmzBnjkUceMeLj443ExERj/fr1xnXXXWfUq1fPOH/+vH0dXbt2NVq1amV88803xrZt24x69eoZ99xzjwv3yvWK62u+tLQ0w8fHx5g7d26B12/fvt2YMWOGkZCQYBw8eNBYvHixERgYaAwYMKAsd+OKM3LkSKNq1arG5s2bjeTkZPtXZmamfcyIESOM2rVrGxs3bjR27dplREVFGVFRUfbnc3JyjKZNmxrR0dFGQkKCsWbNGiMwMNCYOHGiK3bpinGx3qalpRlt2rQxmjVrZhw4cMBhTE5OjmEYhvHFF18Yb731lvHjjz8av/32mzFnzhzDx8fHmDRpkit3zeUu1tsDBw4YU6dONXbt2mUkJiYan3/+uXHttdca7dq1s6+D47agkrwfGIZh/Pbbb4bFYjFWr15dYB0cs4X773//a2zZssVITEw09uzZY/z3v/81LBaLsW7dOsMweJ+9HMX1lvfZKwthC06xadMmQ1KBr4EDBxqZmZlGdHS0ERgYaHh4eBjh4eHGsGHDHKZyNQzDOHHihHHPPfcYlStXNvz8/IzBgwcbZ86ccdEeXRmK62u+N954w/D29jZOnz5d4PW7d+822rRpY1StWtXw8vIyGjVqZDz33HMOIbciKqynkowFCxbYx5w7d8548MEHjWrVqhk+Pj7GHXfcYSQnJzus59ChQ0a3bt0Mb29vo0aNGsbDDz/sMK1uRXSx3hZ1TEsyEhMTDcP4+2MfWrZsaVSuXNnw9fU1WrRoYcybN8/Izc113Y5dAS7W28OHDxvt2rUzAgICDE9PTyMyMtJ49NFHjbS0NIf1cNw6Ksn7gWEYxsSJE42wsLBCj0OO2cLdf//9Rnh4uGG1Wo3AwECjU6dO9qBlGLzPXo7iesv77JXFYhjM8QgAAAAAzsY9WwAAAABgAsIWAAAAAJiAsAUAAAAAJiBsAQAAAIAJCFsAAAAAYALCFgAAAACYgLAFAAAAACYgbAEAAACACQhbAIBLVqdOHc2cOdPVZZSZzZs3y2Kx6PTp0yV+zeTJk9WyZUun1bB//36FhITozJkzBZ4bNGiQ07bjDG3bttXHH3/s6jIAwOUIWwBQgQ0aNEgWi0UWi0VWq1WRkZGaOnWqcnJyin3dt99+q+HDh5dRla73r3/9S8nJyapatapT19uhQweNHTu2RGMnTpyo0aNHq0qVKiVef1GB79ChQ7JYLEpISLAve+utt9SiRQtVrlxZ/v7+atWqlaZNm+awrvxjxd3dXTVq1FC7du00c+ZMZWVlOaz/iSee0H//+1/l5eWVuFYAuBoRtgCgguvatauSk5P122+/6eGHH9bkyZP10ksvFTo2OztbkhQYGCgfH5+yLNMpbDZbqV5ntVoVEhIii8Xi5IpK5vDhw1qxYkWBM1hz5sxR06ZN9cEHH6hmzZpq3769tmzZcsnrnz9/vsaOHasxY8YoISFBX3/9tSZMmKCMjAyHcU2aNFFycrIOHz6sTZs26T//+Y+mTZumf/3rXw5n3Lp166YzZ85o9erVpdpfALhaELYAoILz9PRUSEiIwsPDNXLkSHXu3FlffPGFpL/PfN1+++169tlnFRoaqgYNGkgqeBnh6dOn9cADDyg4OFheXl5q2rSpVqxYYX9+27ZtuuWWW+Tt7a2wsDCNGTNGZ8+eLbKm/DMyb7zxhsLCwuTj46O77rpLaWlpDuPefvttNWrUSF5eXmrYsKHmzJljfy7/7M3SpUvVvn17eXl56f333y90exaLRW+//bbuuOMO+fj4qF69evYeSIVfRvjWW2/Za7vjjjs0ffp0+fv7F1j3e++9pzp16qhq1arq27evPZQMGjRIW7Zs0axZs+xnjA4dOlRofcuWLVOLFi10zTXX2Jdt3LhRo0eP1siRI9WjRw99+eWX6tevn86fP19kX4vyxRdf6K677tKQIUMUGRmpJk2a6J577tGzzz7rMM7d3V0hISEKDQ1Vs2bNNHr0aG3ZskU//fSTXnjhBfs4Nzc3de/eXR9++OEl1wIAVxPCFgDAgbe3t/0MliRt2LBB+/fvV1xcnEOAypeXl6du3brp66+/1uLFi7Vv3z49//zzcnNzkyQdPHhQXbt2VZ8+fbRnzx4tXbpU27Zt06hRo4qt48CBA1q2bJm+/PJLrVmzRt9//70efPBB+/Pvv/++Jk2apGeffVY///yznnvuOT355JNatGiRw3r++9//6qGHHtLPP/+smJiYIrc3ZcoU3XXXXdqzZ4+6d++u/v376+TJk4WO/frrrzVixAg99NBDSkhIUJcuXQoEk/x9/+yzz7RixQqtWLFCW7Zs0fPPPy9JmjVrlqKiojRs2DAlJycrOTlZYWFhhW7vq6++0vXXX++w7LvvvtO1116r2NhY+fn56frrr9cDDzxQ7D4WJSQkRDt27FBSUtIlv7Zhw4bq1q2bPvnkE4flN954o7766qtLXh8AXE0IWwAASZJhGFq/fr3Wrl2rjh072pf7+vrq7bffVpMmTdSkSZMCr1u/fr127typTz75RF26dNG1116rf//73+rWrZskadq0aerfv7/Gjh2revXq6V//+pdeffVVvfvuu8WehTl//rzeffddtWzZUu3atdNrr72mDz/8UMeOHZMkPfXUU3rllVfUu3dvRUREqHfv3ho3bpzeeOMNh/WMHTvWPqZmzZpFbm/QoEG65557FBkZqeeee04ZGRnauXNnoWNfe+01devWTY888ojq16+vBx980L6//5SXl6eFCxeqadOmuuWWW3Tfffdpw4YNkqSqVavKarXKx8dHISEhCgkJsQfUCyUlJSk0NNRhWVRUlH7//Xe98MILOnHiRJH7VRJPPfWU/P39VadOHTVo0ECDBg3SsmXLSnzPVcOGDQuclQsNDdUff/zBfVsAKjTCFgBUcCtWrFDlypXl5eWlbt266e6779bkyZPtzzdr1kxWq7XI1yckJKhWrVqqX79+oc//8MMPWrhwoSpXrmz/iomJUV5enhITE4tcb+3atR0um4uKilJeXp7279+vs2fP6uDBgxoyZIjDep955hkdPHjQYT0XnhEqSvPmze3/7+vrKz8/Px0/frzQsfv379eNN97osOzCx9Lfl1v+c0KLmjVrFrnO4pw7d05eXl4Oy2666SZ98sknWrlypdauXauaNWtqxIgRSklJueT116xZU/Hx8frxxx/10EMPKScnRwMHDlTXrl1LFJYMwyhwP5u3t7fy8vIKTJ4BABWJu6sLAAC41q233qq5c+fKarUqNDRU7u6O/zT4+voW+3pvb+9in8/IyNADDzygMWPGFHiudu3al17w/61T+vu+qTZt2jg8d+HZoYvVn8/Dw8PhscViueyzMs5aZ40aNXTq1KkCy3v16qVevXpp0KBBGjBggB577DHdcccd2r59uyTJz8+vwH1ukuz3nl04u2LTpk3VtGlTPfjggxoxYoRuueUWbdmyRbfeemux9f3888+KiIhwWHby5En5+vpe9PgAgKsZYQsAKjhfX19FRkaW+vXNmzfXkSNH9OuvvxZ6duu6667Tvn37Lnkbhw8f1tGjR+2Xz+3YsUOVKlVSgwYNFBwcrNDQUP3+++/q379/qWsvrQYNGujbb791WHbh45KwWq3Kzc296LhWrVpp3759xY7p2LGjJk2apF69eslms8nDw0MNGjTQkSNHlJKSouDgYPvY7777Tl5eXsWG3caNG0tSsROZSNIvv/yiNWvWaOLEiQ7Lf/rpJ7Vq1epiuwYAVzXCFgDgsrRv317t2rVTnz59NH36dEVGRuqXX36RxWJR165d9dhjj6lt27YaNWqUhg4dKl9fX+3bt09xcXF6/fXXi1yvl5eXBg4cqJdfflnp6ekaM2aM7rrrLoWEhEj6e0KLMWPGqGrVquratauysrK0a9cunTp1SuPHjzd1n0ePHq127dpp+vTpuu2227Rx40atXr36kqeGr1Onjr755hsdOnRIlStXVkBAgCpVKniFf0xMjIYOHarc3Fz7mbv33ntP2dnZio6OlmEYOnz4sN588001b97cfkYtJiZGDRo00D333KNnnnlGISEh+u677/TEE0/ooYcesq9r5MiRCg0NVceOHVWrVi0lJyfrmWeeUWBgoKKioux15OTk6NixY8rLy9OJEye0efNmPfPMM2rZsqUeffRRh5q/+uorRUdHX1I/AOBqwz1bAIDL9vHHH+uGG27QPffco8aNG2vChAn2MzbNmzfXli1b9Ouvv+qWW25Rq1atNGnSpAITPlwoMjJSvXv3Vvfu3RUdHa3mzZs7TO0+dOhQvf3221qwYIGaNWum9u3ba+HChQUuZzPDTTfdpHnz5mn69Olq0aKF1qxZo3HjxhW4r+piHnnkEbm5ualx48YKDAzU4cOHCx3XrVs3ubu7a/369fZlkZGR+vzzz3XDDTdo8eLFat68uWw2m5YuXWof4+7urnXr1ql27dq655571LRpUz311FN66KGH9PTTT9vHde7cWTt27NB//vMf1a9fX3369JGXl5c2bNig6tWr28ft3btXNWvWVO3atdWhQwctW7ZMEydO1FdffaXKlSvbx/3555/avn27Bg8efEn9AICrjcUwDMPVRQAA8E+TJ0/WZ599poSEBFeXUmLDhg3TL7/8Ytp057Nnz9YXX3yhtWvXFnhu0KBBWrhwoSnbLY3HHntMp06d0ptvvunqUgDApbiMEACAUnj55ZfVpUsX+fr6avXq1Vq0aJHDmTdne+CBB3T69GmdOXPGYYbDK1FQUJDpl3ICQHnAmS0AwBWnPJzZuuuuu7R582adOXNG1157rUaPHq0RI0a4uiwAwBWEsAUAAAAAJmCCDAAAAAAwAWELAAAAAExA2AIAAAAAExC2AAAAAMAEhC0AAAAAMAFhCwAAAABMQNgCAAAAABMQtgAAAADABP8PD/r8cA00l4kAAAAASUVORK5CYII=",
"text/plain": [
""
]
@@ -1848,7 +655,7 @@
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": 21,
"metadata": {},
"outputs": [
{
@@ -1859,7 +666,7 @@
"Name: mean_price, dtype: float64"
]
},
- "execution_count": 18,
+ "execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
@@ -1877,9 +684,9 @@
"To wrap up our estimation, we'd report:\n",
"\n",
"- **Point Estimate**: The sample mean price-per-night of 40 Airbnb listings is $175.425.\n",
- "- **95% Confidence Interval**: We estimate that the true mean price-per-night for all Airbnb listings in Vancouver is between $171.44 and $275.68.\n",
+ "- **95% Confidence Interval**: We estimate that the true mean price-per-night for all Airbnb listings in Vancouver is between 171.44 and 275.68.\n",
"\n",
- "Our interval includes the true population mean ($249.16), but in real-world scenarios, we wouldn’t know the true population mean because we only have one sample."
+ "Our interval includes the true population mean (249.16), but in real-world scenarios, we wouldn’t know the true population mean because we only have one sample."
]
},
{
@@ -1900,9 +707,9 @@
],
"metadata": {
"kernelspec": {
- "display_name": "base",
+ "display_name": "dsi",
"language": "python",
- "name": "python3"
+ "name": "dsi"
},
"language_info": {
"codemirror_mode": {
@@ -1914,9 +721,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.9.19"
+ "version": "3.12.3"
}
},
"nbformat": 4,
- "nbformat_minor": 2
+ "nbformat_minor": 4
}
diff --git a/01_materials/slides/Clustering.pdf b/01_materials/slides/Clustering.pdf
index 0bc578c69..dd551773c 100644
Binary files a/01_materials/slides/Clustering.pdf and b/01_materials/slides/Clustering.pdf differ
diff --git a/01_materials/slides/Stat_Inference.pdf b/01_materials/slides/Stat_Inference.pdf
index a85c56b96..2e04e27f8 100644
Binary files a/01_materials/slides/Stat_Inference.pdf and b/01_materials/slides/Stat_Inference.pdf differ
diff --git a/03_instructional_team/markdown_slides/Clustering.md b/03_instructional_team/markdown_slides/Clustering.md
index cffce22d9..0b331bdbb 100644
--- a/03_instructional_team/markdown_slides/Clustering.md
+++ b/03_instructional_team/markdown_slides/Clustering.md
@@ -94,16 +94,31 @@ Visualizing the relationship between flipper length and bill length, we can obse
---
##### WSSD
1. Calculate the cluster centers by taking the mean of each variable for all data points in a cluster.
- 2. Measure the sum of squared distances between each data point and its cluster center.
+ For example, suppose we have a cluster containing 4 observations, and we are using two variables, $x$ and $y$ , to cluster the data. Then we would compute the coordinates, $\mu_x$ and $\mu_y$ of the cluster center by
+ $$
+ \mu_x = \frac{1}{4}(x_1+x_2+x_3+x_4) \quad \mu_y = \frac{1}{4}(y_1+y_2+y_3+y_4)
+ $$
+---
+##### WSSD
+2. Measure the sum of squared distances between each data point and its cluster center.

WSSD is computed by summing the squared Euclidean distances between each data point and the cluster center.
+$$
+\begin{split}
+\text{WSSD} = \left((x_1 - \mu_x)^2 + (y_1 - \mu_y)^2\right) + \left((x_2 - \mu_x)^2 + (y_2 - \mu_y)^2\right)\\
+ + \left((x_3 - \mu_x)^2 + (y_3 - \mu_y)^2\right) + \left((x_4 - \mu_x)^2 + (y_4 - \mu_y)^2\right)
+\end{split}
+$$
---
+
+##### WSSD
- A larger WSSD indicates that the cluster is more spread out, as it means data points are farther from the cluster center.
- To obtain the total WSSD, sum the WSSD values for all clusters, which involves adding up all squared distances for all observations.

---
+
##### Clustering algorithm
- The K-means algorithm starts by choosing $K$ and randomly assigning observations to each of the $K$ clusters.
- Here, each data point is assigned to 1 of 3 clusters:
diff --git a/03_instructional_team/markdown_slides/Stat_Inference.md b/03_instructional_team/markdown_slides/Stat_Inference.md
index 947fc6930..4c36eba52 100644
--- a/03_instructional_team/markdown_slides/Stat_Inference.md
+++ b/03_instructional_team/markdown_slides/Stat_Inference.md
@@ -42,7 +42,7 @@ Applying Statistical Concepts
- Instead, we use a **sample**, a subset of the population, to estimate the population parameter.
- **Sample estimate**: A numerical characteristic of the sample that approximates the population parameter.
- **Statistical inference**: Using a sample to make conclusions about the broader population.
-
+
---
##### Example dataset