-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
executable file
·575 lines (521 loc) · 20.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
import sys
import os
import time
import math
import torch
import numpy as np
from PIL import Image, ImageDraw, ImageFont
from torch.autograd import Variable
import pdb
from matplotlib import pyplot as plt
import struct # get_image_size
import imghdr # get_image_size
from torchvision import transforms
def sigmoid(x):
return 1.0/(math.exp(-x)+1.)
def softmax(x):
x = torch.exp(x - torch.max(x))
x = x/x.sum()
return x
def bbox_iou(box1, box2, x1y1x2y2=True):
if x1y1x2y2:
mx = min(box1[0], box2[0])
Mx = max(box1[2], box2[2])
my = min(box1[1], box2[1])
My = max(box1[3], box2[3])
w1 = box1[2] - box1[0]
h1 = box1[3] - box1[1]
w2 = box2[2] - box2[0]
h2 = box2[3] - box2[1]
else:
mx = min(box1[0]-box1[2]/2.0, box2[0]-box2[2]/2.0)
Mx = max(box1[0]+box1[2]/2.0, box2[0]+box2[2]/2.0)
my = min(box1[1]-box1[3]/2.0, box2[1]-box2[3]/2.0)
My = max(box1[1]+box1[3]/2.0, box2[1]+box2[3]/2.0)
w1 = box1[2]
h1 = box1[3]
w2 = box2[2]
h2 = box2[3]
uw = Mx - mx
uh = My - my
cw = w1 + w2 - uw
ch = h1 + h2 - uh
carea = 0
if cw <= 0 or ch <= 0:
return 0.0
area1 = w1 * h1
area2 = w2 * h2
carea = cw * ch
uarea = area1 + area2 - carea
return carea/uarea
def bbox_ious(boxes1, boxes2, x1y1x2y2=True):
if x1y1x2y2:
mx = torch.min(boxes1[0], boxes2[0])
Mx = torch.max(boxes1[2], boxes2[2])
my = torch.min(boxes1[1], boxes2[1])
My = torch.max(boxes1[3], boxes2[3])
w1 = boxes1[2] - boxes1[0]
h1 = boxes1[3] - boxes1[1]
w2 = boxes2[2] - boxes2[0]
h2 = boxes2[3] - boxes2[1]
else:
mx = torch.min(boxes1[0]-boxes1[2]/2.0, boxes2[0]-boxes2[2]/2.0)
Mx = torch.max(boxes1[0]+boxes1[2]/2.0, boxes2[0]+boxes2[2]/2.0)
my = torch.min(boxes1[1]-boxes1[3]/2.0, boxes2[1]-boxes2[3]/2.0)
My = torch.max(boxes1[1]+boxes1[3]/2.0, boxes2[1]+boxes2[3]/2.0)
w1 = boxes1[2]
h1 = boxes1[3]
w2 = boxes2[2]
h2 = boxes2[3]
uw = Mx - mx
uh = My - my
cw = w1 + w2 - uw
ch = h1 + h2 - uh
mask = ((cw <= 0) + (ch <= 0) > 0)
area1 = w1 * h1
area2 = w2 * h2
carea = cw * ch
carea[mask] = 0
uarea = area1 + area2 - carea
return carea/uarea
def nms(boxes, nms_thresh):
if len(boxes) == 0:
return boxes
det_confs = torch.zeros(len(boxes))
for i in range(len(boxes)):
det_confs[i] = 1-boxes[i][4]
_,sortIds = torch.sort(det_confs)
out_boxes = []
for i in range(len(boxes)):
box_i = boxes[sortIds[i]]
if box_i[4] > 0:
out_boxes.append(box_i)
for j in range(i+1, len(boxes)):
box_j = boxes[sortIds[j]]
if bbox_iou(box_i, box_j, x1y1x2y2=False) > nms_thresh:
#print(box_i, box_j, bbox_iou(box_i, box_j, x1y1x2y2=False))
box_j[4] = 0
return out_boxes
def convert2cpu(gpu_matrix):
return torch.FloatTensor(gpu_matrix.size()).copy_(gpu_matrix)
def convert2cpu_long(gpu_matrix):
return torch.LongTensor(gpu_matrix.size()).copy_(gpu_matrix)
def get_region_boxes(output, conf_thresh, num_classes, anchors, num_anchors, only_objectness=1, validation=False):
#anchor_step = len(anchors)/num_anchors
anchor_step = len(anchors)//num_anchors
if output.dim() == 3:
output = output.unsqueeze(0)
batch = output.size(0)
assert(output.size(1) == (5+num_classes)*num_anchors)
h = output.size(2)
w = output.size(3)
t0 = time.time()
all_boxes = []
#print(output.size())
output = output.view(batch*num_anchors, 5+num_classes, h*w)
#print(output.size())
output = output.transpose(0,1).contiguous()
#print(output.size())
output = output.view(5+num_classes, batch*num_anchors*h*w)
#print(output.size())
grid_x = torch.linspace(0, w-1, w).repeat(h,1).repeat(batch*num_anchors, 1, 1).view(batch*num_anchors*h*w).cuda()
grid_y = torch.linspace(0, h-1, h).repeat(w,1).t().repeat(batch*num_anchors, 1, 1).view(batch*num_anchors*h*w).cuda()
xs = torch.sigmoid(output[0]) + grid_x
ys = torch.sigmoid(output[1]) + grid_y
anchor_w = torch.Tensor(anchors).view(num_anchors, anchor_step).index_select(1, torch.LongTensor([0]))
anchor_h = torch.Tensor(anchors).view(num_anchors, anchor_step).index_select(1, torch.LongTensor([1]))
anchor_w = anchor_w.repeat(batch, 1).repeat(1, 1, h*w).view(batch*num_anchors*h*w).cuda()
anchor_h = anchor_h.repeat(batch, 1).repeat(1, 1, h*w).view(batch*num_anchors*h*w).cuda()
ws = torch.exp(output[2]) * anchor_w
hs = torch.exp(output[3]) * anchor_h
det_confs = torch.sigmoid(output[4]).data
cls_confs = torch.nn.Softmax()(Variable(output[5:5+num_classes].transpose(0,1))).data
print(cls_confs.size())
cls_max_confs, cls_max_ids = torch.max(cls_confs, 1)
cls_max_confs = cls_max_confs.view(-1)
cls_max_ids = cls_max_ids.view(-1)
t1 = time.time()
sz_hw = h*w
sz_hwa = sz_hw*num_anchors
det_confs = convert2cpu(det_confs)
cls_max_confs = convert2cpu(cls_max_confs)
cls_max_ids = convert2cpu_long(cls_max_ids)
xs = convert2cpu(xs)
ys = convert2cpu(ys)
ws = convert2cpu(ws)
hs = convert2cpu(hs)
if validation:
cls_confs = convert2cpu(cls_confs.view(-1, num_classes))
t2 = time.time()
for b in range(batch):
boxes = []
for cy in range(h):
for cx in range(w):
for i in range(num_anchors):
ind = b*sz_hwa + i*sz_hw + cy*w + cx
det_conf = det_confs[ind]
if only_objectness:
conf = det_confs[ind]
else:
conf = det_confs[ind] * cls_max_confs[ind]
if conf > conf_thresh:
bcx = xs[ind]
bcy = ys[ind]
bw = ws[ind]
bh = hs[ind]
cls_max_conf = cls_max_confs[ind]
cls_max_id = cls_max_ids[ind]
box = [bcx/w, bcy/h, bw/w, bh/h, det_conf, cls_max_conf, cls_max_id]
if (not only_objectness) and validation:
for c in range(num_classes):
tmp_conf = cls_confs[ind][c]
if c != cls_max_id and det_confs[ind]*tmp_conf > conf_thresh:
box.append(tmp_conf)
box.append(c)
boxes.append(box)
all_boxes.append(boxes)
# pdb.set_trace()
# print(all_boxes)
t3 = time.time()
if False:
print('---------------------------------')
print('matrix computation : %f' % (t1-t0))
print(' gpu to cpu : %f' % (t2-t1))
print(' boxes filter : %f' % (t3-t2))
print('---------------------------------')
return all_boxes
def plot_boxes_cv2(img, boxes, savename=None, class_names=None, color=None):
import cv2
colors = torch.FloatTensor([[1,0,1],[0,0,1],[0,1,1],[0,1,0],[1,1,0],[1,0,0]]);
def get_color(c, x, max_val):
ratio = float(x)/max_val * 5
i = int(math.floor(ratio))
j = int(math.ceil(ratio))
ratio = ratio - i
r = (1-ratio) * colors[i][c] + ratio*colors[j][c]
return int(r*255)
width = img.shape[1]
height = img.shape[0]
for i in range(len(boxes)):
box = boxes[i]
x1 = int(round((box[0].data.numpy() - box[2].data.numpy()/2.0) * width))
y1 = int(round((box[1].data.numpy() - box[3].data.numpy()/2.0) * height))
x2 = int(round((box[0].data.numpy() + box[2].data.numpy()/2.0) * width))
y2 = int(round((box[1].data.numpy() + box[3].data.numpy()/2.0) * height))
if color:
rgb = color
else:
rgb = (255, 0, 0)
if len(box) >= 7 and class_names:
cls_conf = box[5]
cls_id = box[6]
print('%s: %f' % (class_names[cls_id], cls_conf))
classes = len(class_names)
offset = cls_id * 123457 % classes
red = get_color(2, offset, classes)
green = get_color(1, offset, classes)
blue = get_color(0, offset, classes)
if color is None:
rgb = (red, green, blue)
img = cv2.putText(img, class_names[cls_id], (x1,y1), cv2.FONT_HERSHEY_COMPLEX, 1.2, rgb, 2)
img = cv2.rectangle(img, (x1,y1), (x2,y2), rgb, 1)
if savename:
# plt.axis('off')
print("save plot results to %s" % savename)
# plt.imshow(img)
# plt.savefig(savename, bbox_inches='tight')
cv2.imwrite(savename, img)
return img
def plot_boxes(img, boxes, savename=None, class_names=None):
colors = torch.FloatTensor([[1,0,1],[0,0,1],[0,1,1],[0,1,0],[1,1,0],[1,0,0]]);
def get_color(c, x, max_val):
ratio = float(x)/max_val * 5
i = int(math.floor(ratio))
j = int(math.ceil(ratio))
ratio = ratio - i
r = (1-ratio) * colors[i][c] + ratio*colors[j][c]
return int(r*255)
width = img.width
height = img.height
draw = ImageDraw.Draw(img)
for i in range(len(boxes)):
box = boxes[i]
x1 = (box[0] - box[2]/2.0) * width
y1 = (box[1] - box[3]/2.0) * height
x2 = (box[0] + box[2]/2.0) * width
y2 = (box[1] + box[3]/2.0) * height
rgb = (255, 0, 0)
if len(box) >= 7 and class_names:
cls_conf = box[5]
cls_id = box[6]
print('[%i]%s: %f' % (cls_id, class_names[cls_id], cls_conf))
classes = len(class_names)
offset = cls_id * 123457 % classes
red = get_color(2, offset, classes)
green = get_color(1, offset, classes)
blue = get_color(0, offset, classes)
rgb = (red, green, blue)
draw.text((x1, y1), class_names[cls_id], fill=rgb)
draw.rectangle([x1, y1, x2, y2], outline = rgb)
if savename:
print("save plot results to %s" % savename)
img.save(savename)
return img
def read_truths(lab_path):
if not os.path.exists(lab_path):
return np.array([])
if os.path.getsize(lab_path):
truths = np.loadtxt(lab_path)
truths = truths.reshape(truths.size//5, 5) # to avoid single truth problem
return truths
else:
return np.array([])
def read_truths_args(lab_path, min_box_scale):
truths = read_truths(lab_path)
new_truths = []
# remove truths of which the width is smaller then the min_box_scale
for i in range(truths.shape[0]):
if truths[i][3] < min_box_scale:
continue
new_truths.append([truths[i][0], truths[i][1], truths[i][2], truths[i][3], truths[i][4]])
return np.array(new_truths)
def load_class_names(namesfile):
class_names = []
with open(namesfile, 'r') as fp:
lines = fp.readlines()
for line in lines:
line = line.rstrip()
class_names.append(line)
return class_names
def image2torch(img):
width = img.width
height = img.height
img = torch.ByteTensor(torch.ByteStorage.from_buffer(img.tobytes()))
img = img.view(height, width, 3).transpose(0,1).transpose(0,2).contiguous()
img = img.view(1, 3, height, width)
img = img.float().div(255.0)
return img
def dis_loss(output, num_classes, anchors, num_anchors, target_id=0, only_objectness=1,
validation=False):
# anchor_step = len(anchors)/num_anchors
anchor_step = len(anchors) // num_anchors
if output.dim() == 3:
output = output.unsqueeze(0)
batch = output.size(0)
assert (output.size(1) == (5 + num_classes) * num_anchors)
h = output.size(2)
w = output.size(3)
# print(output.size())
output = output.view(batch * num_anchors, 5 + num_classes, h * w)
# print(output.size())
output = output.transpose(0, 1).contiguous()
# print(output.size())
output = output.view(5 + num_classes, batch * num_anchors * h * w)
# print(output.size())
all_target_acc = []
det_confs = torch.sigmoid(output[4])
# print(det_confs.shape)
cls_confs = torch.nn.Softmax()(Variable(output[5:5 + num_classes].transpose(0, 1)))
# print(cls_confs.size())
cls_max_confs, cls_max_ids = torch.max(cls_confs, 1)
cls_max_confs = cls_max_confs.view(-1)
# print(cls_max_ids.shape)
cls_max_ids = cls_max_ids.view(-1)
# print(cls_max_ids.shape)
# pdb.set_trace()
# print(cls_max_ids[302])
cls_max_ids = torch.eq(cls_max_ids, target_id).float()
# print(cls_max_ids[302])
det_human_conf = torch.where(cls_max_ids == 0., cls_max_ids, det_confs)
# print(det_human_conf[302])
det_human_conf = det_human_conf.contiguous().view(batch, -1)
# print(det_human_conf.shape)
target_conf, target_conf_id = torch.max(det_human_conf, 1)
# print(target_conf_id)
# print(target_conf)
# print(cls_max_confs[302])
target_conf_acc = cls_max_confs.contiguous().view(batch, -1)
for ii, i in enumerate(target_conf_id):
all_target_acc.append(target_conf_acc[ii][i].detach().cpu().data)
# print(target_conf_acc)
# print(target_conf)
print('loss_acc:', all_target_acc)
# return torch.mean(target_conf), target_conf.data
# print('loss_acc:', torch.stack(all_target_acc))
print('target_conf:', target_conf.detach().cpu().data)
# neg_count = self.calc_acc(target_conf)
# print('neg-count:', neg_count)
return torch.mean(target_conf)
def do_detect(model, img, conf_thresh, nms_thresh, use_cuda=1):
model.eval()
t0 = time.time()
# image = torch.load('/home/zhouge/Downloads/park_adv/image.pkl')
# image = image.cuda()
# pdb.set_trace()
if isinstance(img, Image.Image):
width = img.width
height = img.height
img = torch.ByteTensor(torch.ByteStorage.from_buffer(img.tobytes()))
img = img.view(height, width, 3).transpose(0,1).transpose(0,2).contiguous()
img = img.view(1, 3, height, width)
img = img.float().div(255.0)
elif type(img) == np.ndarray: # cv2 image
img = torch.from_numpy(img.transpose(2,0,1)).div(255.0).float().unsqueeze(0)
elif isinstance(img, torch.Tensor):
img = img.unsqueeze(0)
else:
print("unknown image type")
exit(-1)
t1 = time.time()
if use_cuda:
img = img.cuda()
img = torch.autograd.Variable(img)
t2 = time.time()
output = model.forward(img) #Simen: dit doet een forward, vervangen voor duidelijkheid
#output = output.data
#for j in range(100):
# sys.stdout.write('%f ' % (output.storage()[j]))
#print('')
t3 = time.time()
loss_output = model.forward(img)
# loss, loss_conf = get_loss(loss_output, conf_thresh, model.num_classes, model.anchors, model.num_anchors, 0)
# pdb.set_trace()
# print('loss:',loss)
# print('loss conf:',loss_conf)
# mean_conf = dis_loss(loss_output, model.num_classes, model.anchors, model.num_anchors, target_id=0, only_objectness=1,
# validation=False)
boxes = get_region_boxes(loss_output, conf_thresh, model.num_classes, model.anchors, model.num_anchors)
#for j in range(len(boxes)):
#print(boxes[j])
t4 = time.time()
# pdb.set_trace()
# print('boxes:',boxes)
boxes = nms(boxes[0], nms_thresh)
# print(boxes)
t5 = time.time()
if False:
print('-----------------------------------')
print(' image to tensor : %f' % (t1 - t0))
print(' tensor to cuda : %f' % (t2 - t1))
print(' predict : %f' % (t3 - t2))
print('get_region_boxes : %f' % (t4 - t3))
print(' nms : %f' % (t5 - t4))
print(' total : %f' % (t5 - t0))
print('-----------------------------------')
return boxes
def get_loss(output, conf_thresh, num_classes, anchors, num_anchors, target_id=0, only_objectness=1,
validation=False):
# anchor_step = len(anchors)/num_anchors
anchor_step = len(anchors) // num_anchors
if output.dim() == 3:
output = output.unsqueeze(0)
batch = output.size(0)
assert (output.size(1) == (5 + num_classes) * num_anchors)
h = output.size(2)
w = output.size(3)
# print(output.size())
output = output.view(batch * num_anchors, 5 + num_classes, h * w)
# print(output.size())
output = output.transpose(0, 1).contiguous()
# print(output.size())
output = output.view(5 + num_classes, batch * num_anchors * h * w)
# print(output.size())
all_target_acc = []
det_confs = torch.sigmoid(output[4])
# print(det_confs.shape)
cls_confs = torch.nn.Softmax()(Variable(output[5:5 + num_classes].transpose(0, 1)))
# print(cls_confs.size())
cls_max_confs, cls_max_ids = torch.max(cls_confs, 1)
cls_max_confs = cls_max_confs.view(-1)
# print(cls_max_ids.shape)
cls_max_ids = cls_max_ids.view(-1)
# print(cls_max_ids.shape)
# pdb.set_trace()
# print(cls_max_ids[302])
cls_max_ids = torch.eq(cls_max_ids, target_id).float()
# print(cls_max_ids[302])
det_human_conf = torch.where(cls_max_ids == 0., cls_max_ids, det_confs)
# print(det_human_conf[302])
det_human_conf = det_human_conf.contiguous().view(batch, -1)
# print(det_human_conf.shape)
target_conf, target_conf_id = torch.max(det_human_conf, 1)
# print(target_conf_id)
# print(target_conf)
# print(cls_max_confs[302])
target_conf_acc = cls_max_confs.contiguous().view(batch, -1)
for ii, i in enumerate(target_conf_id):
all_target_acc.append(target_conf_acc[ii][i].data)
# print(target_conf_acc)
# print(target_conf)
print('loss_acc:', all_target_acc)
return torch.mean(target_conf), target_conf.data
def read_data_cfg(datacfg):
options = dict()
options['gpus'] = '0,1,2,3'
options['num_workers'] = '10'
with open(datacfg, 'r') as fp:
lines = fp.readlines()
for line in lines:
line = line.strip()
if line == '':
continue
key,value = line.split('=')
key = key.strip()
value = value.strip()
options[key] = value
return options
def scale_bboxes(bboxes, width, height):
import copy
dets = copy.deepcopy(bboxes)
for i in range(len(dets)):
dets[i][0] = dets[i][0] * width
dets[i][1] = dets[i][1] * height
dets[i][2] = dets[i][2] * width
dets[i][3] = dets[i][3] * height
return dets
def file_lines(thefilepath):
count = 0
thefile = open(thefilepath, 'rb')
while True:
buffer = thefile.read(8192*1024)
if not buffer:
break
count += buffer.count('\n')
thefile.close( )
return count
def get_image_size(fname):
'''Determine the image type of fhandle and return its size.
from draco'''
with open(fname, 'rb') as fhandle:
head = fhandle.read(24)
if len(head) != 24:
return
if imghdr.what(fname) == 'png':
check = struct.unpack('>i', head[4:8])[0]
if check != 0x0d0a1a0a:
return
width, height = struct.unpack('>ii', head[16:24])
elif imghdr.what(fname) == 'gif':
width, height = struct.unpack('<HH', head[6:10])
elif imghdr.what(fname) == 'jpeg' or imghdr.what(fname) == 'jpg':
try:
fhandle.seek(0) # Read 0xff next
size = 2
ftype = 0
while not 0xc0 <= ftype <= 0xcf:
fhandle.seek(size, 1)
byte = fhandle.read(1)
while ord(byte) == 0xff:
byte = fhandle.read(1)
ftype = ord(byte)
size = struct.unpack('>H', fhandle.read(2))[0] - 2
# We are at a SOFn block
fhandle.seek(1, 1) # Skip `precision' byte.
height, width = struct.unpack('>HH', fhandle.read(4))
except Exception: #IGNORE:W0703
return
else:
return
return width, height
def logging(message):
print('%s %s' % (time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()), message))