-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathvqa.py
106 lines (87 loc) · 3.77 KB
/
vqa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import yaml
import decord
from fastvqa.datasets import get_spatial_fragments, SampleFrames, FragmentSampleFrames
from fastvqa.models import DiViDeAddEvaluator
import torch
import numpy as np
import argparse
def sigmoid_rescale(score, model="FasterVQA"):
mean, std = mean_stds[model]
x = (score - mean) / std
print(f"Inferring with model [{model}]:")
score = 1 / (1 + np.exp(-x))
return score
mean_stds = {
"FasterVQA": (0.14759505, 0.03613452),
"FasterVQA-MS": (0.15218826, 0.03230298),
"FasterVQA-MT": (0.14699507, 0.036453716),
"FAST-VQA": (-0.110198185, 0.04178565),
"FAST-VQA-M": (0.023889644, 0.030781006),
}
opts = {
"FasterVQA": "./options/fast/f3dvqa-b.yml",
"FasterVQA-MS": "./options/fast/fastervqa-ms.yml",
"FasterVQA-MT": "./options/fast/fastervqa-mt.yml",
"FAST-VQA": "./options/fast/fast-b.yml",
"FAST-VQA-M": "./options/fast/fast-m.yml",
}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
### can choose between
### options/fast/f3dvqa-b.yml
### options/fast/fast-b.yml
### options/fast/fast-m.yml
parser.add_argument(
"-m", "--model", type=str,
default="FasterVQA",
help="model type: can choose between FasterVQA, FasterVQA-MS, FasterVQA-MT, FAST-VQA, FAST-VQA-M",
)
## can be your own
parser.add_argument(
"-v", "--video_path", type=str,
default="./demos/10053703034.mp4",
help="the input video path"
)
parser.add_argument(
"-d", "--device", type=str,
default="cuda",
help="the running device"
)
args = parser.parse_args()
video_reader = decord.VideoReader(args.video_path)
opt = opts.get(args.model, opts["FAST-VQA"])
with open(opt, "r") as f:
opt = yaml.safe_load(f)
### Model Definition
evaluator = DiViDeAddEvaluator(**opt["model"]["args"]).to(args.device)
evaluator.load_state_dict(torch.load(opt["test_load_path"], map_location=args.device)["state_dict"])
### Data Definition
vsamples = {}
t_data_opt = opt["data"]["val-kv1k"]["args"]
s_data_opt = opt["data"]["val-kv1k"]["args"]["sample_types"]
for sample_type, sample_args in s_data_opt.items():
## Sample Temporally
if t_data_opt.get("t_frag",1) > 1:
sampler = FragmentSampleFrames(fsize_t=sample_args["clip_len"] // sample_args.get("t_frag",1),
fragments_t=sample_args.get("t_frag",1),
num_clips=sample_args.get("num_clips",1),
)
else:
sampler = SampleFrames(clip_len = sample_args["clip_len"], num_clips = sample_args["num_clips"])
num_clips = sample_args.get("num_clips",1)
frames = sampler(len(video_reader))
print("Sampled frames are", frames)
frame_dict = {idx: video_reader[idx] for idx in np.unique(frames)}
imgs = [frame_dict[idx] for idx in frames]
video = torch.stack(imgs, 0)
video = video.permute(3, 0, 1, 2)
## Sample Spatially
sampled_video = get_spatial_fragments(video, **sample_args)
mean, std = torch.FloatTensor([123.675, 116.28, 103.53]), torch.FloatTensor([58.395, 57.12, 57.375])
sampled_video = ((sampled_video.permute(1, 2, 3, 0) - mean) / std).permute(3, 0, 1, 2)
sampled_video = sampled_video.reshape(sampled_video.shape[0], num_clips, -1, *sampled_video.shape[2:]).transpose(0,1)
vsamples[sample_type] = sampled_video.to(args.device)
print(sampled_video.shape)
result = evaluator(vsamples)
score = sigmoid_rescale(result.mean().item(), model=args.model)
print(f"The quality score of the video (range [0,1]) is {score:.5f}.")