forked from jcjohnson/cnn-benchmarks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn_benchmark.lua
81 lines (67 loc) · 2.16 KB
/
cnn_benchmark.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
require 'torch'
require 'nn'
local utils = require 'utils'
local cmd = torch.CmdLine()
-- Model options
cmd:option('-model_t7', 'models/vgg16.t7')
cmd:option('-image_height', 224)
cmd:option('-image_width', 224)
cmd:option('-batch_size', 16)
-- Benchmark options
cmd:option('-num_passes', 10)
-- Backend options
cmd:option('-gpu', 0)
cmd:option('-use_cudnn', 1)
-- Output options
cmd:option('-output_json', 'outputs/cnn_out.json')
local opt = cmd:parse(arg)
local dtype, use_cudnn, gpu_name, cudnn_version = utils.setup_gpu(opt)
print('Loading model from ' .. opt.model_t7)
local model = torch.load(opt.model_t7)
utils.restore_gradients(model)
model:training()
model:type(dtype)
if use_cudnn then
cudnn.convert(model, cudnn)
end
local forward_times = {}
local backward_times = {}
local N, C = opt.batch_size, 3
local H, W = opt.image_height, opt.image_width
for t = 1, opt.num_passes + 1 do
local msg = 'Running iteration %d / %d'
print(string.format(msg, t - 1, opt.num_passes))
local x = torch.randn(N, C, H, W):type(dtype)
utils.sync()
local forward_time = utils.timeit(function() model:forward(x) end)
if t > 1 then
-- The first pass does not count since it will allocate
-- a bunch of memory
table.insert(forward_times, forward_time)
end
local dout = torch.randn(#model.output):type(dtype)
utils.sync()
local backward_time = utils.timeit(function() model:backward(x, dout) end)
if t > 1 then
table.insert(backward_times, backward_time)
end
end
forward_times = torch.DoubleTensor(forward_times)
backward_times = torch.DoubleTensor(backward_times)
local total_times = forward_times + backward_times
local msg = '%f += %f'
print('Forward:')
print(string.format(msg, forward_times:mean(), forward_times:std()))
print('Backward:')
print(string.format(msg, backward_times:mean(), backward_times:std()))
print('Total:')
print(string.format(msg, total_times:mean(), backward_times:std()))
local json_data = {
opt = opt,
forward_times = forward_times:totable(),
backward_times = backward_times:totable(),
total_times = total_times:totable(),
gpu_name = gpu_name,
cudnn_version = cudnn_version,
}
utils.write_json(opt.output_json, json_data)