forked from charann29/opensource
-
Notifications
You must be signed in to change notification settings - Fork 0
/
exerciserepetitioncounter.py
109 lines (85 loc) · 3.7 KB
/
exerciserepetitioncounter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import cv2
import mediapipe as mp
import numpy as np
mp_drawing = mp.solutions.drawing_utils
mp_pose = mp.solutions.pose
def calculate_angle(a, b, c):
a = np.array(a) # First point
b = np.array(b) # Mid point
c = np.array(c) # End point
radians = np.arctan2(c[1] - b[1], c[0] - b[0]) - np.arctan2(a[1] - b[1], a[0] - b[0])
angle = np.abs(radians * 180.0 / np.pi)
if angle > 180.0:
angle = 360 - angle
return angle
# Curl counter variables
counter = 0
stage = None
cap = cv2.VideoCapture(0)
# Setup Mediapipe instance
with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose:
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Recolor image to RGB
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image.flags.writeable = False
# Make detection
results = pose.process(image)
# Recolor back to BGR
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# Extract landmarks
try:
landmarks = results.pose_landmarks.landmark
if not landmarks:
print("No landmarks detected")
continue
# Get coordinates
shoulder = [landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y]
elbow = [landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].y]
wrist = [landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y]
# Calculate angle
angle = calculate_angle(shoulder, elbow, wrist)
print(f"Angle: {angle}")
# Visualize angle
cv2.putText(image, str(angle),
tuple(np.multiply(elbow, [640, 480]).astype(int)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2, cv2.LINE_AA)
# Curl counter logic
if angle > 160:
stage = "down"
if angle < 30 and stage == 'down':
stage = "up"
counter += 1
print(f"Counter: {counter}")
except Exception as e:
print(f"Error: {e}")
# Render curl counter
# Setup status box
cv2.rectangle(image, (0, 0), (225, 73), (245, 117, 16), -1)
# Rep data
cv2.putText(image, 'REPS', (15, 12),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)
cv2.putText(image, str(counter),
(10, 60),
cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 2, cv2.LINE_AA)
# Stage data
cv2.putText(image, 'STAGE', (65, 12),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)
cv2.putText(image, stage,
(60, 60),
cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 2, cv2.LINE_AA)
# Render detections
mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
mp_drawing.DrawingSpec(color=(245, 117, 66), thickness=2, circle_radius=2),
mp_drawing.DrawingSpec(color=(245, 66, 230), thickness=2, circle_radius=2))
cv2.imshow('Mediapipe Feed', image)
if cv2.waitKey(10) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()