+
+
+
Dataset | +:link: Download Links | +Config file | +Trained on | +Arbitrary/Fixed | +
---|---|---|---|---|
AMT-S | +[Google Driver][Baidu Cloud][Hugging Face] | +[cfgs/AMT-S] | +Vimeo90k | +Fixed | +
AMT-L | +[Google Driver][Baidu Cloud][Hugging Face] | +[cfgs/AMT-L] | +Vimeo90k | +Fixed | +
AMT-G | +[Google Driver][Baidu Cloud][Hugging Face] | +[cfgs/AMT-G] | +Vimeo90k | +Fixed | +
AMT-S | +[Google Driver][Baidu Cloud][Hugging Face] | +[cfgs/AMT-S_gopro] | +GoPro | +Arbitrary | +
Dataset | +:link: Source | +Train/Eval | +Arbitrary/Fixed | +
---|---|---|---|
Vimeo90k | +ToFlow (IJCV 2019) | +Both | +Fixed | +
ATD-12K | +AnimeInterp (CVPR 2021) | +Both | +Fixed | +
SNU-FILM | +CAIN (AAAI 2021) | +Eval | +Fixed | +
UCF101 | +Google Driver | +Eval | +Fixed | +
HD | +MEMC-Net (TPAMI 2018)/Google Driver | +Eval | +Fixed | +
Xiph-2k/-4k | +SoftSplat (CVPR 2020) | +Eval | +Fixed | +
MiddleBury | +MiddleBury | +Eval | +Fixed | +
GoPro | +GoPro | +Both | +Arbitrary | +
Adobe240fps | +DBN (CVPR 2017) | +Both | +Arbitrary | +
X4K1000FPS | +XVFI (ICCV 2021) | +Both | +Arbitrary | +
Dataset | +:link: Download Links | +Config file | +Trained on | +Arbitrary/Fixed | +
---|---|---|---|---|
AMT-S | +[Google Driver][Baidu Cloud] | +[cfgs/AMT-S] | +Vimeo90k | +Fixed | +
AMT-L | +[Google Driver][Baidu Cloud] | +[cfgs/AMT-L] | +Vimeo90k | +Fixed | +
AMT-G | +[Google Driver][Baidu Cloud] | +[cfgs/AMT-G] | +Vimeo90k | +Fixed | +
AMT-S | +[Google Driver][Baidu Cloud] | +[cfgs/AMT-S_gopro] | +GoPro | +Arbitrary | +
+
+
+
+
+
+
CUDA | torch 1.10 | torch 1.9 | torch 1.8 |
---|---|---|---|
11.3 | install | ||
11.1 | install | install | install |
10.2 | install | install | install |
10.1 | install | ||
cpu | install | install | install |
Name | -lr sched |
-train time (s/iter) |
-inference time (s/im) |
-train mem (GB) |
-box AP |
-model id | -download | - - -
---|---|---|---|---|---|---|---|
R50-C4 | -1x | -0.551 | -0.102 | -4.8 | -35.7 | -137257644 | -model | metrics | -
R50-DC5 | -1x | -0.380 | -0.068 | -5.0 | -37.3 | -137847829 | -model | metrics | -
R50-FPN | -1x | -0.210 | -0.038 | -3.0 | -37.9 | -137257794 | -model | metrics | -
R50-C4 | -3x | -0.543 | -0.104 | -4.8 | -38.4 | -137849393 | -model | metrics | -
R50-DC5 | -3x | -0.378 | -0.070 | -5.0 | -39.0 | -137849425 | -model | metrics | -
R50-FPN | -3x | -0.209 | -0.038 | -3.0 | -40.2 | -137849458 | -model | metrics | -
R101-C4 | -3x | -0.619 | -0.139 | -5.9 | -41.1 | -138204752 | -model | metrics | -
R101-DC5 | -3x | -0.452 | -0.086 | -6.1 | -40.6 | -138204841 | -model | metrics | -
R101-FPN | -3x | -0.286 | -0.051 | -4.1 | -42.0 | -137851257 | -model | metrics | -
X101-FPN | -3x | -0.638 | -0.098 | -6.7 | -43.0 | -139173657 | -model | metrics | -
Name | -lr sched |
-train time (s/iter) |
-inference time (s/im) |
-train mem (GB) |
-box AP |
-model id | -download | - - -
---|---|---|---|---|---|---|---|
R50 | -1x | -0.205 | -0.041 | -4.1 | -37.4 | -190397773 | -model | metrics | -
R50 | -3x | -0.205 | -0.041 | -4.1 | -38.7 | -190397829 | -model | metrics | -
R101 | -3x | -0.291 | -0.054 | -5.2 | -40.4 | -190397697 | -model | metrics | -
Name | -lr sched |
-train time (s/iter) |
-inference time (s/im) |
-train mem (GB) |
-box AP |
-prop. AR |
-model id | -download | - - -
---|---|---|---|---|---|---|---|---|
RPN R50-C4 | -1x | -0.130 | -0.034 | -1.5 | -- | 51.6 | -137258005 | -model | metrics | -
RPN R50-FPN | -1x | -0.186 | -0.032 | -2.7 | -- | 58.0 | -137258492 | -model | metrics | -
Fast R-CNN R50-FPN | -1x | -0.140 | -0.029 | -2.6 | -37.8 | -- | 137635226 | -model | metrics | -
Name | -lr sched |
-train time (s/iter) |
-inference time (s/im) |
-train mem (GB) |
-box AP |
-mask AP |
-model id | -download | - - -
---|---|---|---|---|---|---|---|---|
R50-C4 | -1x | -0.584 | -0.110 | -5.2 | -36.8 | -32.2 | -137259246 | -model | metrics | -
R50-DC5 | -1x | -0.471 | -0.076 | -6.5 | -38.3 | -34.2 | -137260150 | -model | metrics | -
R50-FPN | -1x | -0.261 | -0.043 | -3.4 | -38.6 | -35.2 | -137260431 | -model | metrics | -
R50-C4 | -3x | -0.575 | -0.111 | -5.2 | -39.8 | -34.4 | -137849525 | -model | metrics | -
R50-DC5 | -3x | -0.470 | -0.076 | -6.5 | -40.0 | -35.9 | -137849551 | -model | metrics | -
R50-FPN | -3x | -0.261 | -0.043 | -3.4 | -41.0 | -37.2 | -137849600 | -model | metrics | -
R101-C4 | -3x | -0.652 | -0.145 | -6.3 | -42.6 | -36.7 | -138363239 | -model | metrics | -
R101-DC5 | -3x | -0.545 | -0.092 | -7.6 | -41.9 | -37.3 | -138363294 | -model | metrics | -
R101-FPN | -3x | -0.340 | -0.056 | -4.6 | -42.9 | -38.6 | -138205316 | -model | metrics | -
X101-FPN | -3x | -0.690 | -0.103 | -7.2 | -44.3 | -39.5 | -139653917 | -model | metrics | -
Name | -epochs | -train time (s/im) |
-inference time (s/im) |
-box AP |
-mask AP |
-model id | -download | - - -
---|---|---|---|---|---|---|---|
R50-FPN | -100 | -0.376 | -0.069 | -44.6 | -40.3 | -42047764 | -model | metrics | -
R50-FPN | -200 | -0.376 | -0.069 | -46.3 | -41.7 | -42047638 | -model | metrics | -
R50-FPN | -400 | -0.376 | -0.069 | -47.4 | -42.5 | -42019571 | -model | metrics | -
R101-FPN | -100 | -0.518 | -0.073 | -46.4 | -41.6 | -42025812 | -model | metrics | -
R101-FPN | -200 | -0.518 | -0.073 | -48.0 | -43.1 | -42131867 | -model | metrics | -
R101-FPN | -400 | -0.518 | -0.073 | -48.9 | -43.7 | -42073830 | -model | metrics | -
regnetx_4gf_dds_FPN | -100 | -0.474 | -0.071 | -46.0 | -41.3 | -42047771 | -model | metrics | -
regnetx_4gf_dds_FPN | -200 | -0.474 | -0.071 | -48.1 | -43.1 | -42132721 | -model | metrics | -
regnetx_4gf_dds_FPN | -400 | -0.474 | -0.071 | -48.6 | -43.5 | -42025447 | -model | metrics | -
regnety_4gf_dds_FPN | -100 | -0.487 | -0.073 | -46.1 | -41.6 | -42047784 | -model | metrics | -
regnety_4gf_dds_FPN | -200 | -0.487 | -0.072 | -47.8 | -43.0 | -42047642 | -model | metrics | -
regnety_4gf_dds_FPN | -400 | -0.487 | -0.072 | -48.2 | -43.3 | -42045954 | -model | metrics | -
Name | -lr sched |
-train time (s/iter) |
-inference time (s/im) |
-train mem (GB) |
-box AP |
-kp. AP |
-model id | -download | - - -
---|---|---|---|---|---|---|---|---|
R50-FPN | -1x | -0.315 | -0.072 | -5.0 | -53.6 | -64.0 | -137261548 | -model | metrics | -
R50-FPN | -3x | -0.316 | -0.066 | -5.0 | -55.4 | -65.5 | -137849621 | -model | metrics | -
R101-FPN | -3x | -0.390 | -0.076 | -6.1 | -56.4 | -66.1 | -138363331 | -model | metrics | -
X101-FPN | -3x | -0.738 | -0.121 | -8.7 | -57.3 | -66.0 | -139686956 | -model | metrics | -
Name | -lr sched |
-train time (s/iter) |
-inference time (s/im) |
-train mem (GB) |
-box AP |
-mask AP |
-PQ | -model id | -download | - - -
---|---|---|---|---|---|---|---|---|---|
R50-FPN | -1x | -0.304 | -0.053 | -4.8 | -37.6 | -34.7 | -39.4 | -139514544 | -model | metrics | -
R50-FPN | -3x | -0.302 | -0.053 | -4.8 | -40.0 | -36.5 | -41.5 | -139514569 | -model | metrics | -
R101-FPN | -3x | -0.392 | -0.066 | -6.0 | -42.4 | -38.5 | -43.0 | -139514519 | -model | metrics | -
Name | -lr sched |
-train time (s/iter) |
-inference time (s/im) |
-train mem (GB) |
-box AP |
-mask AP |
-model id | -download | - - -
---|---|---|---|---|---|---|---|---|
R50-FPN | -1x | -0.292 | -0.107 | -7.1 | -23.6 | -24.4 | -144219072 | -model | metrics | -
R101-FPN | -1x | -0.371 | -0.114 | -7.8 | -25.6 | -25.9 | -144219035 | -model | metrics | -
X101-FPN | -1x | -0.712 | -0.151 | -10.2 | -26.7 | -27.1 | -144219108 | -model | metrics | -
Name | -train time (s/iter) |
-inference time (s/im) |
-train mem (GB) |
-box AP |
-box AP50 |
-mask AP |
-model id | -download | - - -
---|---|---|---|---|---|---|---|---|
R50-FPN, Cityscapes | -0.240 | -0.078 | -4.4 | -- | - | 36.5 | -142423278 | -model | metrics | -
R50-C4, VOC | -0.537 | -0.081 | -4.8 | -51.9 | -80.3 | -- | 142202221 | -model | metrics | -
Name | -lr sched |
-train time (s/iter) |
-inference time (s/im) |
-train mem (GB) |
-box AP |
-mask AP |
-model id | -download | - - -
---|---|---|---|---|---|---|---|---|
Baseline R50-FPN | -1x | -0.261 | -0.043 | -3.4 | -38.6 | -35.2 | -137260431 | -model | metrics | -
Deformable Conv | -1x | -0.342 | -0.048 | -3.5 | -41.5 | -37.5 | -138602867 | -model | metrics | -
Cascade R-CNN | -1x | -0.317 | -0.052 | -4.0 | -42.1 | -36.4 | -138602847 | -model | metrics | -
Baseline R50-FPN | -3x | -0.261 | -0.043 | -3.4 | -41.0 | -37.2 | -137849600 | -model | metrics | -
Deformable Conv | -3x | -0.349 | -0.047 | -3.5 | -42.7 | -38.5 | -144998336 | -model | metrics | -
Cascade R-CNN | -3x | -0.328 | -0.053 | -4.0 | -44.3 | -38.5 | -144998488 | -model | metrics | -
Name | -lr sched |
-train time (s/iter) |
-inference time (s/im) |
-train mem (GB) |
-box AP |
-mask AP |
-model id | -download | - - -
---|---|---|---|---|---|---|---|---|
Baseline R50-FPN | -3x | -0.261 | -0.043 | -3.4 | -41.0 | -37.2 | -137849600 | -model | metrics | -
GN | -3x | -0.309 | -0.060 | -5.6 | -42.6 | -38.6 | -138602888 | -model | metrics | -
SyncBN | -3x | -0.345 | -0.053 | -5.5 | -41.9 | -37.8 | -169527823 | -model | metrics | -
GN (from scratch) | -3x | -0.338 | -0.061 | -7.2 | -39.9 | -36.6 | -138602908 | -model | metrics | -
GN (from scratch) | -9x | -N/A | -0.061 | -7.2 | -43.7 | -39.6 | -183808979 | -model | metrics | -
SyncBN (from scratch) | -9x | -N/A | -0.055 | -7.2 | -43.6 | -39.3 | -184226666 | -model | metrics | -
Name | -inference time (s/im) |
-train mem (GB) |
-box AP |
-mask AP |
-PQ | -model id | -download | - - -
---|---|---|---|---|---|---|---|
Panoptic FPN R101 | -0.098 | -11.4 | -47.4 | -41.3 | -46.1 | -139797668 | -model | metrics | -
Mask R-CNN X152 | -0.234 | -15.1 | -50.2 | -44.0 | -- | 18131413 | -model | metrics | -
above + test-time aug. | -- | - | 51.9 | -45.9 | -- | - | - |
Name | -lr sched |
-train time (s/iter) |
-inference time (s/im) |
-train mem (GB) |
-box AP |
-mask AP |
-kp. AP |
-model id | -download | - - -
---|---|---|---|---|---|---|---|---|---|
Faster R-CNN | -1x | -0.219 | -0.038 | -3.1 | -36.9 | -- | - | 137781054 | -model | metrics | -
Keypoint R-CNN | -1x | -0.313 | -0.071 | -5.0 | -53.1 | -- | 64.2 | -137781195 | -model | metrics | -
Mask R-CNN | -1x | -0.273 | -0.043 | -3.4 | -37.8 | -34.9 | -- | 137781281 | -model | metrics | -