From 3f04d6524c88f07e481bba3a23b1492fcc2838ae Mon Sep 17 00:00:00 2001 From: amrit110 Date: Wed, 29 Nov 2023 18:52:57 -0500 Subject: [PATCH] deploy: 3a3f5e39dac39283df293e13ff2b867380eb160a --- 404.html | 2 +- api/_sources/intro.rst.txt | 158 +- .../mimiciv/mortality_prediction.ipynb.txt | 10 +- api/intro.html | 111 +- api/searchindex.js | 2 +- .../kaggle/heart_failure_prediction.html | 70 +- .../kaggle/heart_failure_prediction.ipynb | 3530 +-- .../kaggle/heart_failure_report_periodic.html | 182 +- .../mimiciv/mortality_prediction.html | 140 +- .../mimiciv/mortality_prediction.ipynb | 20642 ++++++++-------- .../mimiciv/mortality_report_periodic.html | 132 +- api/tutorials/nihcxr/cxr_classification.html | 132 +- api/tutorials/nihcxr/cxr_classification.ipynb | 3678 ++- api/tutorials/nihcxr/monitor_api.html | 22 +- api/tutorials/nihcxr/monitor_api.ipynb | 1880 +- .../nihcxr/nihcxr_report_periodic.html | 6 +- .../length_of_stay_report_periodic.html | 138 +- api/tutorials/synthea/los_prediction.html | 120 +- api/tutorials/synthea/los_prediction.ipynb | 6460 ++--- assets/js/59d1d05d.0341b085.js | 1 + assets/js/59d1d05d.98f3cfec.js | 1 - ...f21cd.515432ee.js => 91ff21cd.fc37e053.js} | 2 +- assets/js/d207b03a.74bc7f75.js | 1 + assets/js/d207b03a.89295f3c.js | 1 - ...n.dddfbb63.js => runtime~main.8613a517.js} | 2 +- blog/archive/index.html | 2 +- blog/atom.xml | 4 +- blog/cyclops-0.2.0-release/index.html | 8 +- blog/index.html | 6 +- blog/rss.xml | 4 +- blog/tags/0-2-0/index.html | 6 +- blog/tags/index.html | 2 +- docs/intro/index.html | 2 +- index.html | 2 +- markdown-page/index.html | 2 +- 35 files changed, 18850 insertions(+), 18611 deletions(-) create mode 100644 assets/js/59d1d05d.0341b085.js delete mode 100644 assets/js/59d1d05d.98f3cfec.js rename assets/js/{91ff21cd.515432ee.js => 91ff21cd.fc37e053.js} (80%) create mode 100644 assets/js/d207b03a.74bc7f75.js delete mode 100644 assets/js/d207b03a.89295f3c.js rename assets/js/{runtime~main.dddfbb63.js => runtime~main.8613a517.js} (95%) diff --git a/404.html b/404.html index d4550e591..ccde2feb1 100644 --- a/404.html +++ b/404.html @@ -5,7 +5,7 @@ Page Not Found | cyclops - + diff --git a/api/_sources/intro.rst.txt b/api/_sources/intro.rst.txt index 0be95a28a..0206124c0 100644 --- a/api/_sources/intro.rst.txt +++ b/api/_sources/intro.rst.txt @@ -1,36 +1,22 @@ -.. figure:: - https://github.com/VectorInstitute/cyclops/blob/main/docs/source/theme/static/cyclops_logo-dark.png?raw=true +.. figure:: https://github.com/VectorInstitute/cyclops/blob/main/docs/source/theme/static/cyclops_logo-dark.png?raw=true :alt: cyclops Logo -------------- -|PyPI| |PyPI - Python Version| |code checks| |integration tests| |docs| -|codecov| |docker| |license| - -``cyclops`` is a toolkit for facilitating research and deployment of ML -models for healthcare. It provides a few high-level APIs namely: - -- ``data`` - Create datasets for training, inference and evaluation. We - use the popular πŸ€— - `datasets `__ to efficiently - load and slice different modalities of data -- ``models`` - Use common model implementations using - `scikit-learn `__ and - `PyTorch `__ -- ``tasks`` - Use common ML task formulations such as binary - classification or multi-label classification on tabular, time-series - and image data +|PyPI| |PyPI - Python Version| |code checks| |integration tests| |docs| |codecov| |docker| |license| + +``cyclops`` is a toolkit for facilitating research and deployment of ML models for healthcare. It provides a few high-level APIs namely: + +- ``data`` - Create datasets for training, inference and evaluation. We use the popular πŸ€— `datasets `__ to efficiently load and slice different modalities of data +- ``models`` - Use common model implementations using `scikit-learn `__ and `PyTorch `__ +- ``tasks`` - Use common ML task formulations such as binary classification or multi-label classification on tabular, time-series and image data - ``evaluate`` - Evaluate models on clinical prediction tasks - ``monitor`` - Detect dataset shift relevant for clinical use cases -- ``report`` - Create `model report - cards `__ - for clinical ML models +- ``report`` - Create `model report cards `__ for clinical ML models -``cyclops`` also provides example end-to-end use case implementations on -clinical datasets such as +``cyclops`` also provides example end-to-end use case implementations on clinical datasets such as -- `NIH chest - x-ray `__ +- `NIH chest x-ray `__ - `MIMIC-IV `__ 🐣 Getting Started @@ -43,84 +29,25 @@ Installing cyclops using pip python3 -m pip install pycyclops -``cyclops`` has many optional dependencies that are used for specific -functionality. For example, the -`monai `__ library is used for -loading DICOM images to create datasets. All optional dependencies can -be installed with ``pycyclops[all]``, and specific sets of dependencies -are listed in the sections below. - -+-----------------------------+--------------------------+--------------+ -| Dependency | pip extra | Notes | -+=============================+==========================+==============+ -| xgboost | xgboost | Allows use | -| | | of | -| | | `XGBoos | -| | | t `__ | -| | | model | -+-----------------------------+--------------------------+--------------+ -| torch | torch | Allows use | -| | | of | -| | | `PyTorch < | -| | | https://pyto | -| | | rch.org/>`__ | -| | | models | -+-----------------------------+--------------------------+--------------+ -| torchvision | torchvision | Allows use | -| | | of | -| | | `T | -| | | orchvision < | -| | | https://pyto | -| | | rch.org/visi | -| | | on/stable/in | -| | | dex.html>`__ | -| | | library | -+-----------------------------+--------------------------+--------------+ -| torchxrayvision | torchxrayvision | Uses | -| | | `TorchXR | -| | | ayVision `__ | -| | | library | -+-----------------------------+--------------------------+--------------+ -| monai | monai | Uses | -| | | `M | -| | | ONAI `__ | -| | | to load and | -| | | transform | -| | | images | -+-----------------------------+--------------------------+--------------+ -| alibi | alibi | Uses | -| | | `Alibi `__ | -| | | for | -| | | additional | -| | | ex | -| | | plainability | -| | | f | -| | | unctionality | -+-----------------------------+--------------------------+--------------+ -| alibi-detect | alibi-detect | Uses `Alibi | -| | | Detect | -| | | `__ | -| | | for dataset | -| | | shift | -| | | detection | -+-----------------------------+--------------------------+--------------+ +``cyclops`` has many optional dependencies that are used for specific functionality. For example, the `monai `__ library is used for loading DICOM images to create datasets. All optional dependencies can be installed with ``pycyclops[all]``, and specific sets of dependencies are listed in the sections below. + ++-----------------------------+--------------------------+---------------------------------------------------------------------------------------------------------------+ +| Dependency | pip extra | Notes | ++=============================+==========================+===============================================================================================================+ +| xgboost | xgboost | Allows use of `XGBoost `__ model | ++-----------------------------+--------------------------+---------------------------------------------------------------------------------------------------------------+ +| torch | torch | Allows use of `PyTorch `__ models | ++-----------------------------+--------------------------+---------------------------------------------------------------------------------------------------------------+ +| torchvision | torchvision | Allows use of `Torchvision `__ library | ++-----------------------------+--------------------------+---------------------------------------------------------------------------------------------------------------+ +| torchxrayvision | torchxrayvision | Uses `TorchXRayVision `__ library | ++-----------------------------+--------------------------+---------------------------------------------------------------------------------------------------------------+ +| monai | monai | Uses `MONAI `__ to load and transform images | ++-----------------------------+--------------------------+---------------------------------------------------------------------------------------------------------------+ +| alibi | alibi | Uses `Alibi `__ for additional explainability functionality | ++-----------------------------+--------------------------+---------------------------------------------------------------------------------------------------------------+ +| alibi-detect | alibi-detect | Uses `Alibi Detect `__ for dataset shift detection | ++-----------------------------+--------------------------+---------------------------------------------------------------------------------------------------------------+ πŸ§‘πŸΏβ€πŸ’» Developing ======================= @@ -128,25 +55,20 @@ are listed in the sections below. Using poetry ------------ -The development environment can be set up using -`poetry `__. Hence, make -sure it is installed and then run: +The development environment can be set up using `poetry `__. Hence, make sure it is installed and then run: .. code:: bash python3 -m poetry install source $(poetry env info --path)/bin/activate -In order to install dependencies for testing (codestyle, unit tests, -integration tests), run: +In order to install dependencies for testing (codestyle, unit tests, integration tests), run: .. code:: bash python3 -m poetry install --with test -API documentation is built using -`Sphinx `__ and can be locally -built by: +API documentation is built using `Sphinx `__ and can be locally built by: .. code:: bash @@ -157,9 +79,7 @@ built by: Contributing ------------ -Contributing to cyclops is welcomed. See -`Contributing `__ -for guidelines. +Contributing to cyclops is welcomed. See `Contributing `__ for guidelines. πŸ“š `Documentation `__ ================================================================= @@ -167,22 +87,18 @@ for guidelines. πŸ““ Notebooks ============ -To use jupyter notebooks, the python virtual environment can be -installed and used inside an IPython kernel. After activating the -virtual environment, run: +To use jupyter notebooks, the python virtual environment can be installed and used inside an IPython kernel. After activating the virtual environment, run: .. code:: bash python3 -m ipykernel install --user --name -Now, you can navigate to the notebook’s ``Kernel`` tab and set it as -````. +Now, you can navigate to the notebook’s ``Kernel`` tab and set it as ````. πŸŽ“ Citation =========== -Reference to cite when you use ``cyclops`` in a project or a research -paper: +Reference to cite when you use ``cyclops`` in a project or a research paper: :: diff --git a/api/_sources/tutorials/mimiciv/mortality_prediction.ipynb.txt b/api/_sources/tutorials/mimiciv/mortality_prediction.ipynb.txt index 42dd280aa..299c08d21 100644 --- a/api/_sources/tutorials/mimiciv/mortality_prediction.ipynb.txt +++ b/api/_sources/tutorials/mimiciv/mortality_prediction.ipynb.txt @@ -36,6 +36,7 @@ "from cycquery import MIMICIVQuerier\n", "from datasets import Dataset\n", "from datasets.features import ClassLabel\n", + "from imblearn.over_sampling import SMOTE\n", "from sklearn.compose import ColumnTransformer\n", "from sklearn.impute import SimpleImputer\n", "from sklearn.pipeline import Pipeline\n", @@ -584,7 +585,12 @@ " ),\n", " ],\n", " remainder=\"passthrough\",\n", - ")" + ")\n", + "preprocessor_pipeline = [\n", + " (\"preprocessor\", preprocessor),\n", + " (\"oversampling\", SMOTE(random_state=RANDOM_SEED)),\n", + "]\n", + "preprocessor_pipeline = Pipeline(preprocessor_pipeline)" ] }, { @@ -692,7 +698,7 @@ "mortality_task.train(\n", " dataset[\"train\"],\n", " model_name=model_name,\n", - " transforms=preprocessor,\n", + " transforms=preprocessor_pipeline,\n", " best_model_params=best_model_params,\n", ")" ] diff --git a/api/intro.html b/api/intro.html index cc81215f5..22718a8b8 100644 --- a/api/intro.html +++ b/api/intro.html @@ -177,32 +177,19 @@ cyclops Logo
-

PyPI PyPI - Python Version code checks integration tests docs -codecov docker license

-

cyclops is a toolkit for facilitating research and deployment of ML -models for healthcare. It provides a few high-level APIs namely:

+

PyPI PyPI - Python Version code checks integration tests docs codecov docker license

+

cyclops is a toolkit for facilitating research and deployment of ML models for healthcare. It provides a few high-level APIs namely:

    -
  • data - Create datasets for training, inference and evaluation. We -use the popular πŸ€— -datasets to efficiently -load and slice different modalities of data

  • -
  • models - Use common model implementations using -scikit-learn and -PyTorch

  • -
  • tasks - Use common ML task formulations such as binary -classification or multi-label classification on tabular, time-series -and image data

  • +
  • data - Create datasets for training, inference and evaluation. We use the popular πŸ€— datasets to efficiently load and slice different modalities of data

  • +
  • models - Use common model implementations using scikit-learn and PyTorch

  • +
  • tasks - Use common ML task formulations such as binary classification or multi-label classification on tabular, time-series and image data

  • evaluate - Evaluate models on clinical prediction tasks

  • monitor - Detect dataset shift relevant for clinical use cases

  • -
  • report - Create model report -cards -for clinical ML models

  • +
  • report - Create model report cards for clinical ML models

-

cyclops also provides example end-to-end use case implementations on -clinical datasets such as

+

cyclops also provides example end-to-end use case implementations on clinical datasets such as

@@ -212,12 +199,7 @@

Installing cyclops using pip
python3 -m pip install pycyclops
 
-

cyclops has many optional dependencies that are used for specific -functionality. For example, the -monai library is used for -loading DICOM images to create datasets. All optional dependencies can -be installed with pycyclops[all], and specific sets of dependencies -are listed in the sections below.

+

cyclops has many optional dependencies that are used for specific functionality. For example, the monai library is used for loading DICOM images to create datasets. All optional dependencies can be installed with pycyclops[all], and specific sets of dependencies are listed in the sections below.

@@ -228,67 +210,31 @@

Installing cyclops using pip

- + - + - + - + - + - + - +

Dependency

xgboost

xgboost

Allows use -of -XGBoos -t -model

Allows use of XGBoost model

torch

torch

Allows use -of -`PyTorch < -https://pyto -rch.org/>`__ -models

Allows use of PyTorch models

torchvision

torchvision

Allows use -of -`T -orchvision < -https://pyto -rch.org/visi -on/stable/in -dex.html>`__ -library

Allows use of Torchvision library

torchxrayvision

torchxrayvision

Uses -TorchXR -ayVision -library

Uses TorchXRayVision library

monai

monai

Uses -M -ONAI -to load and -transform -images

Uses MONAI to load and transform images

alibi

alibi

Uses -Alibi -for -additional -ex -plainability -f -unctionality

Uses Alibi for additional explainability functionality

alibi-detect

alibi-detect

Uses Alibi -Detect -for dataset -shift -detection

Uses Alibi Detect for dataset shift detection

@@ -298,21 +244,16 @@

Installing cyclops using pip

Using poetry

-

The development environment can be set up using -poetry. Hence, make -sure it is installed and then run:

+

The development environment can be set up using poetry. Hence, make sure it is installed and then run:

python3 -m poetry install
 source $(poetry env info --path)/bin/activate
 
-

In order to install dependencies for testing (codestyle, unit tests, -integration tests), run:

+

In order to install dependencies for testing (codestyle, unit tests, integration tests), run:

python3 -m poetry install --with test
 
-

API documentation is built using -Sphinx and can be locally -built by:

+

API documentation is built using Sphinx and can be locally built by:

python3 -m poetry install --with docs
 cd docs
 make html SPHINXOPTS="-D nbsphinx_allow_errors=True"
@@ -321,9 +262,7 @@ 

Using poetry

Contributing

-

Contributing to cyclops is welcomed. See -Contributing -for guidelines.

+

Contributing to cyclops is welcomed. See Contributing for guidelines.

@@ -331,19 +270,15 @@

πŸ“š

πŸ““ Notebooks

-

To use jupyter notebooks, the python virtual environment can be -installed and used inside an IPython kernel. After activating the -virtual environment, run:

+

To use jupyter notebooks, the python virtual environment can be installed and used inside an IPython kernel. After activating the virtual environment, run:

python3 -m ipykernel install --user --name <name_of_kernel>
 
-

Now, you can navigate to the notebook’s Kernel tab and set it as -<name_of_kernel>.

+

Now, you can navigate to the notebook’s Kernel tab and set it as <name_of_kernel>.

πŸŽ“ Citation

-

Reference to cite when you use cyclops in a project or a research -paper:

+

Reference to cite when you use cyclops in a project or a research paper:

@article {Krishnan2022.12.02.22283021,
     author = {Krishnan, Amrit and Subasri, Vallijah and McKeen, Kaden and Kore, Ali and Ogidi, Franklin and Alinoori, Mahshid and Lalani, Nadim and Dhalla, Azra and Verma, Amol and Razak, Fahad and Pandya, Deval and Dolatabadi, Elham},
     title = {CyclOps: Cyclical development towards operationalizing ML models for health},
diff --git a/api/searchindex.js b/api/searchindex.js
index 3af3461bb..6c469de64 100644
--- a/api/searchindex.js
+++ b/api/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"docnames": ["api", "contributing", "index", "intro", "reference/api/_autosummary/cyclops.data.features.medical_image", "reference/api/_autosummary/cyclops.data.features.medical_image.MedicalImage", "reference/api/_autosummary/cyclops.data.slicer", "reference/api/_autosummary/cyclops.data.slicer.SliceSpec", "reference/api/_autosummary/cyclops.data.slicer.compound_filter", "reference/api/_autosummary/cyclops.data.slicer.filter_datetime", "reference/api/_autosummary/cyclops.data.slicer.filter_non_null", "reference/api/_autosummary/cyclops.data.slicer.filter_range", "reference/api/_autosummary/cyclops.data.slicer.filter_string_contains", "reference/api/_autosummary/cyclops.data.slicer.filter_value", "reference/api/_autosummary/cyclops.data.slicer.is_datetime", "reference/api/_autosummary/cyclops.data.slicer.overall", "reference/api/_autosummary/cyclops.evaluate.evaluator", "reference/api/_autosummary/cyclops.evaluate.evaluator.evaluate", "reference/api/_autosummary/cyclops.evaluate.fairness.config", "reference/api/_autosummary/cyclops.evaluate.fairness.config.FairnessConfig", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.evaluate_fairness", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.Accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.BinaryAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MulticlassAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MultilabelAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.AUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.BinaryAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MulticlassAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MultilabelAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.F1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.FbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.factory", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.create_metric", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.auroc", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.binary_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.stat_scores", "reference/api/_autosummary/cyclops.evaluate.metrics.metric", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.Metric", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.MetricCollection", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.OperatorMetric", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Precision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Recall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.BinaryROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MulticlassROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MultilabelROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.ROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.BinarySensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.Sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.BinarySpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MulticlassSpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MultilabelSpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.Specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.BinaryStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MulticlassStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MultilabelStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.StatScores", "reference/api/_autosummary/cyclops.monitor.clinical_applicator", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.ClinicalShiftApplicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.binary_noise_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_association_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_swap_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.gaussian_noise_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.knockout_shift", "reference/api/_autosummary/cyclops.report.report", "reference/api/_autosummary/cyclops.report.report.ModelCardReport", "reference/api/_autosummary/cyclops.tasks.classification", "reference/api/_autosummary/cyclops.tasks.classification.BinaryTabularClassificationTask", "reference/api/_autosummary/cyclops.tasks.classification.MultilabelImageClassificationTask", "reference/api/cyclops.data", "reference/api/cyclops.evaluate", "reference/api/cyclops.monitor", "reference/api/cyclops.report", "reference/api/cyclops.tasks", "tutorials", "tutorials/kaggle/heart_failure_prediction", "tutorials/mimiciv/mortality_prediction", "tutorials/nihcxr/cxr_classification", "tutorials/nihcxr/monitor_api", "tutorials/synthea/los_prediction", "tutorials_monitor", "tutorials_use_cases"], "filenames": ["api.rst", "contributing.rst", "index.rst", "intro.rst", "reference/api/_autosummary/cyclops.data.features.medical_image.rst", "reference/api/_autosummary/cyclops.data.features.medical_image.MedicalImage.rst", "reference/api/_autosummary/cyclops.data.slicer.rst", "reference/api/_autosummary/cyclops.data.slicer.SliceSpec.rst", "reference/api/_autosummary/cyclops.data.slicer.compound_filter.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_datetime.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_non_null.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_range.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_string_contains.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_value.rst", "reference/api/_autosummary/cyclops.data.slicer.is_datetime.rst", "reference/api/_autosummary/cyclops.data.slicer.overall.rst", "reference/api/_autosummary/cyclops.evaluate.evaluator.rst", "reference/api/_autosummary/cyclops.evaluate.evaluator.evaluate.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.config.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.config.FairnessConfig.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.evaluate_fairness.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.Accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.BinaryAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.AUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.BinaryAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MulticlassAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MultilabelAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.F1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.FbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.create_metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.auroc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.binary_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.stat_scores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.Metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.MetricCollection.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.OperatorMetric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.BinaryROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MulticlassROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MultilabelROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.ROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.BinarySensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.Sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.BinarySpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MulticlassSpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MultilabelSpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.Specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.BinaryStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.StatScores.rst", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.rst", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.binary_noise_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_association_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_swap_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.gaussian_noise_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.knockout_shift.rst", "reference/api/_autosummary/cyclops.report.report.rst", "reference/api/_autosummary/cyclops.report.report.ModelCardReport.rst", "reference/api/_autosummary/cyclops.tasks.classification.rst", "reference/api/_autosummary/cyclops.tasks.classification.BinaryTabularClassificationTask.rst", "reference/api/_autosummary/cyclops.tasks.classification.MultilabelImageClassificationTask.rst", "reference/api/cyclops.data.rst", "reference/api/cyclops.evaluate.rst", "reference/api/cyclops.monitor.rst", "reference/api/cyclops.report.rst", "reference/api/cyclops.tasks.rst", "tutorials.rst", "tutorials/kaggle/heart_failure_prediction.ipynb", "tutorials/mimiciv/mortality_prediction.ipynb", "tutorials/nihcxr/cxr_classification.ipynb", "tutorials/nihcxr/monitor_api.ipynb", "tutorials/synthea/los_prediction.ipynb", "tutorials_monitor.rst", "tutorials_use_cases.rst"], "titles": ["API Reference", "Contributing to cyclops", "Welcome to cyclops\u2019s documentation!", "\ud83d\udc23 Getting Started", "cyclops.data.features.medical_image", "cyclops.data.features.medical_image.MedicalImage", "cyclops.data.slicer", "cyclops.data.slicer.SliceSpec", "cyclops.data.slicer.compound_filter", "cyclops.data.slicer.filter_datetime", "cyclops.data.slicer.filter_non_null", "cyclops.data.slicer.filter_range", "cyclops.data.slicer.filter_string_contains", "cyclops.data.slicer.filter_value", "cyclops.data.slicer.is_datetime", "cyclops.data.slicer.overall", "cyclops.evaluate.evaluator", "cyclops.evaluate.evaluator.evaluate", "cyclops.evaluate.fairness.config", "cyclops.evaluate.fairness.config.FairnessConfig", "cyclops.evaluate.fairness.evaluator", "cyclops.evaluate.fairness.evaluator.evaluate_fairness", "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values", "cyclops.evaluate.metrics.accuracy", "cyclops.evaluate.metrics.accuracy.Accuracy", "cyclops.evaluate.metrics.accuracy.BinaryAccuracy", "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy", "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy", "cyclops.evaluate.metrics.auroc", "cyclops.evaluate.metrics.auroc.AUROC", "cyclops.evaluate.metrics.auroc.BinaryAUROC", "cyclops.evaluate.metrics.auroc.MulticlassAUROC", "cyclops.evaluate.metrics.auroc.MultilabelAUROC", "cyclops.evaluate.metrics.f_beta", "cyclops.evaluate.metrics.f_beta.BinaryF1Score", "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore", "cyclops.evaluate.metrics.f_beta.F1Score", "cyclops.evaluate.metrics.f_beta.FbetaScore", "cyclops.evaluate.metrics.f_beta.MulticlassF1Score", "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore", "cyclops.evaluate.metrics.f_beta.MultilabelF1Score", "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore", "cyclops.evaluate.metrics.factory", "cyclops.evaluate.metrics.factory.create_metric", "cyclops.evaluate.metrics.functional.accuracy", "cyclops.evaluate.metrics.functional.auroc", "cyclops.evaluate.metrics.functional.f_beta", "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score", "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.f1_score", "cyclops.evaluate.metrics.functional.f_beta.fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score", "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score", "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score", "cyclops.evaluate.metrics.functional.precision_recall", "cyclops.evaluate.metrics.functional.precision_recall.binary_precision", "cyclops.evaluate.metrics.functional.precision_recall.binary_recall", "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision", "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall", "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision", "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall", "cyclops.evaluate.metrics.functional.precision_recall.precision", "cyclops.evaluate.metrics.functional.precision_recall.recall", "cyclops.evaluate.metrics.functional.precision_recall_curve", "cyclops.evaluate.metrics.functional.roc", "cyclops.evaluate.metrics.functional.roc.binary_roc_curve", "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve", "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve", "cyclops.evaluate.metrics.functional.roc.roc_curve", "cyclops.evaluate.metrics.functional.sensitivity", "cyclops.evaluate.metrics.functional.specificity", "cyclops.evaluate.metrics.functional.stat_scores", "cyclops.evaluate.metrics.metric", "cyclops.evaluate.metrics.metric.Metric", "cyclops.evaluate.metrics.metric.MetricCollection", "cyclops.evaluate.metrics.metric.OperatorMetric", "cyclops.evaluate.metrics.precision_recall", "cyclops.evaluate.metrics.precision_recall.BinaryPrecision", "cyclops.evaluate.metrics.precision_recall.BinaryRecall", "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision", "cyclops.evaluate.metrics.precision_recall.MulticlassRecall", "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision", "cyclops.evaluate.metrics.precision_recall.MultilabelRecall", "cyclops.evaluate.metrics.precision_recall.Precision", "cyclops.evaluate.metrics.precision_recall.Recall", "cyclops.evaluate.metrics.precision_recall_curve", "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve", "cyclops.evaluate.metrics.roc", "cyclops.evaluate.metrics.roc.BinaryROCCurve", "cyclops.evaluate.metrics.roc.MulticlassROCCurve", "cyclops.evaluate.metrics.roc.MultilabelROCCurve", "cyclops.evaluate.metrics.roc.ROCCurve", "cyclops.evaluate.metrics.sensitivity", "cyclops.evaluate.metrics.sensitivity.BinarySensitivity", "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity", "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity", "cyclops.evaluate.metrics.sensitivity.Sensitivity", "cyclops.evaluate.metrics.specificity", "cyclops.evaluate.metrics.specificity.BinarySpecificity", "cyclops.evaluate.metrics.specificity.MulticlassSpecificity", "cyclops.evaluate.metrics.specificity.MultilabelSpecificity", "cyclops.evaluate.metrics.specificity.Specificity", "cyclops.evaluate.metrics.stat_scores", "cyclops.evaluate.metrics.stat_scores.BinaryStatScores", "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores", "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores", "cyclops.evaluate.metrics.stat_scores.StatScores", "cyclops.monitor.clinical_applicator", "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator", "cyclops.monitor.synthetic_applicator", "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator", "cyclops.monitor.synthetic_applicator.binary_noise_shift", "cyclops.monitor.synthetic_applicator.feature_association_shift", "cyclops.monitor.synthetic_applicator.feature_swap_shift", "cyclops.monitor.synthetic_applicator.gaussian_noise_shift", "cyclops.monitor.synthetic_applicator.knockout_shift", "cyclops.report.report", "cyclops.report.report.ModelCardReport", "cyclops.tasks.classification", "cyclops.tasks.classification.BinaryTabularClassificationTask", "cyclops.tasks.classification.MultilabelImageClassificationTask", "cyclops.data", "cyclops.evaluate", "cyclops.monitor", "cyclops.report", "cyclops.tasks", "Tutorials", "Heart Failure Prediction", "Mortality Prediction", "Chest X-Ray Disease Classification", "NIHCXR Clinical Drift Experiments Tutorial", "Prolonged Length of Stay Prediction", "monitor API", "Example use cases"], "terms": {"cyclop": [0, 131, 132, 133, 134, 135], "data": [0, 2, 3, 24, 26, 27, 49, 50, 52, 54, 69, 72, 89, 95, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 130, 133, 134, 136], "slicer": [0, 131, 132, 133, 134, 135], "compound_filt": 0, "filter_datetim": 0, "filter_non_nul": 0, "filter_rang": 0, "filter_string_contain": 0, "filter_valu": [0, 133], "is_datetim": 0, "overal": [0, 7, 21, 121, 131, 132, 133, 135], "slicespec": [0, 17, 112, 124, 131, 132, 133, 134, 135], "spec_list": [0, 7, 131, 132, 133, 134, 135], "include_overal": [0, 7, 131], "valid": [0, 7, 9, 17, 121, 123, 124, 131, 132, 133], "column_nam": [0, 7, 9, 10, 11, 12, 13, 133], "_registri": [0, 7], "add_slice_spec": [0, 7], "get_slic": [0, 7], "slice": [0, 3, 7, 8, 17, 21, 121, 123, 124, 131, 132, 133, 135], "featur": [0, 7, 9, 10, 11, 12, 13, 15, 112, 116, 117, 121, 123, 124, 130, 133, 137], "medical_imag": 0, "medicalimag": 0, "__call__": [0, 5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "cast_storag": [0, 5], "decode_exampl": [0, 5], "embed_storag": [0, 5], "encode_exampl": [0, 5], "flatten": [0, 5, 133], "task": [0, 2, 3, 17, 24, 25, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 44, 47, 48, 49, 50, 51, 53, 54, 58, 60, 61, 62, 63, 66, 67, 68, 69, 78, 80, 81, 82, 83, 84, 85, 90, 92, 93, 94, 95, 98, 99, 100, 102, 103, 104, 105, 110, 130, 133, 137], "classif": [0, 3, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 44, 47, 48, 49, 50, 51, 53, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 78, 79, 80, 81, 82, 83, 84, 85, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 130, 131, 132, 135], "binarytabularclassificationtask": [0, 131, 132, 135], "__init__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 133], "add_model": [0, 123, 124], "data_typ": [0, 123, 124], "evalu": [0, 2, 3, 121, 123, 124, 130, 133, 137], "get_model": [0, 123, 124], "list_model": [0, 123, 124, 131, 132, 135], "list_models_param": [0, 123, 124, 131, 132, 135], "load_model": [0, 123, 124], "models_count": [0, 123, 124], "predict": [0, 3, 17, 19, 21, 24, 26, 27, 30, 31, 32, 34, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 67, 80, 81, 82, 84, 85, 87, 88, 89, 92, 93, 94, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 130, 133], "save_model": [0, 123, 124], "task_typ": [0, 123, 124, 131, 132, 135], "train": [0, 3, 17, 121, 123, 124, 130, 133, 136, 137], "multilabelimageclassificationtask": 0, "metric": [0, 17, 19, 21, 121, 123, 124, 130, 131, 132, 135, 137], "__add__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "__mul__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "add_stat": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "clone": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "comput": [0, 17, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 123, 124, 130, 133, 137], "name": [0, 3, 7, 8, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 124, 131, 132, 133, 134, 135], "reset_st": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "update_st": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "metriccollect": [0, 17, 21, 123, 124, 131, 132, 135], "add_metr": [0, 75], "clear": [0, 75], "get": [0, 2, 75, 123, 124, 131, 132, 135], "item": [0, 75, 131, 132, 133, 134, 135], "kei": [0, 7, 21, 75, 121, 131, 132, 133, 134, 135], "pop": [0, 75, 131, 132, 135], "popitem": [0, 75], "setdefault": [0, 75], "updat": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 133], "valu": [0, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 130, 132, 133, 134, 135, 137], "operatormetr": 0, "factori": [0, 7, 133], "create_metr": [0, 131, 132, 133, 135], "accuraci": [0, 131, 132, 135], "binaryaccuraci": [0, 131, 132, 135], "multiclassaccuraci": 0, "multilabelaccuraci": 0, "auroc": [0, 130, 131, 132, 135, 137], "binaryauroc": [0, 29, 131, 132, 135], "multiclassauroc": [0, 29], "multilabelauroc": [0, 29], "precision_recal": 0, "binaryprecis": [0, 131, 132, 135], "binaryrecal": [0, 97, 131, 132, 135], "multiclassprecis": 0, "multiclassrecal": [0, 98], "multilabelprecis": 0, "multilabelrecal": [0, 99], "precis": [0, 24, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 60, 64, 66, 77, 78, 80, 82, 85, 86, 87, 88, 89, 90, 92, 100, 105, 131, 132, 133, 135], "recal": [0, 24, 38, 51, 55, 57, 59, 61, 64, 66, 77, 79, 81, 83, 86, 87, 88, 89, 90, 92, 97, 98, 99, 105, 131, 132, 133, 135], "precision_recall_curv": [0, 131, 132, 135], "binaryprecisionrecallcurv": [0, 30, 92, 131, 132, 135], "multiclassprecisionrecallcurv": [0, 31, 93], "multilabelprecisionrecallcurv": [0, 32, 94], "precisionrecallcurv": 0, "roc": [0, 28, 29, 30, 31, 32, 45, 131, 132, 135], "binaryroccurv": [0, 131, 132, 135], "multiclassroccurv": 0, "multilabelroccurv": 0, "roccurv": 0, "sensit": [0, 121, 130, 131, 132, 133, 135, 136], "binarysensit": 0, "multiclasssensit": 0, "multilabelsensit": [0, 133], "specif": [0, 3, 7, 17, 115, 118, 123, 124, 131, 132, 133, 135], "binaryspecif": 0, "multiclassspecif": 0, "multilabelspecif": [0, 133], "f_beta": 0, "binaryf1scor": [0, 131, 132, 135], "binaryfbetascor": [0, 34], "f1score": 0, "fbetascor": [0, 36], "multiclassf1scor": 0, "multiclassfbetascor": [0, 38], "multilabelf1scor": 0, "multilabelfbetascor": [0, 40], "stat_scor": [0, 133, 135], "binarystatscor": [0, 25, 35, 78, 79, 102, 135], "multiclassstatscor": [0, 26, 39, 80, 81, 103], "multilabelstatscor": [0, 27, 41, 82, 83, 104, 133], "statscor": 0, "function": [0, 3, 5, 6, 7, 8, 16, 17, 20, 21, 25, 35, 41, 42, 76, 93, 102, 104, 107, 109, 110, 113, 121, 131, 132, 133, 135], "binary_precis": 0, "binary_recal": 0, "multiclass_precis": 0, "multiclass_recal": 0, "multilabel_precis": 0, "multilabel_recal": 0, "binary_roc_curv": 0, "multiclass_roc_curv": 0, "multilabel_roc_curv": 0, "roc_curv": [0, 131, 132, 135], "binary_f1_scor": 0, "binary_fbeta_scor": 0, "f1_score": [0, 131, 132, 135], "fbeta_scor": 0, "multiclass_f1_scor": 0, "multiclass_fbeta_scor": 0, "multilabel_f1_scor": 0, "multilabel_fbeta_scor": 0, "fair": [0, 17, 121, 123, 124, 131, 132, 133, 135], "evaluate_fair": 0, "warn_too_many_unique_valu": 0, "config": [0, 123], "fairnessconfig": [0, 17, 123, 124, 131, 132, 135], "monitor": [0, 2, 3, 130, 131, 132, 134, 135], "clinical_appl": 0, "clinicalshiftappl": [0, 134], "ag": [0, 112, 130, 134, 137], "apply_shift": [0, 112, 114, 134], "custom": [0, 112, 121, 134], "hospital_typ": [0, 112], "month": [0, 7, 9, 112], "sex": [0, 112, 130, 132, 134, 135, 137], "time": [0, 3, 7, 75, 112, 121, 130, 132, 133, 135, 136, 137], "synthetic_appl": 0, "binary_noise_shift": 0, "feature_association_shift": 0, "feature_swap_shift": 0, "gaussian_noise_shift": 0, "knockout_shift": 0, "syntheticshiftappl": [0, 113], "report": [0, 2, 3, 110, 130, 137], "modelcardreport": [0, 131, 132, 133, 135], "export": [0, 121, 131, 132, 133, 135], "from_json_fil": [0, 121], "log_cit": [0, 121, 133], "log_dataset": [0, 121, 131], "log_descriptor": [0, 121, 131, 132, 133, 135], "log_fairness_assess": [0, 121, 131, 132, 133, 135], "log_from_dict": [0, 121, 131, 132, 133, 135], "log_imag": [0, 121], "log_licens": [0, 121, 131, 132, 135], "log_model_paramet": [0, 121, 131, 132, 135], "log_own": [0, 121, 131, 132, 133, 135], "log_performance_metr": [0, 121, 131, 132, 135], "log_plotly_figur": [0, 121, 131, 132, 133, 135], "log_quantitative_analysi": [0, 121, 131, 132, 133, 135], "log_refer": [0, 121, 131, 132, 135], "log_regul": [0, 121], "log_risk": [0, 121, 131, 132, 133, 135], "log_use_cas": [0, 121, 131, 132, 133, 135], "log_us": [0, 121, 131, 132, 133, 135], "log_vers": [0, 121, 131, 132, 135], "thank": 1, "your": [1, 131], "interest": [1, 131, 132, 135], "To": [1, 3, 5, 131, 135], "submit": 1, "pr": 1, "pleas": [1, 131, 132, 135], "fill": 1, "out": [1, 121, 131, 132, 135], "templat": [1, 121], "along": [1, 112, 131, 132, 133, 135], "If": [1, 5, 7, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124, 131, 132, 135], "fix": 1, "an": [1, 3, 5, 7, 17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 51, 60, 61, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 131, 132, 133, 135, 137], "issu": [1, 21], "don": [1, 132], "t": [1, 3, 5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 132], "forget": 1, "link": [1, 121, 131, 132, 133, 135], "onc": [1, 75, 131, 132, 135], "python": [1, 3, 132, 135], "virtual": [1, 3], "environ": [1, 3, 131, 132, 135], "i": [1, 3, 5, 7, 9, 10, 11, 12, 13, 14, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 131, 132, 133, 135, 137], "setup": [1, 132, 135], "you": [1, 3, 5, 75, 131, 132, 133, 135, 136], "can": [1, 3, 5, 7, 21, 25, 38, 51, 69, 74, 75, 84, 85, 95, 100, 110, 121, 123, 124, 131, 132, 133, 135, 136], "run": [1, 3, 131, 132, 135], "us": [1, 2, 5, 7, 8, 17, 21, 24, 29, 30, 31, 32, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 62, 63, 66, 67, 68, 69, 75, 76, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 102, 105, 107, 110, 112, 114, 121, 123, 124, 130, 131, 132, 133, 135, 136], "all": [1, 3, 7, 8, 9, 10, 11, 12, 13, 15, 63, 73, 75, 108, 109, 110, 123, 131, 132, 133, 134, 135], "file": [1, 5, 121, 131, 132, 133, 135], "For": [1, 3, 21, 76, 121, 131, 132, 135], "style": 1, "we": [1, 3, 121, 131, 132, 133, 135], "recommend": [1, 76], "googl": 1, "guid": 1, "appli": [1, 8, 25, 29, 59, 62, 63, 66, 67, 68, 75, 76, 93, 104, 109, 110, 112, 123, 124, 131, 132, 135], "black": 1, "format": [1, 5, 7, 89, 121, 131, 132, 135], "docstr": 1, "numpi": [1, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 116, 117, 118, 119, 124, 131, 132, 133, 134, 135], "also": [1, 3, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 133, 135, 137], "flake8": 1, "pylint": 1, "further": 1, "static": 1, "analysi": [1, 121, 131, 132, 133, 135], "The": [1, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 60, 61, 63, 66, 68, 69, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 131, 132, 133, 135, 136, 137], "show": [1, 131, 132, 133, 135], "error": [1, 17, 21], "which": [1, 9, 10, 11, 12, 13, 21, 90, 121, 131, 132, 133, 135, 137], "need": [1, 17, 21, 74, 110, 131, 132, 135], "befor": [1, 17, 21, 22, 123, 131, 132, 135], "last": 1, "least": 1, "type": [1, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 130, 133, 137], "hint": 1, "our": [1, 131, 132, 135], "check": [1, 14, 89], "mypi": 1, "current": [1, 121, 131, 132, 135], "ar": [1, 3, 5, 7, 11, 12, 17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 97, 98, 99, 100, 103, 104, 105, 108, 109, 110, 112, 116, 121, 131, 132, 133, 135], "strict": 1, "enforc": 1, "more": [1, 7, 16, 17, 123, 124, 131, 137], "api": [1, 2, 3, 130, 131, 137], "becom": 1, "stabl": [1, 3, 131, 132, 135], "start": [2, 131, 132, 135], "instal": [2, 131], "pip": [2, 131], "develop": [2, 131, 132, 133, 135], "poetri": 2, "contribut": 2, "notebook": [2, 131, 132, 133, 135], "citat": [2, 121, 131, 132, 133, 135], "pre": [2, 131, 132, 135], "commit": 2, "hook": 2, "code": [2, 131, 132, 135], "guidelin": [2, 3], "tutori": [2, 131, 136, 137], "exampl": [2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 15, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 130, 131, 132, 133, 136], "case": [2, 3, 75, 115, 121, 130, 131, 132, 135, 136], "refer": [2, 3, 121, 131, 132, 133, 135], "toolkit": 3, "facilit": 3, "research": 3, "deploy": 3, "ml": [3, 131, 132, 135], "model": [3, 16, 17, 21, 121, 123, 124, 130, 136, 137], "healthcar": 3, "It": [3, 38, 51, 75, 84, 85, 100, 105, 136], "provid": [3, 7, 9, 12, 17, 21, 69, 110, 121, 131, 132, 133, 135], "few": 3, "high": [3, 131, 132, 133, 135], "level": [3, 21, 131, 132, 133, 135], "creat": [3, 6, 7, 21, 42, 43, 75, 84, 85, 100, 115, 118, 119, 121, 123, 124, 130, 133, 137], "dataset": [3, 6, 7, 16, 17, 19, 21, 26, 38, 39, 51, 52, 58, 61, 68, 69, 80, 81, 83, 88, 89, 90, 94, 95, 98, 99, 103, 104, 112, 114, 121, 123, 124, 125, 130, 136, 137], "infer": 3, "popular": [3, 131], "effici": 3, "load": [3, 17, 121, 123, 124, 130, 132, 135, 136, 137], "differ": [3, 24, 29, 36, 37, 46, 55, 62, 63, 64, 69, 70, 72, 74, 84, 85, 90, 95, 100, 105, 110, 130, 131, 132, 133, 135, 136], "modal": 3, "common": [3, 131, 132], "implement": [3, 137], "scikit": [3, 131], "learn": [3, 131, 133], "pytorch": 3, "formul": [3, 131, 132, 135], "binari": [3, 5, 24, 25, 29, 30, 34, 35, 36, 37, 47, 48, 49, 50, 56, 57, 60, 61, 62, 63, 66, 69, 72, 78, 79, 84, 85, 87, 90, 92, 95, 97, 100, 102, 104, 105, 107, 110, 115, 123, 124, 131, 132, 135, 137], "multi": [3, 17, 133], "label": [3, 17, 24, 25, 27, 29, 32, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 68, 69, 78, 79, 81, 82, 83, 84, 85, 87, 89, 90, 92, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 109, 110, 116, 117, 119, 123, 124, 130, 131, 133, 137], "tabular": [3, 123, 124, 130], "seri": [3, 123], "imag": [3, 4, 5, 17, 21, 118, 121, 124, 125, 130, 133, 134], "clinic": [3, 111, 112, 130, 136], "detect": [3, 133, 136], "shift": [3, 111, 112, 114, 116, 117, 130, 136], "relev": [3, 121, 131, 132, 135, 136], "card": [3, 121, 130, 131, 132, 135, 137], "end": [3, 131, 132, 133, 135], "nih": [3, 130, 133, 134], "chest": [3, 130], "x": [3, 114, 115, 116, 117, 118, 119, 123, 130, 131, 132, 134, 135], "rai": [3, 130], "mimic": 3, "iv": 3, "python3": [3, 133], "m": [3, 131, 132, 133, 134, 135], "pycyclop": 3, "ha": [3, 13, 75, 121, 131, 132, 133, 135], "mani": 3, "option": [3, 5, 7, 9, 10, 11, 12, 13, 17, 21, 24, 27, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 69, 75, 80, 81, 82, 83, 84, 85, 90, 95, 98, 99, 100, 103, 104, 105, 108, 112, 114, 121, 123, 124, 133], "depend": 3, "monai": [3, 5], "librari": [3, 130, 136, 137], "dicom": 3, "set": [3, 7, 17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 131, 132, 133, 135], "list": [3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 115, 116, 117, 118, 119, 121, 123, 124, 131, 132, 135], "section": [3, 121, 131, 132, 133, 135], "below": [3, 131, 132, 135], "extra": [3, 121], "note": [3, 17, 121, 131, 132, 135], "xgboost": [3, 132, 135], "allow": [3, 17, 21, 22, 131, 132, 135, 136], "xgboo": 3, "torch": [3, 134], "http": [3, 121, 131, 132, 133, 135], "pyto": 3, "rch": 3, "org": [3, 121, 131, 132, 133, 135], "__": 3, "torchvis": [3, 133, 134], "orchvis": 3, "visi": 3, "dex": 3, "html": [3, 121, 131, 132, 133, 135], "torchxrayvis": [3, 133, 134], "torchxr": 3, "ayvis": 3, "onai": 3, "transform": [3, 66, 67, 68, 93, 123, 124, 131, 132, 133, 134, 135], "alibi": 3, "addit": [3, 75, 121, 123, 124, 131, 132, 133, 135], "ex": 3, "plainabl": 3, "f": [3, 33, 35, 37, 38, 39, 41, 46, 48, 50, 51, 52, 54, 75, 131, 132, 133, 134, 135], "unction": 3, "up": [3, 131, 132, 133, 135], "henc": 3, "make": [3, 131, 132, 135], "sure": [3, 131], "sourc": [3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 130, 136], "env": 3, "info": [3, 131, 132, 135], "path": [3, 5, 112, 121, 123, 124, 131, 132, 135], "bin": [3, 21], "activ": [3, 135], "In": [3, 75, 131, 132, 135], "order": [3, 5, 17, 107, 108, 109], "test": [3, 17, 121, 123, 124, 130, 131, 132, 135, 136, 137], "codestyl": 3, "unit": 3, "integr": [3, 131], "built": 3, "sphinx": 3, "local": 3, "doc": 3, "cd": 3, "sphinxopt": 3, "d": [3, 75, 112, 133], "nbsphinx_allow_error": 3, "true": [3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 24, 26, 27, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 112, 114, 116, 121, 123, 124, 131, 132, 133, 134, 135], "welcom": 3, "see": [3, 7, 121, 131, 132, 135], "jupyt": [3, 131, 132, 135], "insid": 3, "ipython": 3, "kernel": 3, "after": [3, 131, 132, 135], "ipykernel": 3, "user": [3, 121, 131, 132, 135], "name_of_kernel": 3, "now": 3, "navig": 3, "": [3, 7, 10, 14, 17, 21, 75, 121, 123, 124, 131, 132, 133, 135], "tab": [3, 131], "cite": 3, "when": [3, 5, 17, 21, 24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 75, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105, 123, 124, 131, 132, 135], "project": 3, "paper": 3, "articl": 3, "krishnan2022": 3, "12": [3, 7, 131, 132, 133, 135], "02": [3, 69, 131, 135], "22283021": 3, "author": [3, 131, 133], "krishnan": 3, "amrit": 3, "subasri": 3, "vallijah": 3, "mckeen": 3, "kaden": 3, "kore": 3, "ali": 3, "ogidi": 3, "franklin": 3, "alinoori": 3, "mahshid": 3, "lalani": 3, "nadim": 3, "dhalla": 3, "azra": 3, "verma": 3, "amol": 3, "razak": 3, "fahad": 3, "pandya": 3, "deval": 3, "dolatabadi": 3, "elham": 3, "titl": [3, 131, 132, 133, 135], "cyclic": 3, "toward": 3, "operation": 3, "health": [3, 131, 132, 135], "eloc": 3, "id": [3, 5, 112, 131, 133, 135], "2022": [3, 7, 131, 132, 133, 135], "year": [3, 7, 9, 131, 132, 133, 135], "doi": 3, "10": [3, 131, 132, 133, 134, 135], "1101": 3, "publish": [3, 131], "cold": 3, "spring": 3, "harbor": 3, "laboratori": [3, 135], "press": 3, "url": [3, 133], "www": [3, 131], "medrxiv": 3, "content": [3, 121], "earli": 3, "08": [3, 135], "journal": 3, "medic": [4, 5, 125, 133, 135, 137], "class": [4, 5, 6, 7, 18, 19, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 69, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 116, 117, 119, 120, 121, 122, 123, 124, 131, 132, 133, 135], "decod": [5, 133], "none": [5, 7, 9, 17, 19, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 124, 131, 132, 133, 134, 135], "reader": 5, "itkread": 5, "suffix": 5, "jpg": 5, "base": [5, 7, 17, 19, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 130, 131, 137], "read": 5, "paramet": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 131, 132, 133, 135], "union": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124], "str": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 131, 132, 135], "imageread": 5, "default": [5, 7, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 124, 131, 132, 135], "byte": 5, "bool": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 75, 76, 108, 109, 110, 112, 116, 117, 121, 123, 124, 131, 132, 133, 135], "whether": [5, 7, 17, 21, 75, 108, 109, 110, 112, 121, 132, 135, 137], "fals": [5, 7, 9, 10, 11, 12, 13, 14, 17, 19, 21, 29, 30, 40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105, 107, 108, 109, 110, 117, 118, 123, 124, 131, 132, 133, 135], "return": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 132, 133, 135], "dictionari": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 75, 121, 123, 124, 131, 132, 135], "image_path": 5, "image_byt": 5, "method": [5, 7, 19, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 131, 132, 135], "attribut": [5, 7, 19, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 131, 132, 135], "call": [5, 121], "self": [5, 133], "storag": 5, "cast": 5, "arrow": 5, "arrai": [5, 24, 26, 27, 29, 30, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 63, 66, 67, 68, 69, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 119, 124, 133, 135], "convert": [5, 25, 35, 41, 48, 61, 69, 95, 102, 104, 107, 131, 132, 135], "pyarrow": 5, "rtype": 5, "structarrai": 5, "pa": 5, "string": [5, 7, 9, 12, 17, 21, 75, 121, 133], "must": [5, 9, 17, 21, 121], "contain": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 27, 103, 104, 121, 131, 132, 133, 135, 137], "struct": 5, "doesn": 5, "matter": 5, "arg": [5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "stringarrai": 5, "listarrai": 5, "token_per_repo_id": 5, "from": [5, 7, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 119, 121, 123, 124, 131, 132, 133, 134, 135, 137], "serial": 5, "version": [5, 121, 131, 132, 133, 135], "dict": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 75, 121, 123, 124], "access": 5, "privat": 5, "repositori": [5, 131], "hub": 5, "pass": [5, 17, 43, 75, 112, 121, 123, 124, 131, 132, 135], "repo_id": 5, "token": [5, 131], "deseri": 5, "np": [5, 11, 14, 21, 123, 124, 131, 132, 133, 134, 135], "ndarrai": [5, 14, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 116, 117, 118, 119, 123, 124], "metadata": [5, 131, 132, 133, 135], "emb": 5, "encod": 5, "input": [5, 24, 46, 55, 60, 61, 64, 69, 70, 72, 87, 89, 95, 115, 118, 123, 124], "state": [5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 133], "itself": 5, "otherwis": [5, 14, 24, 27, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110], "tupl": [5, 7, 66, 67, 68, 69, 75, 87, 88, 89, 92, 93, 94, 112, 123, 124], "classlabel": [5, 131, 132, 135], "translat": 5, "translationvariablelanguag": 5, "sequenc": [5, 17, 75, 123, 124, 133], "array2d": 5, "array3d": 5, "array4d": 5, "array5d": 5, "audio": 5, "subset": 6, "hug": [6, 123, 124, 130, 137], "face": [6, 123, 124, 130, 137], "object": [7, 19, 21, 112, 114, 121, 123, 124, 131, 132, 135], "ani": [7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124, 131, 132, 133, 135], "A": [7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 25, 75, 76, 104, 109, 121, 131, 132, 133, 135], "each": [7, 8, 21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 69, 75, 76, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110, 131, 132, 135], "map": [7, 8, 22, 75, 123, 124, 133], "column": [7, 8, 9, 10, 11, 12, 13, 17, 21, 112, 123, 124, 131, 132, 133, 135], "one": [7, 16, 17, 21, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 69, 76, 80, 81, 82, 83, 84, 85, 95, 98, 99, 100, 105, 123, 124], "follow": [7, 17, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105, 121, 131, 132, 133, 135], "exact": [7, 13], "select": [7, 112, 116, 131, 132, 133, 135], "thi": [7, 17, 21, 24, 25, 26, 27, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105, 110, 121, 123, 131, 132, 133, 135, 137], "singl": [7, 17, 75, 121, 123, 124, 131, 132, 135, 137], "row": [7, 131, 133], "where": [7, 8, 9, 10, 11, 12, 13, 60, 61, 63, 75, 121, 123, 124, 131, 132, 135, 137], "support": [7, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 72, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 107, 108, 109, 136], "e": [7, 9, 10, 17, 21, 75, 116, 117, 118, 121, 131, 132, 135], "g": [7, 9, 17, 21, 116, 117, 118, 121, 131, 132, 135], "2021": [7, 131, 132, 135], "01": [7, 29, 31, 32, 131, 132, 133, 135], "00": [7, 133], "min_valu": [7, 11, 131, 132, 133, 134, 135], "minimum": [7, 11], "specifi": [7, 17, 75, 112, 121, 123, 124, 131, 132, 135], "min_inclus": [7, 11, 131, 132, 135], "indic": [7, 17, 21, 27, 60, 61, 115, 118, 131, 132, 133, 135], "includ": [7, 11, 21, 72, 112, 114, 131, 132, 133, 135, 136, 137], "rang": [7, 11, 29, 30, 66, 67, 68, 93, 131, 132, 133, 135], "work": [7, 27, 103, 104, 121, 131, 132, 133, 135], "numer": [7, 11, 131, 132, 135], "datetim": [7, 9, 11, 14, 121, 131, 132, 135], "inf": [7, 11], "max_valu": [7, 11, 131, 132, 133, 134, 135], "boolean": [7, 8, 9, 10, 11, 12, 13, 15], "greater": [7, 22, 135], "than": [7, 11, 22, 48, 52, 54, 123, 124, 131, 132, 135, 137], "equal": [7, 11, 21], "maximum": [7, 11, 22, 29, 30], "max_inclus": [7, 11, 131, 132, 135], "less": [7, 11, 48, 52, 54, 132, 135], "match": [7, 9, 12, 13, 17], "between": [7, 21, 38, 51, 69, 95], "1": [7, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 116, 117, 118, 119, 121, 130, 131, 132, 133, 135, 136, 137], "dai": [7, 9, 132, 135, 137], "31": [7, 131, 132, 133, 135], "hour": [7, 9, 132], "0": [7, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 115, 116, 117, 118, 119, 121, 131, 132, 133, 134, 135], "23": [7, 131, 132, 133, 135], "negat": [7, 9, 10, 11, 12, 13, 133], "flag": [7, 132], "doe": [7, 9, 11, 12, 13, 21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 74, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 110, 121], "keep_nul": [7, 9, 11, 12, 13], "keep": [7, 17, 21, 135], "null": [7, 9, 10, 11, 12, 13, 132, 135], "conjunct": [7, 133], "its": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 60, 61, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 133, 135], "own": [7, 131, 132, 135], "callabl": [7, 8, 21, 76, 121], "import": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 130, 136, 137], "slice_spec": [7, 17, 123, 124, 131, 132, 133, 135], "feature_1": 7, "feature_2": 7, "feature_3": 7, "value_1": 7, "value_2": 7, "2020": [7, 9, 133], "5": [7, 24, 25, 27, 29, 31, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 115, 118, 119, 130, 131, 132, 133, 135, 136], "60": 7, "6": [7, 24, 26, 35, 36, 38, 39, 49, 56, 59, 62, 63, 78, 79, 80, 81, 83, 84, 85, 87, 88, 90, 92, 93, 95, 97, 98, 99, 100, 104, 107, 108, 110, 131, 132, 133, 134, 135], "7": [7, 29, 30, 31, 36, 39, 40, 69, 80, 81, 82, 84, 85, 87, 88, 89, 93, 98, 100, 105, 108, 109, 110, 131, 132, 133, 135, 137], "8": [7, 24, 26, 27, 29, 30, 31, 34, 35, 36, 37, 38, 40, 41, 47, 49, 50, 53, 54, 56, 59, 60, 62, 66, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 105, 107, 109, 110, 131, 132, 133, 135], "2000": 7, "2010": 7, "slice_nam": [7, 121, 131, 132, 135], "slice_func": 7, "print": [7, 131, 132, 133, 135], "do": [7, 131, 132, 133, 135], "someth": 7, "here": [7, 131, 132, 135], "filter": [7, 9, 10, 11, 12, 13, 17, 21, 132, 133, 135], "add": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124, 131, 132, 135], "detail": [7, 131, 132, 133, 135], "registri": [7, 131, 132, 135], "gener": [7, 69, 95, 112, 121, 130, 136, 137], "slice_funct": 8, "combin": [8, 131], "result": [8, 17, 38, 51, 123, 124, 131, 132, 134, 135], "multipl": [8, 17, 21, 75, 121], "bitwis": 8, "AND": 8, "signatur": 8, "should": [8, 17, 21, 69, 76, 95, 117, 121, 123, 124, 131, 132, 133, 135], "kwarg": [8, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 123, 124], "given": [9, 11, 12, 13, 14, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 75, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110, 121, 123, 124], "int": [9, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 116, 117, 118, 119, 121, 123, 124, 131, 132, 133, 135], "compon": 9, "have": [9, 12, 13, 114, 131, 132, 137], "nan": [9, 10, 17, 21, 130, 137], "nat": 9, "rais": [9, 11, 12, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124], "typeerror": [9, 11, 12, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121], "float": [11, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 109, 110, 115, 116, 117, 118, 119, 121, 133], "valueerror": [11, 17, 21, 48, 50, 52, 54, 58, 59, 60, 61, 62, 63, 69, 121, 123, 124], "either": [11, 30, 31, 32, 75, 87, 88, 89, 92, 93, 94, 110, 121, 131, 132, 135], "substr": 12, "find": [13, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 123, 133], "perform": [13, 26, 27, 31, 32, 121, 130, 132, 135, 136, 137], "datetime64": 14, "target_column": [17, 19, 21, 131, 132, 133, 135], "prediction_column": [17, 19, 21, 133], "ignore_column": [17, 133], "split": [17, 112, 121, 123, 124, 131, 132, 133, 135], "batch_siz": [17, 19, 21, 112, 123, 124, 131, 132, 135], "1000": [17, 19, 21, 112, 123, 131, 133], "raise_on_empty_slic": [17, 21], "fairness_config": [17, 123, 124, 131, 132, 135], "override_fairness_metr": [17, 123, 124, 131, 132, 135], "load_dataset_kwarg": 17, "datasetdict": [17, 123, 124], "load_dataset": 17, "argument": [17, 21, 43, 75, 123, 124, 131, 132, 135], "target": [17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 116, 117, 123, 124, 130, 131, 132, 135, 136, 137], "same": [17, 21, 75, 116], "ignor": [17, 131, 132, 133, 135], "while": 17, "mai": [17, 21, 131, 132, 133, 135], "expens": [17, 21], "memori": [17, 21], "entir": [17, 131, 132, 135], "chosen": 17, "avail": [17, 121, 131, 132, 135, 137], "first": [17, 21, 25, 76, 104, 131, 132, 135], "eval": 17, "val": 17, "dev": 17, "batch": [17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 123, 124, 132, 133], "size": [17, 21, 112, 123, 124, 131, 132, 133, 135], "neg": [17, 35, 48, 49, 50, 51, 52, 53, 54, 59, 61, 62, 63, 72, 81, 83, 85, 98, 99, 100, 105, 107, 108, 109, 133, 135], "integ": [17, 21, 121], "empti": [17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "warn": [17, 22, 24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 105], "log": [17, 121, 130, 131, 132, 135, 137], "configur": [17, 18, 19, 123, 124, 131, 132, 135], "overridden": [17, 123, 124], "remove_column": [17, 19, 21, 123, 124, 133], "keyword": [17, 21, 43, 75, 123, 124], "onli": [17, 21, 24, 27, 29, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 62, 63, 75, 80, 81, 82, 84, 85, 98, 100, 103, 104, 105, 108, 109, 110], "group": [19, 21, 22, 75, 121, 131, 132, 135], "group_valu": [19, 21], "group_bin": [19, 21, 131, 132, 135], "group_base_valu": [19, 21, 131, 132, 135], "threshold": [19, 21, 24, 25, 27, 29, 30, 31, 32, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 53, 54, 56, 57, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 102, 104, 105, 107, 109, 110, 121, 130, 131, 132, 135, 137], "compute_optimal_threshold": [19, 21], "metric_nam": [19, 21, 43, 121, 131, 132, 133, 135], "metric_kwarg": [19, 21], "take": [21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 112, 131], "intersect": 21, "treat": 21, "multilabel": [21, 24, 27, 29, 32, 36, 37, 40, 41, 49, 50, 53, 54, 60, 61, 62, 63, 68, 69, 72, 82, 83, 84, 85, 89, 90, 94, 95, 99, 100, 104, 105, 109, 110, 130, 137], "uniqu": [21, 22, 29, 30, 31, 32, 66, 67, 68, 69, 74, 87, 88, 89, 92, 93, 94, 95, 110, 133, 137], "limit": [21, 131, 132, 133, 135], "number": [21, 22, 24, 26, 27, 29, 30, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 103, 104, 105, 108, 110, 112, 116, 117, 121, 123, 124, 132, 135, 136], "continu": [21, 131, 132, 133, 135], "veri": 21, "slow": 21, "larg": 21, "denomin": 21, "pariti": 21, "across": [21, 116, 136], "linspac": 21, "monoton": [21, 69, 95], "optim": [21, 131], "oper": [21, 65, 76, 131, 132, 135], "necessari": 21, "remov": [21, 75, 119, 123, 124, 131, 132, 133, 135], "control": [21, 115], "usag": [21, 131, 132, 135], "rel": 21, "small": 21, "32": [21, 131, 132, 135], "avoid": 21, "encount": [21, 132, 135], "nest": 21, "second": [21, 76], "third": 21, "omit": 21, "requir": [21, 24, 29, 36, 37, 49, 50, 69, 84, 85, 90, 95, 100, 105, 110, 121, 123, 124, 131, 132, 135], "huggingfac": [21, 112, 123, 124], "runtimeerror": 21, "unique_valu": 22, "max_unique_valu": 22, "50": [22, 131, 132, 133, 134, 135], "score": [24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 66, 70, 72, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 133], "liter": [24, 25, 26, 27, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 69, 78, 79, 80, 81, 82, 83, 84, 85, 90, 95, 97, 98, 99, 100, 103, 104, 105, 110, 121], "multiclass": [24, 26, 29, 31, 36, 37, 38, 39, 49, 50, 51, 52, 58, 59, 62, 63, 67, 69, 72, 80, 81, 84, 85, 88, 90, 93, 95, 98, 100, 103, 105, 108, 110], "One": [24, 29, 31, 32, 35, 48, 59, 62, 63, 69, 95, 132, 133, 135], "pos_label": [24, 25, 30, 34, 35, 36, 37, 47, 48, 49, 50, 56, 57, 62, 63, 66, 69, 78, 79, 84, 85, 87, 90, 92, 95, 97, 100, 102, 105, 107, 110], "consid": [24, 26, 27, 36, 37, 49, 50, 62, 63, 84, 85, 90, 95, 100, 103, 104, 105, 132], "posit": [24, 25, 29, 30, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 90, 92, 95, 97, 98, 99, 100, 102, 105, 107, 108, 109, 110, 131, 132, 133, 135], "num_class": [24, 26, 29, 31, 36, 37, 38, 39, 49, 50, 51, 52, 58, 59, 61, 62, 63, 67, 69, 80, 81, 84, 85, 88, 90, 93, 95, 98, 100, 103, 105, 108, 110, 131, 132, 135], "decid": [24, 36, 37, 40, 41, 49, 50, 53, 54, 56, 57, 60, 61, 78, 79, 82, 83, 84, 85, 97, 99, 100, 105], "top_k": [24, 26, 27, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110, 133], "probabl": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 80, 81, 82, 84, 85, 93, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 131, 135], "logit": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 72, 80, 81, 82, 84, 85, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110], "top": [24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110], "k": [24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 75, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110, 134], "num_label": [24, 27, 29, 32, 36, 37, 40, 41, 49, 50, 53, 54, 60, 61, 62, 63, 68, 69, 82, 83, 84, 85, 89, 90, 94, 95, 99, 100, 104, 105, 109, 110, 133], "averag": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 131], "micro": [24, 26, 27, 29, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "macro": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "weight": [24, 26, 27, 29, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 133, 134, 135], "calcul": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "global": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "unweight": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "mean": [24, 26, 27, 29, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 131, 132, 133, 135], "imbal": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 119], "account": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 131, 133], "instanc": [24, 26, 27, 31, 32, 36, 37, 38, 39, 40, 41, 43, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 131, 132, 133, 135], "alter": [24, 26, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105], "zero_divis": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 105], "zero": [24, 25, 26, 27, 34, 36, 37, 38, 39, 40, 41, 47, 49, 50, 51, 52, 53, 54, 56, 57, 58, 60, 61, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "divis": [24, 25, 26, 27, 34, 36, 37, 38, 39, 40, 41, 47, 49, 50, 51, 52, 53, 54, 56, 57, 58, 60, 61, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "act": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "pred": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 135], "75": [24, 25, 29, 30, 66, 67, 68, 90, 92, 95, 103, 104, 105, 131, 133], "05": [24, 26, 27, 29, 31, 32, 36, 38, 39, 40, 49, 53, 62, 67, 68, 69, 80, 81, 84, 85, 88, 90, 93, 94, 95, 98, 100, 103, 104, 105, 108, 110, 133], "95": [24, 26, 27, 36, 38, 49, 62, 69, 88, 90, 93, 94, 95], "p": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 133], "zip": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "2": [24, 26, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 56, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 75, 78, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 92, 93, 95, 97, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 121, 130, 131, 132, 133, 135, 136], "3": [24, 26, 27, 29, 31, 34, 35, 36, 37, 38, 39, 40, 47, 49, 50, 51, 52, 53, 56, 58, 59, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 130, 131, 132, 133, 135, 136], "66666667": [24, 26, 36, 38, 49, 51, 61, 63, 81, 85, 87, 88, 90, 93, 94, 95, 98, 100, 104], "initi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 130, 131, 132, 135, 137], "other": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131], "two": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "scalar": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "togeth": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "multipli": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "variabl": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 137], "attributeerror": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "alreadi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 135], "exist": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124], "copi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 133, 135], "abstract": [24, 29, 36, 37, 73, 74, 84, 85, 90, 95, 100, 105, 110], "final": [24, 29, 36, 37, 74, 84, 85, 90, 95, 100, 105, 110, 132, 133, 135], "reset": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "_update_count": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "_comput": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "sigmoid": [25, 35, 41, 66, 68, 69, 102, 104, 107, 109, 110], "them": [25, 104, 131, 132, 135, 136], "875": 25, "problem": [26, 88, 108, 109, 110, 137], "highest": [26, 27, 62, 63, 103, 104], "determin": [26, 27, 29, 30, 31, 32, 66, 67, 68, 87, 88, 89, 90, 92, 93, 94], "dtype": [26, 27, 31, 32, 38, 39, 40, 41, 66, 67, 68, 69, 80, 81, 82, 83, 87, 88, 89, 92, 93, 94, 98, 99, 103, 104, 115, 116, 117, 118, 119, 131, 133], "float64": [26, 27, 31, 32, 38, 39, 40, 41, 66, 67, 68, 69, 80, 81, 82, 83, 87, 88, 89, 92, 93, 94, 98, 99, 103, 104, 115, 116, 117, 118, 119, 133], "binar": [27, 29, 30, 31, 32, 34, 47, 67, 68, 93, 94, 109, 110], "output": [27, 69, 121, 131, 132, 135], "classifi": [27, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 102, 131, 132, 135], "correct": [27, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102, 103, 104], "per": [27, 75, 132, 135], "area": [28, 29, 30, 31, 32, 45, 131, 132, 135], "under": [28, 29, 30, 31, 32, 45, 131, 132, 135], "curv": [28, 29, 30, 31, 32, 45, 64, 65, 66, 67, 68, 69, 86, 87, 88, 89, 90, 92, 93, 94, 95, 131, 132, 135], "max_fpr": [29, 30], "rate": [29, 30, 66, 67, 68, 69, 131, 132, 133, 135], "partial": [29, 30, 133], "auc": 29, "automat": [29, 30, 31, 32, 66, 67, 68, 87, 88, 89, 90, 92, 93, 94], "applic": [29, 111, 112, 114], "4": [29, 30, 34, 35, 36, 37, 40, 47, 50, 59, 63, 69, 82, 83, 84, 85, 87, 88, 90, 92, 93, 94, 95, 99, 100, 105, 107, 108, 109, 110, 130, 131, 132, 133, 135, 136], "35": [29, 30, 69, 87, 92, 95, 103, 104, 105, 131, 132, 133, 134, 135], "9": [29, 30, 31, 32, 34, 36, 37, 38, 39, 40, 41, 49, 50, 53, 54, 56, 60, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 89, 90, 93, 94, 95, 97, 98, 99, 100, 103, 104, 105, 107, 109, 110, 131, 132, 133, 135], "6111111111111112": [29, 30], "89": [29, 31, 32, 69], "06": [29, 31, 69, 133, 135], "94": [29, 31], "22222222": [29, 31], "625": [29, 32, 35, 103], "aucroc": 30, "confus": [30, 31, 32, 87, 88, 89, 92, 93, 94, 135], "matrix": [30, 31, 32, 87, 88, 89, 92, 93, 94, 115, 116, 117, 118, 119, 135], "beta": [33, 35, 37, 39, 41, 46, 48, 50, 52, 54], "f1": [34, 36, 38, 40, 46, 47, 49, 51, 53], "form": [34, 47, 131, 132, 135], "6666666666666666": [34, 36, 47, 56, 78, 84], "harmon": [35, 37, 39, 41, 48, 50, 52, 54, 131, 132, 135], "8333333333333334": [35, 37, 50, 59, 62], "85714286": [36, 38], "9090909090909091": 37, "83333333": [37, 41, 50, 54], "55555556": [37, 50, 103], "90909091": [37, 39, 41], "85": [39, 80, 81, 84, 85, 98, 100, 131, 135], "total": [40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 108, 132, 135], "count": [40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 131, 132, 133, 135], "predicit": 41, "constructor": 43, "arraylik": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 93, 102], "ground": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102], "truth": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102], "npt": [48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63], "7142857142857143": 48, "estim": [49, 50, 66, 67, 68, 69, 93, 102, 123], "shape": [49, 50, 51, 52, 53, 54, 60, 61, 108, 109, 133, 134], "expect": [60, 61, 131, 132, 135], "like": [60, 61, 75, 131], "n": [60, 61, 131, 132, 133], "l": [60, 61], "sampl": [60, 61, 63, 119], "presenc": [60, 61, 133], "absenc": [60, 61], "rest": 61, "ratio": [62, 63, 105, 135], "correctli": [62, 131, 132, 133, 135], "observ": [62, 131, 135, 137], "precision_scor": 62, "tp": [63, 107, 108, 109, 133, 135], "fn": [63, 107, 108, 109, 133, 135], "intuit": 63, "abil": [63, 131, 132, 135], "recall_scor": 63, "3333333333333333": 63, "receiv": [65, 131, 132, 135], "characterist": [65, 131, 132, 135], "decis": [66, 67, 68, 69, 93, 121, 131, 132, 135], "fpr": [66, 67, 68, 69, 131, 132, 135], "tpr": [66, 67, 68, 69], "25": [66, 67, 68, 88, 90, 92, 93, 95, 105, 116, 117, 131, 132, 134, 135], "softmax": [67, 69, 93], "1d": [67, 68, 69, 95], "33333333": [67, 85, 88, 90, 93, 94, 95, 100], "non": 69, "thei": 69, "evenli": [69, 95], "space": [69, 95], "increas": [69, 95], "assertionerror": [69, 121], "03": [69, 132], "stat": [72, 106, 107, 108, 109, 110], "abc": 74, "properti": [74, 110, 123, 124], "other_metr": 75, "prefix": 75, "postfix": 75, "userdict": 75, "collect": [75, 131, 137], "want": 75, "behav": 75, "themselv": 75, "intern": 75, "similar": 75, "reduc": 75, "els": [75, 131, 133, 134], "keep_bas": 75, "iter": 75, "underli": 75, "moduledict": 75, "hashabl": 75, "v": 75, "correspond": [75, 123, 124], "found": [75, 121, 131], "keyerror": [75, 121], "some": [75, 131, 132, 135], "pair": 75, "present": 75, "lack": 75, "metric_a": 76, "metric_b": 76, "metric1": 76, "metric2": 76, "unari": 76, "appropri": [84, 85, 100, 131, 132, 135], "375": [88, 90], "suniqu": 90, "45": [90, 105, 131, 132, 133, 135], "42857143": 90, "15": [103, 104, 105, 131, 132, 133, 135], "57142857": 103, "sum": [105, 108, 109, 110, 132, 133, 135], "_abstractscor": [107, 108, 109], "fp": [107, 108, 109, 133, 135], "tn": [107, 108, 109, 133, 135], "classwis": [108, 110], "over": [108, 109, 110, 130, 132, 133, 135, 137], "labelwis": [109, 110, 133], "prior": [110, 131], "modul": [111, 120, 121, 131, 132, 135], "shift_typ": [112, 114], "shift_id": [112, 134], "induc": [112, 114], "synthet": [112, 114, 121, 130, 135, 136, 137], "categor": [112, 131, 132, 135], "origin": 112, "util": [112, 131, 132, 133, 135], "load_nih": 112, "mnt": [112, 133, 134], "nihcxr": [112, 130, 133, 136], "hospital_type_1": 112, "hospital_type_2": 112, "hospital_type_3": 112, "hospital_type_4": 112, "hospital_type_5": 112, "ds_sourc": [112, 134], "ds_target": [112, 134], "num_proc": [112, 134], "process": [112, 130, 131, 133, 135, 137], "build": 112, "hospit": [112, 131, 132, 135, 137], "drift_detect": 114, "experiment": 114, "sklearn": [114, 131, 132, 135], "load_diabet": 114, "y": [114, 116, 117, 119, 123, 131, 132, 133, 135], "return_x_i": 114, "x_tr": 114, "x_te": 114, "y_tr": 114, "y_te": 114, "train_test_split": [114, 131, 132, 135], "test_siz": 114, "random_st": [114, 131, 132, 135], "42": [114, 131, 132, 134, 135], "gn_shift": 114, "x_shift": 114, "x_train": [114, 123], "noise_amt": [114, 118], "delta": [114, 115, 118, 119], "ko_shift": 114, "cp_shift": 114, "mfa_shift": 114, "bn_shift": 114, "tolerance_shift": 114, "ds_shift": 114, "nois": [114, 115, 118], "ad": [114, 121, 123, 124, 131, 132, 135], "prob": 115, "covari": [115, 116, 117, 118, 119], "proport": [115, 131, 132, 133, 135], "fraction": [115, 118, 119, 135], "affect": [115, 118, 121, 131, 132, 135], "n_shuffl": [116, 117], "keep_rows_const": 116, "repermute_each_column": 116, "multiwai": 116, "associ": [116, 131, 132, 133, 135], "swap": [116, 117], "individu": [116, 131, 132, 135], "within": [116, 132], "cl": [116, 117], "etc": [116, 117, 131, 132, 133, 135], "floatnumpi": 116, "shuffl": [116, 117, 131], "permut": 116, "placehold": 116, "shift_class": [117, 119], "rank": 117, "changepoint": 117, "axi": [117, 132, 135], "x_ref": 117, "y_ref": 117, "normal": [118, 131, 132, 135], "clip": [118, 131, 132, 135], "gaussian": 118, "standard": [118, 131, 132, 135], "deviat": 118, "divid": 118, "255": [118, 133, 134], "placehol": 119, "output_dir": [121, 131, 132, 135], "serv": 121, "interfac": 121, "popul": [121, 130, 131, 132, 135, 137], "modelcard": 121, "directori": [121, 131, 132, 135], "save": [121, 123, 124, 131, 132, 135], "output_filenam": [121, 131, 132, 133, 135], "template_path": 121, "interact": [121, 132, 135], "save_json": 121, "synthetic_timestamp": [121, 131, 132, 133, 135], "date": [121, 131, 132, 135], "jinja2": 121, "json": [121, 131, 132, 135], "timestamp": [121, 130, 132, 133, 136], "back": 121, "classmethod": 121, "cyclops_report": [121, 131, 132, 135], "section_nam": [121, 131, 132, 133, 135], "model_detail": [121, 131, 132, 135], "repres": [121, 133], "bibtex": 121, "entri": 121, "plain": 121, "text": [121, 133], "descript": [121, 131, 132, 133, 135], "license_id": [121, 131], "sensitive_featur": [121, 131], "sensitive_feature_justif": [121, 131], "inform": [121, 131], "about": [121, 131, 132, 133, 135], "resourc": [121, 131, 132, 135], "context": 121, "homepag": 121, "spdx": [121, 131], "identifi": [121, 130, 133, 137], "licens": [121, 131, 132, 133, 135], "apach": [121, 131, 132, 135], "unknown": 121, "unlicens": 121, "proprietari": 121, "justif": [121, 131], "field": [121, 130, 131, 132, 135, 137], "descriptor": 121, "new": [121, 131, 132, 135], "pydant": 121, "basemodel": 121, "subclass": 121, "As": 121, "long": 121, "conflict": 121, "defin": [121, 131, 132, 133, 135], "model_card": 121, "cylop": 121, "tradeoff": [121, 133], "trade": 121, "off": 121, "interpret": 121, "consider": [121, 131, 132, 133, 135], "affected_group": [121, 131, 132, 133, 135], "benefit": [121, 131, 132, 133, 135], "harm": [121, 131, 132, 133, 135], "mitigation_strategi": [121, 131, 132, 133, 135], "assess": 121, "mitig": [121, 131, 132, 133, 135], "strategi": [121, 131, 132, 133, 135], "relat": 121, "img_path": 121, "caption": [121, 131, 132, 133, 135], "full": 121, "whole": [121, 131, 132, 135], "left": [121, 135], "blank": 121, "instead": 121, "param": [121, 131, 132, 135], "contact": [121, 131, 132, 133, 135], "role": 121, "owner": [121, 131, 132, 133, 135], "quantit": [121, 131, 132, 133, 135], "slash": 121, "fig": [121, 131, 132, 133, 135], "plotli": [121, 131, 132, 133, 135], "figur": [121, 131, 132, 135], "plot": [121, 131, 132, 133, 135], "analysis_typ": 121, "metric_slic": [121, 131, 132, 133, 135], "decision_threshold": 121, "pass_fail_threshold": [121, 131, 132, 133, 135], "pass_fail_threshold_fn": [121, 131, 132, 133, 135], "explain": 121, "fail": 121, "regul": 121, "regulatori": [121, 131, 132, 135], "compli": 121, "risk": [121, 131, 132, 133, 135, 137], "kind": [121, 131, 132, 133, 135], "primari": [121, 131, 132, 133, 135], "scope": [121, 131, 132, 135], "usecas": 121, "version_str": [121, 131, 132, 135], "semant": 121, "v1": 121, "dt_date": 121, "dt_datetim": 121, "unix": 121, "yyyi": 121, "mm": 121, "dd": 121, "hh": 121, "ss": 121, "ffffff": 121, "z": 121, "summar": 121, "chang": [121, 131, 132, 133, 135], "made": [121, 131, 132, 135], "task_featur": [123, 124, 131, 132, 135], "task_target": [123, 124, 131, 132, 135], "basetask": [123, 124], "ptmodel": [123, 124, 133], "skmodel": [123, 124], "wrappedmodel": [123, 124], "model_nam": [123, 124, 131, 132, 133, 134, 135], "prediction_column_prefix": [123, 124, 131, 132, 135], "splits_map": [123, 124], "fit": [123, 131, 132, 135], "columntransform": [123, 131, 132, 135], "slicingconfig": 123, "default_max_batch_s": 123, "unnecessari": [123, 124], "filepath": [123, 124], "pretrain": [123, 124, 133], "proba": [123, 131, 132, 135], "mortal": [123, 130], "pd": [123, 132], "datafram": [123, 131, 132, 135], "notfittederror": 123, "destin": [123, 124], "parent": [123, 124], "dirctori": [123, 124], "best_model_param": [123, 131, 132, 135], "y_train": 123, "pipelin": [123, 131, 132, 135], "best": [123, 131, 132, 135], "64": [124, 132, 135], "compos": [124, 131, 132, 133, 134, 135], "pathologi": [124, 130, 131, 137], "represent": [124, 131, 132, 135], "packag": [125, 126, 127, 128, 129, 131, 132, 133, 135], "kaggl": [130, 131], "heart": 130, "failur": 130, "constant": [130, 137], "distribut": [130, 133, 137], "outcom": [130, 137], "preprocessor": [130, 137], "creation": [130, 137], "mimiciv": [130, 132], "queri": [130, 137], "inspect": [130, 131, 137], "preprocess": [130, 131, 137], "drop": [130, 131, 137], "nan_threshold": [130, 131, 137], "gender": [130, 131, 133, 134, 137], "synthea": [130, 135], "prolong": [130, 132], "length": [130, 132, 133], "stai": [130, 132], "diseas": [130, 131, 137], "histor": [130, 131, 137], "period": [130, 137], "w": [130, 137], "drift": [130, 136], "experi": [130, 136], "dimension": [130, 136], "reduct": [130, 136], "techniqu": [130, 136], "roll": [130, 136], "window": [130, 136], "biweekli": [130, 136], "showcas": [131, 132, 135, 137], "patient": [131, 132, 133, 134, 135, 137], "shutil": [131, 132, 133, 135], "express": [131, 132, 133, 135], "px": [131, 132, 133, 135], "kaggle_api_extend": 131, "kaggleapi": 131, "imput": [131, 132, 135], "simpleimput": [131, 132, 135], "minmaxscal": [131, 132, 135], "onehotencod": [131, 132, 135], "df": [131, 132, 135], "tabularfeatur": [131, 132, 135], "noqa": [131, 132, 133, 135], "e402": [131, 132, 133, 135], "catalog": [131, 132, 135], "create_model": [131, 132, 135], "classificationplott": [131, 132, 135], "flatten_results_dict": [131, 132, 135], "join": [131, 132, 135], "load_datafram": 131, "offer": [131, 132, 133, 135], "document": [131, 132, 133, 135], "through": [131, 132, 133, 135], "overview": [131, 132, 133, 135], "how": [131, 132, 133, 135], "quick": [131, 132, 133, 135], "glanc": [131, 132, 133, 135], "sever": [131, 132, 133, 135], "subgroup": [131, 132, 133, 135], "statist": [131, 132, 133, 135, 136], "subpopul": [131, 132, 133, 135], "technic": [131, 132, 133, 135], "architectur": [131, 132, 133, 135], "involv": [131, 132, 133, 135], "intend": [131, 132, 133, 135], "go": [131, 132, 133, 135], "tool": [131, 132, 133, 135], "progress": [131, 132, 133, 135], "subject": [131, 132, 133, 135], "data_dir": [131, 133], "random_se": [131, 132, 135], "train_siz": [131, 132, 135], "sign": [131, 135], "com": [131, 133], "Then": 131, "profil": [131, 132, 135], "usernam": 131, "trigger": 131, "download": 131, "credenti": 131, "place": 131, "locat": 131, "machin": [131, 133], "authent": 131, "dataset_download_fil": 131, "fedesoriano": 131, "unzip": 131, "csv": [131, 135], "file_format": 131, "reset_index": [131, 132, 135], "index": [131, 132, 133, 135], "2023": [131, 132, 133, 135], "11": [131, 132, 133, 135, 137], "29": [131, 132, 135], "09": [131, 132, 133, 135], "17": [131, 132, 135], "22": [131, 132, 133, 135], "135": 131, "chestpaintyp": 131, "restingbp": 131, "cholesterol": 131, "fastingb": 131, "restingecg": 131, "40": [131, 132, 133, 135], "ata": 131, "140": 131, "289": 131, "49": [131, 133, 135], "nap": 131, "160": 131, "180": 131, "37": [131, 132, 135], "130": 131, "283": 131, "st": 131, "48": [131, 135], "asi": 131, "138": 131, "214": 131, "54": 131, "150": 131, "195": 131, "913": 131, "ta": 131, "110": 131, "264": 131, "914": 131, "68": 131, "144": 131, "193": 131, "915": 131, "57": 131, "131": 131, "916": 131, "236": 131, "lvh": 131, "917": 131, "38": [131, 132, 135], "175": 131, "maxhr": 131, "exerciseangina": 131, "oldpeak": 131, "st_slope": 131, "heartdiseas": 131, "172": [131, 135], "156": 131, "flat": 131, "98": [131, 133], "108": 131, "122": 131, "132": 131, "141": 131, "115": 131, "174": 131, "173": 131, "918": 131, "13": [131, 132, 133, 135], "pie": [131, 132, 133, 135], "update_layout": [131, 132, 133, 135], "histogram": [131, 132, 133, 135], "xaxis_titl": [131, 132, 133, 135], "yaxis_titl": [131, 132, 133, 135], "bargap": [131, 132, 133, 135], "astyp": [131, 132, 135], "update_trac": [131, 132, 133, 135], "textinfo": [131, 132, 135], "percent": [131, 132, 135], "title_text": [131, 132, 135], "hovertempl": [131, 132, 135], "br": [131, 132, 135], "class_count": [131, 132, 135], "value_count": [131, 132, 135], "class_ratio": [131, 132, 135], "8070866141732284": 131, "14": [131, 132, 133, 135, 137], "39": [131, 132, 133, 135], "20": [131, 132, 133, 135], "wa": [131, 132, 133, 135], "li": 131, "et": 131, "al": 131, "most": 131, "features_list": [131, 132, 135], "sort": [131, 132, 135], "help": [131, 132, 133, 135], "essenti": [131, 132, 135], "step": [131, 132, 135], "understand": [131, 132, 135], "u": [131, 132, 135], "16": [131, 132, 133, 135], "tab_featur": [131, 132, 135], "ordin": [131, 132, 135], "might": [131, 132, 135], "numeric_transform": [131, 132, 135], "scaler": [131, 132, 135], "binary_transform": [131, 132, 135], "most_frequ": [131, 132, 135], "18": [131, 132, 133, 134, 135], "numeric_featur": [131, 132, 135], "features_by_typ": [131, 132, 135], "numeric_indic": [131, 132, 135], "get_loc": [131, 132, 135], "19": [131, 132, 133, 135], "binary_featur": [131, 132, 135], "ordinal_featur": [131, 132], "binary_indic": [131, 132, 135], "ordinal_indic": [131, 132], "num": [131, 132, 135], "onehot": [131, 132, 135], "handle_unknown": [131, 132, 135], "remaind": [131, 132, 135], "passthrough": [131, 132, 135], "let": [131, 132, 135], "done": [131, 132, 135], "21": [131, 132, 135], "independ": 131, "everi": 131, "uci": 131, "archiv": 131, "ic": 131, "edu": 131, "databas": [131, 132, 135], "cleandoc": 131, "misc": 131, "cc0": 131, "demograph": [131, 133], "often": 131, "strong": 131, "correl": 131, "older": [131, 132, 135], "higher": 131, "panda": [131, 132, 135], "power": [131, 132, 135], "easi": [131, 132, 135], "compat": [131, 132, 135], "from_panda": [131, 132, 135], "cleanup_cache_fil": [131, 132, 135], "num_row": 131, "cast_column": [131, 132, 135], "stratify_by_column": [131, 132, 135], "seed": [131, 132, 133, 134, 135], "straightforward": [131, 132, 135], "maintain": [131, 132, 135], "instanti": [131, 132, 135], "line": [131, 132, 135], "sgd": 131, "logisit": [131, 132, 135], "regress": [131, 132, 135], "sgdclassif": 131, "24": [131, 132, 135], "sgd_classifi": 131, "123": [131, 132, 135], "verbos": [131, 132, 135], "class_weight": 131, "balanc": 131, "encapsul": [131, 132, 135], "cohes": [131, 132, 135], "structur": [131, 132, 135], "smooth": [131, 132, 135], "manag": [131, 132, 135], "heart_failure_prediction_task": 131, "26": [131, 132, 135], "hyperparamet": [131, 132, 135], "search": [131, 132, 135], "grid": [131, 132, 135], "27": [131, 132, 135], "alpha": 131, "0001": 131, "001": 131, "100": [131, 132, 133, 135], "learning_r": [131, 132, 135], "invscal": 131, "adapt": 131, "eta0": 131, "roc_auc": 131, "28": [131, 132, 133, 135], "925": 131, "wrapper": [131, 132, 133, 135], "sk_model": [131, 132, 135], "926": 131, "927": 131, "sgdclassifi": 131, "x27": [131, 132, 135], "early_stop": 131, "loss": 131, "log_loss": 131, "rerun": [131, 132, 135], "cell": [131, 132, 135], "trust": [131, 132, 135], "On": [131, 132, 133, 135], "github": [131, 132, 133, 135], "unabl": [131, 132, 135], "render": [131, 132, 135], "try": [131, 132, 135], "page": [131, 132, 135], "nbviewer": [131, 132, 135], "sgdclassifiersgdclassifi": 131, "model_param": [131, 132, 135], "epsilon": 131, "fit_intercept": 131, "l1_ratio": 131, "max_it": 131, "n_iter_no_chang": 131, "n_job": [131, 132, 135], "penalti": 131, "l2": 131, "power_t": 131, "tol": 131, "validation_fract": 131, "warm_start": 131, "30": [131, 132, 133, 135, 137], "y_pred": [131, 132, 135], "only_predict": [131, 132, 135], "len": [131, 132, 133, 135], "184": 131, "variou": [131, 132, 135], "perspect": [131, 132, 135], "metric_collect": [131, 132, 135], "certain": [131, 132, 135], "70": [131, 133], "33": [131, 132, 133, 135], "fnr": [131, 132, 135], "ber": [131, 132, 135], "fairness_metric_collect": [131, 132, 135], "34": [131, 132, 133, 135], "dataset_with_pr": [131, 132, 135], "36": [131, 132, 135], "results_femal": 131, "_": [131, 135], "right": [131, 132, 135], "model_for_pr": [131, 132, 135], "results_flat": [131, 132, 133, 135], "remove_metr": [131, 132, 135], "results_female_flat": 131, "plw2901": [131, 132, 133, 135], "actual": [131, 132, 133, 135], "known": [131, 132, 133, 135], "measur": [131, 132, 135], "lambda": [131, 132, 133, 134, 135], "plotter": [131, 132, 134, 135], "class_nam": [131, 132, 135], "set_templ": [131, 132, 135], "plotly_whit": [131, 132, 135], "extract": [131, 132, 135], "slice_result": [131, 132, 135], "dict_kei": [131, 132, 135], "roc_plot": [131, 132, 135], "roc_curve_comparison": [131, 132, 135], "femal": [131, 132, 133, 134, 135], "41": [131, 132, 135], "overall_perform": [131, 132, 135], "metric_valu": [131, 132, 135], "overall_performance_plot": [131, 132, 135], "metrics_valu": [131, 132, 135], "43": [131, 132, 133, 135], "slice_metr": [131, 132, 135], "44": [131, 132, 133, 135], "slice_metrics_plot": [131, 132, 135], "metrics_comparison_bar": [131, 132, 135], "comparison": [131, 132, 133, 135], "reform": [131, 132, 135], "fairness_result": [131, 132, 135], "deepcopi": [131, 132, 135], "fairness_metr": [131, 132, 135], "group_siz": [131, 132, 135], "46": [131, 132, 133, 135], "fairness_plot": [131, 132, 135], "metrics_comparison_scatt": [131, 132, 135], "leverag": 131, "get_metrics_trend": 131, "gather": 131, "merg": [131, 132, 135], "recent": 131, "wish": 131, "metrics_trend": 131, "purpos": 131, "three": 131, "dummi": 131, "demonstr": [131, 137], "trend": 131, "audienc": [131, 132, 135], "organ": [131, 132, 135], "store": [131, 132, 135], "regulatory_requir": [131, 132, 135], "47": [131, 132, 135], "todai": [131, 132, 135], "releas": [131, 132, 135], "team": [131, 132, 135], "vectorinstitut": [131, 132, 135], "io": [131, 132, 135], "email": [131, 132, 133, 135], "ai": [131, 132, 135], "linear_model": 131, "e501": [131, 132, 135], "next": [131, 132, 135], "use_cas": [131, 132, 135], "These": [131, 132, 135], "could": [131, 132, 135], "downstream": [131, 132, 135], "fairness_assess": [131, 132, 135], "well": [131, 132, 133, 135], "taken": [131, 132, 135], "ethical_consider": [131, 132, 135], "clinician": [131, 132, 135], "engin": [131, 132, 135], "condit": 131, "improv": [131, 132, 135], "bias": [131, 132, 133, 135], "lead": [131, 132, 135], "wors": [131, 132, 135], "retrain": [131, 132, 135], "By": [131, 132, 135], "folder": [131, 132, 135], "_model_card": [131, 132, 135], "report_path": [131, 132, 133, 135], "heart_failure_report_period": 131, "metric_sav": 131, "quantitative_analysi": [131, 132, 135], "performance_metr": [131, 132, 135], "append": [131, 135], "random": [131, 132, 134, 135], "rmtree": [131, 132, 135], "view": [131, 132, 133, 135, 137], "die": 132, "admiss": 132, "cycqueri": [132, 135], "op": [132, 135], "qo": [132, 135], "graph_object": [132, 135], "mimicivqueri": 132, "aggreg": 132, "restrict_timestamp": 132, "clean": 132, "normalize_nam": 132, "add_years_approxim": 132, "deathtim": 132, "lab": [132, 133], "event": 132, "querier": [132, 135], "dbm": [132, 135], "postgresql": [132, 135], "port": [132, 135], "5432": [132, 135], "host": [132, 135], "localhost": [132, 135], "postgr": [132, 135], "password": [132, 135], "pwd": [132, 135], "def": [132, 133, 135], "get_encount": [132, 135], "mimiciv_hosp": 132, "drop_op": 132, "insur": 132, "languag": 132, "marital_statu": 132, "edregtim": 132, "edouttim": 132, "patient_encount": [132, 135], "subject_id": 132, "admittim": 132, "dt": 132, "anchor_year": 132, "anchor_ag": 132, "col": 132, "dischtim": 132, "anchor_year_differ": 132, "hadm_id": 132, "admission_loc": 132, "hospital_expire_flag": 132, "compute_mortality_outcom": 132, "death": 132, "invalid": 132, "isna": 132, "shorter": 132, "di": 132, "mortality_outcom": 132, "get_labev": 132, "labev": 132, "index_col": 132, "batch_mod": 132, "process_labev": 132, "revers": 132, "deidentifi": 132, "charttim": 132, "categori": [132, 135], "start_timestamp": 132, "set_index": 132, "renam": [132, 135], "mean_aggreg": 132, "aggfunc": [132, 135], "valuenum": 132, "window_dur": 132, "timestamp_col": 132, "time_bi": 132, "agg_bi": 132, "means_df": 132, "batch_num": 132, "labevents_batch": 132, "enumer": [132, 133], "aggregate_valu": 132, "window_start_tim": 132, "pivot": 132, "add_prefix": [132, 135], "lab_": 132, "concat": 132, "break": 132, "run_queri": [132, 135], "cohort": [132, 135], "862": 132, "orm": [132, 135], "readi": [132, 135], "656": 132, "successfulli": [132, 135], "657": 132, "finish": [132, 135], "execut": [132, 135], "768326": 132, "105518": 132, "5925": 132, "520": 132, "522": 132, "155576": 132, "null_count": [132, 135], "isnul": [132, 135], "bar": [132, 133, 135], "height": [132, 133], "600": [132, 133], "respect": [132, 135], "larger": [132, 135], "thresh_nan": [132, 135], "dropna": [132, 135], "thresh": [132, 135], "heavili": 132, "unbalanc": 132, "55": 132, "36758893280632": 132, "tolist": 132, "lab_platelet": 132, "lab_pt": 132, "lab_r": 132, "blood": [132, 135], "lab_ptt": 132, "lab_potassium": 132, "lab_calcium": 132, "lab_aspar": 132, "aminotransferas": [132, 135], "ast": 132, "lab_inr": 132, "pt": 132, "lab_ph": 132, "lab_alanin": 132, "alt": 132, "lab_mcv": 132, "lab_rdw": 132, "sd": 132, "lab_bicarbon": 132, "lab_mchc": 132, "lab_anion": 132, "gap": 132, "lab_whit": 132, "lab_l": 132, "lab_i": 132, "lab_hemoglobin": 132, "lab_magnesium": 132, "lab_phosph": 132, "lab_mch": 132, "lab_bilirubin": 132, "lab_alkalin": 132, "phosphatas": [132, 135], "lab_chlorid": 132, "lab_urea": 132, "nitrogen": [132, 135], "lab_creatinin": 132, "lab_glucos": 132, "lab_hematocrit": 132, "lab_h": 132, "lab_sodium": 132, "xgbclassif": [132, 135], "xgb_classifi": [132, 135], "mortality_task": 132, "n_estim": [132, 135], "250": [132, 135], "500": [132, 135], "max_depth": [132, 135], "reg_lambda": [132, 135], "colsample_bytre": [132, 135], "gamma": [132, 135], "103": 132, "104": 132, "105": 132, "106": 132, "xgbclassifi": [132, 135], "base_scor": [132, 135], "booster": [132, 135], "callback": [132, 135], "colsample_bylevel": [132, 135], "colsample_bynod": [132, 135], "early_stopping_round": [132, 135], "enable_categor": [132, 135], "eval_metr": [132, 135], "logloss": [132, 135], "feature_typ": [132, 135], "gpu_id": [132, 135], "grow_polici": [132, 135], "importance_typ": [132, 135], "interaction_constraint": [132, 135], "max_bin": [132, 135], "max_cat_threshold": [132, 135], "max_cat_to_onehot": [132, 135], "max_delta_step": [132, 135], "max_leav": [132, 135], "min_child_weight": [132, 135], "miss": [132, 135], "monotone_constraint": [132, 135], "num_parallel_tre": [132, 135], "predictor": [132, 135], "xgbclassifierxgbclassifi": [132, 135], "logist": [132, 135], "use_label_encod": [132, 135], "reg_alpha": [132, 135], "sampling_method": [132, 135], "scale_pos_weight": [132, 135], "subsampl": [132, 135], "tree_method": [132, 135], "validate_paramet": [132, 135], "2853": 132, "80": [132, 133, 135], "readthedoc": [132, 135], "en": [132, 135], "python_api": [132, 135], "mortality_report_period": 132, "functool": 133, "densenet": [133, 134], "loader": [133, 134], "load_nihcxr": [133, 134], "lambdad": [133, 134], "resiz": [133, 134], "apply_transform": 133, "generate_nihcxr_report": 133, "py": 133, "53": 133, "lt": [133, 134], "84": 133, "543374": 133, "238055": 133, "74": 133, "400": 133, "1797": 133, "56": 133, "gt": [133, 134], "43661": 133, "43702": 133, "46045": 133, "71": 133, "41547": 133, "65": [133, 134], "42940": 133, "40465": 133, "amp": 133, "46872": 133, "90": 133, "553849": 133, "73": [133, 135], "237691": 133, "396": 133, "1795": 133, "43594": 133, "43577": 133, "41511": 133, "36106": 133, "42604": 133, "38818": 133, "46483": 133, "81": 133, "556126": 133, "242669": 133, "383": 133, "1809": 133, "86": 133, "39151": 133, "43045": 133, "59": 133, "45120": 133, "40864": 133, "41867": 133, "61": 133, "41341": 133, "45036": 133, "82": 133, "72": 133, "552318": 133, "238217": 133, "411": 133, "1834": 133, "41788": 133, "43529": 133, "46018": 133, "66": 133, "42057": 133, "42661": 133, "42489": 133, "93": 133, "46849": 133, "clinical_dataset": [133, 134], "nih_d": [133, 134], "spatial_s": [133, 134], "224": [133, 134], "allow_missing_kei": [133, 134], "func": [133, 134], "1024": [133, 134], "newaxi": [133, 134], "densenet121": [133, 134], "res224": [133, 134], "feature_column": [133, 134], "No": 133, "adjust": 133, "int64": 133, "originalimag": 133, "width": [133, 135], "originalimagepixelspac": 133, "unnam": 133, "atelectasi": 133, "float32": 133, "cardiomegali": 133, "consolid": 133, "edema": 133, "effus": 133, "emphysema": 133, "fibrosi": 133, "hernia": 133, "infiltr": 133, "mass": [133, 135], "nodul": 133, "pleural_thicken": 133, "pneumonia": 133, "pneumothorax": 133, "__index_level_0__": 133, "multilabelpositivepredictivevalu": 133, "registry_kei": 133, "positive_predictive_valu": 133, "super": 133, "overrid": 133, "_final_st": 133, "multilabelnegativepredictivevalu": 133, "negative_predictive_valu": 133, "ppv": 133, "npv": 133, "nih_eval_results_gend": 133, "nih_eval_results_ag": 133, "male": [133, 134], "1200": 133, "showlegend": 133, "slice_": 133, "model_for_predict": 133, "itr": 133, "among": 133, "112": [133, 137], "120": [133, 137], "frontal": [133, 137], "805": [133, 137], "fourteen": 133, "mine": 133, "radiolog": 133, "pleural": 133, "thicken": 133, "remain": 133, "arxiv": 133, "ab": 133, "2111": 133, "00595": 133, "inproceed": 133, "cohen2022xrv": 133, "cohen": 133, "joseph": 133, "paul": 133, "viviano": 133, "bertin": 133, "morrison": 133, "torabian": 133, "parsa": 133, "guarrera": 133, "matteo": 133, "lungren": 133, "matthew": 133, "chaudhari": 133, "akshai": 133, "brook": 133, "rupert": 133, "hashir": 133, "mohammad": 133, "bertrand": 133, "hadrien": 133, "booktitl": 133, "deep": 133, "mlmed": 133, "arxivid": 133, "cohen2020limit": 133, "cross": 133, "domain": 133, "autom": [133, 135], "2002": 133, "02497": 133, "medicin": 133, "josephpcohen": 133, "radiologist": 133, "scientist": 133, "inabl": 133, "addition": 133, "poor": 133, "qualiti": 133, "artifact": 133, "geograph": 133, "region": 133, "ethic": 133, "ensur": 133, "divers": 133, "regularli": 133, "human": 133, "expertis": 133, "address": 133, "rare": 133, "nihcxr_report_period": 133, "detector": 134, "reductor": 134, "tstester": 134, "plot_drift_experi": 134, "plot_drift_timeseri": 134, "manual_se": 134, "_c": 134, "0x7f322d596f70": 134, "shifter": 134, "source_d": 134, "target_d": 134, "dr_method": 134, "bbse": 134, "soft": 134, "txrv": 134, "ae": 134, "sensitivity_test": 134, "tester": 134, "tester_method": 134, "source_sample_s": 134, "target_sample_s": 134, "num_run": 134, "detect_shift": 134, "chexpert": 134, "chex": 134, "padchest": 134, "pc": 134, "source_slic": 134, "target_slic": 134, "rolling_window_drift": 134, "timestamp_column": 134, "window_s": 134, "4w": 134, "longer": 135, "v3": 135, "instruct": 135, "etl": 135, "datasetqueri": 135, "num_dai": 135, "synthea_demo": 135, "nativ": 135, "sequenti": 135, "patient_id": 135, "birthdat": 135, "race": 135, "ethnic": 135, "isout": 135, "encounter_id": 135, "extracttimestampcompon": 135, "start_year": 135, "birthdate_year": 135, "addcolumn": 135, "new_col_label": 135, "stop": 135, "lo": 135, "conditiongreaterthan": 135, "conditionlessthan": 135, "get_observ": 135, "conditionin": 135, "vital": 135, "conditionequ": 135, "groupby_op": 135, "groupbyaggreg": 135, "n_ob": 135, "observations_count": 135, "observations_stat": 135, "pivot_t": 135, "max": 135, "obs_": 135, "get_med": 135, "n_med": 135, "get_procedur": 135, "procedur": [135, 137], "n_procedur": 135, "cohort_queri": 135, "to_merg": 135, "extend": 135, "to_merge_df": 135, "994": 135, "251": 135, "746726": 135, "026": 135, "027": 135, "774474": 135, "566": 135, "568": 135, "397723": 135, "062": 135, "063": 135, "489374": 135, "171": 135, "107587": 135, "length_of_stai": 135, "length_of_stay_count": 135, "length_of_stay_kei": 135, "5573997233748271": 135, "obs_alanin": 135, "enzymat": 135, "volum": 135, "serum": 135, "plasma": 135, "obs_albumin": 135, "obs_alkalin": 135, "obs_aspart": 135, "obs_bilirubin": 135, "obs_bodi": 135, "obs_calcium": 135, "obs_carbon": 135, "dioxid": 135, "mole": 135, "obs_chlorid": 135, "obs_creatinin": 135, "obs_diastol": 135, "pressur": 135, "obs_erythrocyt": 135, "obs_ferritin": 135, "obs_glomerular": 135, "filtrat": 135, "sq": 135, "obs_glucos": 135, "obs_hematocrit": 135, "obs_hemoglobin": 135, "obs_leukocyt": 135, "obs_mch": 135, "entit": 135, "obs_mchc": 135, "obs_mcv": 135, "obs_oxygen": 135, "satur": 135, "arteri": 135, "obs_platelet": 135, "obs_potassium": 135, "obs_protein": 135, "obs_sodium": 135, "obs_systol": 135, "obs_troponin": 135, "cardiac": 135, "obs_urea": 135, "los_task": 135, "479": 135, "480": 135, "481": 135, "482": 135, "483": 135, "226": 135, "confusion_matrix": 135, "conf_plot": 135, "plot_confusion_matrix": 135, "length_of_stay_report_period": 135, "goal": 137, "ehr": 137, "site": 137, "icu": 137}, "objects": {"cyclops": [[125, 0, 0, "-", "data"], [126, 0, 0, "-", "evaluate"], [127, 0, 0, "-", "monitor"], [128, 0, 0, "-", "report"], [129, 0, 0, "-", "tasks"]], "cyclops.data": [[125, 0, 0, "-", "features"], [6, 0, 0, "-", "slicer"]], "cyclops.data.features": [[4, 0, 0, "-", "medical_image"]], "cyclops.data.features.medical_image": [[5, 1, 1, "", "MedicalImage"]], "cyclops.data.features.medical_image.MedicalImage": [[5, 2, 1, "", "__call__"], [5, 2, 1, "", "cast_storage"], [5, 2, 1, "", "decode_example"], [5, 2, 1, "", "embed_storage"], [5, 2, 1, "", "encode_example"], [5, 2, 1, "", "flatten"]], "cyclops.data.slicer": [[7, 1, 1, "", "SliceSpec"], [8, 4, 1, "", "compound_filter"], [9, 4, 1, "", "filter_datetime"], [10, 4, 1, "", "filter_non_null"], [11, 4, 1, "", "filter_range"], [12, 4, 1, "", "filter_string_contains"], [13, 4, 1, "", "filter_value"], [14, 4, 1, "", "is_datetime"], [15, 4, 1, "", "overall"]], "cyclops.data.slicer.SliceSpec": [[7, 3, 1, "", "_registry"], [7, 2, 1, "", "add_slice_spec"], [7, 3, 1, "", "column_names"], [7, 2, 1, "", "get_slices"], [7, 3, 1, "", "include_overall"], [7, 2, 1, "", "slices"], [7, 3, 1, "", "spec_list"], [7, 3, 1, "", "validate"]], "cyclops.evaluate": [[16, 0, 0, "-", "evaluator"], [126, 0, 0, "-", "fairness"], [126, 0, 0, "-", "metrics"]], "cyclops.evaluate.evaluator": [[17, 4, 1, "", "evaluate"]], "cyclops.evaluate.fairness": [[18, 0, 0, "-", "config"], [20, 0, 0, "-", "evaluator"]], "cyclops.evaluate.fairness.config": [[19, 1, 1, "", "FairnessConfig"]], "cyclops.evaluate.fairness.evaluator": [[21, 4, 1, "", "evaluate_fairness"], [22, 4, 1, "", "warn_too_many_unique_values"]], "cyclops.evaluate.metrics": [[23, 0, 0, "-", "accuracy"], [28, 0, 0, "-", "auroc"], [33, 0, 0, "-", "f_beta"], [42, 0, 0, "-", "factory"], [126, 0, 0, "-", "functional"], [73, 0, 0, "-", "metric"], [77, 0, 0, "-", "precision_recall"], [86, 0, 0, "-", "precision_recall_curve"], [91, 0, 0, "-", "roc"], [96, 0, 0, "-", "sensitivity"], [101, 0, 0, "-", "specificity"], [106, 0, 0, "-", "stat_scores"]], "cyclops.evaluate.metrics.accuracy": [[24, 1, 1, "", "Accuracy"], [25, 1, 1, "", "BinaryAccuracy"], [26, 1, 1, "", "MulticlassAccuracy"], [27, 1, 1, "", "MultilabelAccuracy"]], "cyclops.evaluate.metrics.accuracy.Accuracy": [[24, 2, 1, "", "__add__"], [24, 2, 1, "", "__call__"], [24, 2, 1, "", "__init__"], [24, 2, 1, "", "__mul__"], [24, 2, 1, "", "add_state"], [24, 2, 1, "", "clone"], [24, 2, 1, "", "compute"], [24, 2, 1, "", "reset_state"], [24, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.BinaryAccuracy": [[25, 2, 1, "", "__add__"], [25, 2, 1, "", "__call__"], [25, 2, 1, "", "__init__"], [25, 2, 1, "", "__mul__"], [25, 2, 1, "", "add_state"], [25, 2, 1, "", "clone"], [25, 2, 1, "", "compute"], [25, 2, 1, "", "reset_state"], [25, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy": [[26, 2, 1, "", "__add__"], [26, 2, 1, "", "__call__"], [26, 2, 1, "", "__init__"], [26, 2, 1, "", "__mul__"], [26, 2, 1, "", "add_state"], [26, 2, 1, "", "clone"], [26, 2, 1, "", "compute"], [26, 2, 1, "", "reset_state"], [26, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy": [[27, 2, 1, "", "__add__"], [27, 2, 1, "", "__call__"], [27, 2, 1, "", "__init__"], [27, 2, 1, "", "__mul__"], [27, 2, 1, "", "add_state"], [27, 2, 1, "", "clone"], [27, 2, 1, "", "compute"], [27, 2, 1, "", "reset_state"], [27, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc": [[29, 1, 1, "", "AUROC"], [30, 1, 1, "", "BinaryAUROC"], [31, 1, 1, "", "MulticlassAUROC"], [32, 1, 1, "", "MultilabelAUROC"]], "cyclops.evaluate.metrics.auroc.AUROC": [[29, 2, 1, "", "__add__"], [29, 2, 1, "", "__call__"], [29, 2, 1, "", "__init__"], [29, 2, 1, "", "__mul__"], [29, 2, 1, "", "add_state"], [29, 2, 1, "", "clone"], [29, 2, 1, "", "compute"], [29, 2, 1, "", "reset_state"], [29, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.BinaryAUROC": [[30, 2, 1, "", "__add__"], [30, 2, 1, "", "__call__"], [30, 2, 1, "", "__init__"], [30, 2, 1, "", "__mul__"], [30, 2, 1, "", "add_state"], [30, 2, 1, "", "clone"], [30, 2, 1, "", "compute"], [30, 2, 1, "", "reset_state"], [30, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.MulticlassAUROC": [[31, 2, 1, "", "__add__"], [31, 2, 1, "", "__call__"], [31, 2, 1, "", "__init__"], [31, 2, 1, "", "__mul__"], [31, 2, 1, "", "add_state"], [31, 2, 1, "", "clone"], [31, 2, 1, "", "compute"], [31, 2, 1, "", "reset_state"], [31, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.MultilabelAUROC": [[32, 2, 1, "", "__add__"], [32, 2, 1, "", "__call__"], [32, 2, 1, "", "__init__"], [32, 2, 1, "", "__mul__"], [32, 2, 1, "", "add_state"], [32, 2, 1, "", "clone"], [32, 2, 1, "", "compute"], [32, 2, 1, "", "reset_state"], [32, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta": [[34, 1, 1, "", "BinaryF1Score"], [35, 1, 1, "", "BinaryFbetaScore"], [36, 1, 1, "", "F1Score"], [37, 1, 1, "", "FbetaScore"], [38, 1, 1, "", "MulticlassF1Score"], [39, 1, 1, "", "MulticlassFbetaScore"], [40, 1, 1, "", "MultilabelF1Score"], [41, 1, 1, "", "MultilabelFbetaScore"]], "cyclops.evaluate.metrics.f_beta.BinaryF1Score": [[34, 2, 1, "", "__add__"], [34, 2, 1, "", "__call__"], [34, 2, 1, "", "__init__"], [34, 2, 1, "", "__mul__"], [34, 2, 1, "", "add_state"], [34, 2, 1, "", "clone"], [34, 2, 1, "", "compute"], [34, 2, 1, "", "reset_state"], [34, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore": [[35, 2, 1, "", "__add__"], [35, 2, 1, "", "__call__"], [35, 2, 1, "", "__init__"], [35, 2, 1, "", "__mul__"], [35, 2, 1, "", "add_state"], [35, 2, 1, "", "clone"], [35, 2, 1, "", "compute"], [35, 2, 1, "", "reset_state"], [35, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.F1Score": [[36, 2, 1, "", "__add__"], [36, 2, 1, "", "__call__"], [36, 2, 1, "", "__init__"], [36, 2, 1, "", "__mul__"], [36, 2, 1, "", "add_state"], [36, 2, 1, "", "clone"], [36, 2, 1, "", "compute"], [36, 2, 1, "", "reset_state"], [36, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.FbetaScore": [[37, 2, 1, "", "__add__"], [37, 2, 1, "", "__call__"], [37, 2, 1, "", "__init__"], [37, 2, 1, "", "__mul__"], [37, 2, 1, "", "add_state"], [37, 2, 1, "", "clone"], [37, 2, 1, "", "compute"], [37, 2, 1, "", "reset_state"], [37, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MulticlassF1Score": [[38, 2, 1, "", "__add__"], [38, 2, 1, "", "__call__"], [38, 2, 1, "", "__init__"], [38, 2, 1, "", "__mul__"], [38, 2, 1, "", "add_state"], [38, 2, 1, "", "clone"], [38, 2, 1, "", "compute"], [38, 2, 1, "", "reset_state"], [38, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore": [[39, 2, 1, "", "__add__"], [39, 2, 1, "", "__call__"], [39, 2, 1, "", "__init__"], [39, 2, 1, "", "__mul__"], [39, 2, 1, "", "add_state"], [39, 2, 1, "", "clone"], [39, 2, 1, "", "compute"], [39, 2, 1, "", "reset_state"], [39, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MultilabelF1Score": [[40, 2, 1, "", "__add__"], [40, 2, 1, "", "__call__"], [40, 2, 1, "", "__init__"], [40, 2, 1, "", "__mul__"], [40, 2, 1, "", "add_state"], [40, 2, 1, "", "clone"], [40, 2, 1, "", "compute"], [40, 2, 1, "", "reset_state"], [40, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore": [[41, 2, 1, "", "__add__"], [41, 2, 1, "", "__call__"], [41, 2, 1, "", "__init__"], [41, 2, 1, "", "__mul__"], [41, 2, 1, "", "add_state"], [41, 2, 1, "", "clone"], [41, 2, 1, "", "compute"], [41, 2, 1, "", "reset_state"], [41, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.factory": [[43, 4, 1, "", "create_metric"]], "cyclops.evaluate.metrics.functional": [[44, 0, 0, "-", "accuracy"], [45, 0, 0, "-", "auroc"], [46, 0, 0, "-", "f_beta"], [55, 0, 0, "-", "precision_recall"], [64, 0, 0, "-", "precision_recall_curve"], [65, 0, 0, "-", "roc"], [70, 0, 0, "-", "sensitivity"], [71, 0, 0, "-", "specificity"], [72, 0, 0, "-", "stat_scores"]], "cyclops.evaluate.metrics.functional.f_beta": [[47, 4, 1, "", "binary_f1_score"], [48, 4, 1, "", "binary_fbeta_score"], [49, 4, 1, "", "f1_score"], [50, 4, 1, "", "fbeta_score"], [51, 4, 1, "", "multiclass_f1_score"], [52, 4, 1, "", "multiclass_fbeta_score"], [53, 4, 1, "", "multilabel_f1_score"], [54, 4, 1, "", "multilabel_fbeta_score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[56, 4, 1, "", "binary_precision"], [57, 4, 1, "", "binary_recall"], [58, 4, 1, "", "multiclass_precision"], [59, 4, 1, "", "multiclass_recall"], [60, 4, 1, "", "multilabel_precision"], [61, 4, 1, "", "multilabel_recall"], [62, 4, 1, "", "precision"], [63, 4, 1, "", "recall"]], "cyclops.evaluate.metrics.functional.roc": [[66, 4, 1, "", "binary_roc_curve"], [67, 4, 1, "", "multiclass_roc_curve"], [68, 4, 1, "", "multilabel_roc_curve"], [69, 4, 1, "", "roc_curve"]], "cyclops.evaluate.metrics.metric": [[74, 1, 1, "", "Metric"], [75, 1, 1, "", "MetricCollection"], [76, 1, 1, "", "OperatorMetric"]], "cyclops.evaluate.metrics.metric.Metric": [[74, 2, 1, "", "__add__"], [74, 2, 1, "", "__call__"], [74, 2, 1, "", "__init__"], [74, 2, 1, "", "__mul__"], [74, 2, 1, "", "add_state"], [74, 2, 1, "", "clone"], [74, 2, 1, "", "compute"], [74, 5, 1, "", "name"], [74, 2, 1, "", "reset_state"], [74, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.metric.MetricCollection": [[75, 2, 1, "", "__call__"], [75, 2, 1, "", "__init__"], [75, 2, 1, "", "add_metrics"], [75, 2, 1, "", "clear"], [75, 2, 1, "", "clone"], [75, 2, 1, "", "compute"], [75, 2, 1, "", "get"], [75, 2, 1, "", "items"], [75, 2, 1, "", "keys"], [75, 2, 1, "", "pop"], [75, 2, 1, "", "popitem"], [75, 2, 1, "", "reset_state"], [75, 2, 1, "", "setdefault"], [75, 2, 1, "", "update"], [75, 2, 1, "", "update_state"], [75, 2, 1, "", "values"]], "cyclops.evaluate.metrics.metric.OperatorMetric": [[76, 2, 1, "", "__add__"], [76, 2, 1, "", "__call__"], [76, 2, 1, "", "__init__"], [76, 2, 1, "", "__mul__"], [76, 2, 1, "", "add_state"], [76, 2, 1, "", "clone"], [76, 2, 1, "", "compute"], [76, 2, 1, "", "reset_state"], [76, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall": [[78, 1, 1, "", "BinaryPrecision"], [79, 1, 1, "", "BinaryRecall"], [80, 1, 1, "", "MulticlassPrecision"], [81, 1, 1, "", "MulticlassRecall"], [82, 1, 1, "", "MultilabelPrecision"], [83, 1, 1, "", "MultilabelRecall"], [84, 1, 1, "", "Precision"], [85, 1, 1, "", "Recall"]], "cyclops.evaluate.metrics.precision_recall.BinaryPrecision": [[78, 2, 1, "", "__add__"], [78, 2, 1, "", "__call__"], [78, 2, 1, "", "__init__"], [78, 2, 1, "", "__mul__"], [78, 2, 1, "", "add_state"], [78, 2, 1, "", "clone"], [78, 2, 1, "", "compute"], [78, 2, 1, "", "reset_state"], [78, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.BinaryRecall": [[79, 2, 1, "", "__add__"], [79, 2, 1, "", "__call__"], [79, 2, 1, "", "__init__"], [79, 2, 1, "", "__mul__"], [79, 2, 1, "", "add_state"], [79, 2, 1, "", "clone"], [79, 2, 1, "", "compute"], [79, 2, 1, "", "reset_state"], [79, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision": [[80, 2, 1, "", "__add__"], [80, 2, 1, "", "__call__"], [80, 2, 1, "", "__init__"], [80, 2, 1, "", "__mul__"], [80, 2, 1, "", "add_state"], [80, 2, 1, "", "clone"], [80, 2, 1, "", "compute"], [80, 2, 1, "", "reset_state"], [80, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MulticlassRecall": [[81, 2, 1, "", "__add__"], [81, 2, 1, "", "__call__"], [81, 2, 1, "", "__init__"], [81, 2, 1, "", "__mul__"], [81, 2, 1, "", "add_state"], [81, 2, 1, "", "clone"], [81, 2, 1, "", "compute"], [81, 2, 1, "", "reset_state"], [81, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision": [[82, 2, 1, "", "__add__"], [82, 2, 1, "", "__call__"], [82, 2, 1, "", "__init__"], [82, 2, 1, "", "__mul__"], [82, 2, 1, "", "add_state"], [82, 2, 1, "", "clone"], [82, 2, 1, "", "compute"], [82, 2, 1, "", "reset_state"], [82, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MultilabelRecall": [[83, 2, 1, "", "__add__"], [83, 2, 1, "", "__call__"], [83, 2, 1, "", "__init__"], [83, 2, 1, "", "__mul__"], [83, 2, 1, "", "add_state"], [83, 2, 1, "", "clone"], [83, 2, 1, "", "compute"], [83, 2, 1, "", "reset_state"], [83, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.Precision": [[84, 2, 1, "", "__add__"], [84, 2, 1, "", "__call__"], [84, 2, 1, "", "__init__"], [84, 2, 1, "", "__mul__"], [84, 2, 1, "", "add_state"], [84, 2, 1, "", "clone"], [84, 2, 1, "", "compute"], [84, 2, 1, "", "reset_state"], [84, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.Recall": [[85, 2, 1, "", "__add__"], [85, 2, 1, "", "__call__"], [85, 2, 1, "", "__init__"], [85, 2, 1, "", "__mul__"], [85, 2, 1, "", "add_state"], [85, 2, 1, "", "clone"], [85, 2, 1, "", "compute"], [85, 2, 1, "", "reset_state"], [85, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve": [[87, 1, 1, "", "BinaryPrecisionRecallCurve"], [88, 1, 1, "", "MulticlassPrecisionRecallCurve"], [89, 1, 1, "", "MultilabelPrecisionRecallCurve"], [90, 1, 1, "", "PrecisionRecallCurve"]], "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve": [[87, 2, 1, "", "__add__"], [87, 2, 1, "", "__call__"], [87, 2, 1, "", "__init__"], [87, 2, 1, "", "__mul__"], [87, 2, 1, "", "add_state"], [87, 2, 1, "", "clone"], [87, 2, 1, "", "compute"], [87, 2, 1, "", "reset_state"], [87, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve": [[88, 2, 1, "", "__add__"], [88, 2, 1, "", "__call__"], [88, 2, 1, "", "__init__"], [88, 2, 1, "", "__mul__"], [88, 2, 1, "", "add_state"], [88, 2, 1, "", "clone"], [88, 2, 1, "", "compute"], [88, 2, 1, "", "reset_state"], [88, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve": [[89, 2, 1, "", "__add__"], [89, 2, 1, "", "__call__"], [89, 2, 1, "", "__init__"], [89, 2, 1, "", "__mul__"], [89, 2, 1, "", "add_state"], [89, 2, 1, "", "clone"], [89, 2, 1, "", "compute"], [89, 2, 1, "", "reset_state"], [89, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve": [[90, 2, 1, "", "__add__"], [90, 2, 1, "", "__call__"], [90, 2, 1, "", "__init__"], [90, 2, 1, "", "__mul__"], [90, 2, 1, "", "add_state"], [90, 2, 1, "", "clone"], [90, 2, 1, "", "compute"], [90, 2, 1, "", "reset_state"], [90, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc": [[92, 1, 1, "", "BinaryROCCurve"], [93, 1, 1, "", "MulticlassROCCurve"], [94, 1, 1, "", "MultilabelROCCurve"], [95, 1, 1, "", "ROCCurve"]], "cyclops.evaluate.metrics.roc.BinaryROCCurve": [[92, 2, 1, "", "__add__"], [92, 2, 1, "", "__call__"], [92, 2, 1, "", "__init__"], [92, 2, 1, "", "__mul__"], [92, 2, 1, "", "add_state"], [92, 2, 1, "", "clone"], [92, 2, 1, "", "compute"], [92, 2, 1, "", "reset_state"], [92, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.MulticlassROCCurve": [[93, 2, 1, "", "__add__"], [93, 2, 1, "", "__call__"], [93, 2, 1, "", "__init__"], [93, 2, 1, "", "__mul__"], [93, 2, 1, "", "add_state"], [93, 2, 1, "", "clone"], [93, 2, 1, "", "compute"], [93, 2, 1, "", "reset_state"], [93, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.MultilabelROCCurve": [[94, 2, 1, "", "__add__"], [94, 2, 1, "", "__call__"], [94, 2, 1, "", "__init__"], [94, 2, 1, "", "__mul__"], [94, 2, 1, "", "add_state"], [94, 2, 1, "", "clone"], [94, 2, 1, "", "compute"], [94, 2, 1, "", "reset_state"], [94, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.ROCCurve": [[95, 2, 1, "", "__add__"], [95, 2, 1, "", "__call__"], [95, 2, 1, "", "__init__"], [95, 2, 1, "", "__mul__"], [95, 2, 1, "", "add_state"], [95, 2, 1, "", "clone"], [95, 2, 1, "", "compute"], [95, 2, 1, "", "reset_state"], [95, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity": [[97, 1, 1, "", "BinarySensitivity"], [98, 1, 1, "", "MulticlassSensitivity"], [99, 1, 1, "", "MultilabelSensitivity"], [100, 1, 1, "", "Sensitivity"]], "cyclops.evaluate.metrics.sensitivity.BinarySensitivity": [[97, 2, 1, "", "__add__"], [97, 2, 1, "", "__call__"], [97, 2, 1, "", "__init__"], [97, 2, 1, "", "__mul__"], [97, 2, 1, "", "add_state"], [97, 2, 1, "", "clone"], [97, 2, 1, "", "compute"], [97, 2, 1, "", "reset_state"], [97, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity": [[98, 2, 1, "", "__add__"], [98, 2, 1, "", "__call__"], [98, 2, 1, "", "__init__"], [98, 2, 1, "", "__mul__"], [98, 2, 1, "", "add_state"], [98, 2, 1, "", "clone"], [98, 2, 1, "", "compute"], [98, 2, 1, "", "reset_state"], [98, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity": [[99, 2, 1, "", "__add__"], [99, 2, 1, "", "__call__"], [99, 2, 1, "", "__init__"], [99, 2, 1, "", "__mul__"], [99, 2, 1, "", "add_state"], [99, 2, 1, "", "clone"], [99, 2, 1, "", "compute"], [99, 2, 1, "", "reset_state"], [99, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.Sensitivity": [[100, 2, 1, "", "__add__"], [100, 2, 1, "", "__call__"], [100, 2, 1, "", "__init__"], [100, 2, 1, "", "__mul__"], [100, 2, 1, "", "add_state"], [100, 2, 1, "", "clone"], [100, 2, 1, "", "compute"], [100, 2, 1, "", "reset_state"], [100, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity": [[102, 1, 1, "", "BinarySpecificity"], [103, 1, 1, "", "MulticlassSpecificity"], [104, 1, 1, "", "MultilabelSpecificity"], [105, 1, 1, "", "Specificity"]], "cyclops.evaluate.metrics.specificity.BinarySpecificity": [[102, 2, 1, "", "__add__"], [102, 2, 1, "", "__call__"], [102, 2, 1, "", "__init__"], [102, 2, 1, "", "__mul__"], [102, 2, 1, "", "add_state"], [102, 2, 1, "", "clone"], [102, 2, 1, "", "compute"], [102, 2, 1, "", "reset_state"], [102, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.MulticlassSpecificity": [[103, 2, 1, "", "__add__"], [103, 2, 1, "", "__call__"], [103, 2, 1, "", "__init__"], [103, 2, 1, "", "__mul__"], [103, 2, 1, "", "add_state"], [103, 2, 1, "", "clone"], [103, 2, 1, "", "compute"], [103, 2, 1, "", "reset_state"], [103, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.MultilabelSpecificity": [[104, 2, 1, "", "__add__"], [104, 2, 1, "", "__call__"], [104, 2, 1, "", "__init__"], [104, 2, 1, "", "__mul__"], [104, 2, 1, "", "add_state"], [104, 2, 1, "", "clone"], [104, 2, 1, "", "compute"], [104, 2, 1, "", "reset_state"], [104, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.Specificity": [[105, 2, 1, "", "__add__"], [105, 2, 1, "", "__call__"], [105, 2, 1, "", "__init__"], [105, 2, 1, "", "__mul__"], [105, 2, 1, "", "add_state"], [105, 2, 1, "", "clone"], [105, 2, 1, "", "compute"], [105, 2, 1, "", "reset_state"], [105, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores": [[107, 1, 1, "", "BinaryStatScores"], [108, 1, 1, "", "MulticlassStatScores"], [109, 1, 1, "", "MultilabelStatScores"], [110, 1, 1, "", "StatScores"]], "cyclops.evaluate.metrics.stat_scores.BinaryStatScores": [[107, 2, 1, "", "__add__"], [107, 2, 1, "", "__call__"], [107, 2, 1, "", "__init__"], [107, 2, 1, "", "__mul__"], [107, 2, 1, "", "add_state"], [107, 2, 1, "", "clone"], [107, 2, 1, "", "compute"], [107, 2, 1, "", "reset_state"], [107, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores": [[108, 2, 1, "", "__add__"], [108, 2, 1, "", "__call__"], [108, 2, 1, "", "__init__"], [108, 2, 1, "", "__mul__"], [108, 2, 1, "", "add_state"], [108, 2, 1, "", "clone"], [108, 2, 1, "", "compute"], [108, 2, 1, "", "reset_state"], [108, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores": [[109, 2, 1, "", "__add__"], [109, 2, 1, "", "__call__"], [109, 2, 1, "", "__init__"], [109, 2, 1, "", "__mul__"], [109, 2, 1, "", "add_state"], [109, 2, 1, "", "clone"], [109, 2, 1, "", "compute"], [109, 2, 1, "", "reset_state"], [109, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.StatScores": [[110, 2, 1, "", "__add__"], [110, 2, 1, "", "__call__"], [110, 2, 1, "", "__init__"], [110, 2, 1, "", "__mul__"], [110, 2, 1, "", "add_state"], [110, 2, 1, "", "clone"], [110, 2, 1, "", "compute"], [110, 5, 1, "", "name"], [110, 2, 1, "", "reset_state"], [110, 2, 1, "", "update_state"]], "cyclops.monitor": [[111, 0, 0, "-", "clinical_applicator"], [113, 0, 0, "-", "synthetic_applicator"]], "cyclops.monitor.clinical_applicator": [[112, 1, 1, "", "ClinicalShiftApplicator"]], "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator": [[112, 2, 1, "", "age"], [112, 2, 1, "", "apply_shift"], [112, 2, 1, "", "custom"], [112, 2, 1, "", "hospital_type"], [112, 2, 1, "", "month"], [112, 2, 1, "", "sex"], [112, 2, 1, "", "time"]], "cyclops.monitor.synthetic_applicator": [[114, 1, 1, "", "SyntheticShiftApplicator"], [115, 4, 1, "", "binary_noise_shift"], [116, 4, 1, "", "feature_association_shift"], [117, 4, 1, "", "feature_swap_shift"], [118, 4, 1, "", "gaussian_noise_shift"], [119, 4, 1, "", "knockout_shift"]], "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator": [[114, 2, 1, "", "apply_shift"]], "cyclops.report": [[120, 0, 0, "-", "report"]], "cyclops.report.report": [[121, 1, 1, "", "ModelCardReport"]], "cyclops.report.report.ModelCardReport": [[121, 2, 1, "", "export"], [121, 2, 1, "", "from_json_file"], [121, 2, 1, "", "log_citation"], [121, 2, 1, "", "log_dataset"], [121, 2, 1, "", "log_descriptor"], [121, 2, 1, "", "log_fairness_assessment"], [121, 2, 1, "", "log_from_dict"], [121, 2, 1, "", "log_image"], [121, 2, 1, "", "log_license"], [121, 2, 1, "", "log_model_parameters"], [121, 2, 1, "", "log_owner"], [121, 2, 1, "", "log_performance_metrics"], [121, 2, 1, "", "log_plotly_figure"], [121, 2, 1, "", "log_quantitative_analysis"], [121, 2, 1, "", "log_reference"], [121, 2, 1, "", "log_regulation"], [121, 2, 1, "", "log_risk"], [121, 2, 1, "", "log_use_case"], [121, 2, 1, "", "log_user"], [121, 2, 1, "", "log_version"]], "cyclops.tasks": [[122, 0, 0, "-", "classification"]], "cyclops.tasks.classification": [[123, 1, 1, "", "BinaryTabularClassificationTask"], [124, 1, 1, "", "MultilabelImageClassificationTask"]], "cyclops.tasks.classification.BinaryTabularClassificationTask": [[123, 2, 1, "", "__init__"], [123, 2, 1, "", "add_model"], [123, 5, 1, "", "data_type"], [123, 2, 1, "", "evaluate"], [123, 2, 1, "", "get_model"], [123, 2, 1, "", "list_models"], [123, 2, 1, "", "list_models_params"], [123, 2, 1, "", "load_model"], [123, 5, 1, "", "models_count"], [123, 2, 1, "", "predict"], [123, 2, 1, "", "save_model"], [123, 5, 1, "", "task_type"], [123, 2, 1, "", "train"]], "cyclops.tasks.classification.MultilabelImageClassificationTask": [[124, 2, 1, "", "__init__"], [124, 2, 1, "", "add_model"], [124, 5, 1, "", "data_type"], [124, 2, 1, "", "evaluate"], [124, 2, 1, "", "get_model"], [124, 2, 1, "", "list_models"], [124, 2, 1, "", "list_models_params"], [124, 2, 1, "", "load_model"], [124, 5, 1, "", "models_count"], [124, 2, 1, "", "predict"], [124, 2, 1, "", "save_model"], [124, 5, 1, "", "task_type"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:attribute", "4": "py:function", "5": "py:property"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "attribute", "Python attribute"], "4": ["py", "function", "Python function"], "5": ["py", "property", "Python property"]}, "titleterms": {"api": [0, 136], "refer": 0, "contribut": [1, 3], "cyclop": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129], "pre": 1, "commit": 1, "hook": 1, "code": 1, "guidelin": 1, "welcom": 2, "": 2, "document": [2, 3], "content": 2, "get": 3, "start": 3, "instal": 3, "us": [3, 134, 137], "pip": 3, "develop": 3, "poetri": 3, "notebook": 3, "citat": 3, "data": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 125, 131, 132, 135, 137], "featur": [4, 5, 125, 131, 132, 135], "medical_imag": [4, 5], "medicalimag": 5, "slicer": [6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "slicespec": 7, "compound_filt": 8, "filter_datetim": 9, "filter_non_nul": 10, "filter_rang": 11, "filter_string_contain": 12, "filter_valu": 13, "is_datetim": 14, "overal": 15, "evalu": [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 126, 131, 132, 135], "fair": [18, 19, 20, 21, 22, 126], "config": [18, 19], "fairnessconfig": 19, "evaluate_fair": 21, "warn_too_many_unique_valu": 22, "metric": [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 126, 133], "accuraci": [23, 24, 25, 26, 27, 44], "binaryaccuraci": 25, "multiclassaccuraci": 26, "multilabelaccuraci": 27, "auroc": [28, 29, 30, 31, 32, 45, 133], "binaryauroc": 30, "multiclassauroc": 31, "multilabelauroc": 32, "f_beta": [33, 34, 35, 36, 37, 38, 39, 40, 41, 46, 47, 48, 49, 50, 51, 52, 53, 54], "binaryf1scor": 34, "binaryfbetascor": 35, "f1score": 36, "fbetascor": 37, "multiclassf1scor": 38, "multiclassfbetascor": 39, "multilabelf1scor": 40, "multilabelfbetascor": 41, "factori": [42, 43], "create_metr": 43, "function": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 126], "binary_f1_scor": 47, "binary_fbeta_scor": 48, "f1_score": 49, "fbeta_scor": 50, "multiclass_f1_scor": 51, "multiclass_fbeta_scor": 52, "multilabel_f1_scor": 53, "multilabel_fbeta_scor": 54, "precision_recal": [55, 56, 57, 58, 59, 60, 61, 62, 63, 77, 78, 79, 80, 81, 82, 83, 84, 85], "binary_precis": 56, "binary_recal": 57, "multiclass_precis": 58, "multiclass_recal": 59, "multilabel_precis": 60, "multilabel_recal": 61, "precis": [62, 84], "recal": [63, 85], "precision_recall_curv": [64, 86, 87, 88, 89, 90], "roc": [65, 66, 67, 68, 69, 91, 92, 93, 94, 95], "binary_roc_curv": 66, "multiclass_roc_curv": 67, "multilabel_roc_curv": 68, "roc_curv": 69, "sensit": [70, 96, 97, 98, 99, 100, 134], "specif": [71, 101, 102, 103, 104, 105], "stat_scor": [72, 106, 107, 108, 109, 110], "metriccollect": 75, "operatormetr": 76, "binaryprecis": 78, "binaryrecal": 79, "multiclassprecis": 80, "multiclassrecal": 81, "multilabelprecis": 82, "multilabelrecal": 83, "binaryprecisionrecallcurv": 87, "multiclassprecisionrecallcurv": 88, "multilabelprecisionrecallcurv": 89, "precisionrecallcurv": 90, "binaryroccurv": 92, "multiclassroccurv": 93, "multilabelroccurv": 94, "roccurv": 95, "binarysensit": 97, "multiclasssensit": 98, "multilabelsensit": 99, "binaryspecif": 102, "multiclassspecif": 103, "multilabelspecif": 104, "binarystatscor": 107, "multiclassstatscor": 108, "multilabelstatscor": 109, "statscor": 110, "monitor": [111, 112, 113, 114, 115, 116, 117, 118, 119, 127, 136], "clinical_appl": [111, 112], "clinicalshiftappl": 112, "synthetic_appl": [113, 114, 115, 116, 117, 118, 119], "syntheticshiftappl": 114, "binary_noise_shift": 115, "feature_association_shift": 116, "feature_swap_shift": 117, "gaussian_noise_shift": 118, "knockout_shift": 119, "report": [120, 121, 128, 131, 132, 133, 135], "modelcardreport": 121, "task": [122, 123, 124, 129, 131, 132, 135], "classif": [122, 123, 124, 133, 137], "binarytabularclassificationtask": 123, "multilabelimageclassificationtask": 124, "tutori": [130, 134], "heart": [131, 137], "failur": [131, 137], "predict": [131, 132, 135, 137], "import": [131, 132, 133, 134, 135], "librari": [131, 132, 133, 134, 135], "constant": [131, 132, 135], "load": [131, 133, 134], "sex": [131, 133], "valu": 131, "ag": [131, 132, 133, 135], "distribut": [131, 132, 135], "outcom": [131, 132, 135], "identifi": [131, 132, 135], "type": [131, 132, 135], "creat": [131, 132, 135], "preprocessor": [131, 132, 135], "hug": [131, 132, 135], "face": [131, 132, 135], "dataset": [131, 132, 133, 134, 135], "model": [131, 132, 133, 134, 135], "creation": [131, 132, 133, 135], "train": [131, 132, 134, 135], "perform": [131, 133], "over": 131, "time": 131, "gener": [131, 132, 133, 134, 135], "mortal": [132, 137], "queri": [132, 135], "process": 132, "comput": [132, 135], "label": [132, 135], "inspect": [132, 135], "preprocess": [132, 135], "drop": [132, 135], "nan": [132, 135], "base": [132, 135], "nan_threshold": [132, 135], "gender": [132, 135], "chest": [133, 137], "x": [133, 137], "rai": [133, 137], "diseas": 133, "histor": 133, "initi": 133, "period": 133, "multilabel": 133, "pathologi": 133, "log": 133, "test": [133, 134], "w": 133, "threshold": 133, "popul": 133, "card": 133, "field": 133, "nihcxr": 134, "clinic": 134, "drift": 134, "experi": 134, "exampl": [134, 137], "1": 134, "sourc": 134, "target": 134, "2": 134, "3": 134, "dimension": 134, "reduct": 134, "techniqu": 134, "differ": 134, "4": 134, "shift": 134, "5": 134, "roll": 134, "window": 134, "synthet": 134, "timestamp": 134, "biweekli": 134, "prolong": [135, 137], "length": [135, 137], "stai": [135, 137], "case": 137, "tabular": 137, "kaggl": 137, "mimiciv": 137, "synthea": 137, "imag": 137, "nih": 137}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1, "sphinx.ext.intersphinx": 1, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"API Reference": [[0, "api-reference"]], "Contributing to cyclops": [[1, "contributing-to-cyclops"]], "Pre-commit hooks": [[1, "pre-commit-hooks"]], "Coding guidelines": [[1, "coding-guidelines"]], "Welcome to cyclops\u2019s documentation!": [[2, "welcome-to-cyclops-s-documentation"]], "Contents:": [[2, null]], "\ud83d\udc23 Getting Started": [[3, "getting-started"]], "Installing cyclops using pip": [[3, "installing-cyclops-using-pip"]], "\ud83e\uddd1\ud83c\udfff\u200d\ud83d\udcbb Developing": [[3, "developing"]], "Using poetry": [[3, "using-poetry"]], "Contributing": [[3, "contributing"]], "\ud83d\udcda Documentation": [[3, "documentation"]], "\ud83d\udcd3 Notebooks": [[3, "notebooks"]], "\ud83c\udf93 Citation": [[3, "citation"]], "cyclops.data.features.medical_image": [[4, "module-cyclops.data.features.medical_image"]], "cyclops.data.features.medical_image.MedicalImage": [[5, "cyclops-data-features-medical-image-medicalimage"]], "cyclops.data.slicer": [[6, "module-cyclops.data.slicer"]], "cyclops.data.slicer.SliceSpec": [[7, "cyclops-data-slicer-slicespec"]], "cyclops.data.slicer.compound_filter": [[8, "cyclops-data-slicer-compound-filter"]], "cyclops.data.slicer.filter_datetime": [[9, "cyclops-data-slicer-filter-datetime"]], "cyclops.data.slicer.filter_non_null": [[10, "cyclops-data-slicer-filter-non-null"]], "cyclops.data.slicer.filter_range": [[11, "cyclops-data-slicer-filter-range"]], "cyclops.data.slicer.filter_string_contains": [[12, "cyclops-data-slicer-filter-string-contains"]], "cyclops.data.slicer.filter_value": [[13, "cyclops-data-slicer-filter-value"]], "cyclops.data.slicer.is_datetime": [[14, "cyclops-data-slicer-is-datetime"]], "cyclops.data.slicer.overall": [[15, "cyclops-data-slicer-overall"]], "cyclops.evaluate.evaluator": [[16, "module-cyclops.evaluate.evaluator"]], "cyclops.evaluate.evaluator.evaluate": [[17, "cyclops-evaluate-evaluator-evaluate"]], "cyclops.evaluate.fairness.config": [[18, "module-cyclops.evaluate.fairness.config"]], "cyclops.evaluate.fairness.config.FairnessConfig": [[19, "cyclops-evaluate-fairness-config-fairnessconfig"]], "cyclops.evaluate.fairness.evaluator": [[20, "module-cyclops.evaluate.fairness.evaluator"]], "cyclops.evaluate.fairness.evaluator.evaluate_fairness": [[21, "cyclops-evaluate-fairness-evaluator-evaluate-fairness"]], "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values": [[22, "cyclops-evaluate-fairness-evaluator-warn-too-many-unique-values"]], "cyclops.evaluate.metrics.accuracy": [[23, "module-cyclops.evaluate.metrics.accuracy"]], "cyclops.evaluate.metrics.accuracy.Accuracy": [[24, "cyclops-evaluate-metrics-accuracy-accuracy"]], "cyclops.evaluate.metrics.accuracy.BinaryAccuracy": [[25, "cyclops-evaluate-metrics-accuracy-binaryaccuracy"]], "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy": [[26, "cyclops-evaluate-metrics-accuracy-multiclassaccuracy"]], "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy": [[27, "cyclops-evaluate-metrics-accuracy-multilabelaccuracy"]], "cyclops.evaluate.metrics.auroc": [[28, "module-cyclops.evaluate.metrics.auroc"]], "cyclops.evaluate.metrics.auroc.AUROC": [[29, "cyclops-evaluate-metrics-auroc-auroc"]], "cyclops.evaluate.metrics.auroc.BinaryAUROC": [[30, "cyclops-evaluate-metrics-auroc-binaryauroc"]], "cyclops.evaluate.metrics.auroc.MulticlassAUROC": [[31, "cyclops-evaluate-metrics-auroc-multiclassauroc"]], "cyclops.evaluate.metrics.auroc.MultilabelAUROC": [[32, "cyclops-evaluate-metrics-auroc-multilabelauroc"]], "cyclops.evaluate.metrics.f_beta": [[33, "module-cyclops.evaluate.metrics.f_beta"]], "cyclops.evaluate.metrics.f_beta.BinaryF1Score": [[34, "cyclops-evaluate-metrics-f-beta-binaryf1score"]], "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore": [[35, "cyclops-evaluate-metrics-f-beta-binaryfbetascore"]], "cyclops.evaluate.metrics.f_beta.F1Score": [[36, "cyclops-evaluate-metrics-f-beta-f1score"]], "cyclops.evaluate.metrics.f_beta.FbetaScore": [[37, "cyclops-evaluate-metrics-f-beta-fbetascore"]], "cyclops.evaluate.metrics.f_beta.MulticlassF1Score": [[38, "cyclops-evaluate-metrics-f-beta-multiclassf1score"]], "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore": [[39, "cyclops-evaluate-metrics-f-beta-multiclassfbetascore"]], "cyclops.evaluate.metrics.f_beta.MultilabelF1Score": [[40, "cyclops-evaluate-metrics-f-beta-multilabelf1score"]], "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore": [[41, "cyclops-evaluate-metrics-f-beta-multilabelfbetascore"]], "cyclops.evaluate.metrics.factory": [[42, "module-cyclops.evaluate.metrics.factory"]], "cyclops.evaluate.metrics.factory.create_metric": [[43, "cyclops-evaluate-metrics-factory-create-metric"]], "cyclops.evaluate.metrics.functional.accuracy": [[44, "module-cyclops.evaluate.metrics.functional.accuracy"]], "cyclops.evaluate.metrics.functional.auroc": [[45, "module-cyclops.evaluate.metrics.functional.auroc"]], "cyclops.evaluate.metrics.functional.f_beta": [[46, "module-cyclops.evaluate.metrics.functional.f_beta"]], "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score": [[47, "cyclops-evaluate-metrics-functional-f-beta-binary-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score": [[48, "cyclops-evaluate-metrics-functional-f-beta-binary-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.f1_score": [[49, "cyclops-evaluate-metrics-functional-f-beta-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.fbeta_score": [[50, "cyclops-evaluate-metrics-functional-f-beta-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score": [[51, "cyclops-evaluate-metrics-functional-f-beta-multiclass-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score": [[52, "cyclops-evaluate-metrics-functional-f-beta-multiclass-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score": [[53, "cyclops-evaluate-metrics-functional-f-beta-multilabel-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score": [[54, "cyclops-evaluate-metrics-functional-f-beta-multilabel-fbeta-score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[55, "module-cyclops.evaluate.metrics.functional.precision_recall"]], "cyclops.evaluate.metrics.functional.precision_recall.binary_precision": [[56, "cyclops-evaluate-metrics-functional-precision-recall-binary-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.binary_recall": [[57, "cyclops-evaluate-metrics-functional-precision-recall-binary-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision": [[58, "cyclops-evaluate-metrics-functional-precision-recall-multiclass-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall": [[59, "cyclops-evaluate-metrics-functional-precision-recall-multiclass-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision": [[60, "cyclops-evaluate-metrics-functional-precision-recall-multilabel-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall": [[61, "cyclops-evaluate-metrics-functional-precision-recall-multilabel-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.precision": [[62, "cyclops-evaluate-metrics-functional-precision-recall-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.recall": [[63, "cyclops-evaluate-metrics-functional-precision-recall-recall"]], "cyclops.evaluate.metrics.functional.precision_recall_curve": [[64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"]], "cyclops.evaluate.metrics.functional.roc": [[65, "module-cyclops.evaluate.metrics.functional.roc"]], "cyclops.evaluate.metrics.functional.roc.binary_roc_curve": [[66, "cyclops-evaluate-metrics-functional-roc-binary-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve": [[67, "cyclops-evaluate-metrics-functional-roc-multiclass-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve": [[68, "cyclops-evaluate-metrics-functional-roc-multilabel-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.roc_curve": [[69, "cyclops-evaluate-metrics-functional-roc-roc-curve"]], "cyclops.evaluate.metrics.functional.sensitivity": [[70, "module-cyclops.evaluate.metrics.functional.sensitivity"]], "cyclops.evaluate.metrics.functional.specificity": [[71, "module-cyclops.evaluate.metrics.functional.specificity"]], "cyclops.evaluate.metrics.functional.stat_scores": [[72, "module-cyclops.evaluate.metrics.functional.stat_scores"]], "cyclops.evaluate.metrics.metric": [[73, "module-cyclops.evaluate.metrics.metric"]], "cyclops.evaluate.metrics.metric.Metric": [[74, "cyclops-evaluate-metrics-metric-metric"]], "cyclops.evaluate.metrics.metric.MetricCollection": [[75, "cyclops-evaluate-metrics-metric-metriccollection"]], "cyclops.evaluate.metrics.metric.OperatorMetric": [[76, "cyclops-evaluate-metrics-metric-operatormetric"]], "cyclops.evaluate.metrics.precision_recall": [[77, "module-cyclops.evaluate.metrics.precision_recall"]], "cyclops.evaluate.metrics.precision_recall.BinaryPrecision": [[78, "cyclops-evaluate-metrics-precision-recall-binaryprecision"]], "cyclops.evaluate.metrics.precision_recall.BinaryRecall": [[79, "cyclops-evaluate-metrics-precision-recall-binaryrecall"]], "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision": [[80, "cyclops-evaluate-metrics-precision-recall-multiclassprecision"]], "cyclops.evaluate.metrics.precision_recall.MulticlassRecall": [[81, "cyclops-evaluate-metrics-precision-recall-multiclassrecall"]], "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision": [[82, "cyclops-evaluate-metrics-precision-recall-multilabelprecision"]], "cyclops.evaluate.metrics.precision_recall.MultilabelRecall": [[83, "cyclops-evaluate-metrics-precision-recall-multilabelrecall"]], "cyclops.evaluate.metrics.precision_recall.Precision": [[84, "cyclops-evaluate-metrics-precision-recall-precision"]], "cyclops.evaluate.metrics.precision_recall.Recall": [[85, "cyclops-evaluate-metrics-precision-recall-recall"]], "cyclops.evaluate.metrics.precision_recall_curve": [[86, "module-cyclops.evaluate.metrics.precision_recall_curve"]], "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve": [[87, "cyclops-evaluate-metrics-precision-recall-curve-binaryprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve": [[88, "cyclops-evaluate-metrics-precision-recall-curve-multiclassprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve": [[89, "cyclops-evaluate-metrics-precision-recall-curve-multilabelprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve": [[90, "cyclops-evaluate-metrics-precision-recall-curve-precisionrecallcurve"]], "cyclops.evaluate.metrics.roc": [[91, "module-cyclops.evaluate.metrics.roc"]], "cyclops.evaluate.metrics.roc.BinaryROCCurve": [[92, "cyclops-evaluate-metrics-roc-binaryroccurve"]], "cyclops.evaluate.metrics.roc.MulticlassROCCurve": [[93, "cyclops-evaluate-metrics-roc-multiclassroccurve"]], "cyclops.evaluate.metrics.roc.MultilabelROCCurve": [[94, "cyclops-evaluate-metrics-roc-multilabelroccurve"]], "cyclops.evaluate.metrics.roc.ROCCurve": [[95, "cyclops-evaluate-metrics-roc-roccurve"]], "cyclops.evaluate.metrics.sensitivity": [[96, "module-cyclops.evaluate.metrics.sensitivity"]], "cyclops.evaluate.metrics.sensitivity.BinarySensitivity": [[97, "cyclops-evaluate-metrics-sensitivity-binarysensitivity"]], "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity": [[98, "cyclops-evaluate-metrics-sensitivity-multiclasssensitivity"]], "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity": [[99, "cyclops-evaluate-metrics-sensitivity-multilabelsensitivity"]], "cyclops.evaluate.metrics.sensitivity.Sensitivity": [[100, "cyclops-evaluate-metrics-sensitivity-sensitivity"]], "cyclops.evaluate.metrics.specificity": [[101, "module-cyclops.evaluate.metrics.specificity"]], "cyclops.evaluate.metrics.specificity.BinarySpecificity": [[102, "cyclops-evaluate-metrics-specificity-binaryspecificity"]], "cyclops.evaluate.metrics.specificity.MulticlassSpecificity": [[103, "cyclops-evaluate-metrics-specificity-multiclassspecificity"]], "cyclops.evaluate.metrics.specificity.MultilabelSpecificity": [[104, "cyclops-evaluate-metrics-specificity-multilabelspecificity"]], "cyclops.evaluate.metrics.specificity.Specificity": [[105, "cyclops-evaluate-metrics-specificity-specificity"]], "cyclops.evaluate.metrics.stat_scores": [[106, "module-cyclops.evaluate.metrics.stat_scores"]], "cyclops.evaluate.metrics.stat_scores.BinaryStatScores": [[107, "cyclops-evaluate-metrics-stat-scores-binarystatscores"]], "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores": [[108, "cyclops-evaluate-metrics-stat-scores-multiclassstatscores"]], "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores": [[109, "cyclops-evaluate-metrics-stat-scores-multilabelstatscores"]], "cyclops.evaluate.metrics.stat_scores.StatScores": [[110, "cyclops-evaluate-metrics-stat-scores-statscores"]], "cyclops.monitor.clinical_applicator": [[111, "module-cyclops.monitor.clinical_applicator"]], "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator": [[112, "cyclops-monitor-clinical-applicator-clinicalshiftapplicator"]], "cyclops.monitor.synthetic_applicator": [[113, "module-cyclops.monitor.synthetic_applicator"]], "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator": [[114, "cyclops-monitor-synthetic-applicator-syntheticshiftapplicator"]], "cyclops.monitor.synthetic_applicator.binary_noise_shift": [[115, "cyclops-monitor-synthetic-applicator-binary-noise-shift"]], "cyclops.monitor.synthetic_applicator.feature_association_shift": [[116, "cyclops-monitor-synthetic-applicator-feature-association-shift"]], "cyclops.monitor.synthetic_applicator.feature_swap_shift": [[117, "cyclops-monitor-synthetic-applicator-feature-swap-shift"]], "cyclops.monitor.synthetic_applicator.gaussian_noise_shift": [[118, "cyclops-monitor-synthetic-applicator-gaussian-noise-shift"]], "cyclops.monitor.synthetic_applicator.knockout_shift": [[119, "cyclops-monitor-synthetic-applicator-knockout-shift"]], "cyclops.report.report": [[120, "module-cyclops.report.report"]], "cyclops.report.report.ModelCardReport": [[121, "cyclops-report-report-modelcardreport"]], "cyclops.tasks.classification": [[122, "module-cyclops.tasks.classification"]], "cyclops.tasks.classification.BinaryTabularClassificationTask": [[123, "cyclops-tasks-classification-binarytabularclassificationtask"]], "cyclops.tasks.classification.MultilabelImageClassificationTask": [[124, "cyclops-tasks-classification-multilabelimageclassificationtask"]], "cyclops.data": [[125, "module-cyclops.data"]], "cyclops.data.features": [[125, "module-cyclops.data.features"]], "cyclops.evaluate": [[126, "module-cyclops.evaluate"]], "cyclops.evaluate.metrics": [[126, "module-cyclops.evaluate.metrics"]], "cyclops.evaluate.metrics.functional": [[126, "module-cyclops.evaluate.metrics.functional"]], "cyclops.evaluate.fairness": [[126, "module-cyclops.evaluate.fairness"]], "cyclops.monitor": [[127, "module-cyclops.monitor"]], "cyclops.report": [[128, "module-cyclops.report"]], "cyclops.tasks": [[129, "module-cyclops.tasks"]], "Tutorials": [[130, "tutorials"]], "Heart Failure Prediction": [[131, "Heart-Failure-Prediction"]], "Import Libraries": [[131, "Import-Libraries"], [132, "Import-Libraries"], [133, "Import-Libraries"], [135, "Import-Libraries"]], "Constants": [[131, "Constants"], [132, "Constants"], [135, "Constants"]], "Data Loading": [[131, "Data-Loading"]], "Sex values": [[131, "Sex-values"]], "Age distribution": [[131, "Age-distribution"], [132, "Age-distribution"], [135, "Age-distribution"]], "Outcome distribution": [[131, "Outcome-distribution"], [132, "Outcome-distribution"], [135, "Outcome-distribution"]], "Identifying feature types": [[131, "Identifying-feature-types"], [132, "Identifying-feature-types"], [135, "Identifying-feature-types"]], "Creating data preprocessors": [[131, "Creating-data-preprocessors"], [132, "Creating-data-preprocessors"], [135, "Creating-data-preprocessors"]], "Creating Hugging Face Dataset": [[131, "Creating-Hugging-Face-Dataset"], [132, "Creating-Hugging-Face-Dataset"], [135, "Creating-Hugging-Face-Dataset"]], "Model Creation": [[131, "Model-Creation"], [132, "Model-Creation"], [133, "Model-Creation"], [135, "Model-Creation"]], "Task Creation": [[131, "Task-Creation"], [132, "Task-Creation"], [135, "Task-Creation"]], "Training": [[131, "Training"], [132, "Training"], [135, "Training"]], "Prediction": [[131, "Prediction"], [132, "Prediction"], [135, "Prediction"]], "Evaluation": [[131, "Evaluation"], [132, "Evaluation"], [135, "Evaluation"]], "Performance over time": [[131, "Performance-over-time"]], "Report Generation": [[131, "Report-Generation"], [132, "Report-Generation"], [135, "Report-Generation"]], "Mortality Prediction": [[132, "Mortality-Prediction"]], "Data Querying & Processing": [[132, "Data-Querying-&-Processing"]], "Compute mortality (labels)": [[132, "Compute-mortality-(labels)"]], "Data Inspection and Preprocessing": [[132, "Data-Inspection-and-Preprocessing"], [135, "Data-Inspection-and-Preprocessing"]], "Drop NaNs based on the NAN_THRESHOLD": [[132, "Drop-NaNs-based-on-the-NAN_THRESHOLD"], [135, "Drop-NaNs-based-on-the-NAN_THRESHOLD"]], "Gender distribution": [[132, "Gender-distribution"], [135, "Gender-distribution"]], "Chest X-Ray Disease Classification": [[133, "Chest-X-Ray-Disease-Classification"]], "Generate Historical Reports": [[133, "Generate-Historical-Reports"]], "Initialize Periodic Report": [[133, "Initialize-Periodic-Report"]], "Load Dataset": [[133, "Load-Dataset"]], "Multilabel AUROC by Pathology and Sex": [[133, "Multilabel-AUROC-by-Pathology-and-Sex"]], "Multilabel AUROC by Pathology and Age": [[133, "Multilabel-AUROC-by-Pathology-and-Age"]], "Log Performance Metrics as Tests w/ Thresholds": [[133, "Log-Performance-Metrics-as-Tests-w/-Thresholds"]], "Populate Model Card Fields": [[133, "Populate-Model-Card-Fields"]], "NIHCXR Clinical Drift Experiments Tutorial": [[134, "NIHCXR-Clinical-Drift-Experiments-Tutorial"]], "Import Libraries and Load NIHCXR Dataset": [[134, "Import-Libraries-and-Load-NIHCXR-Dataset"]], "Example 1. Generate Source/Target Dataset for Experiments (1-2)": [[134, "Example-1.-Generate-Source/Target-Dataset-for-Experiments-(1-2)"]], "Example 2. Sensitivity test experiment with 3 dimensionality reduction techniques": [[134, "Example-2.-Sensitivity-test-experiment-with-3-dimensionality-reduction-techniques"]], "Example 3. Sensitivity test experiment with models trained on different datasets": [[134, "Example-3.-Sensitivity-test-experiment-with-models-trained-on-different-datasets"]], "Example 4. Sensitivity test experiment with different clinical shifts": [[134, "Example-4.-Sensitivity-test-experiment-with-different-clinical-shifts"]], "Example 5. Rolling window experiment with synthetic timestamps using biweekly window": [[134, "Example-5.-Rolling-window-experiment-with-synthetic-timestamps-using-biweekly-window"]], "Prolonged Length of Stay Prediction": [[135, "Prolonged-Length-of-Stay-Prediction"]], "Data Querying": [[135, "Data-Querying"]], "Compute length of stay (labels)": [[135, "Compute-length-of-stay-(labels)"]], "Length of stay distribution": [[135, "Length-of-stay-distribution"]], "monitor API": [[136, "monitor-api"]], "Example use cases": [[137, "example-use-cases"]], "Tabular data": [[137, "tabular-data"]], "Kaggle Heart Failure Prediction": [[137, "kaggle-heart-failure-prediction"]], "MIMICIV Mortality Prediction": [[137, "mimiciv-mortality-prediction"]], "Synthea Prolonged Length of Stay Prediction": [[137, "synthea-prolonged-length-of-stay-prediction"]], "Image data": [[137, "image-data"]], "NIH Chest X-ray classification": [[137, "nih-chest-x-ray-classification"]]}, "indexentries": {"cyclops.data.features.medical_image": [[4, "module-cyclops.data.features.medical_image"]], "module": [[4, "module-cyclops.data.features.medical_image"], [6, "module-cyclops.data.slicer"], [16, "module-cyclops.evaluate.evaluator"], [18, "module-cyclops.evaluate.fairness.config"], [20, "module-cyclops.evaluate.fairness.evaluator"], [23, "module-cyclops.evaluate.metrics.accuracy"], [28, "module-cyclops.evaluate.metrics.auroc"], [33, "module-cyclops.evaluate.metrics.f_beta"], [42, "module-cyclops.evaluate.metrics.factory"], [44, "module-cyclops.evaluate.metrics.functional.accuracy"], [45, "module-cyclops.evaluate.metrics.functional.auroc"], [46, "module-cyclops.evaluate.metrics.functional.f_beta"], [55, "module-cyclops.evaluate.metrics.functional.precision_recall"], [64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"], [65, "module-cyclops.evaluate.metrics.functional.roc"], [70, "module-cyclops.evaluate.metrics.functional.sensitivity"], [71, "module-cyclops.evaluate.metrics.functional.specificity"], [72, "module-cyclops.evaluate.metrics.functional.stat_scores"], [73, "module-cyclops.evaluate.metrics.metric"], [77, "module-cyclops.evaluate.metrics.precision_recall"], [86, "module-cyclops.evaluate.metrics.precision_recall_curve"], [91, "module-cyclops.evaluate.metrics.roc"], [96, "module-cyclops.evaluate.metrics.sensitivity"], [101, "module-cyclops.evaluate.metrics.specificity"], [106, "module-cyclops.evaluate.metrics.stat_scores"], [111, "module-cyclops.monitor.clinical_applicator"], [113, "module-cyclops.monitor.synthetic_applicator"], [120, "module-cyclops.report.report"], [122, "module-cyclops.tasks.classification"], [125, "module-cyclops.data"], [125, "module-cyclops.data.features"], [126, "module-cyclops.evaluate"], [126, "module-cyclops.evaluate.fairness"], [126, "module-cyclops.evaluate.metrics"], [126, "module-cyclops.evaluate.metrics.functional"], [127, "module-cyclops.monitor"], [128, "module-cyclops.report"], [129, "module-cyclops.tasks"]], "medicalimage (class in cyclops.data.features.medical_image)": [[5, "cyclops.data.features.medical_image.MedicalImage"]], "__call__() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.__call__"]], "cast_storage() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.cast_storage"]], "decode_example() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.decode_example"]], "embed_storage() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.embed_storage"]], "encode_example() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.encode_example"]], "flatten() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.flatten"]], "cyclops.data.slicer": [[6, "module-cyclops.data.slicer"]], "slicespec (class in cyclops.data.slicer)": [[7, "cyclops.data.slicer.SliceSpec"]], "_registry (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec._registry"]], "add_slice_spec() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.add_slice_spec"]], "column_names (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.column_names"]], "get_slices() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.get_slices"]], "include_overall (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.include_overall"]], "slices() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.slices"]], "spec_list (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.spec_list"]], "validate (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.validate"]], "compound_filter() (in module cyclops.data.slicer)": [[8, "cyclops.data.slicer.compound_filter"]], "filter_datetime() (in module cyclops.data.slicer)": [[9, "cyclops.data.slicer.filter_datetime"]], "filter_non_null() (in module cyclops.data.slicer)": [[10, "cyclops.data.slicer.filter_non_null"]], "filter_range() (in module cyclops.data.slicer)": [[11, "cyclops.data.slicer.filter_range"]], "filter_string_contains() (in module cyclops.data.slicer)": [[12, "cyclops.data.slicer.filter_string_contains"]], "filter_value() (in module cyclops.data.slicer)": [[13, "cyclops.data.slicer.filter_value"]], "is_datetime() (in module cyclops.data.slicer)": [[14, "cyclops.data.slicer.is_datetime"]], "overall() (in module cyclops.data.slicer)": [[15, "cyclops.data.slicer.overall"]], "cyclops.evaluate.evaluator": [[16, "module-cyclops.evaluate.evaluator"]], "evaluate() (in module cyclops.evaluate.evaluator)": [[17, "cyclops.evaluate.evaluator.evaluate"]], "cyclops.evaluate.fairness.config": [[18, "module-cyclops.evaluate.fairness.config"]], "fairnessconfig (class in cyclops.evaluate.fairness.config)": [[19, "cyclops.evaluate.fairness.config.FairnessConfig"]], "cyclops.evaluate.fairness.evaluator": [[20, "module-cyclops.evaluate.fairness.evaluator"]], "evaluate_fairness() (in module cyclops.evaluate.fairness.evaluator)": [[21, "cyclops.evaluate.fairness.evaluator.evaluate_fairness"]], "warn_too_many_unique_values() (in module cyclops.evaluate.fairness.evaluator)": [[22, "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values"]], "cyclops.evaluate.metrics.accuracy": [[23, "module-cyclops.evaluate.metrics.accuracy"]], "accuracy (class in cyclops.evaluate.metrics.accuracy)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy"]], "__add__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__add__"]], "__call__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__call__"]], "__init__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__init__"]], "__mul__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__mul__"]], "add_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.add_state"]], "clone() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.clone"]], "compute() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.compute"]], "reset_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.reset_state"]], "update_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.update_state"]], "binaryaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy"]], "__add__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__add__"]], "__call__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__call__"]], "__init__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__init__"]], "__mul__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__mul__"]], "add_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.add_state"]], "clone() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.clone"]], "compute() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.compute"]], "reset_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.reset_state"]], "update_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.update_state"]], "multiclassaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy"]], "__add__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__add__"]], "__call__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__call__"]], "__init__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__init__"]], "__mul__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__mul__"]], "add_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.add_state"]], "clone() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.clone"]], "compute() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.compute"]], "reset_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.reset_state"]], "update_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.update_state"]], "multilabelaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy"]], "__add__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__add__"]], "__call__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__call__"]], "__init__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__init__"]], "__mul__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__mul__"]], "add_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.add_state"]], "clone() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.clone"]], "compute() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.compute"]], "reset_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.reset_state"]], "update_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.update_state"]], "cyclops.evaluate.metrics.auroc": [[28, "module-cyclops.evaluate.metrics.auroc"]], "auroc (class in cyclops.evaluate.metrics.auroc)": [[29, "cyclops.evaluate.metrics.auroc.AUROC"]], "__add__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__add__"]], "__call__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__call__"]], "__init__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__init__"]], "__mul__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__mul__"]], "add_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.add_state"]], "clone() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.clone"]], "compute() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.compute"]], "reset_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.reset_state"]], "update_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.update_state"]], "binaryauroc (class in cyclops.evaluate.metrics.auroc)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC"]], "__add__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__add__"]], "__call__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__call__"]], "__init__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__init__"]], "__mul__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__mul__"]], "add_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.add_state"]], "clone() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.clone"]], "compute() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.compute"]], "reset_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.reset_state"]], "update_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.update_state"]], "multiclassauroc (class in cyclops.evaluate.metrics.auroc)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC"]], "__add__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__add__"]], "__call__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__call__"]], "__init__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__init__"]], "__mul__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__mul__"]], "add_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.add_state"]], "clone() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.clone"]], "compute() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.compute"]], "reset_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.reset_state"]], "update_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.update_state"]], "multilabelauroc (class in cyclops.evaluate.metrics.auroc)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC"]], "__add__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__add__"]], "__call__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__call__"]], "__init__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__init__"]], "__mul__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__mul__"]], "add_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.add_state"]], "clone() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.clone"]], "compute() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.compute"]], "reset_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.reset_state"]], "update_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.update_state"]], "cyclops.evaluate.metrics.f_beta": [[33, "module-cyclops.evaluate.metrics.f_beta"]], "binaryf1score (class in cyclops.evaluate.metrics.f_beta)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score"]], "__add__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__add__"]], "__call__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__call__"]], "__init__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__init__"]], "__mul__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__mul__"]], "add_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.add_state"]], "clone() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.clone"]], "compute() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.compute"]], "reset_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.reset_state"]], "update_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.update_state"]], "binaryfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore"]], "__add__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__add__"]], "__call__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__call__"]], "__init__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__init__"]], "__mul__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__mul__"]], "add_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.add_state"]], "clone() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.clone"]], "compute() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.compute"]], "reset_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.reset_state"]], "update_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.update_state"]], "f1score (class in cyclops.evaluate.metrics.f_beta)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score"]], "__add__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__add__"]], "__call__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__call__"]], "__init__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__init__"]], "__mul__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__mul__"]], "add_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.add_state"]], "clone() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.clone"]], "compute() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.compute"]], "reset_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.reset_state"]], "update_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.update_state"]], "fbetascore (class in cyclops.evaluate.metrics.f_beta)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore"]], "__add__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__add__"]], "__call__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__call__"]], "__init__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__init__"]], "__mul__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__mul__"]], "add_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.add_state"]], "clone() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.clone"]], "compute() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.compute"]], "reset_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.reset_state"]], "update_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.update_state"]], "multiclassf1score (class in cyclops.evaluate.metrics.f_beta)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score"]], "__add__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__add__"]], "__call__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__call__"]], "__init__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__init__"]], "__mul__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__mul__"]], "add_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.add_state"]], "clone() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.clone"]], "compute() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.compute"]], "reset_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.reset_state"]], "update_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.update_state"]], "multiclassfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore"]], "__add__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__add__"]], "__call__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__call__"]], "__init__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__init__"]], "__mul__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__mul__"]], "add_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.add_state"]], "clone() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.clone"]], "compute() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.compute"]], "reset_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.reset_state"]], "update_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.update_state"]], "multilabelf1score (class in cyclops.evaluate.metrics.f_beta)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score"]], "__add__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__add__"]], "__call__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__call__"]], "__init__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__init__"]], "__mul__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__mul__"]], "add_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.add_state"]], "clone() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.clone"]], "compute() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.compute"]], "reset_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.reset_state"]], "update_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.update_state"]], "multilabelfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore"]], "__add__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__add__"]], "__call__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__call__"]], "__init__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__init__"]], "__mul__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__mul__"]], "add_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.add_state"]], "clone() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.clone"]], "compute() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.compute"]], "reset_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.reset_state"]], "update_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.update_state"]], "cyclops.evaluate.metrics.factory": [[42, "module-cyclops.evaluate.metrics.factory"]], "create_metric() (in module cyclops.evaluate.metrics.factory)": [[43, "cyclops.evaluate.metrics.factory.create_metric"]], "cyclops.evaluate.metrics.functional.accuracy": [[44, "module-cyclops.evaluate.metrics.functional.accuracy"]], "cyclops.evaluate.metrics.functional.auroc": [[45, "module-cyclops.evaluate.metrics.functional.auroc"]], "cyclops.evaluate.metrics.functional.f_beta": [[46, "module-cyclops.evaluate.metrics.functional.f_beta"]], "binary_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[47, "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score"]], "binary_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[48, "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score"]], "f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[49, "cyclops.evaluate.metrics.functional.f_beta.f1_score"]], "fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[50, "cyclops.evaluate.metrics.functional.f_beta.fbeta_score"]], "multiclass_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[51, "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score"]], "multiclass_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[52, "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score"]], "multilabel_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[53, "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score"]], "multilabel_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[54, "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[55, "module-cyclops.evaluate.metrics.functional.precision_recall"]], "binary_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[56, "cyclops.evaluate.metrics.functional.precision_recall.binary_precision"]], "binary_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[57, "cyclops.evaluate.metrics.functional.precision_recall.binary_recall"]], "multiclass_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[58, "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision"]], "multiclass_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[59, "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall"]], "multilabel_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[60, "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision"]], "multilabel_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[61, "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall"]], "precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[62, "cyclops.evaluate.metrics.functional.precision_recall.precision"]], "recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[63, "cyclops.evaluate.metrics.functional.precision_recall.recall"]], "cyclops.evaluate.metrics.functional.precision_recall_curve": [[64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"]], "cyclops.evaluate.metrics.functional.roc": [[65, "module-cyclops.evaluate.metrics.functional.roc"]], "binary_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[66, "cyclops.evaluate.metrics.functional.roc.binary_roc_curve"]], "multiclass_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[67, "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve"]], "multilabel_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[68, "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve"]], "roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[69, "cyclops.evaluate.metrics.functional.roc.roc_curve"]], "cyclops.evaluate.metrics.functional.sensitivity": [[70, "module-cyclops.evaluate.metrics.functional.sensitivity"]], "cyclops.evaluate.metrics.functional.specificity": [[71, "module-cyclops.evaluate.metrics.functional.specificity"]], "cyclops.evaluate.metrics.functional.stat_scores": [[72, "module-cyclops.evaluate.metrics.functional.stat_scores"]], "cyclops.evaluate.metrics.metric": [[73, "module-cyclops.evaluate.metrics.metric"]], "metric (class in cyclops.evaluate.metrics.metric)": [[74, "cyclops.evaluate.metrics.metric.Metric"]], "__add__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__add__"]], "__call__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__call__"]], "__init__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__init__"]], "__mul__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__mul__"]], "add_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.add_state"]], "clone() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.clone"]], "compute() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.compute"]], "name (metric property)": [[74, "cyclops.evaluate.metrics.metric.Metric.name"]], "reset_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.reset_state"]], "update_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.update_state"]], "metriccollection (class in cyclops.evaluate.metrics.metric)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection"]], "__call__() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.__call__"]], "__init__() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.__init__"]], "add_metrics() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.add_metrics"]], "clear() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.clear"]], "clone() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.clone"]], "compute() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.compute"]], "get() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.get"]], "items() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.items"]], "keys() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.keys"]], "pop() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.pop"]], "popitem() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.popitem"]], "reset_state() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.reset_state"]], "setdefault() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.setdefault"]], "update() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.update"]], "update_state() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.update_state"]], "values() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.values"]], "operatormetric (class in cyclops.evaluate.metrics.metric)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric"]], "__add__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__add__"]], "__call__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__call__"]], "__init__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__init__"]], "__mul__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__mul__"]], "add_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.add_state"]], "clone() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.clone"]], "compute() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.compute"]], "reset_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.reset_state"]], "update_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.update_state"]], "cyclops.evaluate.metrics.precision_recall": [[77, "module-cyclops.evaluate.metrics.precision_recall"]], "binaryprecision (class in cyclops.evaluate.metrics.precision_recall)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision"]], "__add__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__add__"]], "__call__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__call__"]], "__init__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__init__"]], "__mul__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__mul__"]], "add_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.add_state"]], "clone() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.clone"]], "compute() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.compute"]], "reset_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.reset_state"]], "update_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.update_state"]], "binaryrecall (class in cyclops.evaluate.metrics.precision_recall)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall"]], "__add__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__add__"]], "__call__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__call__"]], "__init__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__init__"]], "__mul__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__mul__"]], "add_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.add_state"]], "clone() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.clone"]], "compute() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.compute"]], "reset_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.reset_state"]], "update_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.update_state"]], "multiclassprecision (class in cyclops.evaluate.metrics.precision_recall)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision"]], "__add__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__add__"]], "__call__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__call__"]], "__init__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__init__"]], "__mul__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__mul__"]], "add_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.add_state"]], "clone() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.clone"]], "compute() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.compute"]], "reset_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.reset_state"]], "update_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.update_state"]], "multiclassrecall (class in cyclops.evaluate.metrics.precision_recall)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall"]], "__add__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__add__"]], "__call__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__call__"]], "__init__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__init__"]], "__mul__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__mul__"]], "add_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.add_state"]], "clone() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.clone"]], "compute() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.compute"]], "reset_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.reset_state"]], "update_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.update_state"]], "multilabelprecision (class in cyclops.evaluate.metrics.precision_recall)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision"]], "__add__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__add__"]], "__call__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__call__"]], "__init__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__init__"]], "__mul__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__mul__"]], "add_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.add_state"]], "clone() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.clone"]], "compute() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.compute"]], "reset_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.reset_state"]], "update_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.update_state"]], "multilabelrecall (class in cyclops.evaluate.metrics.precision_recall)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall"]], "__add__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__add__"]], "__call__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__call__"]], "__init__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__init__"]], "__mul__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__mul__"]], "add_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.add_state"]], "clone() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.clone"]], "compute() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.compute"]], "reset_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.reset_state"]], "update_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.update_state"]], "precision (class in cyclops.evaluate.metrics.precision_recall)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision"]], "__add__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__add__"]], "__call__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__call__"]], "__init__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__init__"]], "__mul__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__mul__"]], "add_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.add_state"]], "clone() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.clone"]], "compute() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.compute"]], "reset_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.reset_state"]], "update_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.update_state"]], "recall (class in cyclops.evaluate.metrics.precision_recall)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall"]], "__add__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__add__"]], "__call__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__call__"]], "__init__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__init__"]], "__mul__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__mul__"]], "add_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.add_state"]], "clone() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.clone"]], "compute() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.compute"]], "reset_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.reset_state"]], "update_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.update_state"]], "cyclops.evaluate.metrics.precision_recall_curve": [[86, "module-cyclops.evaluate.metrics.precision_recall_curve"]], "binaryprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve"]], "__add__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__add__"]], "__call__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__call__"]], "__init__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__init__"]], "__mul__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__mul__"]], "add_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.add_state"]], "clone() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.clone"]], "compute() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.compute"]], "reset_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.reset_state"]], "update_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.update_state"]], "multiclassprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve"]], "__add__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__add__"]], "__call__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__call__"]], "__init__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__init__"]], "__mul__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__mul__"]], "add_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.add_state"]], "clone() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.clone"]], "compute() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.compute"]], "reset_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.reset_state"]], "update_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.update_state"]], "multilabelprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve"]], "__add__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__add__"]], "__call__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__call__"]], "__init__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__init__"]], "__mul__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__mul__"]], "add_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.add_state"]], "clone() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.clone"]], "compute() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.compute"]], "reset_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.reset_state"]], "update_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.update_state"]], "precisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve"]], "__add__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__add__"]], "__call__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__call__"]], "__init__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__init__"]], "__mul__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__mul__"]], "add_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.add_state"]], "clone() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.clone"]], "compute() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.compute"]], "reset_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.reset_state"]], "update_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.update_state"]], "cyclops.evaluate.metrics.roc": [[91, "module-cyclops.evaluate.metrics.roc"]], "binaryroccurve (class in cyclops.evaluate.metrics.roc)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve"]], "__add__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__add__"]], "__call__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__call__"]], "__init__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__init__"]], "__mul__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__mul__"]], "add_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.add_state"]], "clone() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.clone"]], "compute() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.compute"]], "reset_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.reset_state"]], "update_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.update_state"]], "multiclassroccurve (class in cyclops.evaluate.metrics.roc)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve"]], "__add__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__add__"]], "__call__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__call__"]], "__init__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__init__"]], "__mul__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__mul__"]], "add_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.add_state"]], "clone() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.clone"]], "compute() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.compute"]], "reset_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.reset_state"]], "update_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.update_state"]], "multilabelroccurve (class in cyclops.evaluate.metrics.roc)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve"]], "__add__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__add__"]], "__call__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__call__"]], "__init__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__init__"]], "__mul__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__mul__"]], "add_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.add_state"]], "clone() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.clone"]], "compute() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.compute"]], "reset_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.reset_state"]], "update_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.update_state"]], "roccurve (class in cyclops.evaluate.metrics.roc)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve"]], "__add__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__add__"]], "__call__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__call__"]], "__init__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__init__"]], "__mul__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__mul__"]], "add_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.add_state"]], "clone() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.clone"]], "compute() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.compute"]], "reset_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.reset_state"]], "update_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.update_state"]], "cyclops.evaluate.metrics.sensitivity": [[96, "module-cyclops.evaluate.metrics.sensitivity"]], "binarysensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity"]], "__add__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__add__"]], "__call__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__call__"]], "__init__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__init__"]], "__mul__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__mul__"]], "add_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.add_state"]], "clone() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.clone"]], "compute() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.compute"]], "reset_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.reset_state"]], "update_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.update_state"]], "multiclasssensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity"]], "__add__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__add__"]], "__call__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__call__"]], "__init__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__init__"]], "__mul__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__mul__"]], "add_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.add_state"]], "clone() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.clone"]], "compute() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.compute"]], "reset_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.reset_state"]], "update_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.update_state"]], "multilabelsensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity"]], "__add__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__add__"]], "__call__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__call__"]], "__init__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__init__"]], "__mul__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__mul__"]], "add_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.add_state"]], "clone() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.clone"]], "compute() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.compute"]], "reset_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.reset_state"]], "update_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.update_state"]], "sensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity"]], "__add__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__add__"]], "__call__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__call__"]], "__init__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__init__"]], "__mul__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__mul__"]], "add_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.add_state"]], "clone() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.clone"]], "compute() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.compute"]], "reset_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.reset_state"]], "update_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.update_state"]], "cyclops.evaluate.metrics.specificity": [[101, "module-cyclops.evaluate.metrics.specificity"]], "binaryspecificity (class in cyclops.evaluate.metrics.specificity)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity"]], "__add__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__add__"]], "__call__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__call__"]], "__init__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__init__"]], "__mul__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__mul__"]], "add_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.add_state"]], "clone() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.clone"]], "compute() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.compute"]], "reset_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.reset_state"]], "update_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.update_state"]], "multiclassspecificity (class in cyclops.evaluate.metrics.specificity)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity"]], "__add__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__add__"]], "__call__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__call__"]], "__init__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__init__"]], "__mul__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__mul__"]], "add_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.add_state"]], "clone() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.clone"]], "compute() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.compute"]], "reset_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.reset_state"]], "update_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.update_state"]], "multilabelspecificity (class in cyclops.evaluate.metrics.specificity)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity"]], "__add__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__add__"]], "__call__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__call__"]], "__init__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__init__"]], "__mul__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__mul__"]], "add_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.add_state"]], "clone() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.clone"]], "compute() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.compute"]], "reset_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.reset_state"]], "update_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.update_state"]], "specificity (class in cyclops.evaluate.metrics.specificity)": [[105, "cyclops.evaluate.metrics.specificity.Specificity"]], "__add__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__add__"]], "__call__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__call__"]], "__init__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__init__"]], "__mul__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__mul__"]], "add_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.add_state"]], "clone() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.clone"]], "compute() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.compute"]], "reset_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.reset_state"]], "update_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.update_state"]], "cyclops.evaluate.metrics.stat_scores": [[106, "module-cyclops.evaluate.metrics.stat_scores"]], "binarystatscores (class in cyclops.evaluate.metrics.stat_scores)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores"]], "__add__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__add__"]], "__call__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__call__"]], "__init__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__init__"]], "__mul__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__mul__"]], "add_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.add_state"]], "clone() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.clone"]], "compute() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.compute"]], "reset_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.reset_state"]], "update_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.update_state"]], "multiclassstatscores (class in cyclops.evaluate.metrics.stat_scores)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores"]], "__add__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__add__"]], "__call__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__call__"]], "__init__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__init__"]], "__mul__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__mul__"]], "add_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.add_state"]], "clone() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.clone"]], "compute() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.compute"]], "reset_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.reset_state"]], "update_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.update_state"]], "multilabelstatscores (class in cyclops.evaluate.metrics.stat_scores)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores"]], "__add__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__add__"]], "__call__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__call__"]], "__init__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__init__"]], "__mul__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__mul__"]], "add_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.add_state"]], "clone() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.clone"]], "compute() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.compute"]], "reset_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.reset_state"]], "update_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.update_state"]], "statscores (class in cyclops.evaluate.metrics.stat_scores)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores"]], "__add__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__add__"]], "__call__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__call__"]], "__init__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__init__"]], "__mul__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__mul__"]], "add_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.add_state"]], "clone() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.clone"]], "compute() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.compute"]], "name (statscores property)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.name"]], "reset_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.reset_state"]], "update_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.update_state"]], "cyclops.monitor.clinical_applicator": [[111, "module-cyclops.monitor.clinical_applicator"]], "clinicalshiftapplicator (class in cyclops.monitor.clinical_applicator)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator"]], "age() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.age"]], "apply_shift() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.apply_shift"]], "custom() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.custom"]], "hospital_type() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.hospital_type"]], "month() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.month"]], "sex() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.sex"]], "time() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.time"]], "cyclops.monitor.synthetic_applicator": [[113, "module-cyclops.monitor.synthetic_applicator"]], "syntheticshiftapplicator (class in cyclops.monitor.synthetic_applicator)": [[114, "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator"]], "apply_shift() (syntheticshiftapplicator method)": [[114, "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator.apply_shift"]], "binary_noise_shift() (in module cyclops.monitor.synthetic_applicator)": [[115, "cyclops.monitor.synthetic_applicator.binary_noise_shift"]], "feature_association_shift() (in module cyclops.monitor.synthetic_applicator)": [[116, "cyclops.monitor.synthetic_applicator.feature_association_shift"]], "feature_swap_shift() (in module cyclops.monitor.synthetic_applicator)": [[117, "cyclops.monitor.synthetic_applicator.feature_swap_shift"]], "gaussian_noise_shift() (in module cyclops.monitor.synthetic_applicator)": [[118, "cyclops.monitor.synthetic_applicator.gaussian_noise_shift"]], "knockout_shift() (in module cyclops.monitor.synthetic_applicator)": [[119, "cyclops.monitor.synthetic_applicator.knockout_shift"]], "cyclops.report.report": [[120, "module-cyclops.report.report"]], "modelcardreport (class in cyclops.report.report)": [[121, "cyclops.report.report.ModelCardReport"]], "export() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.export"]], "from_json_file() (modelcardreport class method)": [[121, "cyclops.report.report.ModelCardReport.from_json_file"]], "log_citation() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_citation"]], "log_dataset() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_dataset"]], "log_descriptor() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_descriptor"]], "log_fairness_assessment() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_fairness_assessment"]], "log_from_dict() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_from_dict"]], "log_image() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_image"]], "log_license() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_license"]], "log_model_parameters() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_model_parameters"]], "log_owner() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_owner"]], "log_performance_metrics() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_performance_metrics"]], "log_plotly_figure() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_plotly_figure"]], "log_quantitative_analysis() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_quantitative_analysis"]], "log_reference() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_reference"]], "log_regulation() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_regulation"]], "log_risk() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_risk"]], "log_use_case() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_use_case"]], "log_user() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_user"]], "log_version() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_version"]], "cyclops.tasks.classification": [[122, "module-cyclops.tasks.classification"]], "binarytabularclassificationtask (class in cyclops.tasks.classification)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask"]], "__init__() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.__init__"]], "add_model() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.add_model"]], "data_type (binarytabularclassificationtask property)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.data_type"]], "evaluate() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.evaluate"]], "get_model() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.get_model"]], "list_models() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.list_models"]], "list_models_params() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.list_models_params"]], "load_model() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.load_model"]], "models_count (binarytabularclassificationtask property)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.models_count"]], "predict() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.predict"]], "save_model() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.save_model"]], "task_type (binarytabularclassificationtask property)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.task_type"]], "train() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.train"]], "multilabelimageclassificationtask (class in cyclops.tasks.classification)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask"]], "__init__() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.__init__"]], "add_model() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.add_model"]], "data_type (multilabelimageclassificationtask property)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.data_type"]], "evaluate() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.evaluate"]], "get_model() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.get_model"]], "list_models() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.list_models"]], "list_models_params() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.list_models_params"]], "load_model() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.load_model"]], "models_count (multilabelimageclassificationtask property)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.models_count"]], "predict() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.predict"]], "save_model() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.save_model"]], "task_type (multilabelimageclassificationtask property)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.task_type"]], "cyclops.data": [[125, "module-cyclops.data"]], "cyclops.data.features": [[125, "module-cyclops.data.features"]], "cyclops.evaluate": [[126, "module-cyclops.evaluate"]], "cyclops.evaluate.fairness": [[126, "module-cyclops.evaluate.fairness"]], "cyclops.evaluate.metrics": [[126, "module-cyclops.evaluate.metrics"]], "cyclops.evaluate.metrics.functional": [[126, "module-cyclops.evaluate.metrics.functional"]], "cyclops.monitor": [[127, "module-cyclops.monitor"]], "cyclops.report": [[128, "module-cyclops.report"]], "cyclops.tasks": [[129, "module-cyclops.tasks"]]}})
\ No newline at end of file
+Search.setIndex({"docnames": ["api", "contributing", "index", "intro", "reference/api/_autosummary/cyclops.data.features.medical_image", "reference/api/_autosummary/cyclops.data.features.medical_image.MedicalImage", "reference/api/_autosummary/cyclops.data.slicer", "reference/api/_autosummary/cyclops.data.slicer.SliceSpec", "reference/api/_autosummary/cyclops.data.slicer.compound_filter", "reference/api/_autosummary/cyclops.data.slicer.filter_datetime", "reference/api/_autosummary/cyclops.data.slicer.filter_non_null", "reference/api/_autosummary/cyclops.data.slicer.filter_range", "reference/api/_autosummary/cyclops.data.slicer.filter_string_contains", "reference/api/_autosummary/cyclops.data.slicer.filter_value", "reference/api/_autosummary/cyclops.data.slicer.is_datetime", "reference/api/_autosummary/cyclops.data.slicer.overall", "reference/api/_autosummary/cyclops.evaluate.evaluator", "reference/api/_autosummary/cyclops.evaluate.evaluator.evaluate", "reference/api/_autosummary/cyclops.evaluate.fairness.config", "reference/api/_autosummary/cyclops.evaluate.fairness.config.FairnessConfig", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.evaluate_fairness", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.Accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.BinaryAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MulticlassAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MultilabelAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.AUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.BinaryAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MulticlassAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MultilabelAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.F1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.FbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.factory", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.create_metric", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.auroc", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.binary_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.stat_scores", "reference/api/_autosummary/cyclops.evaluate.metrics.metric", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.Metric", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.MetricCollection", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.OperatorMetric", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Precision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Recall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.BinaryROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MulticlassROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MultilabelROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.ROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.BinarySensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.Sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.BinarySpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MulticlassSpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MultilabelSpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.Specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.BinaryStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MulticlassStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MultilabelStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.StatScores", "reference/api/_autosummary/cyclops.monitor.clinical_applicator", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.ClinicalShiftApplicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.binary_noise_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_association_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_swap_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.gaussian_noise_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.knockout_shift", "reference/api/_autosummary/cyclops.report.report", "reference/api/_autosummary/cyclops.report.report.ModelCardReport", "reference/api/_autosummary/cyclops.tasks.classification", "reference/api/_autosummary/cyclops.tasks.classification.BinaryTabularClassificationTask", "reference/api/_autosummary/cyclops.tasks.classification.MultilabelImageClassificationTask", "reference/api/cyclops.data", "reference/api/cyclops.evaluate", "reference/api/cyclops.monitor", "reference/api/cyclops.report", "reference/api/cyclops.tasks", "tutorials", "tutorials/kaggle/heart_failure_prediction", "tutorials/mimiciv/mortality_prediction", "tutorials/nihcxr/cxr_classification", "tutorials/nihcxr/monitor_api", "tutorials/synthea/los_prediction", "tutorials_monitor", "tutorials_use_cases"], "filenames": ["api.rst", "contributing.rst", "index.rst", "intro.rst", "reference/api/_autosummary/cyclops.data.features.medical_image.rst", "reference/api/_autosummary/cyclops.data.features.medical_image.MedicalImage.rst", "reference/api/_autosummary/cyclops.data.slicer.rst", "reference/api/_autosummary/cyclops.data.slicer.SliceSpec.rst", "reference/api/_autosummary/cyclops.data.slicer.compound_filter.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_datetime.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_non_null.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_range.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_string_contains.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_value.rst", "reference/api/_autosummary/cyclops.data.slicer.is_datetime.rst", "reference/api/_autosummary/cyclops.data.slicer.overall.rst", "reference/api/_autosummary/cyclops.evaluate.evaluator.rst", "reference/api/_autosummary/cyclops.evaluate.evaluator.evaluate.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.config.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.config.FairnessConfig.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.evaluate_fairness.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.Accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.BinaryAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.AUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.BinaryAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MulticlassAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MultilabelAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.F1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.FbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.create_metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.auroc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.binary_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.stat_scores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.Metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.MetricCollection.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.OperatorMetric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.BinaryROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MulticlassROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MultilabelROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.ROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.BinarySensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.Sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.BinarySpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MulticlassSpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MultilabelSpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.Specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.BinaryStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.StatScores.rst", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.rst", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.binary_noise_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_association_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_swap_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.gaussian_noise_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.knockout_shift.rst", "reference/api/_autosummary/cyclops.report.report.rst", "reference/api/_autosummary/cyclops.report.report.ModelCardReport.rst", "reference/api/_autosummary/cyclops.tasks.classification.rst", "reference/api/_autosummary/cyclops.tasks.classification.BinaryTabularClassificationTask.rst", "reference/api/_autosummary/cyclops.tasks.classification.MultilabelImageClassificationTask.rst", "reference/api/cyclops.data.rst", "reference/api/cyclops.evaluate.rst", "reference/api/cyclops.monitor.rst", "reference/api/cyclops.report.rst", "reference/api/cyclops.tasks.rst", "tutorials.rst", "tutorials/kaggle/heart_failure_prediction.ipynb", "tutorials/mimiciv/mortality_prediction.ipynb", "tutorials/nihcxr/cxr_classification.ipynb", "tutorials/nihcxr/monitor_api.ipynb", "tutorials/synthea/los_prediction.ipynb", "tutorials_monitor.rst", "tutorials_use_cases.rst"], "titles": ["API Reference", "Contributing to cyclops", "Welcome to cyclops\u2019s documentation!", "\ud83d\udc23 Getting Started", "cyclops.data.features.medical_image", "cyclops.data.features.medical_image.MedicalImage", "cyclops.data.slicer", "cyclops.data.slicer.SliceSpec", "cyclops.data.slicer.compound_filter", "cyclops.data.slicer.filter_datetime", "cyclops.data.slicer.filter_non_null", "cyclops.data.slicer.filter_range", "cyclops.data.slicer.filter_string_contains", "cyclops.data.slicer.filter_value", "cyclops.data.slicer.is_datetime", "cyclops.data.slicer.overall", "cyclops.evaluate.evaluator", "cyclops.evaluate.evaluator.evaluate", "cyclops.evaluate.fairness.config", "cyclops.evaluate.fairness.config.FairnessConfig", "cyclops.evaluate.fairness.evaluator", "cyclops.evaluate.fairness.evaluator.evaluate_fairness", "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values", "cyclops.evaluate.metrics.accuracy", "cyclops.evaluate.metrics.accuracy.Accuracy", "cyclops.evaluate.metrics.accuracy.BinaryAccuracy", "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy", "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy", "cyclops.evaluate.metrics.auroc", "cyclops.evaluate.metrics.auroc.AUROC", "cyclops.evaluate.metrics.auroc.BinaryAUROC", "cyclops.evaluate.metrics.auroc.MulticlassAUROC", "cyclops.evaluate.metrics.auroc.MultilabelAUROC", "cyclops.evaluate.metrics.f_beta", "cyclops.evaluate.metrics.f_beta.BinaryF1Score", "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore", "cyclops.evaluate.metrics.f_beta.F1Score", "cyclops.evaluate.metrics.f_beta.FbetaScore", "cyclops.evaluate.metrics.f_beta.MulticlassF1Score", "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore", "cyclops.evaluate.metrics.f_beta.MultilabelF1Score", "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore", "cyclops.evaluate.metrics.factory", "cyclops.evaluate.metrics.factory.create_metric", "cyclops.evaluate.metrics.functional.accuracy", "cyclops.evaluate.metrics.functional.auroc", "cyclops.evaluate.metrics.functional.f_beta", "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score", "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.f1_score", "cyclops.evaluate.metrics.functional.f_beta.fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score", "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score", "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score", "cyclops.evaluate.metrics.functional.precision_recall", "cyclops.evaluate.metrics.functional.precision_recall.binary_precision", "cyclops.evaluate.metrics.functional.precision_recall.binary_recall", "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision", "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall", "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision", "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall", "cyclops.evaluate.metrics.functional.precision_recall.precision", "cyclops.evaluate.metrics.functional.precision_recall.recall", "cyclops.evaluate.metrics.functional.precision_recall_curve", "cyclops.evaluate.metrics.functional.roc", "cyclops.evaluate.metrics.functional.roc.binary_roc_curve", "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve", "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve", "cyclops.evaluate.metrics.functional.roc.roc_curve", "cyclops.evaluate.metrics.functional.sensitivity", "cyclops.evaluate.metrics.functional.specificity", "cyclops.evaluate.metrics.functional.stat_scores", "cyclops.evaluate.metrics.metric", "cyclops.evaluate.metrics.metric.Metric", "cyclops.evaluate.metrics.metric.MetricCollection", "cyclops.evaluate.metrics.metric.OperatorMetric", "cyclops.evaluate.metrics.precision_recall", "cyclops.evaluate.metrics.precision_recall.BinaryPrecision", "cyclops.evaluate.metrics.precision_recall.BinaryRecall", "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision", "cyclops.evaluate.metrics.precision_recall.MulticlassRecall", "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision", "cyclops.evaluate.metrics.precision_recall.MultilabelRecall", "cyclops.evaluate.metrics.precision_recall.Precision", "cyclops.evaluate.metrics.precision_recall.Recall", "cyclops.evaluate.metrics.precision_recall_curve", "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve", "cyclops.evaluate.metrics.roc", "cyclops.evaluate.metrics.roc.BinaryROCCurve", "cyclops.evaluate.metrics.roc.MulticlassROCCurve", "cyclops.evaluate.metrics.roc.MultilabelROCCurve", "cyclops.evaluate.metrics.roc.ROCCurve", "cyclops.evaluate.metrics.sensitivity", "cyclops.evaluate.metrics.sensitivity.BinarySensitivity", "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity", "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity", "cyclops.evaluate.metrics.sensitivity.Sensitivity", "cyclops.evaluate.metrics.specificity", "cyclops.evaluate.metrics.specificity.BinarySpecificity", "cyclops.evaluate.metrics.specificity.MulticlassSpecificity", "cyclops.evaluate.metrics.specificity.MultilabelSpecificity", "cyclops.evaluate.metrics.specificity.Specificity", "cyclops.evaluate.metrics.stat_scores", "cyclops.evaluate.metrics.stat_scores.BinaryStatScores", "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores", "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores", "cyclops.evaluate.metrics.stat_scores.StatScores", "cyclops.monitor.clinical_applicator", "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator", "cyclops.monitor.synthetic_applicator", "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator", "cyclops.monitor.synthetic_applicator.binary_noise_shift", "cyclops.monitor.synthetic_applicator.feature_association_shift", "cyclops.monitor.synthetic_applicator.feature_swap_shift", "cyclops.monitor.synthetic_applicator.gaussian_noise_shift", "cyclops.monitor.synthetic_applicator.knockout_shift", "cyclops.report.report", "cyclops.report.report.ModelCardReport", "cyclops.tasks.classification", "cyclops.tasks.classification.BinaryTabularClassificationTask", "cyclops.tasks.classification.MultilabelImageClassificationTask", "cyclops.data", "cyclops.evaluate", "cyclops.monitor", "cyclops.report", "cyclops.tasks", "Tutorials", "Heart Failure Prediction", "Mortality Prediction", "Chest X-Ray Disease Classification", "NIHCXR Clinical Drift Experiments Tutorial", "Prolonged Length of Stay Prediction", "monitor API", "Example use cases"], "terms": {"cyclop": [0, 131, 132, 133, 134, 135], "data": [0, 2, 3, 24, 26, 27, 49, 50, 52, 54, 69, 72, 89, 95, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 130, 133, 134, 136], "slicer": [0, 131, 132, 133, 134, 135], "compound_filt": 0, "filter_datetim": 0, "filter_non_nul": 0, "filter_rang": 0, "filter_string_contain": 0, "filter_valu": [0, 133], "is_datetim": 0, "overal": [0, 7, 21, 121, 131, 132, 133, 135], "slicespec": [0, 17, 112, 124, 131, 132, 133, 134, 135], "spec_list": [0, 7, 131, 132, 133, 134, 135], "include_overal": [0, 7, 131], "valid": [0, 7, 9, 17, 121, 123, 124, 131, 132, 133], "column_nam": [0, 7, 9, 10, 11, 12, 13, 133], "_registri": [0, 7], "add_slice_spec": [0, 7], "get_slic": [0, 7], "slice": [0, 3, 7, 8, 17, 21, 121, 123, 124, 131, 132, 133, 135], "featur": [0, 7, 9, 10, 11, 12, 13, 15, 112, 116, 117, 121, 123, 124, 130, 133, 137], "medical_imag": 0, "medicalimag": 0, "__call__": [0, 5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "cast_storag": [0, 5], "decode_exampl": [0, 5], "embed_storag": [0, 5], "encode_exampl": [0, 5], "flatten": [0, 5, 133], "task": [0, 2, 3, 17, 24, 25, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 44, 47, 48, 49, 50, 51, 53, 54, 58, 60, 61, 62, 63, 66, 67, 68, 69, 78, 80, 81, 82, 83, 84, 85, 90, 92, 93, 94, 95, 98, 99, 100, 102, 103, 104, 105, 110, 130, 133, 137], "classif": [0, 3, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 44, 47, 48, 49, 50, 51, 53, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 78, 79, 80, 81, 82, 83, 84, 85, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 130, 131, 132, 135], "binarytabularclassificationtask": [0, 131, 132, 135], "__init__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 133], "add_model": [0, 123, 124], "data_typ": [0, 123, 124], "evalu": [0, 2, 3, 121, 123, 124, 130, 133, 137], "get_model": [0, 123, 124], "list_model": [0, 123, 124, 131, 132, 135], "list_models_param": [0, 123, 124, 131, 132, 135], "load_model": [0, 123, 124], "models_count": [0, 123, 124], "predict": [0, 3, 17, 19, 21, 24, 26, 27, 30, 31, 32, 34, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 67, 80, 81, 82, 84, 85, 87, 88, 89, 92, 93, 94, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 130, 133], "save_model": [0, 123, 124], "task_typ": [0, 123, 124, 131, 132, 135], "train": [0, 3, 17, 121, 123, 124, 130, 133, 136, 137], "multilabelimageclassificationtask": 0, "metric": [0, 17, 19, 21, 121, 123, 124, 130, 131, 132, 135, 137], "__add__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "__mul__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "add_stat": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "clone": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "comput": [0, 17, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 123, 124, 130, 133, 137], "name": [0, 3, 7, 8, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 124, 131, 132, 133, 134, 135], "reset_st": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "update_st": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "metriccollect": [0, 17, 21, 123, 124, 131, 132, 135], "add_metr": [0, 75], "clear": [0, 75], "get": [0, 2, 75, 123, 124, 131, 132, 135], "item": [0, 75, 131, 132, 133, 134, 135], "kei": [0, 7, 21, 75, 121, 131, 132, 133, 134, 135], "pop": [0, 75, 131, 132, 135], "popitem": [0, 75], "setdefault": [0, 75], "updat": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 133], "valu": [0, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 130, 132, 133, 134, 135, 137], "operatormetr": 0, "factori": [0, 7, 133], "create_metr": [0, 131, 132, 133, 135], "accuraci": [0, 131, 132, 135], "binaryaccuraci": [0, 131, 132, 135], "multiclassaccuraci": 0, "multilabelaccuraci": 0, "auroc": [0, 130, 131, 132, 135, 137], "binaryauroc": [0, 29, 131, 132, 135], "multiclassauroc": [0, 29], "multilabelauroc": [0, 29], "precision_recal": 0, "binaryprecis": [0, 131, 132, 135], "binaryrecal": [0, 97, 131, 132, 135], "multiclassprecis": 0, "multiclassrecal": [0, 98], "multilabelprecis": 0, "multilabelrecal": [0, 99], "precis": [0, 24, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 60, 64, 66, 77, 78, 80, 82, 85, 86, 87, 88, 89, 90, 92, 100, 105, 131, 132, 133, 135], "recal": [0, 24, 38, 51, 55, 57, 59, 61, 64, 66, 77, 79, 81, 83, 86, 87, 88, 89, 90, 92, 97, 98, 99, 105, 131, 132, 133, 135], "precision_recall_curv": [0, 131, 132, 135], "binaryprecisionrecallcurv": [0, 30, 92, 131, 132, 135], "multiclassprecisionrecallcurv": [0, 31, 93], "multilabelprecisionrecallcurv": [0, 32, 94], "precisionrecallcurv": 0, "roc": [0, 28, 29, 30, 31, 32, 45, 131, 132, 135], "binaryroccurv": [0, 131, 132, 135], "multiclassroccurv": 0, "multilabelroccurv": 0, "roccurv": 0, "sensit": [0, 121, 130, 131, 132, 133, 135, 136], "binarysensit": 0, "multiclasssensit": 0, "multilabelsensit": [0, 133], "specif": [0, 3, 7, 17, 115, 118, 123, 124, 131, 132, 133, 135], "binaryspecif": 0, "multiclassspecif": 0, "multilabelspecif": [0, 133], "f_beta": 0, "binaryf1scor": [0, 131, 132, 135], "binaryfbetascor": [0, 34], "f1score": 0, "fbetascor": [0, 36], "multiclassf1scor": 0, "multiclassfbetascor": [0, 38], "multilabelf1scor": 0, "multilabelfbetascor": [0, 40], "stat_scor": [0, 133, 135], "binarystatscor": [0, 25, 35, 78, 79, 102, 135], "multiclassstatscor": [0, 26, 39, 80, 81, 103], "multilabelstatscor": [0, 27, 41, 82, 83, 104, 133], "statscor": 0, "function": [0, 3, 5, 6, 7, 8, 16, 17, 20, 21, 25, 35, 41, 42, 76, 93, 102, 104, 107, 109, 110, 113, 121, 131, 132, 133, 135], "binary_precis": 0, "binary_recal": 0, "multiclass_precis": 0, "multiclass_recal": 0, "multilabel_precis": 0, "multilabel_recal": 0, "binary_roc_curv": 0, "multiclass_roc_curv": 0, "multilabel_roc_curv": 0, "roc_curv": [0, 131, 132, 135], "binary_f1_scor": 0, "binary_fbeta_scor": 0, "f1_score": [0, 131, 132, 135], "fbeta_scor": 0, "multiclass_f1_scor": 0, "multiclass_fbeta_scor": 0, "multilabel_f1_scor": 0, "multilabel_fbeta_scor": 0, "fair": [0, 17, 121, 123, 124, 131, 132, 133, 135], "evaluate_fair": 0, "warn_too_many_unique_valu": 0, "config": [0, 123], "fairnessconfig": [0, 17, 123, 124, 131, 132, 135], "monitor": [0, 2, 3, 130, 131, 132, 134, 135], "clinical_appl": 0, "clinicalshiftappl": [0, 134], "ag": [0, 112, 130, 134, 137], "apply_shift": [0, 112, 114, 134], "custom": [0, 112, 121, 134], "hospital_typ": [0, 112], "month": [0, 7, 9, 112], "sex": [0, 112, 130, 132, 134, 135, 137], "time": [0, 3, 7, 75, 112, 121, 130, 132, 133, 135, 136, 137], "synthetic_appl": 0, "binary_noise_shift": 0, "feature_association_shift": 0, "feature_swap_shift": 0, "gaussian_noise_shift": 0, "knockout_shift": 0, "syntheticshiftappl": [0, 113], "report": [0, 2, 3, 110, 130, 137], "modelcardreport": [0, 131, 132, 133, 135], "export": [0, 121, 131, 132, 133, 135], "from_json_fil": [0, 121], "log_cit": [0, 121, 133], "log_dataset": [0, 121, 131], "log_descriptor": [0, 121, 131, 132, 133, 135], "log_fairness_assess": [0, 121, 131, 132, 133, 135], "log_from_dict": [0, 121, 131, 132, 133, 135], "log_imag": [0, 121], "log_licens": [0, 121, 131, 132, 135], "log_model_paramet": [0, 121, 131, 132, 135], "log_own": [0, 121, 131, 132, 133, 135], "log_performance_metr": [0, 121, 131, 132, 135], "log_plotly_figur": [0, 121, 131, 132, 133, 135], "log_quantitative_analysi": [0, 121, 131, 132, 133, 135], "log_refer": [0, 121, 131, 132, 135], "log_regul": [0, 121], "log_risk": [0, 121, 131, 132, 133, 135], "log_use_cas": [0, 121, 131, 132, 133, 135], "log_us": [0, 121, 131, 132, 133, 135], "log_vers": [0, 121, 131, 132, 135], "thank": 1, "your": [1, 131], "interest": [1, 131, 132, 135], "To": [1, 3, 5, 131, 135], "submit": 1, "pr": 1, "pleas": [1, 131, 132, 135], "fill": 1, "out": [1, 121, 131, 132, 135], "templat": [1, 121], "along": [1, 112, 131, 132, 133, 135], "If": [1, 5, 7, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124, 131, 132, 135], "fix": 1, "an": [1, 3, 5, 7, 17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 51, 60, 61, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 131, 132, 133, 135, 137], "issu": [1, 21], "don": [1, 132], "t": [1, 5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 132], "forget": 1, "link": [1, 121, 131, 132, 133, 135], "onc": [1, 75, 131, 132, 135], "python": [1, 3, 132, 135], "virtual": [1, 3], "environ": [1, 3, 131, 132, 135], "i": [1, 3, 5, 7, 9, 10, 11, 12, 13, 14, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 131, 132, 133, 135, 137], "setup": [1, 132, 135], "you": [1, 3, 5, 75, 131, 132, 133, 135, 136], "can": [1, 3, 5, 7, 21, 25, 38, 51, 69, 74, 75, 84, 85, 95, 100, 110, 121, 123, 124, 131, 132, 133, 135, 136], "run": [1, 3, 131, 132, 135], "us": [1, 2, 5, 7, 8, 17, 21, 24, 29, 30, 31, 32, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 62, 63, 66, 67, 68, 69, 75, 76, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 102, 105, 107, 110, 112, 114, 121, 123, 124, 130, 131, 132, 133, 135, 136], "all": [1, 3, 7, 8, 9, 10, 11, 12, 13, 15, 63, 73, 75, 108, 109, 110, 123, 131, 132, 133, 134, 135], "file": [1, 5, 121, 131, 132, 133, 135], "For": [1, 3, 21, 76, 121, 131, 132, 135], "style": 1, "we": [1, 3, 121, 131, 132, 133, 135], "recommend": [1, 76], "googl": 1, "guid": 1, "appli": [1, 8, 25, 29, 59, 62, 63, 66, 67, 68, 75, 76, 93, 104, 109, 110, 112, 123, 124, 131, 132, 135], "black": 1, "format": [1, 5, 7, 89, 121, 131, 132, 135], "docstr": 1, "numpi": [1, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 116, 117, 118, 119, 124, 131, 132, 133, 134, 135], "also": [1, 3, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 133, 135, 137], "flake8": 1, "pylint": 1, "further": 1, "static": 1, "analysi": [1, 121, 131, 132, 133, 135], "The": [1, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 60, 61, 63, 66, 68, 69, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 131, 132, 133, 135, 136, 137], "show": [1, 131, 132, 133, 135], "error": [1, 17, 21], "which": [1, 9, 10, 11, 12, 13, 21, 90, 121, 131, 132, 133, 135, 137], "need": [1, 17, 21, 74, 110, 131, 132, 135], "befor": [1, 17, 21, 22, 123, 131, 132, 135], "last": 1, "least": 1, "type": [1, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 130, 133, 137], "hint": 1, "our": [1, 131, 132, 135], "check": [1, 14, 89], "mypi": 1, "current": [1, 121, 131, 132, 135], "ar": [1, 3, 5, 7, 11, 12, 17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 97, 98, 99, 100, 103, 104, 105, 108, 109, 110, 112, 116, 121, 131, 132, 133, 135], "strict": 1, "enforc": 1, "more": [1, 7, 16, 17, 123, 124, 131, 137], "api": [1, 2, 3, 130, 131, 137], "becom": 1, "stabl": [1, 131, 132, 135], "start": [2, 131, 132, 135], "instal": [2, 131], "pip": [2, 131], "develop": [2, 131, 132, 133, 135], "poetri": 2, "contribut": 2, "notebook": [2, 131, 132, 133, 135], "citat": [2, 121, 131, 132, 133, 135], "pre": [2, 131, 132, 135], "commit": 2, "hook": 2, "code": [2, 131, 132, 135], "guidelin": [2, 3], "tutori": [2, 131, 136, 137], "exampl": [2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 15, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 130, 131, 132, 133, 136], "case": [2, 3, 75, 115, 121, 130, 131, 132, 135, 136], "refer": [2, 3, 121, 131, 132, 133, 135], "toolkit": 3, "facilit": 3, "research": 3, "deploy": 3, "ml": [3, 131, 132, 135], "model": [3, 16, 17, 21, 121, 123, 124, 130, 136, 137], "healthcar": 3, "It": [3, 38, 51, 75, 84, 85, 100, 105, 136], "provid": [3, 7, 9, 12, 17, 21, 69, 110, 121, 131, 132, 133, 135], "few": 3, "high": [3, 131, 132, 133, 135], "level": [3, 21, 131, 132, 133, 135], "creat": [3, 6, 7, 21, 42, 43, 75, 84, 85, 100, 115, 118, 119, 121, 123, 124, 130, 133, 137], "dataset": [3, 6, 7, 16, 17, 19, 21, 26, 38, 39, 51, 52, 58, 61, 68, 69, 80, 81, 83, 88, 89, 90, 94, 95, 98, 99, 103, 104, 112, 114, 121, 123, 124, 125, 130, 136, 137], "infer": 3, "popular": [3, 131], "effici": 3, "load": [3, 17, 121, 123, 124, 130, 132, 135, 136, 137], "differ": [3, 24, 29, 36, 37, 46, 55, 62, 63, 64, 69, 70, 72, 74, 84, 85, 90, 95, 100, 105, 110, 130, 131, 132, 133, 135, 136], "modal": 3, "common": [3, 131, 132], "implement": [3, 137], "scikit": [3, 131], "learn": [3, 131, 133], "pytorch": 3, "formul": [3, 131, 132, 135], "binari": [3, 5, 24, 25, 29, 30, 34, 35, 36, 37, 47, 48, 49, 50, 56, 57, 60, 61, 62, 63, 66, 69, 72, 78, 79, 84, 85, 87, 90, 92, 95, 97, 100, 102, 104, 105, 107, 110, 115, 123, 124, 131, 132, 135, 137], "multi": [3, 17, 133], "label": [3, 17, 24, 25, 27, 29, 32, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 68, 69, 78, 79, 81, 82, 83, 84, 85, 87, 89, 90, 92, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 109, 110, 116, 117, 119, 123, 124, 130, 131, 133, 137], "tabular": [3, 123, 124, 130], "seri": [3, 123], "imag": [3, 4, 5, 17, 21, 118, 121, 124, 125, 130, 133, 134], "clinic": [3, 111, 112, 130, 136], "detect": [3, 133, 136], "shift": [3, 111, 112, 114, 116, 117, 130, 136], "relev": [3, 121, 131, 132, 135, 136], "card": [3, 121, 130, 131, 132, 135, 137], "end": [3, 131, 132, 133, 135], "nih": [3, 130, 133, 134], "chest": [3, 130], "x": [3, 114, 115, 116, 117, 118, 119, 123, 130, 131, 132, 134, 135], "rai": [3, 130], "mimic": 3, "iv": 3, "python3": [3, 133], "m": [3, 131, 132, 133, 134, 135], "pycyclop": 3, "ha": [3, 13, 75, 121, 131, 132, 133, 135], "mani": 3, "option": [3, 5, 7, 9, 10, 11, 12, 13, 17, 21, 24, 27, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 69, 75, 80, 81, 82, 83, 84, 85, 90, 95, 98, 99, 100, 103, 104, 105, 108, 112, 114, 121, 123, 124, 133], "depend": 3, "monai": [3, 5], "librari": [3, 130, 136, 137], "dicom": 3, "set": [3, 7, 17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 131, 132, 133, 135], "list": [3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 115, 116, 117, 118, 119, 121, 123, 124, 131, 132, 135], "section": [3, 121, 131, 132, 133, 135], "below": [3, 131, 132, 135], "extra": [3, 121], "note": [3, 17, 121, 131, 132, 135], "xgboost": [3, 132, 135], "allow": [3, 17, 21, 22, 131, 132, 135, 136], "torch": [3, 134], "torchvis": [3, 133, 134], "torchxrayvis": [3, 133, 134], "transform": [3, 66, 67, 68, 93, 123, 124, 131, 132, 133, 134, 135], "alibi": 3, "addit": [3, 75, 121, 123, 124, 131, 132, 133, 135], "explain": [3, 121], "up": [3, 131, 132, 133, 135], "henc": 3, "make": [3, 131, 132, 135], "sure": [3, 131], "sourc": [3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 130, 136], "env": 3, "info": [3, 131, 132, 135], "path": [3, 5, 112, 121, 123, 124, 131, 132, 135], "bin": [3, 21], "activ": [3, 135], "In": [3, 75, 131, 132, 135], "order": [3, 5, 17, 107, 108, 109], "test": [3, 17, 121, 123, 124, 130, 131, 132, 135, 136, 137], "codestyl": 3, "unit": 3, "integr": [3, 131], "built": 3, "sphinx": 3, "local": 3, "doc": 3, "cd": 3, "html": [3, 121, 131, 132, 133, 135], "sphinxopt": 3, "d": [3, 75, 112, 133], "nbsphinx_allow_error": 3, "true": [3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 24, 26, 27, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 112, 114, 116, 121, 123, 124, 131, 132, 133, 134, 135], "welcom": 3, "see": [3, 7, 121, 131, 132, 135], "jupyt": [3, 131, 132, 135], "insid": 3, "ipython": 3, "kernel": 3, "after": [3, 131, 132, 135], "ipykernel": 3, "user": [3, 121, 131, 132, 135], "name_of_kernel": 3, "now": 3, "navig": 3, "": [3, 7, 10, 14, 17, 21, 75, 121, 123, 124, 131, 132, 133, 135], "tab": [3, 131], "cite": 3, "when": [3, 5, 17, 21, 24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 75, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105, 123, 124, 131, 132, 135], "project": 3, "paper": 3, "articl": 3, "krishnan2022": 3, "12": [3, 7, 131, 132, 133, 135], "02": [3, 69, 131], "22283021": 3, "author": [3, 131, 133], "krishnan": 3, "amrit": 3, "subasri": 3, "vallijah": 3, "mckeen": 3, "kaden": 3, "kore": 3, "ali": 3, "ogidi": 3, "franklin": 3, "alinoori": 3, "mahshid": 3, "lalani": 3, "nadim": 3, "dhalla": 3, "azra": 3, "verma": 3, "amol": 3, "razak": 3, "fahad": 3, "pandya": 3, "deval": 3, "dolatabadi": 3, "elham": 3, "titl": [3, 131, 132, 133, 135], "cyclic": 3, "toward": 3, "operation": 3, "health": [3, 131, 132, 135], "eloc": 3, "id": [3, 5, 112, 131, 133, 135], "2022": [3, 7, 131, 132, 133, 135], "year": [3, 7, 9, 131, 132, 133, 135], "doi": 3, "10": [3, 131, 132, 133, 134, 135], "1101": 3, "publish": [3, 131], "cold": 3, "spring": 3, "harbor": 3, "laboratori": [3, 135], "press": 3, "url": [3, 133], "http": [3, 121, 131, 132, 133, 135], "www": [3, 131], "medrxiv": 3, "org": [3, 121, 131, 132, 133, 135], "content": [3, 121], "earli": 3, "08": [3, 133], "journal": 3, "medic": [4, 5, 125, 133, 135, 137], "class": [4, 5, 6, 7, 18, 19, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 69, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 116, 117, 119, 120, 121, 122, 123, 124, 131, 132, 133, 135], "decod": [5, 133], "none": [5, 7, 9, 17, 19, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 124, 131, 132, 133, 134, 135], "reader": 5, "itkread": 5, "suffix": 5, "jpg": 5, "base": [5, 7, 17, 19, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 130, 131, 137], "read": 5, "paramet": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 131, 132, 133, 135], "union": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124], "str": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 131, 132, 135], "imageread": 5, "default": [5, 7, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 124, 131, 132, 135], "byte": 5, "bool": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 75, 76, 108, 109, 110, 112, 116, 117, 121, 123, 124, 131, 132, 133, 135], "whether": [5, 7, 17, 21, 75, 108, 109, 110, 112, 121, 132, 135, 137], "fals": [5, 7, 9, 10, 11, 12, 13, 14, 17, 19, 21, 29, 30, 40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105, 107, 108, 109, 110, 117, 118, 123, 124, 131, 132, 133, 135], "return": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 132, 133, 135], "dictionari": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 75, 121, 123, 124, 131, 132, 135], "image_path": 5, "image_byt": 5, "method": [5, 7, 19, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 131, 132, 135], "attribut": [5, 7, 19, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 131, 132, 135], "call": [5, 121], "self": [5, 133], "storag": 5, "cast": 5, "arrow": 5, "arrai": [5, 24, 26, 27, 29, 30, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 63, 66, 67, 68, 69, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 119, 124, 133, 135], "convert": [5, 25, 35, 41, 48, 61, 69, 95, 102, 104, 107, 131, 132, 135], "pyarrow": 5, "rtype": 5, "structarrai": 5, "pa": 5, "string": [5, 7, 9, 12, 17, 21, 75, 121, 133], "must": [5, 9, 17, 21, 121], "contain": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 27, 103, 104, 121, 131, 132, 133, 135, 137], "struct": 5, "doesn": 5, "matter": 5, "arg": [5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "stringarrai": 5, "listarrai": 5, "token_per_repo_id": 5, "from": [5, 7, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 119, 121, 123, 124, 131, 132, 133, 134, 135, 137], "serial": 5, "version": [5, 121, 131, 132, 133, 135], "dict": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 75, 121, 123, 124], "access": 5, "privat": 5, "repositori": [5, 131], "hub": 5, "pass": [5, 17, 43, 75, 112, 121, 123, 124, 131, 132, 135], "repo_id": 5, "token": [5, 131], "deseri": 5, "np": [5, 11, 14, 21, 123, 124, 131, 132, 133, 134, 135], "ndarrai": [5, 14, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 116, 117, 118, 119, 123, 124], "metadata": [5, 131, 132, 133, 135], "emb": 5, "encod": 5, "input": [5, 24, 46, 55, 60, 61, 64, 69, 70, 72, 87, 89, 95, 115, 118, 123, 124], "state": [5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 133], "itself": 5, "otherwis": [5, 14, 24, 27, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110], "tupl": [5, 7, 66, 67, 68, 69, 75, 87, 88, 89, 92, 93, 94, 112, 123, 124], "classlabel": [5, 131, 132, 135], "translat": 5, "translationvariablelanguag": 5, "sequenc": [5, 17, 75, 123, 124, 133], "array2d": 5, "array3d": 5, "array4d": 5, "array5d": 5, "audio": 5, "subset": 6, "hug": [6, 123, 124, 130, 137], "face": [6, 123, 124, 130, 137], "object": [7, 19, 21, 112, 114, 121, 123, 124, 131, 132, 135], "ani": [7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124, 131, 132, 133, 135], "A": [7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 25, 75, 76, 104, 109, 121, 131, 132, 133, 135], "each": [7, 8, 21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 69, 75, 76, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110, 131, 132, 135], "map": [7, 8, 22, 75, 123, 124, 133], "column": [7, 8, 9, 10, 11, 12, 13, 17, 21, 112, 123, 124, 131, 132, 133, 135], "one": [7, 16, 17, 21, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 69, 76, 80, 81, 82, 83, 84, 85, 95, 98, 99, 100, 105, 123, 124], "follow": [7, 17, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105, 121, 131, 132, 133, 135], "exact": [7, 13], "select": [7, 112, 116, 131, 132, 133, 135], "thi": [7, 17, 21, 24, 25, 26, 27, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105, 110, 121, 123, 131, 132, 133, 135, 137], "singl": [7, 17, 75, 121, 123, 124, 131, 132, 135, 137], "row": [7, 131, 133], "where": [7, 8, 9, 10, 11, 12, 13, 60, 61, 63, 75, 121, 123, 124, 131, 132, 135, 137], "support": [7, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 72, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 107, 108, 109, 136], "e": [7, 9, 10, 17, 21, 75, 116, 117, 118, 121, 131, 132, 135], "g": [7, 9, 17, 21, 116, 117, 118, 121, 131, 132, 135], "2021": [7, 131, 132, 135], "01": [7, 29, 31, 32, 131, 132, 135], "00": [7, 133], "min_valu": [7, 11, 131, 132, 133, 134, 135], "minimum": [7, 11], "specifi": [7, 17, 75, 112, 121, 123, 124, 131, 132, 135], "min_inclus": [7, 11, 131, 132, 135], "indic": [7, 17, 21, 27, 60, 61, 115, 118, 131, 132, 133, 135], "includ": [7, 11, 21, 72, 112, 114, 131, 132, 133, 135, 136, 137], "rang": [7, 11, 29, 30, 66, 67, 68, 93, 131, 132, 133, 135], "work": [7, 27, 103, 104, 121, 131, 132, 133, 135], "numer": [7, 11, 131, 132, 135], "datetim": [7, 9, 11, 14, 121, 131, 132, 135], "inf": [7, 11], "max_valu": [7, 11, 131, 132, 133, 134, 135], "boolean": [7, 8, 9, 10, 11, 12, 13, 15], "greater": [7, 22, 135], "than": [7, 11, 22, 48, 52, 54, 123, 124, 131, 132, 135, 137], "equal": [7, 11, 21], "maximum": [7, 11, 22, 29, 30], "max_inclus": [7, 11, 131, 132, 135], "less": [7, 11, 48, 52, 54, 132, 135], "match": [7, 9, 12, 13, 17], "between": [7, 21, 38, 51, 69, 95], "1": [7, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 116, 117, 118, 119, 121, 130, 131, 132, 133, 135, 136, 137], "dai": [7, 9, 132, 135, 137], "31": [7, 131, 132, 135], "hour": [7, 9, 132], "0": [7, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 115, 116, 117, 118, 119, 121, 131, 132, 133, 134, 135], "23": [7, 131, 132, 133, 135], "negat": [7, 9, 10, 11, 12, 13, 133], "flag": [7, 132], "doe": [7, 9, 11, 12, 13, 21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 74, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 110, 121], "keep_nul": [7, 9, 11, 12, 13], "keep": [7, 17, 21, 135], "null": [7, 9, 10, 11, 12, 13, 132, 135], "conjunct": [7, 133], "its": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 60, 61, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 133, 135], "own": [7, 131, 132, 135], "callabl": [7, 8, 21, 76, 121], "import": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 130, 136, 137], "slice_spec": [7, 17, 123, 124, 131, 132, 133, 135], "feature_1": 7, "feature_2": 7, "feature_3": 7, "value_1": 7, "value_2": 7, "2020": [7, 9, 133], "5": [7, 24, 25, 27, 29, 31, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 115, 118, 119, 130, 131, 132, 133, 135, 136], "60": 7, "6": [7, 24, 26, 35, 36, 38, 39, 49, 56, 59, 62, 63, 78, 79, 80, 81, 83, 84, 85, 87, 88, 90, 92, 93, 95, 97, 98, 99, 100, 104, 107, 108, 110, 131, 132, 133, 134, 135], "7": [7, 29, 30, 31, 36, 39, 40, 69, 80, 81, 82, 84, 85, 87, 88, 89, 93, 98, 100, 105, 108, 109, 110, 131, 132, 133, 135, 137], "8": [7, 24, 26, 27, 29, 30, 31, 34, 35, 36, 37, 38, 40, 41, 47, 49, 50, 53, 54, 56, 59, 60, 62, 66, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 105, 107, 109, 110, 131, 132, 133, 135], "2000": 7, "2010": 7, "slice_nam": [7, 121, 131, 132, 135], "slice_func": 7, "print": [7, 131, 132, 133, 135], "do": [7, 131, 132, 133, 135], "someth": 7, "here": [7, 131, 132, 135], "filter": [7, 9, 10, 11, 12, 13, 17, 21, 132, 133, 135], "add": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124, 131, 132, 135], "detail": [7, 131, 132, 133, 135], "registri": [7, 131, 132, 135], "gener": [7, 69, 95, 112, 121, 130, 136, 137], "slice_funct": 8, "combin": [8, 131], "result": [8, 17, 38, 51, 123, 124, 131, 132, 134, 135], "multipl": [8, 17, 21, 75, 121], "bitwis": 8, "AND": 8, "signatur": 8, "should": [8, 17, 21, 69, 76, 95, 117, 121, 123, 124, 131, 132, 133, 135], "kwarg": [8, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 123, 124], "given": [9, 11, 12, 13, 14, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 75, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110, 121, 123, 124], "int": [9, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 116, 117, 118, 119, 121, 123, 124, 131, 132, 133, 135], "compon": 9, "have": [9, 12, 13, 114, 131, 132, 137], "nan": [9, 10, 17, 21, 130, 137], "nat": 9, "rais": [9, 11, 12, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124], "typeerror": [9, 11, 12, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121], "float": [11, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 109, 110, 115, 116, 117, 118, 119, 121, 133], "valueerror": [11, 17, 21, 48, 50, 52, 54, 58, 59, 60, 61, 62, 63, 69, 121, 123, 124], "either": [11, 30, 31, 32, 75, 87, 88, 89, 92, 93, 94, 110, 121, 131, 132, 135], "substr": 12, "find": [13, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 123, 133], "perform": [13, 26, 27, 31, 32, 121, 130, 132, 135, 136, 137], "datetime64": 14, "target_column": [17, 19, 21, 131, 132, 133, 135], "prediction_column": [17, 19, 21, 133], "ignore_column": [17, 133], "split": [17, 112, 121, 123, 124, 131, 132, 133, 135], "batch_siz": [17, 19, 21, 112, 123, 124, 131, 132, 135], "1000": [17, 19, 21, 112, 123, 131, 133], "raise_on_empty_slic": [17, 21], "fairness_config": [17, 123, 124, 131, 132, 135], "override_fairness_metr": [17, 123, 124, 131, 132, 135], "load_dataset_kwarg": 17, "datasetdict": [17, 123, 124], "load_dataset": 17, "argument": [17, 21, 43, 75, 123, 124, 131, 132, 135], "target": [17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 116, 117, 123, 124, 130, 131, 132, 135, 136, 137], "same": [17, 21, 75, 116], "ignor": [17, 131, 132, 133, 135], "while": 17, "mai": [17, 21, 131, 132, 133, 135], "expens": [17, 21], "memori": [17, 21], "entir": [17, 131, 132, 135], "chosen": 17, "avail": [17, 121, 131, 132, 135, 137], "first": [17, 21, 25, 76, 104, 131, 132, 135], "eval": 17, "val": 17, "dev": 17, "batch": [17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 123, 124, 132, 133], "size": [17, 21, 112, 123, 124, 131, 132, 133, 135], "neg": [17, 35, 48, 49, 50, 51, 52, 53, 54, 59, 61, 62, 63, 72, 81, 83, 85, 98, 99, 100, 105, 107, 108, 109, 133, 135], "integ": [17, 21, 121], "empti": [17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "warn": [17, 22, 24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 105], "log": [17, 121, 130, 131, 132, 135, 137], "configur": [17, 18, 19, 123, 124, 131, 132, 135], "overridden": [17, 123, 124], "remove_column": [17, 19, 21, 123, 124, 133], "keyword": [17, 21, 43, 75, 123, 124], "onli": [17, 21, 24, 27, 29, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 62, 63, 75, 80, 81, 82, 84, 85, 98, 100, 103, 104, 105, 108, 109, 110], "group": [19, 21, 22, 75, 121, 131, 132, 135], "group_valu": [19, 21], "group_bin": [19, 21, 131, 132, 135], "group_base_valu": [19, 21, 131, 132, 135], "threshold": [19, 21, 24, 25, 27, 29, 30, 31, 32, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 53, 54, 56, 57, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 102, 104, 105, 107, 109, 110, 121, 130, 131, 132, 135, 137], "compute_optimal_threshold": [19, 21], "metric_nam": [19, 21, 43, 121, 131, 132, 133, 135], "metric_kwarg": [19, 21], "take": [21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 112, 131], "intersect": 21, "treat": 21, "multilabel": [21, 24, 27, 29, 32, 36, 37, 40, 41, 49, 50, 53, 54, 60, 61, 62, 63, 68, 69, 72, 82, 83, 84, 85, 89, 90, 94, 95, 99, 100, 104, 105, 109, 110, 130, 137], "uniqu": [21, 22, 29, 30, 31, 32, 66, 67, 68, 69, 74, 87, 88, 89, 92, 93, 94, 95, 110, 133, 137], "limit": [21, 131, 132, 133, 135], "number": [21, 22, 24, 26, 27, 29, 30, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 103, 104, 105, 108, 110, 112, 116, 117, 121, 123, 124, 132, 135, 136], "continu": [21, 131, 132, 133, 135], "veri": 21, "slow": 21, "larg": 21, "denomin": 21, "pariti": 21, "across": [21, 116, 136], "linspac": 21, "monoton": [21, 69, 95], "optim": [21, 131], "oper": [21, 65, 76, 131, 132, 135], "necessari": 21, "remov": [21, 75, 119, 123, 124, 131, 132, 133, 135], "control": [21, 115], "usag": [21, 131, 132, 135], "rel": 21, "small": 21, "32": [21, 131, 132, 133, 135], "avoid": 21, "encount": [21, 132, 135], "nest": 21, "second": [21, 76], "third": 21, "omit": 21, "requir": [21, 24, 29, 36, 37, 49, 50, 69, 84, 85, 90, 95, 100, 105, 110, 121, 123, 124, 131, 132, 135], "huggingfac": [21, 112, 123, 124], "runtimeerror": 21, "unique_valu": 22, "max_unique_valu": 22, "50": [22, 131, 132, 133, 134, 135], "score": [24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 66, 70, 72, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 133], "liter": [24, 25, 26, 27, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 69, 78, 79, 80, 81, 82, 83, 84, 85, 90, 95, 97, 98, 99, 100, 103, 104, 105, 110, 121], "multiclass": [24, 26, 29, 31, 36, 37, 38, 39, 49, 50, 51, 52, 58, 59, 62, 63, 67, 69, 72, 80, 81, 84, 85, 88, 90, 93, 95, 98, 100, 103, 105, 108, 110], "One": [24, 29, 31, 32, 35, 48, 59, 62, 63, 69, 95, 132, 133, 135], "pos_label": [24, 25, 30, 34, 35, 36, 37, 47, 48, 49, 50, 56, 57, 62, 63, 66, 69, 78, 79, 84, 85, 87, 90, 92, 95, 97, 100, 102, 105, 107, 110], "consid": [24, 26, 27, 36, 37, 49, 50, 62, 63, 84, 85, 90, 95, 100, 103, 104, 105, 132], "posit": [24, 25, 29, 30, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 90, 92, 95, 97, 98, 99, 100, 102, 105, 107, 108, 109, 110, 131, 132, 133, 135], "num_class": [24, 26, 29, 31, 36, 37, 38, 39, 49, 50, 51, 52, 58, 59, 61, 62, 63, 67, 69, 80, 81, 84, 85, 88, 90, 93, 95, 98, 100, 103, 105, 108, 110, 131, 132, 135], "decid": [24, 36, 37, 40, 41, 49, 50, 53, 54, 56, 57, 60, 61, 78, 79, 82, 83, 84, 85, 97, 99, 100, 105], "top_k": [24, 26, 27, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110, 133], "probabl": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 80, 81, 82, 84, 85, 93, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 131, 135], "logit": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 72, 80, 81, 82, 84, 85, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110], "top": [24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110], "k": [24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 75, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110, 134], "num_label": [24, 27, 29, 32, 36, 37, 40, 41, 49, 50, 53, 54, 60, 61, 62, 63, 68, 69, 82, 83, 84, 85, 89, 90, 94, 95, 99, 100, 104, 105, 109, 110, 133], "averag": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 131], "micro": [24, 26, 27, 29, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "macro": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "weight": [24, 26, 27, 29, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 133, 134, 135], "calcul": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "global": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "unweight": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "mean": [24, 26, 27, 29, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 131, 132, 133, 135], "imbal": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 119], "account": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 131, 133], "instanc": [24, 26, 27, 31, 32, 36, 37, 38, 39, 40, 41, 43, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 131, 132, 133, 135], "alter": [24, 26, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105], "zero_divis": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 105], "zero": [24, 25, 26, 27, 34, 36, 37, 38, 39, 40, 41, 47, 49, 50, 51, 52, 53, 54, 56, 57, 58, 60, 61, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "divis": [24, 25, 26, 27, 34, 36, 37, 38, 39, 40, 41, 47, 49, 50, 51, 52, 53, 54, 56, 57, 58, 60, 61, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "act": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "pred": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 135], "75": [24, 25, 29, 30, 66, 67, 68, 90, 92, 95, 103, 104, 105, 131, 133], "05": [24, 26, 27, 29, 31, 32, 36, 38, 39, 40, 49, 53, 62, 67, 68, 69, 80, 81, 84, 85, 88, 90, 93, 94, 95, 98, 100, 103, 104, 105, 108, 110, 133], "95": [24, 26, 27, 36, 38, 49, 62, 69, 88, 90, 93, 94, 95], "p": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 133], "zip": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "2": [24, 26, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 56, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 75, 78, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 92, 93, 95, 97, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 121, 130, 131, 132, 133, 135, 136], "3": [24, 26, 27, 29, 31, 34, 35, 36, 37, 38, 39, 40, 47, 49, 50, 51, 52, 53, 56, 58, 59, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 130, 131, 132, 133, 135, 136], "66666667": [24, 26, 36, 38, 49, 51, 61, 63, 81, 85, 87, 88, 90, 93, 94, 95, 98, 100, 104], "initi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 130, 131, 132, 135, 137], "other": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131], "two": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "scalar": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "togeth": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "multipli": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "variabl": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 137], "attributeerror": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "alreadi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 135], "exist": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124], "copi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 133, 135], "abstract": [24, 29, 36, 37, 73, 74, 84, 85, 90, 95, 100, 105, 110], "final": [24, 29, 36, 37, 74, 84, 85, 90, 95, 100, 105, 110, 132, 133, 135], "reset": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "_update_count": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "_comput": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "sigmoid": [25, 35, 41, 66, 68, 69, 102, 104, 107, 109, 110], "them": [25, 104, 131, 132, 135, 136], "875": 25, "problem": [26, 88, 108, 109, 110, 137], "highest": [26, 27, 62, 63, 103, 104], "determin": [26, 27, 29, 30, 31, 32, 66, 67, 68, 87, 88, 89, 90, 92, 93, 94], "dtype": [26, 27, 31, 32, 38, 39, 40, 41, 66, 67, 68, 69, 80, 81, 82, 83, 87, 88, 89, 92, 93, 94, 98, 99, 103, 104, 115, 116, 117, 118, 119, 131, 133], "float64": [26, 27, 31, 32, 38, 39, 40, 41, 66, 67, 68, 69, 80, 81, 82, 83, 87, 88, 89, 92, 93, 94, 98, 99, 103, 104, 115, 116, 117, 118, 119, 133], "binar": [27, 29, 30, 31, 32, 34, 47, 67, 68, 93, 94, 109, 110], "output": [27, 69, 121, 131, 132, 135], "classifi": [27, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 102, 131, 132, 135], "correct": [27, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102, 103, 104], "per": [27, 75, 132, 135], "area": [28, 29, 30, 31, 32, 45, 131, 132, 135], "under": [28, 29, 30, 31, 32, 45, 131, 132, 135], "curv": [28, 29, 30, 31, 32, 45, 64, 65, 66, 67, 68, 69, 86, 87, 88, 89, 90, 92, 93, 94, 95, 131, 132, 135], "max_fpr": [29, 30], "rate": [29, 30, 66, 67, 68, 69, 131, 132, 133, 135], "partial": [29, 30, 133], "auc": 29, "automat": [29, 30, 31, 32, 66, 67, 68, 87, 88, 89, 90, 92, 93, 94], "applic": [29, 111, 112, 114], "4": [29, 30, 34, 35, 36, 37, 40, 47, 50, 59, 63, 69, 82, 83, 84, 85, 87, 88, 90, 92, 93, 94, 95, 99, 100, 105, 107, 108, 109, 110, 130, 131, 132, 133, 135, 136], "35": [29, 30, 69, 87, 92, 95, 103, 104, 105, 131, 132, 133, 134, 135], "9": [29, 30, 31, 32, 34, 36, 37, 38, 39, 40, 41, 49, 50, 53, 54, 56, 60, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 89, 90, 93, 94, 95, 97, 98, 99, 100, 103, 104, 105, 107, 109, 110, 131, 132, 133, 135], "6111111111111112": [29, 30], "89": [29, 31, 32, 69], "06": [29, 31, 69, 133, 135], "94": [29, 31, 133], "22222222": [29, 31], "625": [29, 32, 35, 103], "aucroc": 30, "confus": [30, 31, 32, 87, 88, 89, 92, 93, 94, 135], "matrix": [30, 31, 32, 87, 88, 89, 92, 93, 94, 115, 116, 117, 118, 119, 135], "f": [33, 35, 37, 38, 39, 41, 46, 48, 50, 51, 52, 54, 75, 131, 132, 133, 134, 135], "beta": [33, 35, 37, 39, 41, 46, 48, 50, 52, 54], "f1": [34, 36, 38, 40, 46, 47, 49, 51, 53], "form": [34, 47, 131, 132, 135], "6666666666666666": [34, 36, 47, 56, 78, 84], "harmon": [35, 37, 39, 41, 48, 50, 52, 54, 131, 132, 135], "8333333333333334": [35, 37, 50, 59, 62], "85714286": [36, 38], "9090909090909091": 37, "83333333": [37, 41, 50, 54], "55555556": [37, 50, 103], "90909091": [37, 39, 41], "85": [39, 80, 81, 84, 85, 98, 100, 131, 133, 135], "total": [40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 108, 132, 135], "count": [40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 131, 132, 133, 135], "predicit": 41, "constructor": 43, "arraylik": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 93, 102], "ground": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102], "truth": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102], "npt": [48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63], "7142857142857143": 48, "estim": [49, 50, 66, 67, 68, 69, 93, 102, 123], "shape": [49, 50, 51, 52, 53, 54, 60, 61, 108, 109, 133, 134], "expect": [60, 61, 131, 132, 135], "like": [60, 61, 75, 131], "n": [60, 61, 131, 132, 133], "l": [60, 61], "sampl": [60, 61, 63, 119], "presenc": [60, 61, 133], "absenc": [60, 61], "rest": 61, "ratio": [62, 63, 105, 135], "correctli": [62, 131, 132, 133, 135], "observ": [62, 131, 135, 137], "precision_scor": 62, "tp": [63, 107, 108, 109, 133, 135], "fn": [63, 107, 108, 109, 133, 135], "intuit": 63, "abil": [63, 131, 132, 135], "recall_scor": 63, "3333333333333333": 63, "receiv": [65, 131, 132, 135], "characterist": [65, 131, 132, 135], "decis": [66, 67, 68, 69, 93, 121, 131, 132, 135], "fpr": [66, 67, 68, 69, 131, 132, 135], "tpr": [66, 67, 68, 69], "25": [66, 67, 68, 88, 90, 92, 93, 95, 105, 116, 117, 131, 132, 134, 135], "softmax": [67, 69, 93], "1d": [67, 68, 69, 95], "33333333": [67, 85, 88, 90, 93, 94, 95, 100], "non": 69, "thei": 69, "evenli": [69, 95], "space": [69, 95], "increas": [69, 95], "assertionerror": [69, 121], "03": 69, "stat": [72, 106, 107, 108, 109, 110], "abc": 74, "properti": [74, 110, 123, 124], "other_metr": 75, "prefix": 75, "postfix": 75, "userdict": 75, "collect": [75, 131, 137], "want": 75, "behav": 75, "themselv": 75, "intern": 75, "similar": 75, "reduc": 75, "els": [75, 131, 133, 134], "keep_bas": 75, "iter": 75, "underli": 75, "moduledict": 75, "hashabl": 75, "v": 75, "correspond": [75, 123, 124], "found": [75, 121, 131], "keyerror": [75, 121], "some": [75, 131, 132, 135], "pair": 75, "present": 75, "lack": 75, "metric_a": 76, "metric_b": 76, "metric1": 76, "metric2": 76, "unari": 76, "appropri": [84, 85, 100, 131, 132, 135], "375": [88, 90], "suniqu": 90, "45": [90, 105, 131, 132, 133, 135], "42857143": 90, "15": [103, 104, 105, 131, 132, 135], "57142857": 103, "sum": [105, 108, 109, 110, 132, 133, 135], "_abstractscor": [107, 108, 109], "fp": [107, 108, 109, 133, 135], "tn": [107, 108, 109, 133, 135], "classwis": [108, 110], "over": [108, 109, 110, 130, 132, 133, 135, 137], "labelwis": [109, 110, 133], "prior": [110, 131], "modul": [111, 120, 121, 131, 132, 135], "shift_typ": [112, 114], "shift_id": [112, 134], "induc": [112, 114], "synthet": [112, 114, 121, 130, 135, 136, 137], "categor": [112, 131, 132, 135], "origin": 112, "util": [112, 131, 132, 133, 135], "load_nih": 112, "mnt": [112, 133, 134], "nihcxr": [112, 130, 133, 136], "hospital_type_1": 112, "hospital_type_2": 112, "hospital_type_3": 112, "hospital_type_4": 112, "hospital_type_5": 112, "ds_sourc": [112, 134], "ds_target": [112, 134], "num_proc": [112, 134], "process": [112, 130, 131, 133, 135, 137], "build": 112, "hospit": [112, 131, 132, 135, 137], "drift_detect": 114, "experiment": 114, "sklearn": [114, 131, 132, 135], "load_diabet": 114, "y": [114, 116, 117, 119, 123, 131, 132, 133, 135], "return_x_i": 114, "x_tr": 114, "x_te": 114, "y_tr": 114, "y_te": 114, "train_test_split": [114, 131, 132, 135], "test_siz": 114, "random_st": [114, 131, 132, 135], "42": [114, 131, 132, 133, 134, 135], "gn_shift": 114, "x_shift": 114, "x_train": [114, 123], "noise_amt": [114, 118], "delta": [114, 115, 118, 119], "ko_shift": 114, "cp_shift": 114, "mfa_shift": 114, "bn_shift": 114, "tolerance_shift": 114, "ds_shift": 114, "nois": [114, 115, 118], "ad": [114, 121, 123, 124, 131, 132, 135], "prob": 115, "covari": [115, 116, 117, 118, 119], "proport": [115, 131, 132, 133, 135], "fraction": [115, 118, 119, 135], "affect": [115, 118, 121, 131, 132, 135], "n_shuffl": [116, 117], "keep_rows_const": 116, "repermute_each_column": 116, "multiwai": 116, "associ": [116, 131, 132, 133, 135], "swap": [116, 117], "individu": [116, 131, 132, 135], "within": [116, 132], "cl": [116, 117], "etc": [116, 117, 131, 132, 133, 135], "floatnumpi": 116, "shuffl": [116, 117, 131], "permut": 116, "placehold": 116, "shift_class": [117, 119], "rank": 117, "changepoint": 117, "axi": [117, 132, 135], "x_ref": 117, "y_ref": 117, "normal": [118, 131, 132, 135], "clip": [118, 131, 132, 135], "gaussian": 118, "standard": [118, 131, 132, 135], "deviat": 118, "divid": 118, "255": [118, 133, 134], "placehol": 119, "output_dir": [121, 131, 132, 135], "serv": 121, "interfac": 121, "popul": [121, 130, 131, 132, 135, 137], "modelcard": 121, "directori": [121, 131, 132, 135], "save": [121, 123, 124, 131, 132, 135], "output_filenam": [121, 131, 132, 133, 135], "template_path": 121, "interact": [121, 132, 135], "save_json": 121, "synthetic_timestamp": [121, 131, 132, 133, 135], "date": [121, 131, 132, 135], "jinja2": 121, "json": [121, 131, 132, 135], "timestamp": [121, 130, 132, 133, 136], "back": 121, "classmethod": 121, "cyclops_report": [121, 131, 132, 135], "section_nam": [121, 131, 132, 133, 135], "model_detail": [121, 131, 132, 135], "repres": [121, 133], "bibtex": 121, "entri": 121, "plain": 121, "text": [121, 133], "descript": [121, 131, 132, 133, 135], "license_id": [121, 131], "sensitive_featur": [121, 131], "sensitive_feature_justif": [121, 131], "inform": [121, 131], "about": [121, 131, 132, 133, 135], "resourc": [121, 131, 132, 135], "context": 121, "homepag": 121, "spdx": [121, 131], "identifi": [121, 130, 133, 137], "licens": [121, 131, 132, 133, 135], "apach": [121, 131, 132, 135], "unknown": 121, "unlicens": 121, "proprietari": 121, "justif": [121, 131], "field": [121, 130, 131, 132, 135, 137], "descriptor": 121, "new": [121, 131, 132, 135], "pydant": 121, "basemodel": 121, "subclass": 121, "As": 121, "long": 121, "conflict": 121, "defin": [121, 131, 132, 133, 135], "model_card": 121, "cylop": 121, "tradeoff": [121, 133], "trade": 121, "off": 121, "interpret": 121, "consider": [121, 131, 132, 133, 135], "affected_group": [121, 131, 132, 133, 135], "benefit": [121, 131, 132, 133, 135], "harm": [121, 131, 132, 133, 135], "mitigation_strategi": [121, 131, 132, 133, 135], "assess": 121, "mitig": [121, 131, 132, 133, 135], "strategi": [121, 131, 132, 133, 135], "relat": 121, "img_path": 121, "caption": [121, 131, 132, 133, 135], "full": 121, "whole": [121, 131, 132, 135], "left": [121, 135], "blank": 121, "instead": 121, "param": [121, 131, 132, 135], "contact": [121, 131, 132, 133, 135], "role": 121, "owner": [121, 131, 132, 133, 135], "quantit": [121, 131, 132, 133, 135], "slash": 121, "fig": [121, 131, 132, 133, 135], "plotli": [121, 131, 132, 133, 135], "figur": [121, 131, 132, 135], "plot": [121, 131, 132, 133, 135], "analysis_typ": 121, "metric_slic": [121, 131, 132, 133, 135], "decision_threshold": 121, "pass_fail_threshold": [121, 131, 132, 133, 135], "pass_fail_threshold_fn": [121, 131, 132, 133, 135], "fail": 121, "regul": 121, "regulatori": [121, 131, 132, 135], "compli": 121, "risk": [121, 131, 132, 133, 135, 137], "kind": [121, 131, 132, 133, 135], "primari": [121, 131, 132, 133, 135], "scope": [121, 131, 132, 135], "usecas": 121, "version_str": [121, 131, 132, 135], "semant": 121, "v1": 121, "dt_date": 121, "dt_datetim": 121, "unix": 121, "yyyi": 121, "mm": 121, "dd": 121, "hh": 121, "ss": 121, "ffffff": 121, "z": 121, "summar": 121, "chang": [121, 131, 132, 133, 135], "made": [121, 131, 132, 135], "task_featur": [123, 124, 131, 132, 135], "task_target": [123, 124, 131, 132, 135], "basetask": [123, 124], "ptmodel": [123, 124, 133], "skmodel": [123, 124], "wrappedmodel": [123, 124], "model_nam": [123, 124, 131, 132, 133, 134, 135], "prediction_column_prefix": [123, 124, 131, 132, 135], "splits_map": [123, 124], "fit": [123, 131, 132, 135], "columntransform": [123, 131, 132, 135], "slicingconfig": 123, "default_max_batch_s": 123, "unnecessari": [123, 124], "filepath": [123, 124], "pretrain": [123, 124, 133], "proba": [123, 131, 132, 135], "mortal": [123, 130], "pd": [123, 132], "datafram": [123, 131, 132, 135], "notfittederror": 123, "destin": [123, 124], "parent": [123, 124], "dirctori": [123, 124], "best_model_param": [123, 131, 132, 135], "y_train": 123, "pipelin": [123, 131, 132, 135], "best": [123, 131, 132, 135], "64": [124, 132, 133, 135], "compos": [124, 131, 132, 133, 134, 135], "pathologi": [124, 130, 131, 137], "represent": [124, 131, 132, 135], "packag": [125, 126, 127, 128, 129, 131, 132, 133, 135], "kaggl": [130, 131], "heart": 130, "failur": 130, "constant": [130, 137], "distribut": [130, 133, 137], "outcom": [130, 137], "preprocessor": [130, 137], "creation": [130, 137], "mimiciv": [130, 132], "queri": [130, 137], "inspect": [130, 131, 137], "preprocess": [130, 131, 137], "drop": [130, 131, 137], "nan_threshold": [130, 131, 137], "gender": [130, 131, 133, 134, 137], "synthea": [130, 135], "prolong": [130, 132], "length": [130, 132, 133], "stai": [130, 132], "diseas": [130, 131, 137], "histor": [130, 131, 137], "period": [130, 137], "w": [130, 137], "drift": [130, 136], "experi": [130, 136], "dimension": [130, 136], "reduct": [130, 136], "techniqu": [130, 136], "roll": [130, 136], "window": [130, 136], "biweekli": [130, 136], "showcas": [131, 132, 135, 137], "patient": [131, 132, 133, 134, 135, 137], "shutil": [131, 132, 133, 135], "express": [131, 132, 133, 135], "px": [131, 132, 133, 135], "kaggle_api_extend": 131, "kaggleapi": 131, "imput": [131, 132, 135], "simpleimput": [131, 132, 135], "minmaxscal": [131, 132, 135], "onehotencod": [131, 132, 135], "df": [131, 132, 135], "tabularfeatur": [131, 132, 135], "noqa": [131, 132, 133, 135], "e402": [131, 132, 133, 135], "catalog": [131, 132, 135], "create_model": [131, 132, 135], "classificationplott": [131, 132, 135], "flatten_results_dict": [131, 132, 135], "join": [131, 132, 135], "load_datafram": 131, "offer": [131, 132, 133, 135], "document": [131, 132, 133, 135], "through": [131, 132, 133, 135], "overview": [131, 132, 133, 135], "how": [131, 132, 133, 135], "quick": [131, 132, 133, 135], "glanc": [131, 132, 133, 135], "sever": [131, 132, 133, 135], "subgroup": [131, 132, 133, 135], "statist": [131, 132, 133, 135, 136], "subpopul": [131, 132, 133, 135], "technic": [131, 132, 133, 135], "architectur": [131, 132, 133, 135], "involv": [131, 132, 133, 135], "intend": [131, 132, 133, 135], "go": [131, 132, 133, 135], "tool": [131, 132, 133, 135], "progress": [131, 132, 133, 135], "subject": [131, 132, 133, 135], "data_dir": [131, 133], "random_se": [131, 132, 135], "train_siz": [131, 132, 135], "sign": [131, 135], "com": [131, 133], "Then": 131, "profil": [131, 132, 135], "usernam": 131, "trigger": 131, "download": 131, "credenti": 131, "place": 131, "locat": 131, "machin": [131, 133], "authent": 131, "dataset_download_fil": 131, "fedesoriano": 131, "unzip": 131, "csv": [131, 135], "file_format": 131, "reset_index": [131, 132, 135], "index": [131, 132, 133, 135], "2023": [131, 132, 133, 135], "11": [131, 132, 133, 135, 137], "29": [131, 132, 135], "18": [131, 132, 133, 134, 135], "39": [131, 132, 133, 135], "833": 131, "chestpaintyp": 131, "restingbp": 131, "cholesterol": 131, "fastingb": 131, "restingecg": 131, "40": [131, 132, 133, 135], "ata": 131, "140": 131, "289": 131, "49": [131, 135], "nap": 131, "160": 131, "180": 131, "37": [131, 132, 135], "130": 131, "283": 131, "st": 131, "48": [131, 135], "asi": 131, "138": 131, "214": 131, "54": [131, 132, 133, 135], "150": 131, "195": 131, "913": 131, "ta": 131, "110": 131, "264": 131, "914": 131, "68": [131, 133], "144": 131, "193": 131, "915": 131, "57": [131, 135], "131": 131, "916": 131, "236": 131, "lvh": 131, "917": 131, "38": [131, 132, 135], "175": 131, "maxhr": 131, "exerciseangina": 131, "oldpeak": 131, "st_slope": 131, "heartdiseas": 131, "172": 131, "156": 131, "flat": 131, "98": [131, 133], "108": 131, "122": 131, "132": 131, "141": 131, "115": 131, "174": 131, "173": 131, "918": 131, "13": [131, 132, 133, 135], "pie": [131, 132, 133, 135], "update_layout": [131, 132, 133, 135], "histogram": [131, 132, 133, 135], "xaxis_titl": [131, 132, 133, 135], "yaxis_titl": [131, 132, 133, 135], "bargap": [131, 132, 133, 135], "astyp": [131, 132, 135], "update_trac": [131, 132, 133, 135], "textinfo": [131, 132, 135], "percent": [131, 132, 135], "title_text": [131, 132, 135], "hovertempl": [131, 132, 135], "br": [131, 132, 135], "class_count": [131, 132, 135], "value_count": [131, 132, 135], "class_ratio": [131, 132, 135], "8070866141732284": 131, "14": [131, 132, 133, 135, 137], "20": [131, 132, 133, 135], "wa": [131, 132, 133, 135], "li": 131, "et": 131, "al": 131, "most": 131, "features_list": [131, 132, 135], "sort": [131, 132, 135], "help": [131, 132, 133, 135], "essenti": [131, 132, 135], "step": [131, 132, 135], "understand": [131, 132, 135], "u": [131, 132, 135], "16": [131, 132, 133, 135], "tab_featur": [131, 132, 135], "ordin": [131, 132, 135], "might": [131, 132, 135], "17": [131, 132, 135], "numeric_transform": [131, 132, 135], "scaler": [131, 132, 135], "binary_transform": [131, 132, 135], "most_frequ": [131, 132, 135], "numeric_featur": [131, 132, 135], "features_by_typ": [131, 132, 135], "numeric_indic": [131, 132, 135], "get_loc": [131, 132, 135], "19": [131, 132, 133, 135], "binary_featur": [131, 132, 135], "ordinal_featur": [131, 132], "binary_indic": [131, 132, 135], "ordinal_indic": [131, 132], "num": [131, 132, 135], "onehot": [131, 132, 135], "handle_unknown": [131, 132, 135], "remaind": [131, 132, 135], "passthrough": [131, 132, 135], "let": [131, 132, 135], "done": [131, 132, 135], "21": [131, 132, 135], "independ": 131, "everi": 131, "uci": 131, "archiv": 131, "ic": 131, "edu": 131, "databas": [131, 132, 135], "cleandoc": 131, "misc": 131, "cc0": 131, "demograph": [131, 133], "often": 131, "strong": 131, "correl": 131, "older": [131, 132, 135], "higher": 131, "panda": [131, 132, 135], "power": [131, 132, 135], "easi": [131, 132, 135], "compat": [131, 132, 135], "22": [131, 132, 133, 135], "from_panda": [131, 132, 135], "cleanup_cache_fil": [131, 132, 135], "num_row": 131, "cast_column": [131, 132, 135], "stratify_by_column": [131, 132, 135], "seed": [131, 132, 133, 134, 135], "straightforward": [131, 132, 135], "maintain": [131, 132, 135], "instanti": [131, 132, 135], "line": [131, 132, 135], "sgd": 131, "logisit": [131, 132, 135], "regress": [131, 132, 135], "sgdclassif": 131, "24": [131, 132, 135], "sgd_classifi": 131, "123": [131, 132, 135], "verbos": [131, 132, 135], "class_weight": 131, "balanc": 131, "encapsul": [131, 132, 135], "cohes": [131, 132, 135], "structur": [131, 132, 135], "smooth": [131, 132, 135], "manag": [131, 132, 135], "heart_failure_prediction_task": 131, "26": [131, 132, 135], "hyperparamet": [131, 132, 135], "search": [131, 132, 135], "grid": [131, 132, 135], "27": [131, 132, 135], "alpha": 131, "0001": 131, "001": 131, "100": [131, 132, 133, 135], "learning_r": [131, 132, 135], "invscal": 131, "adapt": 131, "eta0": 131, "roc_auc": 131, "wrapper": [131, 132, 133, 135], "sk_model": [131, 132, 135], "sgdclassifi": 131, "x27": [131, 132, 135], "early_stop": 131, "loss": 131, "log_loss": 131, "rerun": [131, 132, 135], "cell": [131, 132, 135], "trust": [131, 132, 135], "On": [131, 132, 133, 135], "github": [131, 132, 133, 135], "unabl": [131, 132, 135], "render": [131, 132, 135], "try": [131, 132, 135], "page": [131, 132, 135], "nbviewer": [131, 132, 135], "sgdclassifiersgdclassifi": 131, "28": [131, 132, 135], "model_param": [131, 132, 135], "epsilon": 131, "fit_intercept": 131, "l1_ratio": 131, "max_it": 131, "n_iter_no_chang": 131, "n_job": [131, 132, 135], "penalti": 131, "l2": 131, "power_t": 131, "tol": 131, "validation_fract": 131, "warm_start": 131, "30": [131, 132, 133, 135, 137], "y_pred": [131, 132, 135], "only_predict": [131, 132, 135], "len": [131, 132, 133, 135], "184": 131, "variou": [131, 132, 135], "perspect": [131, 132, 135], "metric_collect": [131, 132, 135], "certain": [131, 132, 135], "70": [131, 133], "33": [131, 132, 135], "fnr": [131, 132, 135], "ber": [131, 132, 135], "fairness_metric_collect": [131, 132, 135], "34": [131, 132, 133, 135], "dataset_with_pr": [131, 132, 135], "36": [131, 132, 133, 135], "results_femal": 131, "_": [131, 135], "right": [131, 132, 135], "model_for_pr": [131, 132, 135], "results_flat": [131, 132, 133, 135], "remove_metr": [131, 132, 135], "results_female_flat": 131, "plw2901": [131, 132, 133, 135], "actual": [131, 132, 133, 135], "known": [131, 132, 133, 135], "measur": [131, 132, 135], "lambda": [131, 132, 133, 134, 135], "plotter": [131, 132, 134, 135], "class_nam": [131, 132, 135], "set_templ": [131, 132, 135], "plotly_whit": [131, 132, 135], "extract": [131, 132, 135], "slice_result": [131, 132, 135], "dict_kei": [131, 132, 135], "roc_plot": [131, 132, 135], "roc_curve_comparison": [131, 132, 135], "femal": [131, 132, 133, 134, 135], "41": [131, 132, 135], "overall_perform": [131, 132, 135], "metric_valu": [131, 132, 135], "overall_performance_plot": [131, 132, 135], "metrics_valu": [131, 132, 135], "43": [131, 132, 133, 135], "slice_metr": [131, 132, 135], "44": [131, 132, 133, 135], "slice_metrics_plot": [131, 132, 135], "metrics_comparison_bar": [131, 132, 135], "comparison": [131, 132, 133, 135], "reform": [131, 132, 135], "fairness_result": [131, 132, 135], "deepcopi": [131, 132, 135], "fairness_metr": [131, 132, 135], "group_siz": [131, 132, 135], "46": [131, 132, 133, 135], "fairness_plot": [131, 132, 135], "metrics_comparison_scatt": [131, 132, 135], "leverag": 131, "get_metrics_trend": 131, "gather": 131, "merg": [131, 132, 135], "recent": 131, "wish": 131, "metrics_trend": 131, "purpos": 131, "three": 131, "dummi": 131, "demonstr": [131, 137], "trend": 131, "audienc": [131, 132, 135], "organ": [131, 132, 135], "store": [131, 132, 135], "regulatory_requir": [131, 132, 135], "47": [131, 135], "todai": [131, 132, 135], "releas": [131, 132, 135], "team": [131, 132, 135], "vectorinstitut": [131, 132, 135], "io": [131, 132, 135], "email": [131, 132, 133, 135], "ai": [131, 132, 135], "linear_model": 131, "e501": [131, 132, 135], "next": [131, 132, 135], "use_cas": [131, 132, 135], "These": [131, 132, 135], "could": [131, 132, 135], "downstream": [131, 132, 135], "fairness_assess": [131, 132, 135], "well": [131, 132, 133, 135], "taken": [131, 132, 135], "ethical_consider": [131, 132, 135], "clinician": [131, 132, 135], "engin": [131, 132, 135], "condit": 131, "improv": [131, 132, 135], "bias": [131, 132, 133, 135], "lead": [131, 132, 135], "wors": [131, 132, 135], "retrain": [131, 132, 135], "By": [131, 132, 135], "folder": [131, 132, 135], "09": [131, 132, 133, 135], "_model_card": [131, 132, 135], "report_path": [131, 132, 133, 135], "heart_failure_report_period": 131, "metric_sav": 131, "quantitative_analysi": [131, 132, 135], "performance_metr": [131, 132, 135], "append": [131, 135], "random": [131, 132, 134, 135], "rmtree": [131, 132, 135], "view": [131, 132, 133, 135, 137], "die": 132, "admiss": 132, "cycqueri": [132, 135], "op": [132, 135], "qo": [132, 135], "graph_object": [132, 135], "mimicivqueri": 132, "imblearn": 132, "over_sampl": 132, "smote": 132, "aggreg": 132, "restrict_timestamp": 132, "clean": 132, "normalize_nam": 132, "add_years_approxim": 132, "deathtim": 132, "lab": [132, 133], "event": 132, "querier": [132, 135], "dbm": [132, 135], "postgresql": [132, 135], "port": [132, 135], "5432": [132, 135], "host": [132, 135], "localhost": [132, 135], "postgr": [132, 135], "password": [132, 135], "pwd": [132, 135], "def": [132, 133, 135], "get_encount": [132, 135], "mimiciv_hosp": 132, "drop_op": 132, "insur": 132, "languag": 132, "marital_statu": 132, "edregtim": 132, "edouttim": 132, "patient_encount": [132, 135], "subject_id": 132, "admittim": 132, "dt": 132, "anchor_year": 132, "anchor_ag": 132, "col": 132, "dischtim": 132, "anchor_year_differ": 132, "hadm_id": 132, "admission_loc": 132, "hospital_expire_flag": 132, "compute_mortality_outcom": 132, "death": 132, "invalid": 132, "isna": 132, "shorter": 132, "di": 132, "mortality_outcom": 132, "get_labev": 132, "labev": 132, "index_col": 132, "batch_mod": 132, "process_labev": 132, "revers": 132, "deidentifi": 132, "charttim": 132, "categori": [132, 135], "start_timestamp": 132, "set_index": 132, "renam": [132, 135], "mean_aggreg": 132, "aggfunc": [132, 135], "valuenum": 132, "window_dur": 132, "timestamp_col": 132, "time_bi": 132, "agg_bi": 132, "means_df": 132, "batch_num": 132, "labevents_batch": 132, "enumer": [132, 133], "aggregate_valu": 132, "window_start_tim": 132, "pivot": 132, "add_prefix": [132, 135], "lab_": 132, "concat": 132, "break": 132, "run_queri": [132, 135], "cohort": [132, 135], "429": 132, "orm": [132, 135], "readi": [132, 135], "538": 132, "successfulli": [132, 135], "539": 132, "finish": [132, 135], "execut": [132, 135], "097803": 132, "105518": 132, "5925": 132, "334": 132, "335": 132, "061962": 132, "null_count": [132, 135], "isnul": [132, 135], "bar": [132, 133, 135], "height": [132, 133], "600": [132, 133], "respect": [132, 135], "larger": [132, 135], "thresh_nan": [132, 135], "dropna": [132, 135], "thresh": [132, 135], "heavili": 132, "unbalanc": 132, "55": [132, 133, 135], "36758893280632": 132, "tolist": 132, "lab_bilirubin": 132, "lab_platelet": 132, "lab_magnesium": 132, "lab_whit": 132, "blood": [132, 135], "lab_alkalin": 132, "phosphatas": [132, 135], "lab_h": 132, "lab_hemoglobin": 132, "lab_mchc": 132, "lab_anion": 132, "gap": 132, "lab_aspar": 132, "aminotransferas": [132, 135], "ast": 132, "lab_chlorid": 132, "lab_potassium": 132, "lab_rdw": 132, "lab_inr": 132, "pt": 132, "lab_i": 132, "lab_alanin": 132, "alt": 132, "lab_pt": 132, "lab_creatinin": 132, "lab_glucos": 132, "lab_mch": 132, "lab_sodium": 132, "sd": 132, "lab_hematocrit": 132, "lab_ptt": 132, "lab_bicarbon": 132, "lab_urea": 132, "nitrogen": [132, 135], "lab_ph": 132, "lab_calcium": 132, "lab_mcv": 132, "lab_phosph": 132, "lab_r": 132, "lab_l": 132, "preprocessor_pipelin": 132, "oversampl": 132, "xgbclassif": [132, 135], "xgb_classifi": [132, 135], "mortality_task": 132, "n_estim": [132, 135], "250": [132, 135], "500": [132, 135], "max_depth": [132, 135], "reg_lambda": [132, 135], "colsample_bytre": [132, 135], "gamma": [132, 135], "325": 132, "326": 132, "327": 132, "xgbclassifi": [132, 135], "base_scor": [132, 135], "booster": [132, 135], "callback": [132, 135], "colsample_bylevel": [132, 135], "colsample_bynod": [132, 135], "early_stopping_round": [132, 135], "enable_categor": [132, 135], "eval_metr": [132, 135], "logloss": [132, 135], "feature_typ": [132, 135], "gpu_id": [132, 135], "grow_polici": [132, 135], "importance_typ": [132, 135], "interaction_constraint": [132, 135], "max_bin": [132, 135], "max_cat_threshold": [132, 135], "max_cat_to_onehot": [132, 135], "max_delta_step": [132, 135], "max_leav": [132, 135], "min_child_weight": [132, 135], "miss": [132, 135], "monotone_constraint": [132, 135], "num_parallel_tre": [132, 135], "predictor": [132, 135], "xgbclassifierxgbclassifi": [132, 135], "logist": [132, 135], "use_label_encod": [132, 135], "reg_alpha": [132, 135], "sampling_method": [132, 135], "scale_pos_weight": [132, 135], "subsampl": [132, 135], "tree_method": [132, 135], "validate_paramet": [132, 135], "2853": 132, "80": [132, 133, 135], "readthedoc": [132, 135], "en": [132, 135], "python_api": [132, 135], "mortality_report_period": 132, "functool": 133, "densenet": [133, 134], "loader": [133, 134], "load_nihcxr": [133, 134], "lambdad": [133, 134], "resiz": [133, 134], "apply_transform": 133, "generate_nihcxr_report": 133, "py": 133, "52": 133, "lt": [133, 134], "554435": 133, "238556": 133, "71": 133, "400": 133, "1790": 133, "78": 133, "gt": [133, 134], "43326": 133, "35970": 133, "96": 133, "45044": 133, "41191": 133, "65": [133, 134], "42204": 133, "41689": 133, "77": 133, "amp": 133, "46542": 133, "61": 133, "549856": 133, "236378": 133, "72": 133, "396": 133, "1778": 133, "59": 133, "42951": 133, "76": 133, "42136": 133, "44147": 133, "40585": 133, "40974": 133, "40960": 133, "45915": 133, "53": 133, "558347": 133, "237785": 133, "82": 133, "383": 133, "1761": 133, "69": 133, "42496": 133, "41270": 133, "44025": 133, "39874": 133, "41116": 133, "40240": 133, "45243": 133, "58": 133, "549352": 133, "234475": 133, "411": [133, 135], "1788": 133, "43002": 133, "42734": 133, "44711": 133, "41308": 133, "83": 133, "43833": 133, "41575": 133, "84": 133, "47578": 133, "clinical_dataset": [133, 134], "nih_d": [133, 134], "spatial_s": [133, 134], "224": [133, 134], "allow_missing_kei": [133, 134], "func": [133, 134], "1024": [133, 134], "newaxi": [133, 134], "densenet121": [133, 134], "res224": [133, 134], "feature_column": [133, 134], "No": 133, "adjust": 133, "int64": 133, "originalimag": 133, "width": [133, 135], "originalimagepixelspac": 133, "unnam": 133, "atelectasi": 133, "float32": 133, "cardiomegali": 133, "consolid": 133, "edema": 133, "effus": 133, "emphysema": 133, "fibrosi": 133, "hernia": 133, "infiltr": 133, "mass": [133, 135], "nodul": 133, "pleural_thicken": 133, "pneumonia": 133, "pneumothorax": 133, "__index_level_0__": 133, "multilabelpositivepredictivevalu": 133, "registry_kei": 133, "positive_predictive_valu": 133, "super": 133, "overrid": 133, "_final_st": 133, "multilabelnegativepredictivevalu": 133, "negative_predictive_valu": 133, "ppv": 133, "npv": 133, "nih_eval_results_gend": 133, "nih_eval_results_ag": 133, "male": [133, 134], "1200": 133, "showlegend": 133, "slice_": 133, "model_for_predict": 133, "itr": 133, "among": 133, "112": [133, 137], "120": [133, 137], "frontal": [133, 137], "805": [133, 137], "fourteen": 133, "mine": 133, "radiolog": 133, "pleural": 133, "thicken": 133, "remain": 133, "arxiv": 133, "ab": 133, "2111": 133, "00595": 133, "inproceed": 133, "cohen2022xrv": 133, "cohen": 133, "joseph": 133, "paul": 133, "viviano": 133, "bertin": 133, "morrison": 133, "torabian": 133, "parsa": 133, "guarrera": 133, "matteo": 133, "lungren": 133, "matthew": 133, "chaudhari": 133, "akshai": 133, "brook": 133, "rupert": 133, "hashir": 133, "mohammad": 133, "bertrand": 133, "hadrien": 133, "booktitl": 133, "deep": 133, "mlmed": 133, "arxivid": 133, "cohen2020limit": 133, "cross": 133, "domain": 133, "autom": [133, 135], "2002": 133, "02497": 133, "medicin": 133, "josephpcohen": 133, "radiologist": 133, "scientist": 133, "inabl": 133, "addition": 133, "poor": 133, "qualiti": 133, "artifact": 133, "geograph": 133, "region": 133, "ethic": 133, "ensur": 133, "divers": 133, "regularli": 133, "human": 133, "expertis": 133, "address": 133, "rare": 133, "nihcxr_report_period": 133, "detector": 134, "reductor": 134, "tstester": 134, "plot_drift_experi": 134, "plot_drift_timeseri": 134, "manual_se": 134, "_c": 134, "0x7f1dd03d6f70": 134, "shifter": 134, "source_d": 134, "target_d": 134, "dr_method": 134, "bbse": 134, "soft": 134, "txrv": 134, "ae": 134, "sensitivity_test": 134, "tester": 134, "tester_method": 134, "source_sample_s": 134, "target_sample_s": 134, "num_run": 134, "detect_shift": 134, "chexpert": 134, "chex": 134, "padchest": 134, "pc": 134, "source_slic": 134, "target_slic": 134, "rolling_window_drift": 134, "timestamp_column": 134, "window_s": 134, "4w": 134, "longer": 135, "v3": 135, "instruct": 135, "etl": 135, "datasetqueri": 135, "num_dai": 135, "synthea_demo": 135, "nativ": 135, "sequenti": 135, "patient_id": 135, "birthdat": 135, "race": 135, "ethnic": 135, "isout": 135, "encounter_id": 135, "extracttimestampcompon": 135, "start_year": 135, "birthdate_year": 135, "addcolumn": 135, "new_col_label": 135, "stop": 135, "lo": 135, "conditiongreaterthan": 135, "conditionlessthan": 135, "get_observ": 135, "conditionin": 135, "vital": 135, "conditionequ": 135, "groupby_op": 135, "groupbyaggreg": 135, "n_ob": 135, "observations_count": 135, "observations_stat": 135, "pivot_t": 135, "max": 135, "obs_": 135, "get_med": 135, "n_med": 135, "get_procedur": 135, "procedur": [135, 137], "n_procedur": 135, "cohort_queri": 135, "to_merg": 135, "extend": 135, "to_merge_df": 135, "298": 135, "098": 135, "099": 135, "737664": 135, "881": 135, "883": 135, "782846": 135, "410": 135, "359313": 135, "835": 135, "836": 135, "423024": 135, "929": 135, "930": 135, "093229": 135, "length_of_stai": 135, "length_of_stay_count": 135, "length_of_stay_kei": 135, "5573997233748271": 135, "obs_alanin": 135, "enzymat": 135, "volum": 135, "serum": 135, "plasma": 135, "obs_albumin": 135, "obs_alkalin": 135, "obs_aspart": 135, "obs_bilirubin": 135, "obs_bodi": 135, "obs_calcium": 135, "obs_carbon": 135, "dioxid": 135, "mole": 135, "obs_chlorid": 135, "obs_creatinin": 135, "obs_diastol": 135, "pressur": 135, "obs_erythrocyt": 135, "obs_ferritin": 135, "obs_glomerular": 135, "filtrat": 135, "73": 135, "sq": 135, "obs_glucos": 135, "obs_hematocrit": 135, "obs_hemoglobin": 135, "obs_leukocyt": 135, "obs_mch": 135, "entit": 135, "obs_mchc": 135, "obs_mcv": 135, "obs_oxygen": 135, "satur": 135, "arteri": 135, "obs_platelet": 135, "obs_potassium": 135, "obs_protein": 135, "obs_sodium": 135, "obs_systol": 135, "obs_troponin": 135, "cardiac": 135, "obs_urea": 135, "los_task": 135, "745": 135, "746": 135, "747": 135, "226": 135, "confusion_matrix": 135, "conf_plot": 135, "plot_confusion_matrix": 135, "length_of_stay_report_period": 135, "goal": 137, "ehr": 137, "site": 137, "icu": 137}, "objects": {"cyclops": [[125, 0, 0, "-", "data"], [126, 0, 0, "-", "evaluate"], [127, 0, 0, "-", "monitor"], [128, 0, 0, "-", "report"], [129, 0, 0, "-", "tasks"]], "cyclops.data": [[125, 0, 0, "-", "features"], [6, 0, 0, "-", "slicer"]], "cyclops.data.features": [[4, 0, 0, "-", "medical_image"]], "cyclops.data.features.medical_image": [[5, 1, 1, "", "MedicalImage"]], "cyclops.data.features.medical_image.MedicalImage": [[5, 2, 1, "", "__call__"], [5, 2, 1, "", "cast_storage"], [5, 2, 1, "", "decode_example"], [5, 2, 1, "", "embed_storage"], [5, 2, 1, "", "encode_example"], [5, 2, 1, "", "flatten"]], "cyclops.data.slicer": [[7, 1, 1, "", "SliceSpec"], [8, 4, 1, "", "compound_filter"], [9, 4, 1, "", "filter_datetime"], [10, 4, 1, "", "filter_non_null"], [11, 4, 1, "", "filter_range"], [12, 4, 1, "", "filter_string_contains"], [13, 4, 1, "", "filter_value"], [14, 4, 1, "", "is_datetime"], [15, 4, 1, "", "overall"]], "cyclops.data.slicer.SliceSpec": [[7, 3, 1, "", "_registry"], [7, 2, 1, "", "add_slice_spec"], [7, 3, 1, "", "column_names"], [7, 2, 1, "", "get_slices"], [7, 3, 1, "", "include_overall"], [7, 2, 1, "", "slices"], [7, 3, 1, "", "spec_list"], [7, 3, 1, "", "validate"]], "cyclops.evaluate": [[16, 0, 0, "-", "evaluator"], [126, 0, 0, "-", "fairness"], [126, 0, 0, "-", "metrics"]], "cyclops.evaluate.evaluator": [[17, 4, 1, "", "evaluate"]], "cyclops.evaluate.fairness": [[18, 0, 0, "-", "config"], [20, 0, 0, "-", "evaluator"]], "cyclops.evaluate.fairness.config": [[19, 1, 1, "", "FairnessConfig"]], "cyclops.evaluate.fairness.evaluator": [[21, 4, 1, "", "evaluate_fairness"], [22, 4, 1, "", "warn_too_many_unique_values"]], "cyclops.evaluate.metrics": [[23, 0, 0, "-", "accuracy"], [28, 0, 0, "-", "auroc"], [33, 0, 0, "-", "f_beta"], [42, 0, 0, "-", "factory"], [126, 0, 0, "-", "functional"], [73, 0, 0, "-", "metric"], [77, 0, 0, "-", "precision_recall"], [86, 0, 0, "-", "precision_recall_curve"], [91, 0, 0, "-", "roc"], [96, 0, 0, "-", "sensitivity"], [101, 0, 0, "-", "specificity"], [106, 0, 0, "-", "stat_scores"]], "cyclops.evaluate.metrics.accuracy": [[24, 1, 1, "", "Accuracy"], [25, 1, 1, "", "BinaryAccuracy"], [26, 1, 1, "", "MulticlassAccuracy"], [27, 1, 1, "", "MultilabelAccuracy"]], "cyclops.evaluate.metrics.accuracy.Accuracy": [[24, 2, 1, "", "__add__"], [24, 2, 1, "", "__call__"], [24, 2, 1, "", "__init__"], [24, 2, 1, "", "__mul__"], [24, 2, 1, "", "add_state"], [24, 2, 1, "", "clone"], [24, 2, 1, "", "compute"], [24, 2, 1, "", "reset_state"], [24, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.BinaryAccuracy": [[25, 2, 1, "", "__add__"], [25, 2, 1, "", "__call__"], [25, 2, 1, "", "__init__"], [25, 2, 1, "", "__mul__"], [25, 2, 1, "", "add_state"], [25, 2, 1, "", "clone"], [25, 2, 1, "", "compute"], [25, 2, 1, "", "reset_state"], [25, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy": [[26, 2, 1, "", "__add__"], [26, 2, 1, "", "__call__"], [26, 2, 1, "", "__init__"], [26, 2, 1, "", "__mul__"], [26, 2, 1, "", "add_state"], [26, 2, 1, "", "clone"], [26, 2, 1, "", "compute"], [26, 2, 1, "", "reset_state"], [26, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy": [[27, 2, 1, "", "__add__"], [27, 2, 1, "", "__call__"], [27, 2, 1, "", "__init__"], [27, 2, 1, "", "__mul__"], [27, 2, 1, "", "add_state"], [27, 2, 1, "", "clone"], [27, 2, 1, "", "compute"], [27, 2, 1, "", "reset_state"], [27, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc": [[29, 1, 1, "", "AUROC"], [30, 1, 1, "", "BinaryAUROC"], [31, 1, 1, "", "MulticlassAUROC"], [32, 1, 1, "", "MultilabelAUROC"]], "cyclops.evaluate.metrics.auroc.AUROC": [[29, 2, 1, "", "__add__"], [29, 2, 1, "", "__call__"], [29, 2, 1, "", "__init__"], [29, 2, 1, "", "__mul__"], [29, 2, 1, "", "add_state"], [29, 2, 1, "", "clone"], [29, 2, 1, "", "compute"], [29, 2, 1, "", "reset_state"], [29, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.BinaryAUROC": [[30, 2, 1, "", "__add__"], [30, 2, 1, "", "__call__"], [30, 2, 1, "", "__init__"], [30, 2, 1, "", "__mul__"], [30, 2, 1, "", "add_state"], [30, 2, 1, "", "clone"], [30, 2, 1, "", "compute"], [30, 2, 1, "", "reset_state"], [30, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.MulticlassAUROC": [[31, 2, 1, "", "__add__"], [31, 2, 1, "", "__call__"], [31, 2, 1, "", "__init__"], [31, 2, 1, "", "__mul__"], [31, 2, 1, "", "add_state"], [31, 2, 1, "", "clone"], [31, 2, 1, "", "compute"], [31, 2, 1, "", "reset_state"], [31, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.MultilabelAUROC": [[32, 2, 1, "", "__add__"], [32, 2, 1, "", "__call__"], [32, 2, 1, "", "__init__"], [32, 2, 1, "", "__mul__"], [32, 2, 1, "", "add_state"], [32, 2, 1, "", "clone"], [32, 2, 1, "", "compute"], [32, 2, 1, "", "reset_state"], [32, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta": [[34, 1, 1, "", "BinaryF1Score"], [35, 1, 1, "", "BinaryFbetaScore"], [36, 1, 1, "", "F1Score"], [37, 1, 1, "", "FbetaScore"], [38, 1, 1, "", "MulticlassF1Score"], [39, 1, 1, "", "MulticlassFbetaScore"], [40, 1, 1, "", "MultilabelF1Score"], [41, 1, 1, "", "MultilabelFbetaScore"]], "cyclops.evaluate.metrics.f_beta.BinaryF1Score": [[34, 2, 1, "", "__add__"], [34, 2, 1, "", "__call__"], [34, 2, 1, "", "__init__"], [34, 2, 1, "", "__mul__"], [34, 2, 1, "", "add_state"], [34, 2, 1, "", "clone"], [34, 2, 1, "", "compute"], [34, 2, 1, "", "reset_state"], [34, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore": [[35, 2, 1, "", "__add__"], [35, 2, 1, "", "__call__"], [35, 2, 1, "", "__init__"], [35, 2, 1, "", "__mul__"], [35, 2, 1, "", "add_state"], [35, 2, 1, "", "clone"], [35, 2, 1, "", "compute"], [35, 2, 1, "", "reset_state"], [35, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.F1Score": [[36, 2, 1, "", "__add__"], [36, 2, 1, "", "__call__"], [36, 2, 1, "", "__init__"], [36, 2, 1, "", "__mul__"], [36, 2, 1, "", "add_state"], [36, 2, 1, "", "clone"], [36, 2, 1, "", "compute"], [36, 2, 1, "", "reset_state"], [36, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.FbetaScore": [[37, 2, 1, "", "__add__"], [37, 2, 1, "", "__call__"], [37, 2, 1, "", "__init__"], [37, 2, 1, "", "__mul__"], [37, 2, 1, "", "add_state"], [37, 2, 1, "", "clone"], [37, 2, 1, "", "compute"], [37, 2, 1, "", "reset_state"], [37, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MulticlassF1Score": [[38, 2, 1, "", "__add__"], [38, 2, 1, "", "__call__"], [38, 2, 1, "", "__init__"], [38, 2, 1, "", "__mul__"], [38, 2, 1, "", "add_state"], [38, 2, 1, "", "clone"], [38, 2, 1, "", "compute"], [38, 2, 1, "", "reset_state"], [38, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore": [[39, 2, 1, "", "__add__"], [39, 2, 1, "", "__call__"], [39, 2, 1, "", "__init__"], [39, 2, 1, "", "__mul__"], [39, 2, 1, "", "add_state"], [39, 2, 1, "", "clone"], [39, 2, 1, "", "compute"], [39, 2, 1, "", "reset_state"], [39, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MultilabelF1Score": [[40, 2, 1, "", "__add__"], [40, 2, 1, "", "__call__"], [40, 2, 1, "", "__init__"], [40, 2, 1, "", "__mul__"], [40, 2, 1, "", "add_state"], [40, 2, 1, "", "clone"], [40, 2, 1, "", "compute"], [40, 2, 1, "", "reset_state"], [40, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore": [[41, 2, 1, "", "__add__"], [41, 2, 1, "", "__call__"], [41, 2, 1, "", "__init__"], [41, 2, 1, "", "__mul__"], [41, 2, 1, "", "add_state"], [41, 2, 1, "", "clone"], [41, 2, 1, "", "compute"], [41, 2, 1, "", "reset_state"], [41, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.factory": [[43, 4, 1, "", "create_metric"]], "cyclops.evaluate.metrics.functional": [[44, 0, 0, "-", "accuracy"], [45, 0, 0, "-", "auroc"], [46, 0, 0, "-", "f_beta"], [55, 0, 0, "-", "precision_recall"], [64, 0, 0, "-", "precision_recall_curve"], [65, 0, 0, "-", "roc"], [70, 0, 0, "-", "sensitivity"], [71, 0, 0, "-", "specificity"], [72, 0, 0, "-", "stat_scores"]], "cyclops.evaluate.metrics.functional.f_beta": [[47, 4, 1, "", "binary_f1_score"], [48, 4, 1, "", "binary_fbeta_score"], [49, 4, 1, "", "f1_score"], [50, 4, 1, "", "fbeta_score"], [51, 4, 1, "", "multiclass_f1_score"], [52, 4, 1, "", "multiclass_fbeta_score"], [53, 4, 1, "", "multilabel_f1_score"], [54, 4, 1, "", "multilabel_fbeta_score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[56, 4, 1, "", "binary_precision"], [57, 4, 1, "", "binary_recall"], [58, 4, 1, "", "multiclass_precision"], [59, 4, 1, "", "multiclass_recall"], [60, 4, 1, "", "multilabel_precision"], [61, 4, 1, "", "multilabel_recall"], [62, 4, 1, "", "precision"], [63, 4, 1, "", "recall"]], "cyclops.evaluate.metrics.functional.roc": [[66, 4, 1, "", "binary_roc_curve"], [67, 4, 1, "", "multiclass_roc_curve"], [68, 4, 1, "", "multilabel_roc_curve"], [69, 4, 1, "", "roc_curve"]], "cyclops.evaluate.metrics.metric": [[74, 1, 1, "", "Metric"], [75, 1, 1, "", "MetricCollection"], [76, 1, 1, "", "OperatorMetric"]], "cyclops.evaluate.metrics.metric.Metric": [[74, 2, 1, "", "__add__"], [74, 2, 1, "", "__call__"], [74, 2, 1, "", "__init__"], [74, 2, 1, "", "__mul__"], [74, 2, 1, "", "add_state"], [74, 2, 1, "", "clone"], [74, 2, 1, "", "compute"], [74, 5, 1, "", "name"], [74, 2, 1, "", "reset_state"], [74, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.metric.MetricCollection": [[75, 2, 1, "", "__call__"], [75, 2, 1, "", "__init__"], [75, 2, 1, "", "add_metrics"], [75, 2, 1, "", "clear"], [75, 2, 1, "", "clone"], [75, 2, 1, "", "compute"], [75, 2, 1, "", "get"], [75, 2, 1, "", "items"], [75, 2, 1, "", "keys"], [75, 2, 1, "", "pop"], [75, 2, 1, "", "popitem"], [75, 2, 1, "", "reset_state"], [75, 2, 1, "", "setdefault"], [75, 2, 1, "", "update"], [75, 2, 1, "", "update_state"], [75, 2, 1, "", "values"]], "cyclops.evaluate.metrics.metric.OperatorMetric": [[76, 2, 1, "", "__add__"], [76, 2, 1, "", "__call__"], [76, 2, 1, "", "__init__"], [76, 2, 1, "", "__mul__"], [76, 2, 1, "", "add_state"], [76, 2, 1, "", "clone"], [76, 2, 1, "", "compute"], [76, 2, 1, "", "reset_state"], [76, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall": [[78, 1, 1, "", "BinaryPrecision"], [79, 1, 1, "", "BinaryRecall"], [80, 1, 1, "", "MulticlassPrecision"], [81, 1, 1, "", "MulticlassRecall"], [82, 1, 1, "", "MultilabelPrecision"], [83, 1, 1, "", "MultilabelRecall"], [84, 1, 1, "", "Precision"], [85, 1, 1, "", "Recall"]], "cyclops.evaluate.metrics.precision_recall.BinaryPrecision": [[78, 2, 1, "", "__add__"], [78, 2, 1, "", "__call__"], [78, 2, 1, "", "__init__"], [78, 2, 1, "", "__mul__"], [78, 2, 1, "", "add_state"], [78, 2, 1, "", "clone"], [78, 2, 1, "", "compute"], [78, 2, 1, "", "reset_state"], [78, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.BinaryRecall": [[79, 2, 1, "", "__add__"], [79, 2, 1, "", "__call__"], [79, 2, 1, "", "__init__"], [79, 2, 1, "", "__mul__"], [79, 2, 1, "", "add_state"], [79, 2, 1, "", "clone"], [79, 2, 1, "", "compute"], [79, 2, 1, "", "reset_state"], [79, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision": [[80, 2, 1, "", "__add__"], [80, 2, 1, "", "__call__"], [80, 2, 1, "", "__init__"], [80, 2, 1, "", "__mul__"], [80, 2, 1, "", "add_state"], [80, 2, 1, "", "clone"], [80, 2, 1, "", "compute"], [80, 2, 1, "", "reset_state"], [80, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MulticlassRecall": [[81, 2, 1, "", "__add__"], [81, 2, 1, "", "__call__"], [81, 2, 1, "", "__init__"], [81, 2, 1, "", "__mul__"], [81, 2, 1, "", "add_state"], [81, 2, 1, "", "clone"], [81, 2, 1, "", "compute"], [81, 2, 1, "", "reset_state"], [81, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision": [[82, 2, 1, "", "__add__"], [82, 2, 1, "", "__call__"], [82, 2, 1, "", "__init__"], [82, 2, 1, "", "__mul__"], [82, 2, 1, "", "add_state"], [82, 2, 1, "", "clone"], [82, 2, 1, "", "compute"], [82, 2, 1, "", "reset_state"], [82, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MultilabelRecall": [[83, 2, 1, "", "__add__"], [83, 2, 1, "", "__call__"], [83, 2, 1, "", "__init__"], [83, 2, 1, "", "__mul__"], [83, 2, 1, "", "add_state"], [83, 2, 1, "", "clone"], [83, 2, 1, "", "compute"], [83, 2, 1, "", "reset_state"], [83, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.Precision": [[84, 2, 1, "", "__add__"], [84, 2, 1, "", "__call__"], [84, 2, 1, "", "__init__"], [84, 2, 1, "", "__mul__"], [84, 2, 1, "", "add_state"], [84, 2, 1, "", "clone"], [84, 2, 1, "", "compute"], [84, 2, 1, "", "reset_state"], [84, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.Recall": [[85, 2, 1, "", "__add__"], [85, 2, 1, "", "__call__"], [85, 2, 1, "", "__init__"], [85, 2, 1, "", "__mul__"], [85, 2, 1, "", "add_state"], [85, 2, 1, "", "clone"], [85, 2, 1, "", "compute"], [85, 2, 1, "", "reset_state"], [85, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve": [[87, 1, 1, "", "BinaryPrecisionRecallCurve"], [88, 1, 1, "", "MulticlassPrecisionRecallCurve"], [89, 1, 1, "", "MultilabelPrecisionRecallCurve"], [90, 1, 1, "", "PrecisionRecallCurve"]], "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve": [[87, 2, 1, "", "__add__"], [87, 2, 1, "", "__call__"], [87, 2, 1, "", "__init__"], [87, 2, 1, "", "__mul__"], [87, 2, 1, "", "add_state"], [87, 2, 1, "", "clone"], [87, 2, 1, "", "compute"], [87, 2, 1, "", "reset_state"], [87, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve": [[88, 2, 1, "", "__add__"], [88, 2, 1, "", "__call__"], [88, 2, 1, "", "__init__"], [88, 2, 1, "", "__mul__"], [88, 2, 1, "", "add_state"], [88, 2, 1, "", "clone"], [88, 2, 1, "", "compute"], [88, 2, 1, "", "reset_state"], [88, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve": [[89, 2, 1, "", "__add__"], [89, 2, 1, "", "__call__"], [89, 2, 1, "", "__init__"], [89, 2, 1, "", "__mul__"], [89, 2, 1, "", "add_state"], [89, 2, 1, "", "clone"], [89, 2, 1, "", "compute"], [89, 2, 1, "", "reset_state"], [89, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve": [[90, 2, 1, "", "__add__"], [90, 2, 1, "", "__call__"], [90, 2, 1, "", "__init__"], [90, 2, 1, "", "__mul__"], [90, 2, 1, "", "add_state"], [90, 2, 1, "", "clone"], [90, 2, 1, "", "compute"], [90, 2, 1, "", "reset_state"], [90, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc": [[92, 1, 1, "", "BinaryROCCurve"], [93, 1, 1, "", "MulticlassROCCurve"], [94, 1, 1, "", "MultilabelROCCurve"], [95, 1, 1, "", "ROCCurve"]], "cyclops.evaluate.metrics.roc.BinaryROCCurve": [[92, 2, 1, "", "__add__"], [92, 2, 1, "", "__call__"], [92, 2, 1, "", "__init__"], [92, 2, 1, "", "__mul__"], [92, 2, 1, "", "add_state"], [92, 2, 1, "", "clone"], [92, 2, 1, "", "compute"], [92, 2, 1, "", "reset_state"], [92, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.MulticlassROCCurve": [[93, 2, 1, "", "__add__"], [93, 2, 1, "", "__call__"], [93, 2, 1, "", "__init__"], [93, 2, 1, "", "__mul__"], [93, 2, 1, "", "add_state"], [93, 2, 1, "", "clone"], [93, 2, 1, "", "compute"], [93, 2, 1, "", "reset_state"], [93, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.MultilabelROCCurve": [[94, 2, 1, "", "__add__"], [94, 2, 1, "", "__call__"], [94, 2, 1, "", "__init__"], [94, 2, 1, "", "__mul__"], [94, 2, 1, "", "add_state"], [94, 2, 1, "", "clone"], [94, 2, 1, "", "compute"], [94, 2, 1, "", "reset_state"], [94, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.ROCCurve": [[95, 2, 1, "", "__add__"], [95, 2, 1, "", "__call__"], [95, 2, 1, "", "__init__"], [95, 2, 1, "", "__mul__"], [95, 2, 1, "", "add_state"], [95, 2, 1, "", "clone"], [95, 2, 1, "", "compute"], [95, 2, 1, "", "reset_state"], [95, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity": [[97, 1, 1, "", "BinarySensitivity"], [98, 1, 1, "", "MulticlassSensitivity"], [99, 1, 1, "", "MultilabelSensitivity"], [100, 1, 1, "", "Sensitivity"]], "cyclops.evaluate.metrics.sensitivity.BinarySensitivity": [[97, 2, 1, "", "__add__"], [97, 2, 1, "", "__call__"], [97, 2, 1, "", "__init__"], [97, 2, 1, "", "__mul__"], [97, 2, 1, "", "add_state"], [97, 2, 1, "", "clone"], [97, 2, 1, "", "compute"], [97, 2, 1, "", "reset_state"], [97, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity": [[98, 2, 1, "", "__add__"], [98, 2, 1, "", "__call__"], [98, 2, 1, "", "__init__"], [98, 2, 1, "", "__mul__"], [98, 2, 1, "", "add_state"], [98, 2, 1, "", "clone"], [98, 2, 1, "", "compute"], [98, 2, 1, "", "reset_state"], [98, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity": [[99, 2, 1, "", "__add__"], [99, 2, 1, "", "__call__"], [99, 2, 1, "", "__init__"], [99, 2, 1, "", "__mul__"], [99, 2, 1, "", "add_state"], [99, 2, 1, "", "clone"], [99, 2, 1, "", "compute"], [99, 2, 1, "", "reset_state"], [99, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.Sensitivity": [[100, 2, 1, "", "__add__"], [100, 2, 1, "", "__call__"], [100, 2, 1, "", "__init__"], [100, 2, 1, "", "__mul__"], [100, 2, 1, "", "add_state"], [100, 2, 1, "", "clone"], [100, 2, 1, "", "compute"], [100, 2, 1, "", "reset_state"], [100, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity": [[102, 1, 1, "", "BinarySpecificity"], [103, 1, 1, "", "MulticlassSpecificity"], [104, 1, 1, "", "MultilabelSpecificity"], [105, 1, 1, "", "Specificity"]], "cyclops.evaluate.metrics.specificity.BinarySpecificity": [[102, 2, 1, "", "__add__"], [102, 2, 1, "", "__call__"], [102, 2, 1, "", "__init__"], [102, 2, 1, "", "__mul__"], [102, 2, 1, "", "add_state"], [102, 2, 1, "", "clone"], [102, 2, 1, "", "compute"], [102, 2, 1, "", "reset_state"], [102, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.MulticlassSpecificity": [[103, 2, 1, "", "__add__"], [103, 2, 1, "", "__call__"], [103, 2, 1, "", "__init__"], [103, 2, 1, "", "__mul__"], [103, 2, 1, "", "add_state"], [103, 2, 1, "", "clone"], [103, 2, 1, "", "compute"], [103, 2, 1, "", "reset_state"], [103, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.MultilabelSpecificity": [[104, 2, 1, "", "__add__"], [104, 2, 1, "", "__call__"], [104, 2, 1, "", "__init__"], [104, 2, 1, "", "__mul__"], [104, 2, 1, "", "add_state"], [104, 2, 1, "", "clone"], [104, 2, 1, "", "compute"], [104, 2, 1, "", "reset_state"], [104, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.Specificity": [[105, 2, 1, "", "__add__"], [105, 2, 1, "", "__call__"], [105, 2, 1, "", "__init__"], [105, 2, 1, "", "__mul__"], [105, 2, 1, "", "add_state"], [105, 2, 1, "", "clone"], [105, 2, 1, "", "compute"], [105, 2, 1, "", "reset_state"], [105, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores": [[107, 1, 1, "", "BinaryStatScores"], [108, 1, 1, "", "MulticlassStatScores"], [109, 1, 1, "", "MultilabelStatScores"], [110, 1, 1, "", "StatScores"]], "cyclops.evaluate.metrics.stat_scores.BinaryStatScores": [[107, 2, 1, "", "__add__"], [107, 2, 1, "", "__call__"], [107, 2, 1, "", "__init__"], [107, 2, 1, "", "__mul__"], [107, 2, 1, "", "add_state"], [107, 2, 1, "", "clone"], [107, 2, 1, "", "compute"], [107, 2, 1, "", "reset_state"], [107, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores": [[108, 2, 1, "", "__add__"], [108, 2, 1, "", "__call__"], [108, 2, 1, "", "__init__"], [108, 2, 1, "", "__mul__"], [108, 2, 1, "", "add_state"], [108, 2, 1, "", "clone"], [108, 2, 1, "", "compute"], [108, 2, 1, "", "reset_state"], [108, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores": [[109, 2, 1, "", "__add__"], [109, 2, 1, "", "__call__"], [109, 2, 1, "", "__init__"], [109, 2, 1, "", "__mul__"], [109, 2, 1, "", "add_state"], [109, 2, 1, "", "clone"], [109, 2, 1, "", "compute"], [109, 2, 1, "", "reset_state"], [109, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.StatScores": [[110, 2, 1, "", "__add__"], [110, 2, 1, "", "__call__"], [110, 2, 1, "", "__init__"], [110, 2, 1, "", "__mul__"], [110, 2, 1, "", "add_state"], [110, 2, 1, "", "clone"], [110, 2, 1, "", "compute"], [110, 5, 1, "", "name"], [110, 2, 1, "", "reset_state"], [110, 2, 1, "", "update_state"]], "cyclops.monitor": [[111, 0, 0, "-", "clinical_applicator"], [113, 0, 0, "-", "synthetic_applicator"]], "cyclops.monitor.clinical_applicator": [[112, 1, 1, "", "ClinicalShiftApplicator"]], "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator": [[112, 2, 1, "", "age"], [112, 2, 1, "", "apply_shift"], [112, 2, 1, "", "custom"], [112, 2, 1, "", "hospital_type"], [112, 2, 1, "", "month"], [112, 2, 1, "", "sex"], [112, 2, 1, "", "time"]], "cyclops.monitor.synthetic_applicator": [[114, 1, 1, "", "SyntheticShiftApplicator"], [115, 4, 1, "", "binary_noise_shift"], [116, 4, 1, "", "feature_association_shift"], [117, 4, 1, "", "feature_swap_shift"], [118, 4, 1, "", "gaussian_noise_shift"], [119, 4, 1, "", "knockout_shift"]], "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator": [[114, 2, 1, "", "apply_shift"]], "cyclops.report": [[120, 0, 0, "-", "report"]], "cyclops.report.report": [[121, 1, 1, "", "ModelCardReport"]], "cyclops.report.report.ModelCardReport": [[121, 2, 1, "", "export"], [121, 2, 1, "", "from_json_file"], [121, 2, 1, "", "log_citation"], [121, 2, 1, "", "log_dataset"], [121, 2, 1, "", "log_descriptor"], [121, 2, 1, "", "log_fairness_assessment"], [121, 2, 1, "", "log_from_dict"], [121, 2, 1, "", "log_image"], [121, 2, 1, "", "log_license"], [121, 2, 1, "", "log_model_parameters"], [121, 2, 1, "", "log_owner"], [121, 2, 1, "", "log_performance_metrics"], [121, 2, 1, "", "log_plotly_figure"], [121, 2, 1, "", "log_quantitative_analysis"], [121, 2, 1, "", "log_reference"], [121, 2, 1, "", "log_regulation"], [121, 2, 1, "", "log_risk"], [121, 2, 1, "", "log_use_case"], [121, 2, 1, "", "log_user"], [121, 2, 1, "", "log_version"]], "cyclops.tasks": [[122, 0, 0, "-", "classification"]], "cyclops.tasks.classification": [[123, 1, 1, "", "BinaryTabularClassificationTask"], [124, 1, 1, "", "MultilabelImageClassificationTask"]], "cyclops.tasks.classification.BinaryTabularClassificationTask": [[123, 2, 1, "", "__init__"], [123, 2, 1, "", "add_model"], [123, 5, 1, "", "data_type"], [123, 2, 1, "", "evaluate"], [123, 2, 1, "", "get_model"], [123, 2, 1, "", "list_models"], [123, 2, 1, "", "list_models_params"], [123, 2, 1, "", "load_model"], [123, 5, 1, "", "models_count"], [123, 2, 1, "", "predict"], [123, 2, 1, "", "save_model"], [123, 5, 1, "", "task_type"], [123, 2, 1, "", "train"]], "cyclops.tasks.classification.MultilabelImageClassificationTask": [[124, 2, 1, "", "__init__"], [124, 2, 1, "", "add_model"], [124, 5, 1, "", "data_type"], [124, 2, 1, "", "evaluate"], [124, 2, 1, "", "get_model"], [124, 2, 1, "", "list_models"], [124, 2, 1, "", "list_models_params"], [124, 2, 1, "", "load_model"], [124, 5, 1, "", "models_count"], [124, 2, 1, "", "predict"], [124, 2, 1, "", "save_model"], [124, 5, 1, "", "task_type"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:attribute", "4": "py:function", "5": "py:property"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "attribute", "Python attribute"], "4": ["py", "function", "Python function"], "5": ["py", "property", "Python property"]}, "titleterms": {"api": [0, 136], "refer": 0, "contribut": [1, 3], "cyclop": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129], "pre": 1, "commit": 1, "hook": 1, "code": 1, "guidelin": 1, "welcom": 2, "": 2, "document": [2, 3], "content": 2, "get": 3, "start": 3, "instal": 3, "us": [3, 134, 137], "pip": 3, "develop": 3, "poetri": 3, "notebook": 3, "citat": 3, "data": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 125, 131, 132, 135, 137], "featur": [4, 5, 125, 131, 132, 135], "medical_imag": [4, 5], "medicalimag": 5, "slicer": [6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "slicespec": 7, "compound_filt": 8, "filter_datetim": 9, "filter_non_nul": 10, "filter_rang": 11, "filter_string_contain": 12, "filter_valu": 13, "is_datetim": 14, "overal": 15, "evalu": [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 126, 131, 132, 135], "fair": [18, 19, 20, 21, 22, 126], "config": [18, 19], "fairnessconfig": 19, "evaluate_fair": 21, "warn_too_many_unique_valu": 22, "metric": [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 126, 133], "accuraci": [23, 24, 25, 26, 27, 44], "binaryaccuraci": 25, "multiclassaccuraci": 26, "multilabelaccuraci": 27, "auroc": [28, 29, 30, 31, 32, 45, 133], "binaryauroc": 30, "multiclassauroc": 31, "multilabelauroc": 32, "f_beta": [33, 34, 35, 36, 37, 38, 39, 40, 41, 46, 47, 48, 49, 50, 51, 52, 53, 54], "binaryf1scor": 34, "binaryfbetascor": 35, "f1score": 36, "fbetascor": 37, "multiclassf1scor": 38, "multiclassfbetascor": 39, "multilabelf1scor": 40, "multilabelfbetascor": 41, "factori": [42, 43], "create_metr": 43, "function": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 126], "binary_f1_scor": 47, "binary_fbeta_scor": 48, "f1_score": 49, "fbeta_scor": 50, "multiclass_f1_scor": 51, "multiclass_fbeta_scor": 52, "multilabel_f1_scor": 53, "multilabel_fbeta_scor": 54, "precision_recal": [55, 56, 57, 58, 59, 60, 61, 62, 63, 77, 78, 79, 80, 81, 82, 83, 84, 85], "binary_precis": 56, "binary_recal": 57, "multiclass_precis": 58, "multiclass_recal": 59, "multilabel_precis": 60, "multilabel_recal": 61, "precis": [62, 84], "recal": [63, 85], "precision_recall_curv": [64, 86, 87, 88, 89, 90], "roc": [65, 66, 67, 68, 69, 91, 92, 93, 94, 95], "binary_roc_curv": 66, "multiclass_roc_curv": 67, "multilabel_roc_curv": 68, "roc_curv": 69, "sensit": [70, 96, 97, 98, 99, 100, 134], "specif": [71, 101, 102, 103, 104, 105], "stat_scor": [72, 106, 107, 108, 109, 110], "metriccollect": 75, "operatormetr": 76, "binaryprecis": 78, "binaryrecal": 79, "multiclassprecis": 80, "multiclassrecal": 81, "multilabelprecis": 82, "multilabelrecal": 83, "binaryprecisionrecallcurv": 87, "multiclassprecisionrecallcurv": 88, "multilabelprecisionrecallcurv": 89, "precisionrecallcurv": 90, "binaryroccurv": 92, "multiclassroccurv": 93, "multilabelroccurv": 94, "roccurv": 95, "binarysensit": 97, "multiclasssensit": 98, "multilabelsensit": 99, "binaryspecif": 102, "multiclassspecif": 103, "multilabelspecif": 104, "binarystatscor": 107, "multiclassstatscor": 108, "multilabelstatscor": 109, "statscor": 110, "monitor": [111, 112, 113, 114, 115, 116, 117, 118, 119, 127, 136], "clinical_appl": [111, 112], "clinicalshiftappl": 112, "synthetic_appl": [113, 114, 115, 116, 117, 118, 119], "syntheticshiftappl": 114, "binary_noise_shift": 115, "feature_association_shift": 116, "feature_swap_shift": 117, "gaussian_noise_shift": 118, "knockout_shift": 119, "report": [120, 121, 128, 131, 132, 133, 135], "modelcardreport": 121, "task": [122, 123, 124, 129, 131, 132, 135], "classif": [122, 123, 124, 133, 137], "binarytabularclassificationtask": 123, "multilabelimageclassificationtask": 124, "tutori": [130, 134], "heart": [131, 137], "failur": [131, 137], "predict": [131, 132, 135, 137], "import": [131, 132, 133, 134, 135], "librari": [131, 132, 133, 134, 135], "constant": [131, 132, 135], "load": [131, 133, 134], "sex": [131, 133], "valu": 131, "ag": [131, 132, 133, 135], "distribut": [131, 132, 135], "outcom": [131, 132, 135], "identifi": [131, 132, 135], "type": [131, 132, 135], "creat": [131, 132, 135], "preprocessor": [131, 132, 135], "hug": [131, 132, 135], "face": [131, 132, 135], "dataset": [131, 132, 133, 134, 135], "model": [131, 132, 133, 134, 135], "creation": [131, 132, 133, 135], "train": [131, 132, 134, 135], "perform": [131, 133], "over": 131, "time": 131, "gener": [131, 132, 133, 134, 135], "mortal": [132, 137], "queri": [132, 135], "process": 132, "comput": [132, 135], "label": [132, 135], "inspect": [132, 135], "preprocess": [132, 135], "drop": [132, 135], "nan": [132, 135], "base": [132, 135], "nan_threshold": [132, 135], "gender": [132, 135], "chest": [133, 137], "x": [133, 137], "rai": [133, 137], "diseas": 133, "histor": 133, "initi": 133, "period": 133, "multilabel": 133, "pathologi": 133, "log": 133, "test": [133, 134], "w": 133, "threshold": 133, "popul": 133, "card": 133, "field": 133, "nihcxr": 134, "clinic": 134, "drift": 134, "experi": 134, "exampl": [134, 137], "1": 134, "sourc": 134, "target": 134, "2": 134, "3": 134, "dimension": 134, "reduct": 134, "techniqu": 134, "differ": 134, "4": 134, "shift": 134, "5": 134, "roll": 134, "window": 134, "synthet": 134, "timestamp": 134, "biweekli": 134, "prolong": [135, 137], "length": [135, 137], "stai": [135, 137], "case": 137, "tabular": 137, "kaggl": 137, "mimiciv": 137, "synthea": 137, "imag": 137, "nih": 137}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1, "sphinx.ext.intersphinx": 1, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"API Reference": [[0, "api-reference"]], "Contributing to cyclops": [[1, "contributing-to-cyclops"]], "Pre-commit hooks": [[1, "pre-commit-hooks"]], "Coding guidelines": [[1, "coding-guidelines"]], "Welcome to cyclops\u2019s documentation!": [[2, "welcome-to-cyclops-s-documentation"]], "Contents:": [[2, null]], "\ud83d\udc23 Getting Started": [[3, "getting-started"]], "Installing cyclops using pip": [[3, "installing-cyclops-using-pip"]], "\ud83e\uddd1\ud83c\udfff\u200d\ud83d\udcbb Developing": [[3, "developing"]], "Using poetry": [[3, "using-poetry"]], "Contributing": [[3, "contributing"]], "\ud83d\udcda Documentation": [[3, "documentation"]], "\ud83d\udcd3 Notebooks": [[3, "notebooks"]], "\ud83c\udf93 Citation": [[3, "citation"]], "cyclops.data.features.medical_image": [[4, "module-cyclops.data.features.medical_image"]], "cyclops.data.features.medical_image.MedicalImage": [[5, "cyclops-data-features-medical-image-medicalimage"]], "cyclops.data.slicer": [[6, "module-cyclops.data.slicer"]], "cyclops.data.slicer.SliceSpec": [[7, "cyclops-data-slicer-slicespec"]], "cyclops.data.slicer.compound_filter": [[8, "cyclops-data-slicer-compound-filter"]], "cyclops.data.slicer.filter_datetime": [[9, "cyclops-data-slicer-filter-datetime"]], "cyclops.data.slicer.filter_non_null": [[10, "cyclops-data-slicer-filter-non-null"]], "cyclops.data.slicer.filter_range": [[11, "cyclops-data-slicer-filter-range"]], "cyclops.data.slicer.filter_string_contains": [[12, "cyclops-data-slicer-filter-string-contains"]], "cyclops.data.slicer.filter_value": [[13, "cyclops-data-slicer-filter-value"]], "cyclops.data.slicer.is_datetime": [[14, "cyclops-data-slicer-is-datetime"]], "cyclops.data.slicer.overall": [[15, "cyclops-data-slicer-overall"]], "cyclops.evaluate.evaluator": [[16, "module-cyclops.evaluate.evaluator"]], "cyclops.evaluate.evaluator.evaluate": [[17, "cyclops-evaluate-evaluator-evaluate"]], "cyclops.evaluate.fairness.config": [[18, "module-cyclops.evaluate.fairness.config"]], "cyclops.evaluate.fairness.config.FairnessConfig": [[19, "cyclops-evaluate-fairness-config-fairnessconfig"]], "cyclops.evaluate.fairness.evaluator": [[20, "module-cyclops.evaluate.fairness.evaluator"]], "cyclops.evaluate.fairness.evaluator.evaluate_fairness": [[21, "cyclops-evaluate-fairness-evaluator-evaluate-fairness"]], "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values": [[22, "cyclops-evaluate-fairness-evaluator-warn-too-many-unique-values"]], "cyclops.evaluate.metrics.accuracy": [[23, "module-cyclops.evaluate.metrics.accuracy"]], "cyclops.evaluate.metrics.accuracy.Accuracy": [[24, "cyclops-evaluate-metrics-accuracy-accuracy"]], "cyclops.evaluate.metrics.accuracy.BinaryAccuracy": [[25, "cyclops-evaluate-metrics-accuracy-binaryaccuracy"]], "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy": [[26, "cyclops-evaluate-metrics-accuracy-multiclassaccuracy"]], "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy": [[27, "cyclops-evaluate-metrics-accuracy-multilabelaccuracy"]], "cyclops.evaluate.metrics.auroc": [[28, "module-cyclops.evaluate.metrics.auroc"]], "cyclops.evaluate.metrics.auroc.AUROC": [[29, "cyclops-evaluate-metrics-auroc-auroc"]], "cyclops.evaluate.metrics.auroc.BinaryAUROC": [[30, "cyclops-evaluate-metrics-auroc-binaryauroc"]], "cyclops.evaluate.metrics.auroc.MulticlassAUROC": [[31, "cyclops-evaluate-metrics-auroc-multiclassauroc"]], "cyclops.evaluate.metrics.auroc.MultilabelAUROC": [[32, "cyclops-evaluate-metrics-auroc-multilabelauroc"]], "cyclops.evaluate.metrics.f_beta": [[33, "module-cyclops.evaluate.metrics.f_beta"]], "cyclops.evaluate.metrics.f_beta.BinaryF1Score": [[34, "cyclops-evaluate-metrics-f-beta-binaryf1score"]], "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore": [[35, "cyclops-evaluate-metrics-f-beta-binaryfbetascore"]], "cyclops.evaluate.metrics.f_beta.F1Score": [[36, "cyclops-evaluate-metrics-f-beta-f1score"]], "cyclops.evaluate.metrics.f_beta.FbetaScore": [[37, "cyclops-evaluate-metrics-f-beta-fbetascore"]], "cyclops.evaluate.metrics.f_beta.MulticlassF1Score": [[38, "cyclops-evaluate-metrics-f-beta-multiclassf1score"]], "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore": [[39, "cyclops-evaluate-metrics-f-beta-multiclassfbetascore"]], "cyclops.evaluate.metrics.f_beta.MultilabelF1Score": [[40, "cyclops-evaluate-metrics-f-beta-multilabelf1score"]], "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore": [[41, "cyclops-evaluate-metrics-f-beta-multilabelfbetascore"]], "cyclops.evaluate.metrics.factory": [[42, "module-cyclops.evaluate.metrics.factory"]], "cyclops.evaluate.metrics.factory.create_metric": [[43, "cyclops-evaluate-metrics-factory-create-metric"]], "cyclops.evaluate.metrics.functional.accuracy": [[44, "module-cyclops.evaluate.metrics.functional.accuracy"]], "cyclops.evaluate.metrics.functional.auroc": [[45, "module-cyclops.evaluate.metrics.functional.auroc"]], "cyclops.evaluate.metrics.functional.f_beta": [[46, "module-cyclops.evaluate.metrics.functional.f_beta"]], "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score": [[47, "cyclops-evaluate-metrics-functional-f-beta-binary-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score": [[48, "cyclops-evaluate-metrics-functional-f-beta-binary-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.f1_score": [[49, "cyclops-evaluate-metrics-functional-f-beta-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.fbeta_score": [[50, "cyclops-evaluate-metrics-functional-f-beta-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score": [[51, "cyclops-evaluate-metrics-functional-f-beta-multiclass-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score": [[52, "cyclops-evaluate-metrics-functional-f-beta-multiclass-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score": [[53, "cyclops-evaluate-metrics-functional-f-beta-multilabel-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score": [[54, "cyclops-evaluate-metrics-functional-f-beta-multilabel-fbeta-score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[55, "module-cyclops.evaluate.metrics.functional.precision_recall"]], "cyclops.evaluate.metrics.functional.precision_recall.binary_precision": [[56, "cyclops-evaluate-metrics-functional-precision-recall-binary-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.binary_recall": [[57, "cyclops-evaluate-metrics-functional-precision-recall-binary-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision": [[58, "cyclops-evaluate-metrics-functional-precision-recall-multiclass-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall": [[59, "cyclops-evaluate-metrics-functional-precision-recall-multiclass-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision": [[60, "cyclops-evaluate-metrics-functional-precision-recall-multilabel-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall": [[61, "cyclops-evaluate-metrics-functional-precision-recall-multilabel-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.precision": [[62, "cyclops-evaluate-metrics-functional-precision-recall-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.recall": [[63, "cyclops-evaluate-metrics-functional-precision-recall-recall"]], "cyclops.evaluate.metrics.functional.precision_recall_curve": [[64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"]], "cyclops.evaluate.metrics.functional.roc": [[65, "module-cyclops.evaluate.metrics.functional.roc"]], "cyclops.evaluate.metrics.functional.roc.binary_roc_curve": [[66, "cyclops-evaluate-metrics-functional-roc-binary-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve": [[67, "cyclops-evaluate-metrics-functional-roc-multiclass-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve": [[68, "cyclops-evaluate-metrics-functional-roc-multilabel-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.roc_curve": [[69, "cyclops-evaluate-metrics-functional-roc-roc-curve"]], "cyclops.evaluate.metrics.functional.sensitivity": [[70, "module-cyclops.evaluate.metrics.functional.sensitivity"]], "cyclops.evaluate.metrics.functional.specificity": [[71, "module-cyclops.evaluate.metrics.functional.specificity"]], "cyclops.evaluate.metrics.functional.stat_scores": [[72, "module-cyclops.evaluate.metrics.functional.stat_scores"]], "cyclops.evaluate.metrics.metric": [[73, "module-cyclops.evaluate.metrics.metric"]], "cyclops.evaluate.metrics.metric.Metric": [[74, "cyclops-evaluate-metrics-metric-metric"]], "cyclops.evaluate.metrics.metric.MetricCollection": [[75, "cyclops-evaluate-metrics-metric-metriccollection"]], "cyclops.evaluate.metrics.metric.OperatorMetric": [[76, "cyclops-evaluate-metrics-metric-operatormetric"]], "cyclops.evaluate.metrics.precision_recall": [[77, "module-cyclops.evaluate.metrics.precision_recall"]], "cyclops.evaluate.metrics.precision_recall.BinaryPrecision": [[78, "cyclops-evaluate-metrics-precision-recall-binaryprecision"]], "cyclops.evaluate.metrics.precision_recall.BinaryRecall": [[79, "cyclops-evaluate-metrics-precision-recall-binaryrecall"]], "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision": [[80, "cyclops-evaluate-metrics-precision-recall-multiclassprecision"]], "cyclops.evaluate.metrics.precision_recall.MulticlassRecall": [[81, "cyclops-evaluate-metrics-precision-recall-multiclassrecall"]], "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision": [[82, "cyclops-evaluate-metrics-precision-recall-multilabelprecision"]], "cyclops.evaluate.metrics.precision_recall.MultilabelRecall": [[83, "cyclops-evaluate-metrics-precision-recall-multilabelrecall"]], "cyclops.evaluate.metrics.precision_recall.Precision": [[84, "cyclops-evaluate-metrics-precision-recall-precision"]], "cyclops.evaluate.metrics.precision_recall.Recall": [[85, "cyclops-evaluate-metrics-precision-recall-recall"]], "cyclops.evaluate.metrics.precision_recall_curve": [[86, "module-cyclops.evaluate.metrics.precision_recall_curve"]], "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve": [[87, "cyclops-evaluate-metrics-precision-recall-curve-binaryprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve": [[88, "cyclops-evaluate-metrics-precision-recall-curve-multiclassprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve": [[89, "cyclops-evaluate-metrics-precision-recall-curve-multilabelprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve": [[90, "cyclops-evaluate-metrics-precision-recall-curve-precisionrecallcurve"]], "cyclops.evaluate.metrics.roc": [[91, "module-cyclops.evaluate.metrics.roc"]], "cyclops.evaluate.metrics.roc.BinaryROCCurve": [[92, "cyclops-evaluate-metrics-roc-binaryroccurve"]], "cyclops.evaluate.metrics.roc.MulticlassROCCurve": [[93, "cyclops-evaluate-metrics-roc-multiclassroccurve"]], "cyclops.evaluate.metrics.roc.MultilabelROCCurve": [[94, "cyclops-evaluate-metrics-roc-multilabelroccurve"]], "cyclops.evaluate.metrics.roc.ROCCurve": [[95, "cyclops-evaluate-metrics-roc-roccurve"]], "cyclops.evaluate.metrics.sensitivity": [[96, "module-cyclops.evaluate.metrics.sensitivity"]], "cyclops.evaluate.metrics.sensitivity.BinarySensitivity": [[97, "cyclops-evaluate-metrics-sensitivity-binarysensitivity"]], "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity": [[98, "cyclops-evaluate-metrics-sensitivity-multiclasssensitivity"]], "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity": [[99, "cyclops-evaluate-metrics-sensitivity-multilabelsensitivity"]], "cyclops.evaluate.metrics.sensitivity.Sensitivity": [[100, "cyclops-evaluate-metrics-sensitivity-sensitivity"]], "cyclops.evaluate.metrics.specificity": [[101, "module-cyclops.evaluate.metrics.specificity"]], "cyclops.evaluate.metrics.specificity.BinarySpecificity": [[102, "cyclops-evaluate-metrics-specificity-binaryspecificity"]], "cyclops.evaluate.metrics.specificity.MulticlassSpecificity": [[103, "cyclops-evaluate-metrics-specificity-multiclassspecificity"]], "cyclops.evaluate.metrics.specificity.MultilabelSpecificity": [[104, "cyclops-evaluate-metrics-specificity-multilabelspecificity"]], "cyclops.evaluate.metrics.specificity.Specificity": [[105, "cyclops-evaluate-metrics-specificity-specificity"]], "cyclops.evaluate.metrics.stat_scores": [[106, "module-cyclops.evaluate.metrics.stat_scores"]], "cyclops.evaluate.metrics.stat_scores.BinaryStatScores": [[107, "cyclops-evaluate-metrics-stat-scores-binarystatscores"]], "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores": [[108, "cyclops-evaluate-metrics-stat-scores-multiclassstatscores"]], "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores": [[109, "cyclops-evaluate-metrics-stat-scores-multilabelstatscores"]], "cyclops.evaluate.metrics.stat_scores.StatScores": [[110, "cyclops-evaluate-metrics-stat-scores-statscores"]], "cyclops.monitor.clinical_applicator": [[111, "module-cyclops.monitor.clinical_applicator"]], "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator": [[112, "cyclops-monitor-clinical-applicator-clinicalshiftapplicator"]], "cyclops.monitor.synthetic_applicator": [[113, "module-cyclops.monitor.synthetic_applicator"]], "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator": [[114, "cyclops-monitor-synthetic-applicator-syntheticshiftapplicator"]], "cyclops.monitor.synthetic_applicator.binary_noise_shift": [[115, "cyclops-monitor-synthetic-applicator-binary-noise-shift"]], "cyclops.monitor.synthetic_applicator.feature_association_shift": [[116, "cyclops-monitor-synthetic-applicator-feature-association-shift"]], "cyclops.monitor.synthetic_applicator.feature_swap_shift": [[117, "cyclops-monitor-synthetic-applicator-feature-swap-shift"]], "cyclops.monitor.synthetic_applicator.gaussian_noise_shift": [[118, "cyclops-monitor-synthetic-applicator-gaussian-noise-shift"]], "cyclops.monitor.synthetic_applicator.knockout_shift": [[119, "cyclops-monitor-synthetic-applicator-knockout-shift"]], "cyclops.report.report": [[120, "module-cyclops.report.report"]], "cyclops.report.report.ModelCardReport": [[121, "cyclops-report-report-modelcardreport"]], "cyclops.tasks.classification": [[122, "module-cyclops.tasks.classification"]], "cyclops.tasks.classification.BinaryTabularClassificationTask": [[123, "cyclops-tasks-classification-binarytabularclassificationtask"]], "cyclops.tasks.classification.MultilabelImageClassificationTask": [[124, "cyclops-tasks-classification-multilabelimageclassificationtask"]], "cyclops.data": [[125, "module-cyclops.data"]], "cyclops.data.features": [[125, "module-cyclops.data.features"]], "cyclops.evaluate": [[126, "module-cyclops.evaluate"]], "cyclops.evaluate.metrics": [[126, "module-cyclops.evaluate.metrics"]], "cyclops.evaluate.metrics.functional": [[126, "module-cyclops.evaluate.metrics.functional"]], "cyclops.evaluate.fairness": [[126, "module-cyclops.evaluate.fairness"]], "cyclops.monitor": [[127, "module-cyclops.monitor"]], "cyclops.report": [[128, "module-cyclops.report"]], "cyclops.tasks": [[129, "module-cyclops.tasks"]], "Tutorials": [[130, "tutorials"]], "Heart Failure Prediction": [[131, "Heart-Failure-Prediction"]], "Import Libraries": [[131, "Import-Libraries"], [132, "Import-Libraries"], [133, "Import-Libraries"], [135, "Import-Libraries"]], "Constants": [[131, "Constants"], [132, "Constants"], [135, "Constants"]], "Data Loading": [[131, "Data-Loading"]], "Sex values": [[131, "Sex-values"]], "Age distribution": [[131, "Age-distribution"], [132, "Age-distribution"], [135, "Age-distribution"]], "Outcome distribution": [[131, "Outcome-distribution"], [132, "Outcome-distribution"], [135, "Outcome-distribution"]], "Identifying feature types": [[131, "Identifying-feature-types"], [132, "Identifying-feature-types"], [135, "Identifying-feature-types"]], "Creating data preprocessors": [[131, "Creating-data-preprocessors"], [132, "Creating-data-preprocessors"], [135, "Creating-data-preprocessors"]], "Creating Hugging Face Dataset": [[131, "Creating-Hugging-Face-Dataset"], [132, "Creating-Hugging-Face-Dataset"], [135, "Creating-Hugging-Face-Dataset"]], "Model Creation": [[131, "Model-Creation"], [132, "Model-Creation"], [133, "Model-Creation"], [135, "Model-Creation"]], "Task Creation": [[131, "Task-Creation"], [132, "Task-Creation"], [135, "Task-Creation"]], "Training": [[131, "Training"], [132, "Training"], [135, "Training"]], "Prediction": [[131, "Prediction"], [132, "Prediction"], [135, "Prediction"]], "Evaluation": [[131, "Evaluation"], [132, "Evaluation"], [135, "Evaluation"]], "Performance over time": [[131, "Performance-over-time"]], "Report Generation": [[131, "Report-Generation"], [132, "Report-Generation"], [135, "Report-Generation"]], "Mortality Prediction": [[132, "Mortality-Prediction"]], "Data Querying & Processing": [[132, "Data-Querying-&-Processing"]], "Compute mortality (labels)": [[132, "Compute-mortality-(labels)"]], "Data Inspection and Preprocessing": [[132, "Data-Inspection-and-Preprocessing"], [135, "Data-Inspection-and-Preprocessing"]], "Drop NaNs based on the NAN_THRESHOLD": [[132, "Drop-NaNs-based-on-the-NAN_THRESHOLD"], [135, "Drop-NaNs-based-on-the-NAN_THRESHOLD"]], "Gender distribution": [[132, "Gender-distribution"], [135, "Gender-distribution"]], "Chest X-Ray Disease Classification": [[133, "Chest-X-Ray-Disease-Classification"]], "Generate Historical Reports": [[133, "Generate-Historical-Reports"]], "Initialize Periodic Report": [[133, "Initialize-Periodic-Report"]], "Load Dataset": [[133, "Load-Dataset"]], "Multilabel AUROC by Pathology and Sex": [[133, "Multilabel-AUROC-by-Pathology-and-Sex"]], "Multilabel AUROC by Pathology and Age": [[133, "Multilabel-AUROC-by-Pathology-and-Age"]], "Log Performance Metrics as Tests w/ Thresholds": [[133, "Log-Performance-Metrics-as-Tests-w/-Thresholds"]], "Populate Model Card Fields": [[133, "Populate-Model-Card-Fields"]], "NIHCXR Clinical Drift Experiments Tutorial": [[134, "NIHCXR-Clinical-Drift-Experiments-Tutorial"]], "Import Libraries and Load NIHCXR Dataset": [[134, "Import-Libraries-and-Load-NIHCXR-Dataset"]], "Example 1. Generate Source/Target Dataset for Experiments (1-2)": [[134, "Example-1.-Generate-Source/Target-Dataset-for-Experiments-(1-2)"]], "Example 2. Sensitivity test experiment with 3 dimensionality reduction techniques": [[134, "Example-2.-Sensitivity-test-experiment-with-3-dimensionality-reduction-techniques"]], "Example 3. Sensitivity test experiment with models trained on different datasets": [[134, "Example-3.-Sensitivity-test-experiment-with-models-trained-on-different-datasets"]], "Example 4. Sensitivity test experiment with different clinical shifts": [[134, "Example-4.-Sensitivity-test-experiment-with-different-clinical-shifts"]], "Example 5. Rolling window experiment with synthetic timestamps using biweekly window": [[134, "Example-5.-Rolling-window-experiment-with-synthetic-timestamps-using-biweekly-window"]], "Prolonged Length of Stay Prediction": [[135, "Prolonged-Length-of-Stay-Prediction"]], "Data Querying": [[135, "Data-Querying"]], "Compute length of stay (labels)": [[135, "Compute-length-of-stay-(labels)"]], "Length of stay distribution": [[135, "Length-of-stay-distribution"]], "monitor API": [[136, "monitor-api"]], "Example use cases": [[137, "example-use-cases"]], "Tabular data": [[137, "tabular-data"]], "Kaggle Heart Failure Prediction": [[137, "kaggle-heart-failure-prediction"]], "MIMICIV Mortality Prediction": [[137, "mimiciv-mortality-prediction"]], "Synthea Prolonged Length of Stay Prediction": [[137, "synthea-prolonged-length-of-stay-prediction"]], "Image data": [[137, "image-data"]], "NIH Chest X-ray classification": [[137, "nih-chest-x-ray-classification"]]}, "indexentries": {"cyclops.data.features.medical_image": [[4, "module-cyclops.data.features.medical_image"]], "module": [[4, "module-cyclops.data.features.medical_image"], [6, "module-cyclops.data.slicer"], [16, "module-cyclops.evaluate.evaluator"], [18, "module-cyclops.evaluate.fairness.config"], [20, "module-cyclops.evaluate.fairness.evaluator"], [23, "module-cyclops.evaluate.metrics.accuracy"], [28, "module-cyclops.evaluate.metrics.auroc"], [33, "module-cyclops.evaluate.metrics.f_beta"], [42, "module-cyclops.evaluate.metrics.factory"], [44, "module-cyclops.evaluate.metrics.functional.accuracy"], [45, "module-cyclops.evaluate.metrics.functional.auroc"], [46, "module-cyclops.evaluate.metrics.functional.f_beta"], [55, "module-cyclops.evaluate.metrics.functional.precision_recall"], [64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"], [65, "module-cyclops.evaluate.metrics.functional.roc"], [70, "module-cyclops.evaluate.metrics.functional.sensitivity"], [71, "module-cyclops.evaluate.metrics.functional.specificity"], [72, "module-cyclops.evaluate.metrics.functional.stat_scores"], [73, "module-cyclops.evaluate.metrics.metric"], [77, "module-cyclops.evaluate.metrics.precision_recall"], [86, "module-cyclops.evaluate.metrics.precision_recall_curve"], [91, "module-cyclops.evaluate.metrics.roc"], [96, "module-cyclops.evaluate.metrics.sensitivity"], [101, "module-cyclops.evaluate.metrics.specificity"], [106, "module-cyclops.evaluate.metrics.stat_scores"], [111, "module-cyclops.monitor.clinical_applicator"], [113, "module-cyclops.monitor.synthetic_applicator"], [120, "module-cyclops.report.report"], [122, "module-cyclops.tasks.classification"], [125, "module-cyclops.data"], [125, "module-cyclops.data.features"], [126, "module-cyclops.evaluate"], [126, "module-cyclops.evaluate.fairness"], [126, "module-cyclops.evaluate.metrics"], [126, "module-cyclops.evaluate.metrics.functional"], [127, "module-cyclops.monitor"], [128, "module-cyclops.report"], [129, "module-cyclops.tasks"]], "medicalimage (class in cyclops.data.features.medical_image)": [[5, "cyclops.data.features.medical_image.MedicalImage"]], "__call__() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.__call__"]], "cast_storage() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.cast_storage"]], "decode_example() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.decode_example"]], "embed_storage() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.embed_storage"]], "encode_example() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.encode_example"]], "flatten() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.flatten"]], "cyclops.data.slicer": [[6, "module-cyclops.data.slicer"]], "slicespec (class in cyclops.data.slicer)": [[7, "cyclops.data.slicer.SliceSpec"]], "_registry (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec._registry"]], "add_slice_spec() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.add_slice_spec"]], "column_names (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.column_names"]], "get_slices() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.get_slices"]], "include_overall (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.include_overall"]], "slices() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.slices"]], "spec_list (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.spec_list"]], "validate (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.validate"]], "compound_filter() (in module cyclops.data.slicer)": [[8, "cyclops.data.slicer.compound_filter"]], "filter_datetime() (in module cyclops.data.slicer)": [[9, "cyclops.data.slicer.filter_datetime"]], "filter_non_null() (in module cyclops.data.slicer)": [[10, "cyclops.data.slicer.filter_non_null"]], "filter_range() (in module cyclops.data.slicer)": [[11, "cyclops.data.slicer.filter_range"]], "filter_string_contains() (in module cyclops.data.slicer)": [[12, "cyclops.data.slicer.filter_string_contains"]], "filter_value() (in module cyclops.data.slicer)": [[13, "cyclops.data.slicer.filter_value"]], "is_datetime() (in module cyclops.data.slicer)": [[14, "cyclops.data.slicer.is_datetime"]], "overall() (in module cyclops.data.slicer)": [[15, "cyclops.data.slicer.overall"]], "cyclops.evaluate.evaluator": [[16, "module-cyclops.evaluate.evaluator"]], "evaluate() (in module cyclops.evaluate.evaluator)": [[17, "cyclops.evaluate.evaluator.evaluate"]], "cyclops.evaluate.fairness.config": [[18, "module-cyclops.evaluate.fairness.config"]], "fairnessconfig (class in cyclops.evaluate.fairness.config)": [[19, "cyclops.evaluate.fairness.config.FairnessConfig"]], "cyclops.evaluate.fairness.evaluator": [[20, "module-cyclops.evaluate.fairness.evaluator"]], "evaluate_fairness() (in module cyclops.evaluate.fairness.evaluator)": [[21, "cyclops.evaluate.fairness.evaluator.evaluate_fairness"]], "warn_too_many_unique_values() (in module cyclops.evaluate.fairness.evaluator)": [[22, "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values"]], "cyclops.evaluate.metrics.accuracy": [[23, "module-cyclops.evaluate.metrics.accuracy"]], "accuracy (class in cyclops.evaluate.metrics.accuracy)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy"]], "__add__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__add__"]], "__call__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__call__"]], "__init__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__init__"]], "__mul__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__mul__"]], "add_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.add_state"]], "clone() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.clone"]], "compute() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.compute"]], "reset_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.reset_state"]], "update_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.update_state"]], "binaryaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy"]], "__add__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__add__"]], "__call__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__call__"]], "__init__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__init__"]], "__mul__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__mul__"]], "add_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.add_state"]], "clone() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.clone"]], "compute() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.compute"]], "reset_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.reset_state"]], "update_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.update_state"]], "multiclassaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy"]], "__add__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__add__"]], "__call__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__call__"]], "__init__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__init__"]], "__mul__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__mul__"]], "add_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.add_state"]], "clone() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.clone"]], "compute() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.compute"]], "reset_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.reset_state"]], "update_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.update_state"]], "multilabelaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy"]], "__add__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__add__"]], "__call__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__call__"]], "__init__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__init__"]], "__mul__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__mul__"]], "add_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.add_state"]], "clone() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.clone"]], "compute() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.compute"]], "reset_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.reset_state"]], "update_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.update_state"]], "cyclops.evaluate.metrics.auroc": [[28, "module-cyclops.evaluate.metrics.auroc"]], "auroc (class in cyclops.evaluate.metrics.auroc)": [[29, "cyclops.evaluate.metrics.auroc.AUROC"]], "__add__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__add__"]], "__call__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__call__"]], "__init__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__init__"]], "__mul__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__mul__"]], "add_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.add_state"]], "clone() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.clone"]], "compute() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.compute"]], "reset_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.reset_state"]], "update_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.update_state"]], "binaryauroc (class in cyclops.evaluate.metrics.auroc)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC"]], "__add__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__add__"]], "__call__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__call__"]], "__init__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__init__"]], "__mul__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__mul__"]], "add_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.add_state"]], "clone() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.clone"]], "compute() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.compute"]], "reset_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.reset_state"]], "update_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.update_state"]], "multiclassauroc (class in cyclops.evaluate.metrics.auroc)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC"]], "__add__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__add__"]], "__call__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__call__"]], "__init__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__init__"]], "__mul__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__mul__"]], "add_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.add_state"]], "clone() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.clone"]], "compute() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.compute"]], "reset_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.reset_state"]], "update_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.update_state"]], "multilabelauroc (class in cyclops.evaluate.metrics.auroc)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC"]], "__add__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__add__"]], "__call__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__call__"]], "__init__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__init__"]], "__mul__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__mul__"]], "add_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.add_state"]], "clone() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.clone"]], "compute() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.compute"]], "reset_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.reset_state"]], "update_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.update_state"]], "cyclops.evaluate.metrics.f_beta": [[33, "module-cyclops.evaluate.metrics.f_beta"]], "binaryf1score (class in cyclops.evaluate.metrics.f_beta)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score"]], "__add__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__add__"]], "__call__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__call__"]], "__init__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__init__"]], "__mul__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__mul__"]], "add_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.add_state"]], "clone() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.clone"]], "compute() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.compute"]], "reset_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.reset_state"]], "update_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.update_state"]], "binaryfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore"]], "__add__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__add__"]], "__call__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__call__"]], "__init__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__init__"]], "__mul__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__mul__"]], "add_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.add_state"]], "clone() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.clone"]], "compute() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.compute"]], "reset_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.reset_state"]], "update_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.update_state"]], "f1score (class in cyclops.evaluate.metrics.f_beta)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score"]], "__add__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__add__"]], "__call__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__call__"]], "__init__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__init__"]], "__mul__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__mul__"]], "add_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.add_state"]], "clone() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.clone"]], "compute() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.compute"]], "reset_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.reset_state"]], "update_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.update_state"]], "fbetascore (class in cyclops.evaluate.metrics.f_beta)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore"]], "__add__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__add__"]], "__call__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__call__"]], "__init__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__init__"]], "__mul__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__mul__"]], "add_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.add_state"]], "clone() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.clone"]], "compute() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.compute"]], "reset_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.reset_state"]], "update_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.update_state"]], "multiclassf1score (class in cyclops.evaluate.metrics.f_beta)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score"]], "__add__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__add__"]], "__call__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__call__"]], "__init__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__init__"]], "__mul__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__mul__"]], "add_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.add_state"]], "clone() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.clone"]], "compute() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.compute"]], "reset_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.reset_state"]], "update_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.update_state"]], "multiclassfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore"]], "__add__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__add__"]], "__call__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__call__"]], "__init__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__init__"]], "__mul__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__mul__"]], "add_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.add_state"]], "clone() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.clone"]], "compute() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.compute"]], "reset_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.reset_state"]], "update_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.update_state"]], "multilabelf1score (class in cyclops.evaluate.metrics.f_beta)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score"]], "__add__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__add__"]], "__call__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__call__"]], "__init__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__init__"]], "__mul__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__mul__"]], "add_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.add_state"]], "clone() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.clone"]], "compute() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.compute"]], "reset_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.reset_state"]], "update_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.update_state"]], "multilabelfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore"]], "__add__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__add__"]], "__call__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__call__"]], "__init__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__init__"]], "__mul__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__mul__"]], "add_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.add_state"]], "clone() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.clone"]], "compute() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.compute"]], "reset_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.reset_state"]], "update_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.update_state"]], "cyclops.evaluate.metrics.factory": [[42, "module-cyclops.evaluate.metrics.factory"]], "create_metric() (in module cyclops.evaluate.metrics.factory)": [[43, "cyclops.evaluate.metrics.factory.create_metric"]], "cyclops.evaluate.metrics.functional.accuracy": [[44, "module-cyclops.evaluate.metrics.functional.accuracy"]], "cyclops.evaluate.metrics.functional.auroc": [[45, "module-cyclops.evaluate.metrics.functional.auroc"]], "cyclops.evaluate.metrics.functional.f_beta": [[46, "module-cyclops.evaluate.metrics.functional.f_beta"]], "binary_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[47, "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score"]], "binary_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[48, "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score"]], "f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[49, "cyclops.evaluate.metrics.functional.f_beta.f1_score"]], "fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[50, "cyclops.evaluate.metrics.functional.f_beta.fbeta_score"]], "multiclass_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[51, "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score"]], "multiclass_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[52, "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score"]], "multilabel_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[53, "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score"]], "multilabel_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[54, "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[55, "module-cyclops.evaluate.metrics.functional.precision_recall"]], "binary_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[56, "cyclops.evaluate.metrics.functional.precision_recall.binary_precision"]], "binary_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[57, "cyclops.evaluate.metrics.functional.precision_recall.binary_recall"]], "multiclass_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[58, "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision"]], "multiclass_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[59, "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall"]], "multilabel_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[60, "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision"]], "multilabel_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[61, "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall"]], "precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[62, "cyclops.evaluate.metrics.functional.precision_recall.precision"]], "recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[63, "cyclops.evaluate.metrics.functional.precision_recall.recall"]], "cyclops.evaluate.metrics.functional.precision_recall_curve": [[64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"]], "cyclops.evaluate.metrics.functional.roc": [[65, "module-cyclops.evaluate.metrics.functional.roc"]], "binary_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[66, "cyclops.evaluate.metrics.functional.roc.binary_roc_curve"]], "multiclass_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[67, "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve"]], "multilabel_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[68, "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve"]], "roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[69, "cyclops.evaluate.metrics.functional.roc.roc_curve"]], "cyclops.evaluate.metrics.functional.sensitivity": [[70, "module-cyclops.evaluate.metrics.functional.sensitivity"]], "cyclops.evaluate.metrics.functional.specificity": [[71, "module-cyclops.evaluate.metrics.functional.specificity"]], "cyclops.evaluate.metrics.functional.stat_scores": [[72, "module-cyclops.evaluate.metrics.functional.stat_scores"]], "cyclops.evaluate.metrics.metric": [[73, "module-cyclops.evaluate.metrics.metric"]], "metric (class in cyclops.evaluate.metrics.metric)": [[74, "cyclops.evaluate.metrics.metric.Metric"]], "__add__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__add__"]], "__call__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__call__"]], "__init__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__init__"]], "__mul__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__mul__"]], "add_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.add_state"]], "clone() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.clone"]], "compute() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.compute"]], "name (metric property)": [[74, "cyclops.evaluate.metrics.metric.Metric.name"]], "reset_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.reset_state"]], "update_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.update_state"]], "metriccollection (class in cyclops.evaluate.metrics.metric)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection"]], "__call__() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.__call__"]], "__init__() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.__init__"]], "add_metrics() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.add_metrics"]], "clear() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.clear"]], "clone() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.clone"]], "compute() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.compute"]], "get() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.get"]], "items() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.items"]], "keys() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.keys"]], "pop() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.pop"]], "popitem() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.popitem"]], "reset_state() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.reset_state"]], "setdefault() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.setdefault"]], "update() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.update"]], "update_state() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.update_state"]], "values() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.values"]], "operatormetric (class in cyclops.evaluate.metrics.metric)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric"]], "__add__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__add__"]], "__call__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__call__"]], "__init__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__init__"]], "__mul__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__mul__"]], "add_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.add_state"]], "clone() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.clone"]], "compute() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.compute"]], "reset_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.reset_state"]], "update_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.update_state"]], "cyclops.evaluate.metrics.precision_recall": [[77, "module-cyclops.evaluate.metrics.precision_recall"]], "binaryprecision (class in cyclops.evaluate.metrics.precision_recall)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision"]], "__add__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__add__"]], "__call__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__call__"]], "__init__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__init__"]], "__mul__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__mul__"]], "add_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.add_state"]], "clone() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.clone"]], "compute() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.compute"]], "reset_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.reset_state"]], "update_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.update_state"]], "binaryrecall (class in cyclops.evaluate.metrics.precision_recall)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall"]], "__add__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__add__"]], "__call__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__call__"]], "__init__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__init__"]], "__mul__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__mul__"]], "add_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.add_state"]], "clone() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.clone"]], "compute() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.compute"]], "reset_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.reset_state"]], "update_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.update_state"]], "multiclassprecision (class in cyclops.evaluate.metrics.precision_recall)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision"]], "__add__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__add__"]], "__call__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__call__"]], "__init__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__init__"]], "__mul__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__mul__"]], "add_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.add_state"]], "clone() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.clone"]], "compute() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.compute"]], "reset_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.reset_state"]], "update_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.update_state"]], "multiclassrecall (class in cyclops.evaluate.metrics.precision_recall)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall"]], "__add__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__add__"]], "__call__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__call__"]], "__init__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__init__"]], "__mul__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__mul__"]], "add_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.add_state"]], "clone() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.clone"]], "compute() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.compute"]], "reset_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.reset_state"]], "update_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.update_state"]], "multilabelprecision (class in cyclops.evaluate.metrics.precision_recall)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision"]], "__add__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__add__"]], "__call__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__call__"]], "__init__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__init__"]], "__mul__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__mul__"]], "add_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.add_state"]], "clone() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.clone"]], "compute() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.compute"]], "reset_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.reset_state"]], "update_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.update_state"]], "multilabelrecall (class in cyclops.evaluate.metrics.precision_recall)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall"]], "__add__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__add__"]], "__call__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__call__"]], "__init__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__init__"]], "__mul__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__mul__"]], "add_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.add_state"]], "clone() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.clone"]], "compute() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.compute"]], "reset_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.reset_state"]], "update_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.update_state"]], "precision (class in cyclops.evaluate.metrics.precision_recall)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision"]], "__add__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__add__"]], "__call__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__call__"]], "__init__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__init__"]], "__mul__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__mul__"]], "add_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.add_state"]], "clone() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.clone"]], "compute() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.compute"]], "reset_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.reset_state"]], "update_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.update_state"]], "recall (class in cyclops.evaluate.metrics.precision_recall)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall"]], "__add__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__add__"]], "__call__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__call__"]], "__init__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__init__"]], "__mul__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__mul__"]], "add_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.add_state"]], "clone() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.clone"]], "compute() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.compute"]], "reset_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.reset_state"]], "update_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.update_state"]], "cyclops.evaluate.metrics.precision_recall_curve": [[86, "module-cyclops.evaluate.metrics.precision_recall_curve"]], "binaryprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve"]], "__add__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__add__"]], "__call__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__call__"]], "__init__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__init__"]], "__mul__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__mul__"]], "add_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.add_state"]], "clone() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.clone"]], "compute() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.compute"]], "reset_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.reset_state"]], "update_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.update_state"]], "multiclassprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve"]], "__add__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__add__"]], "__call__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__call__"]], "__init__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__init__"]], "__mul__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__mul__"]], "add_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.add_state"]], "clone() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.clone"]], "compute() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.compute"]], "reset_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.reset_state"]], "update_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.update_state"]], "multilabelprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve"]], "__add__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__add__"]], "__call__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__call__"]], "__init__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__init__"]], "__mul__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__mul__"]], "add_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.add_state"]], "clone() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.clone"]], "compute() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.compute"]], "reset_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.reset_state"]], "update_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.update_state"]], "precisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve"]], "__add__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__add__"]], "__call__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__call__"]], "__init__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__init__"]], "__mul__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__mul__"]], "add_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.add_state"]], "clone() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.clone"]], "compute() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.compute"]], "reset_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.reset_state"]], "update_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.update_state"]], "cyclops.evaluate.metrics.roc": [[91, "module-cyclops.evaluate.metrics.roc"]], "binaryroccurve (class in cyclops.evaluate.metrics.roc)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve"]], "__add__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__add__"]], "__call__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__call__"]], "__init__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__init__"]], "__mul__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__mul__"]], "add_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.add_state"]], "clone() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.clone"]], "compute() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.compute"]], "reset_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.reset_state"]], "update_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.update_state"]], "multiclassroccurve (class in cyclops.evaluate.metrics.roc)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve"]], "__add__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__add__"]], "__call__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__call__"]], "__init__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__init__"]], "__mul__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__mul__"]], "add_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.add_state"]], "clone() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.clone"]], "compute() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.compute"]], "reset_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.reset_state"]], "update_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.update_state"]], "multilabelroccurve (class in cyclops.evaluate.metrics.roc)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve"]], "__add__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__add__"]], "__call__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__call__"]], "__init__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__init__"]], "__mul__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__mul__"]], "add_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.add_state"]], "clone() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.clone"]], "compute() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.compute"]], "reset_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.reset_state"]], "update_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.update_state"]], "roccurve (class in cyclops.evaluate.metrics.roc)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve"]], "__add__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__add__"]], "__call__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__call__"]], "__init__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__init__"]], "__mul__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__mul__"]], "add_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.add_state"]], "clone() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.clone"]], "compute() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.compute"]], "reset_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.reset_state"]], "update_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.update_state"]], "cyclops.evaluate.metrics.sensitivity": [[96, "module-cyclops.evaluate.metrics.sensitivity"]], "binarysensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity"]], "__add__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__add__"]], "__call__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__call__"]], "__init__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__init__"]], "__mul__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__mul__"]], "add_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.add_state"]], "clone() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.clone"]], "compute() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.compute"]], "reset_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.reset_state"]], "update_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.update_state"]], "multiclasssensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity"]], "__add__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__add__"]], "__call__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__call__"]], "__init__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__init__"]], "__mul__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__mul__"]], "add_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.add_state"]], "clone() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.clone"]], "compute() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.compute"]], "reset_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.reset_state"]], "update_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.update_state"]], "multilabelsensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity"]], "__add__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__add__"]], "__call__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__call__"]], "__init__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__init__"]], "__mul__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__mul__"]], "add_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.add_state"]], "clone() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.clone"]], "compute() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.compute"]], "reset_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.reset_state"]], "update_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.update_state"]], "sensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity"]], "__add__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__add__"]], "__call__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__call__"]], "__init__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__init__"]], "__mul__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__mul__"]], "add_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.add_state"]], "clone() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.clone"]], "compute() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.compute"]], "reset_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.reset_state"]], "update_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.update_state"]], "cyclops.evaluate.metrics.specificity": [[101, "module-cyclops.evaluate.metrics.specificity"]], "binaryspecificity (class in cyclops.evaluate.metrics.specificity)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity"]], "__add__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__add__"]], "__call__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__call__"]], "__init__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__init__"]], "__mul__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__mul__"]], "add_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.add_state"]], "clone() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.clone"]], "compute() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.compute"]], "reset_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.reset_state"]], "update_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.update_state"]], "multiclassspecificity (class in cyclops.evaluate.metrics.specificity)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity"]], "__add__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__add__"]], "__call__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__call__"]], "__init__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__init__"]], "__mul__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__mul__"]], "add_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.add_state"]], "clone() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.clone"]], "compute() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.compute"]], "reset_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.reset_state"]], "update_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.update_state"]], "multilabelspecificity (class in cyclops.evaluate.metrics.specificity)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity"]], "__add__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__add__"]], "__call__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__call__"]], "__init__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__init__"]], "__mul__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__mul__"]], "add_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.add_state"]], "clone() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.clone"]], "compute() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.compute"]], "reset_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.reset_state"]], "update_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.update_state"]], "specificity (class in cyclops.evaluate.metrics.specificity)": [[105, "cyclops.evaluate.metrics.specificity.Specificity"]], "__add__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__add__"]], "__call__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__call__"]], "__init__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__init__"]], "__mul__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__mul__"]], "add_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.add_state"]], "clone() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.clone"]], "compute() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.compute"]], "reset_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.reset_state"]], "update_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.update_state"]], "cyclops.evaluate.metrics.stat_scores": [[106, "module-cyclops.evaluate.metrics.stat_scores"]], "binarystatscores (class in cyclops.evaluate.metrics.stat_scores)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores"]], "__add__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__add__"]], "__call__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__call__"]], "__init__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__init__"]], "__mul__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__mul__"]], "add_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.add_state"]], "clone() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.clone"]], "compute() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.compute"]], "reset_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.reset_state"]], "update_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.update_state"]], "multiclassstatscores (class in cyclops.evaluate.metrics.stat_scores)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores"]], "__add__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__add__"]], "__call__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__call__"]], "__init__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__init__"]], "__mul__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__mul__"]], "add_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.add_state"]], "clone() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.clone"]], "compute() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.compute"]], "reset_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.reset_state"]], "update_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.update_state"]], "multilabelstatscores (class in cyclops.evaluate.metrics.stat_scores)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores"]], "__add__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__add__"]], "__call__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__call__"]], "__init__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__init__"]], "__mul__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__mul__"]], "add_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.add_state"]], "clone() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.clone"]], "compute() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.compute"]], "reset_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.reset_state"]], "update_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.update_state"]], "statscores (class in cyclops.evaluate.metrics.stat_scores)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores"]], "__add__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__add__"]], "__call__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__call__"]], "__init__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__init__"]], "__mul__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__mul__"]], "add_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.add_state"]], "clone() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.clone"]], "compute() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.compute"]], "name (statscores property)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.name"]], "reset_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.reset_state"]], "update_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.update_state"]], "cyclops.monitor.clinical_applicator": [[111, "module-cyclops.monitor.clinical_applicator"]], "clinicalshiftapplicator (class in cyclops.monitor.clinical_applicator)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator"]], "age() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.age"]], "apply_shift() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.apply_shift"]], "custom() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.custom"]], "hospital_type() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.hospital_type"]], "month() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.month"]], "sex() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.sex"]], "time() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.time"]], "cyclops.monitor.synthetic_applicator": [[113, "module-cyclops.monitor.synthetic_applicator"]], "syntheticshiftapplicator (class in cyclops.monitor.synthetic_applicator)": [[114, "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator"]], "apply_shift() (syntheticshiftapplicator method)": [[114, "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator.apply_shift"]], "binary_noise_shift() (in module cyclops.monitor.synthetic_applicator)": [[115, "cyclops.monitor.synthetic_applicator.binary_noise_shift"]], "feature_association_shift() (in module cyclops.monitor.synthetic_applicator)": [[116, "cyclops.monitor.synthetic_applicator.feature_association_shift"]], "feature_swap_shift() (in module cyclops.monitor.synthetic_applicator)": [[117, "cyclops.monitor.synthetic_applicator.feature_swap_shift"]], "gaussian_noise_shift() (in module cyclops.monitor.synthetic_applicator)": [[118, "cyclops.monitor.synthetic_applicator.gaussian_noise_shift"]], "knockout_shift() (in module cyclops.monitor.synthetic_applicator)": [[119, "cyclops.monitor.synthetic_applicator.knockout_shift"]], "cyclops.report.report": [[120, "module-cyclops.report.report"]], "modelcardreport (class in cyclops.report.report)": [[121, "cyclops.report.report.ModelCardReport"]], "export() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.export"]], "from_json_file() (modelcardreport class method)": [[121, "cyclops.report.report.ModelCardReport.from_json_file"]], "log_citation() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_citation"]], "log_dataset() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_dataset"]], "log_descriptor() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_descriptor"]], "log_fairness_assessment() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_fairness_assessment"]], "log_from_dict() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_from_dict"]], "log_image() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_image"]], "log_license() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_license"]], "log_model_parameters() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_model_parameters"]], "log_owner() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_owner"]], "log_performance_metrics() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_performance_metrics"]], "log_plotly_figure() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_plotly_figure"]], "log_quantitative_analysis() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_quantitative_analysis"]], "log_reference() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_reference"]], "log_regulation() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_regulation"]], "log_risk() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_risk"]], "log_use_case() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_use_case"]], "log_user() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_user"]], "log_version() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_version"]], "cyclops.tasks.classification": [[122, "module-cyclops.tasks.classification"]], "binarytabularclassificationtask (class in cyclops.tasks.classification)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask"]], "__init__() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.__init__"]], "add_model() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.add_model"]], "data_type (binarytabularclassificationtask property)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.data_type"]], "evaluate() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.evaluate"]], "get_model() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.get_model"]], "list_models() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.list_models"]], "list_models_params() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.list_models_params"]], "load_model() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.load_model"]], "models_count (binarytabularclassificationtask property)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.models_count"]], "predict() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.predict"]], "save_model() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.save_model"]], "task_type (binarytabularclassificationtask property)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.task_type"]], "train() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.train"]], "multilabelimageclassificationtask (class in cyclops.tasks.classification)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask"]], "__init__() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.__init__"]], "add_model() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.add_model"]], "data_type (multilabelimageclassificationtask property)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.data_type"]], "evaluate() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.evaluate"]], "get_model() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.get_model"]], "list_models() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.list_models"]], "list_models_params() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.list_models_params"]], "load_model() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.load_model"]], "models_count (multilabelimageclassificationtask property)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.models_count"]], "predict() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.predict"]], "save_model() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.save_model"]], "task_type (multilabelimageclassificationtask property)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.task_type"]], "cyclops.data": [[125, "module-cyclops.data"]], "cyclops.data.features": [[125, "module-cyclops.data.features"]], "cyclops.evaluate": [[126, "module-cyclops.evaluate"]], "cyclops.evaluate.fairness": [[126, "module-cyclops.evaluate.fairness"]], "cyclops.evaluate.metrics": [[126, "module-cyclops.evaluate.metrics"]], "cyclops.evaluate.metrics.functional": [[126, "module-cyclops.evaluate.metrics.functional"]], "cyclops.monitor": [[127, "module-cyclops.monitor"]], "cyclops.report": [[128, "module-cyclops.report"]], "cyclops.tasks": [[129, "module-cyclops.tasks"]]}})
\ No newline at end of file
diff --git a/api/tutorials/kaggle/heart_failure_prediction.html b/api/tutorials/kaggle/heart_failure_prediction.html
index 8b2c34142..8024b91e5 100644
--- a/api/tutorials/kaggle/heart_failure_prediction.html
+++ b/api/tutorials/kaggle/heart_failure_prediction.html
@@ -549,7 +549,7 @@ 

Data Loading
-2023-11-29 09:17:22,135 INFO cyclops.utils.file - Loading DataFrame from ./data/heart.csv
+2023-11-29 18:39:12,833 INFO cyclops.utils.file - Loading DataFrame from ./data/heart.csv
 

-
+
@@ -1128,9 +1128,9 @@

Training
-2023-11-29 09:17:28,925 INFO cyclops.models.wrappers.sk_model - Best alpha: 0.001
-2023-11-29 09:17:28,926 INFO cyclops.models.wrappers.sk_model - Best eta0: 0.01
-2023-11-29 09:17:28,927 INFO cyclops.models.wrappers.sk_model - Best learning_rate: adaptive
+2023-11-29 18:39:19,915 INFO cyclops.models.wrappers.sk_model - Best alpha: 0.001
+2023-11-29 18:39:19,916 INFO cyclops.models.wrappers.sk_model - Best eta0: 0.01
+2023-11-29 18:39:19,916 INFO cyclops.models.wrappers.sk_model - Best learning_rate: adaptive
 
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+

Log the performance metrics to the report.

We can add a performance metric to the model card using the log_performance_metric method, which expects a dictionary where the keys are in the following format: slice_name/metric_name. For instance, overall/accuracy.

@@ -1528,9 +1528,9 @@

Evaluation
-

diff --git a/api/tutorials/kaggle/heart_failure_prediction.ipynb b/api/tutorials/kaggle/heart_failure_prediction.ipynb index c6b498fbb..9b5c8e1ef 100644 --- a/api/tutorials/kaggle/heart_failure_prediction.ipynb +++ b/api/tutorials/kaggle/heart_failure_prediction.ipynb @@ -21,10 +21,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-11-29T14:17:17.634124Z", - "iopub.status.busy": "2023-11-29T14:17:17.633607Z", - "iopub.status.idle": "2023-11-29T14:17:21.511786Z", - "shell.execute_reply": "2023-11-29T14:17:21.510846Z" + "iopub.execute_input": "2023-11-29T23:39:07.676070Z", + "iopub.status.busy": "2023-11-29T23:39:07.675451Z", + "iopub.status.idle": "2023-11-29T23:39:11.988839Z", + "shell.execute_reply": "2023-11-29T23:39:11.988079Z" }, "tags": [] }, @@ -83,10 +83,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-11-29T14:17:21.518328Z", - "iopub.status.busy": "2023-11-29T14:17:21.517627Z", - "iopub.status.idle": "2023-11-29T14:17:21.523839Z", - "shell.execute_reply": "2023-11-29T14:17:21.522537Z" + "iopub.execute_input": "2023-11-29T23:39:11.992948Z", + "iopub.status.busy": "2023-11-29T23:39:11.992430Z", + "iopub.status.idle": "2023-11-29T23:39:11.996294Z", + "shell.execute_reply": "2023-11-29T23:39:11.995523Z" } }, "outputs": [], @@ -106,10 +106,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-11-29T14:17:21.529747Z", - "iopub.status.busy": "2023-11-29T14:17:21.529248Z", - "iopub.status.idle": "2023-11-29T14:17:21.535603Z", - "shell.execute_reply": "2023-11-29T14:17:21.534371Z" + "iopub.execute_input": "2023-11-29T23:39:12.000390Z", + "iopub.status.busy": "2023-11-29T23:39:12.000005Z", + "iopub.status.idle": "2023-11-29T23:39:12.004649Z", + "shell.execute_reply": "2023-11-29T23:39:12.003779Z" }, "tags": [] }, @@ -135,10 +135,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-11-29T14:17:21.541504Z", - "iopub.status.busy": "2023-11-29T14:17:21.541007Z", - "iopub.status.idle": "2023-11-29T14:17:22.127428Z", - "shell.execute_reply": "2023-11-29T14:17:22.125863Z" + "iopub.execute_input": "2023-11-29T23:39:12.008791Z", + "iopub.status.busy": "2023-11-29T23:39:12.008267Z", + "iopub.status.idle": "2023-11-29T23:39:12.822103Z", + "shell.execute_reply": "2023-11-29T23:39:12.820649Z" }, "tags": [] }, @@ -158,10 +158,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-11-29T14:17:22.133397Z", - "iopub.status.busy": "2023-11-29T14:17:22.132987Z", - "iopub.status.idle": "2023-11-29T14:17:22.155948Z", - "shell.execute_reply": "2023-11-29T14:17:22.154840Z" + "iopub.execute_input": "2023-11-29T23:39:12.829891Z", + "iopub.status.busy": "2023-11-29T23:39:12.829251Z", + "iopub.status.idle": "2023-11-29T23:39:12.858994Z", + "shell.execute_reply": "2023-11-29T23:39:12.857916Z" }, "tags": [] }, @@ -170,7 +170,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-11-29 09:17:22,135 \u001b[1;37mINFO\u001b[0m cyclops.utils.file - Loading DataFrame from ./data/heart.csv\n" + "2023-11-29 18:39:12,833 \u001b[1;37mINFO\u001b[0m cyclops.utils.file - Loading DataFrame from ./data/heart.csv\n" ] }, { @@ -226,10 +226,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-11-29T14:17:22.190986Z", - "iopub.status.busy": "2023-11-29T14:17:22.190447Z", - "iopub.status.idle": "2023-11-29T14:17:22.440751Z", - "shell.execute_reply": "2023-11-29T14:17:22.440064Z" + "iopub.execute_input": "2023-11-29T23:39:12.887041Z", + "iopub.status.busy": "2023-11-29T23:39:12.886327Z", + "iopub.status.idle": "2023-11-29T23:39:13.161166Z", + "shell.execute_reply": "2023-11-29T23:39:13.160502Z" }, "tags": [] }, @@ -2037,9 +2037,9 @@ } }, "text/html": [ - "
+
@@ -1385,7 +1385,7 @@

Graphics

-
+
@@ -1393,7 +1393,7 @@

Graphics

-
+
@@ -1455,7 +1455,7 @@

Quantitative Analysis

- 1.0 + 0.81 @@ -1488,11 +1488,11 @@

Quantitative Analysis

- 0.58 + 0.82 - + @@ -1521,7 +1521,7 @@

Quantitative Analysis

- 0.63 + 0.58 @@ -1554,7 +1554,7 @@

Quantitative Analysis

- 0.69 + 0.49 @@ -1587,7 +1587,7 @@

Quantitative Analysis

- 1.0 + 0.94 @@ -1621,7 +1621,7 @@

Graphics

-
+
@@ -1629,7 +1629,7 @@

Graphics

-
+
@@ -1637,7 +1637,7 @@

Graphics

-
+
@@ -1691,7 +1691,7 @@

Graphics

-
+
@@ -1966,22 +1966,17 @@

Model Parameters

-

Fit_intercept

- True +

Average

+ False
- - - - -
-

Validation_fraction

- 0.1 +

Tol

+ 0.001
@@ -1989,26 +1984,22 @@

Validation_fraction

-

Learning_rate

- adaptive +

Random_state

+ 123
-
-

Class_weight

- balanced -
-

Max_iter

- 1000 +

Early_stopping

+ True
@@ -2025,8 +2016,8 @@

Power_t

-

Tol

- 0.001 +

Max_iter

+ 1000
@@ -2034,8 +2025,8 @@

Tol

-

Verbose

- 0 +

L1_ratio

+ 0.15
@@ -2043,7 +2034,7 @@

Verbose

-

Early_stopping

+

Fit_intercept

True
@@ -2052,8 +2043,8 @@

Early_stopping

-

Loss

- log_loss +

Verbose

+ 0
@@ -2061,8 +2052,8 @@

Loss

-

Random_state

- 123 +

Alpha

+ 0.001
@@ -2070,8 +2061,8 @@

Random_state

-

Eta0

- 0.01 +

Epsilon

+ 0.1
@@ -2079,8 +2070,8 @@

Eta0

-

Epsilon

- 0.1 +

Shuffle

+ True
@@ -2088,8 +2079,8 @@

Epsilon

-

Warm_start

- False +

Loss

+ log_loss
@@ -2106,7 +2097,7 @@

N_iter_no_change

-

Average

+

Warm_start

False
@@ -2124,8 +2115,8 @@

Penalty

-

Alpha

- 0.001 +

Validation_fraction

+ 0.1
@@ -2133,8 +2124,8 @@

Alpha

-

L1_ratio

- 0.15 +

Learning_rate

+ adaptive
@@ -2142,8 +2133,17 @@

L1_ratio

-

Shuffle

- True +

Class_weight

+ balanced +
+ + + + + +
+

Eta0

+ 0.01
@@ -2446,7 +2446,7 @@

Ethical Considerations

function generate_model_card_plot() { var model_card_plots = [] var overall_indices = [10, 11, 12, 13, 14] - var histories = JSON.parse("{\"0\": [\"0.8421052631578947\", \"0.730327541104787\", \"0.7030760279409386\", \"0.8579741762945138\", \"0.7478288442344909\"], \"1\": [\"0.8260869565217391\", \"0.6905609408639374\", \"0.7962916326810654\", \"0.8121129395576436\", \"0.6388998137840977\"], \"2\": [\"0.6785714285714286\", \"0.6943694225979045\", \"0.6702122624177528\", \"0.7882713316903022\", \"0.8666562328104871\"], \"3\": [\"0.7450980392156863\", \"0.8259786093290672\", \"0.974060141572785\", \"0.9928312400282496\", \"0.9172657552675775\"], \"4\": [\"0.8819444444444444\", \"0.8749460270110991\", \"0.7613036819197363\", \"0.7268856577549472\", \"0.6539097745080193\"], \"5\": [\"0.8623853211009175\", \"0.8767038375540659\", \"0.8908153948427936\", \"0.8806042782373351\", \"0.6322690589221415\"], \"6\": [\"0.8676470588235294\", \"0.9539197196883319\", \"0.985543471901814\", \"1.0\", \"1.0\"], \"7\": [\"0.9076923076923077\", \"0.8848615041817769\", \"0.7622628486624229\", \"0.6196368097170402\", \"0.45721339698824626\"], \"8\": [\"0.8872180451127819\", \"1.0\", \"1.0\", \"0.9841600220585406\", \"0.9455627531644175\"], \"9\": [\"0.927972027972028\", \"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"10\": [\"0.842391304347826\", \"0.9569582132284947\", \"1.0\", \"1.0\", \"1.0\"], \"11\": [\"0.8686868686868687\", \"0.7158606114936176\", \"0.5243330604854617\", \"0.6065760734561116\", \"0.5803581005546472\"], \"12\": [\"0.8431372549019608\", \"0.6856955297647507\", \"0.687324213614098\", \"0.5188924732080029\", \"0.6308644986383557\"], \"13\": [\"0.8557213930348259\", \"0.7222492255001233\", \"0.7166415515322165\", \"0.7849792568929502\", \"0.6868530332587113\"], \"14\": [\"0.9152319464371114\", \"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"15\": [\"0.796875\", \"0.7887949035617763\", \"nan\", \"0.8777348566341282\", \"0.7006120203282235\"]}"); + var histories = JSON.parse("{\"0\": [\"0.8421052631578947\", \"0.9876152707178263\", \"0.8372195166133398\", \"0.9662157320061161\", \"0.8999645657547848\"], \"1\": [\"0.8260869565217391\", \"0.6241901130124994\", \"0.6401987337246035\", \"0.7066895491176313\", \"0.615257658216848\"], \"2\": [\"0.6785714285714286\", \"0.49236320712167914\", \"0.42592801370925565\", \"0.34570117717801885\", \"0.14420694460888597\"], \"3\": [\"0.7450980392156863\", \"0.607758402538723\", \"0.46718526724371723\", \"0.47891800336148377\", \"0.3465274997464647\"], \"4\": [\"0.8819444444444444\", \"1.0\", \"1.0\", \"0.9227302457218001\", \"0.8637584476176359\"], \"5\": [\"0.8623853211009175\", \"0.9349053651847322\", \"1.0\", \"1.0\", \"1.0\"], \"6\": [\"0.8676470588235294\", \"0.9646686569969414\", \"0.9253221444746759\", \"0.9839592786209543\", \"0.8277587169636388\"], \"7\": [\"0.9076923076923077\", \"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"8\": [\"0.8872180451127819\", \"0.978880758407258\", \"1.0\", \"0.9923067759709132\", \"1.0\"], \"9\": [\"0.927972027972028\", \"1.0\", \"0.8643177870297746\", \"0.8490360781596255\", \"0.894517585308534\"], \"10\": [\"0.842391304347826\", \"0.6894251659298075\", \"0.6702272038630812\", \"0.7616034873445499\", \"0.8096530316124602\"], \"11\": [\"0.8686868686868687\", \"0.7586171465469109\", \"0.7101729939723108\", \"0.6978653801673484\", \"0.8170462552594536\"], \"12\": [\"0.8431372549019608\", \"0.7896023147862168\", \"0.6775636180194909\", \"0.6717330471366704\", \"0.5831426588589941\"], \"13\": [\"0.8557213930348259\", \"0.7425707802704926\", \"0.7664274987346631\", \"0.6059799423050559\", \"0.4856203420097341\"], \"14\": [\"0.9152319464371114\", \"0.8890419779904989\", \"0.8339020215474601\", \"0.9221756875331447\", \"0.935944758925748\"], \"15\": [\"0.796875\", \"0.6393345597878707\", \"nan\", \"0.6214280752831901\", \"0.6987766560392897\"]}"); var thresholds = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\"}"); var timestamps = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"1\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"2\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"3\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"4\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"5\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"6\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"7\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"8\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"9\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"10\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"11\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"12\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"13\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"14\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"15\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"]}"); @@ -2727,10 +2727,10 @@

Ethical Considerations

} } var slices_all = JSON.parse("{\"0\": [\"metric:Accuracy\", \"Sex:F\", \"Age:overall_Age\"], \"1\": [\"metric:Precision\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"2\": [\"metric:Recall\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"3\": [\"metric:F1 Score\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"4\": [\"metric:AUROC\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"5\": [\"metric:Accuracy\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"6\": [\"metric:Precision\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"7\": [\"metric:Recall\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"8\": [\"metric:F1 Score\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"9\": [\"metric:AUROC\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"10\": [\"metric:Accuracy\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"11\": [\"metric:Precision\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"12\": [\"metric:Recall\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"13\": [\"metric:F1 Score\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"14\": [\"metric:AUROC\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"15\": [\"metric:Accuracy\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"]}"); - var histories_all = JSON.parse("{\"0\": [\"0.8421052631578947\", \"0.730327541104787\", \"0.7030760279409386\", \"0.8579741762945138\", \"0.7478288442344909\"], \"1\": [\"0.8260869565217391\", \"0.6905609408639374\", \"0.7962916326810654\", \"0.8121129395576436\", \"0.6388998137840977\"], \"2\": [\"0.6785714285714286\", \"0.6943694225979045\", \"0.6702122624177528\", \"0.7882713316903022\", \"0.8666562328104871\"], \"3\": [\"0.7450980392156863\", \"0.8259786093290672\", \"0.974060141572785\", \"0.9928312400282496\", \"0.9172657552675775\"], \"4\": [\"0.8819444444444444\", \"0.8749460270110991\", \"0.7613036819197363\", \"0.7268856577549472\", \"0.6539097745080193\"], \"5\": [\"0.8623853211009175\", \"0.8767038375540659\", \"0.8908153948427936\", \"0.8806042782373351\", \"0.6322690589221415\"], \"6\": [\"0.8676470588235294\", \"0.9539197196883319\", \"0.985543471901814\", \"1.0\", \"1.0\"], \"7\": [\"0.9076923076923077\", \"0.8848615041817769\", \"0.7622628486624229\", \"0.6196368097170402\", \"0.45721339698824626\"], \"8\": [\"0.8872180451127819\", \"1.0\", \"1.0\", \"0.9841600220585406\", \"0.9455627531644175\"], \"9\": [\"0.927972027972028\", \"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"10\": [\"0.842391304347826\", \"0.9569582132284947\", \"1.0\", \"1.0\", \"1.0\"], \"11\": [\"0.8686868686868687\", \"0.7158606114936176\", \"0.5243330604854617\", \"0.6065760734561116\", \"0.5803581005546472\"], \"12\": [\"0.8431372549019608\", \"0.6856955297647507\", \"0.687324213614098\", \"0.5188924732080029\", \"0.6308644986383557\"], \"13\": [\"0.8557213930348259\", \"0.7222492255001233\", \"0.7166415515322165\", \"0.7849792568929502\", \"0.6868530332587113\"], \"14\": [\"0.9152319464371114\", \"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"15\": [\"0.796875\", \"0.7887949035617763\", \"nan\", \"0.8777348566341282\", \"0.7006120203282235\"]}"); + var histories_all = JSON.parse("{\"0\": [\"0.8421052631578947\", \"0.9876152707178263\", \"0.8372195166133398\", \"0.9662157320061161\", \"0.8999645657547848\"], \"1\": [\"0.8260869565217391\", \"0.6241901130124994\", \"0.6401987337246035\", \"0.7066895491176313\", \"0.615257658216848\"], \"2\": [\"0.6785714285714286\", \"0.49236320712167914\", \"0.42592801370925565\", \"0.34570117717801885\", \"0.14420694460888597\"], \"3\": [\"0.7450980392156863\", \"0.607758402538723\", \"0.46718526724371723\", \"0.47891800336148377\", \"0.3465274997464647\"], \"4\": [\"0.8819444444444444\", \"1.0\", \"1.0\", \"0.9227302457218001\", \"0.8637584476176359\"], \"5\": [\"0.8623853211009175\", \"0.9349053651847322\", \"1.0\", \"1.0\", \"1.0\"], \"6\": [\"0.8676470588235294\", \"0.9646686569969414\", \"0.9253221444746759\", \"0.9839592786209543\", \"0.8277587169636388\"], \"7\": [\"0.9076923076923077\", \"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"8\": [\"0.8872180451127819\", \"0.978880758407258\", \"1.0\", \"0.9923067759709132\", \"1.0\"], \"9\": [\"0.927972027972028\", \"1.0\", \"0.8643177870297746\", \"0.8490360781596255\", \"0.894517585308534\"], \"10\": [\"0.842391304347826\", \"0.6894251659298075\", \"0.6702272038630812\", \"0.7616034873445499\", \"0.8096530316124602\"], \"11\": [\"0.8686868686868687\", \"0.7586171465469109\", \"0.7101729939723108\", \"0.6978653801673484\", \"0.8170462552594536\"], \"12\": [\"0.8431372549019608\", \"0.7896023147862168\", \"0.6775636180194909\", \"0.6717330471366704\", \"0.5831426588589941\"], \"13\": [\"0.8557213930348259\", \"0.7425707802704926\", \"0.7664274987346631\", \"0.6059799423050559\", \"0.4856203420097341\"], \"14\": [\"0.9152319464371114\", \"0.8890419779904989\", \"0.8339020215474601\", \"0.9221756875331447\", \"0.935944758925748\"], \"15\": [\"0.796875\", \"0.6393345597878707\", \"nan\", \"0.6214280752831901\", \"0.6987766560392897\"]}"); var thresholds_all = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\"}"); - var trends_all = JSON.parse("{\"0\": \"neutral\", \"1\": \"negative\", \"2\": \"positive\", \"3\": \"positive\", \"4\": \"negative\", \"5\": \"negative\", \"6\": \"positive\", \"7\": \"negative\", \"8\": \"positive\", \"9\": \"positive\", \"10\": \"positive\", \"11\": \"negative\", \"12\": \"negative\", \"13\": \"negative\", \"14\": \"positive\", \"15\": \"neutral\"}"); - var passed_all = JSON.parse("{\"0\": true, \"1\": false, \"2\": true, \"3\": true, \"4\": false, \"5\": false, \"6\": true, \"7\": false, \"8\": true, \"9\": true, \"10\": true, \"11\": false, \"12\": false, \"13\": false, \"14\": true, \"15\": true}"); + var trends_all = JSON.parse("{\"0\": \"neutral\", \"1\": \"negative\", \"2\": \"negative\", \"3\": \"negative\", \"4\": \"negative\", \"5\": \"positive\", \"6\": \"neutral\", \"7\": \"positive\", \"8\": \"positive\", \"9\": \"negative\", \"10\": \"neutral\", \"11\": \"negative\", \"12\": \"negative\", \"13\": \"negative\", \"14\": \"neutral\", \"15\": \"neutral\"}"); + var passed_all = JSON.parse("{\"0\": true, \"1\": false, \"2\": false, \"3\": false, \"4\": true, \"5\": true, \"6\": true, \"7\": true, \"8\": true, \"9\": true, \"10\": true, \"11\": true, \"12\": false, \"13\": false, \"14\": true, \"15\": false}"); var names_all = JSON.parse("{\"0\": \"Accuracy\", \"1\": \"Precision\", \"2\": \"Recall\", \"3\": \"F1 Score\", \"4\": \"AUROC\", \"5\": \"Accuracy\", \"6\": \"Precision\", \"7\": \"Recall\", \"8\": \"F1 Score\", \"9\": \"AUROC\", \"10\": \"Accuracy\", \"11\": \"Precision\", \"12\": \"Recall\", \"13\": \"F1 Score\", \"14\": \"AUROC\", \"15\": \"Accuracy\"}"); var timestamps_all = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"1\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"2\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"3\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"4\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"5\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"6\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"7\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"8\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"9\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"10\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"11\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"12\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"13\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"14\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"15\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"]}"); @@ -3003,10 +3003,10 @@

Ethical Considerations

} } var slices_all = JSON.parse("{\"0\": [\"metric:Accuracy\", \"Sex:F\", \"Age:overall_Age\"], \"1\": [\"metric:Precision\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"2\": [\"metric:Recall\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"3\": [\"metric:F1 Score\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"4\": [\"metric:AUROC\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"5\": [\"metric:Accuracy\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"6\": [\"metric:Precision\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"7\": [\"metric:Recall\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"8\": [\"metric:F1 Score\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"9\": [\"metric:AUROC\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"10\": [\"metric:Accuracy\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"11\": [\"metric:Precision\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"12\": [\"metric:Recall\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"13\": [\"metric:F1 Score\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"14\": [\"metric:AUROC\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"15\": [\"metric:Accuracy\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"]}"); - var histories_all = JSON.parse("{\"0\": [\"0.8421052631578947\", \"0.730327541104787\", \"0.7030760279409386\", \"0.8579741762945138\", \"0.7478288442344909\"], \"1\": [\"0.8260869565217391\", \"0.6905609408639374\", \"0.7962916326810654\", \"0.8121129395576436\", \"0.6388998137840977\"], \"2\": [\"0.6785714285714286\", \"0.6943694225979045\", \"0.6702122624177528\", \"0.7882713316903022\", \"0.8666562328104871\"], \"3\": [\"0.7450980392156863\", \"0.8259786093290672\", \"0.974060141572785\", \"0.9928312400282496\", \"0.9172657552675775\"], \"4\": [\"0.8819444444444444\", \"0.8749460270110991\", \"0.7613036819197363\", \"0.7268856577549472\", \"0.6539097745080193\"], \"5\": [\"0.8623853211009175\", \"0.8767038375540659\", \"0.8908153948427936\", \"0.8806042782373351\", \"0.6322690589221415\"], \"6\": [\"0.8676470588235294\", \"0.9539197196883319\", \"0.985543471901814\", \"1.0\", \"1.0\"], \"7\": [\"0.9076923076923077\", \"0.8848615041817769\", \"0.7622628486624229\", \"0.6196368097170402\", \"0.45721339698824626\"], \"8\": [\"0.8872180451127819\", \"1.0\", \"1.0\", \"0.9841600220585406\", \"0.9455627531644175\"], \"9\": [\"0.927972027972028\", \"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"10\": [\"0.842391304347826\", \"0.9569582132284947\", \"1.0\", \"1.0\", \"1.0\"], \"11\": [\"0.8686868686868687\", \"0.7158606114936176\", \"0.5243330604854617\", \"0.6065760734561116\", \"0.5803581005546472\"], \"12\": [\"0.8431372549019608\", \"0.6856955297647507\", \"0.687324213614098\", \"0.5188924732080029\", \"0.6308644986383557\"], \"13\": [\"0.8557213930348259\", \"0.7222492255001233\", \"0.7166415515322165\", \"0.7849792568929502\", \"0.6868530332587113\"], \"14\": [\"0.9152319464371114\", \"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"15\": [\"0.796875\", \"0.7887949035617763\", \"nan\", \"0.8777348566341282\", \"0.7006120203282235\"]}"); + var histories_all = JSON.parse("{\"0\": [\"0.8421052631578947\", \"0.9876152707178263\", \"0.8372195166133398\", \"0.9662157320061161\", \"0.8999645657547848\"], \"1\": [\"0.8260869565217391\", \"0.6241901130124994\", \"0.6401987337246035\", \"0.7066895491176313\", \"0.615257658216848\"], \"2\": [\"0.6785714285714286\", \"0.49236320712167914\", \"0.42592801370925565\", \"0.34570117717801885\", \"0.14420694460888597\"], \"3\": [\"0.7450980392156863\", \"0.607758402538723\", \"0.46718526724371723\", \"0.47891800336148377\", \"0.3465274997464647\"], \"4\": [\"0.8819444444444444\", \"1.0\", \"1.0\", \"0.9227302457218001\", \"0.8637584476176359\"], \"5\": [\"0.8623853211009175\", \"0.9349053651847322\", \"1.0\", \"1.0\", \"1.0\"], \"6\": [\"0.8676470588235294\", \"0.9646686569969414\", \"0.9253221444746759\", \"0.9839592786209543\", \"0.8277587169636388\"], \"7\": [\"0.9076923076923077\", \"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"8\": [\"0.8872180451127819\", \"0.978880758407258\", \"1.0\", \"0.9923067759709132\", \"1.0\"], \"9\": [\"0.927972027972028\", \"1.0\", \"0.8643177870297746\", \"0.8490360781596255\", \"0.894517585308534\"], \"10\": [\"0.842391304347826\", \"0.6894251659298075\", \"0.6702272038630812\", \"0.7616034873445499\", \"0.8096530316124602\"], \"11\": [\"0.8686868686868687\", \"0.7586171465469109\", \"0.7101729939723108\", \"0.6978653801673484\", \"0.8170462552594536\"], \"12\": [\"0.8431372549019608\", \"0.7896023147862168\", \"0.6775636180194909\", \"0.6717330471366704\", \"0.5831426588589941\"], \"13\": [\"0.8557213930348259\", \"0.7425707802704926\", \"0.7664274987346631\", \"0.6059799423050559\", \"0.4856203420097341\"], \"14\": [\"0.9152319464371114\", \"0.8890419779904989\", \"0.8339020215474601\", \"0.9221756875331447\", \"0.935944758925748\"], \"15\": [\"0.796875\", \"0.6393345597878707\", \"nan\", \"0.6214280752831901\", \"0.6987766560392897\"]}"); var thresholds_all = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\"}"); - var trends_all = JSON.parse("{\"0\": \"neutral\", \"1\": \"negative\", \"2\": \"positive\", \"3\": \"positive\", \"4\": \"negative\", \"5\": \"negative\", \"6\": \"positive\", \"7\": \"negative\", \"8\": \"positive\", \"9\": \"positive\", \"10\": \"positive\", \"11\": \"negative\", \"12\": \"negative\", \"13\": \"negative\", \"14\": \"positive\", \"15\": \"neutral\"}"); - var passed_all = JSON.parse("{\"0\": true, \"1\": false, \"2\": true, \"3\": true, \"4\": false, \"5\": false, \"6\": true, \"7\": false, \"8\": true, \"9\": true, \"10\": true, \"11\": false, \"12\": false, \"13\": false, \"14\": true, \"15\": true}"); + var trends_all = JSON.parse("{\"0\": \"neutral\", \"1\": \"negative\", \"2\": \"negative\", \"3\": \"negative\", \"4\": \"negative\", \"5\": \"positive\", \"6\": \"neutral\", \"7\": \"positive\", \"8\": \"positive\", \"9\": \"negative\", \"10\": \"neutral\", \"11\": \"negative\", \"12\": \"negative\", \"13\": \"negative\", \"14\": \"neutral\", \"15\": \"neutral\"}"); + var passed_all = JSON.parse("{\"0\": true, \"1\": false, \"2\": false, \"3\": false, \"4\": true, \"5\": true, \"6\": true, \"7\": true, \"8\": true, \"9\": true, \"10\": true, \"11\": true, \"12\": false, \"13\": false, \"14\": true, \"15\": false}"); var names_all = JSON.parse("{\"0\": \"Accuracy\", \"1\": \"Precision\", \"2\": \"Recall\", \"3\": \"F1 Score\", \"4\": \"AUROC\", \"5\": \"Accuracy\", \"6\": \"Precision\", \"7\": \"Recall\", \"8\": \"F1 Score\", \"9\": \"AUROC\", \"10\": \"Accuracy\", \"11\": \"Precision\", \"12\": \"Recall\", \"13\": \"F1 Score\", \"14\": \"AUROC\", \"15\": \"Accuracy\"}"); var timestamps_all = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"1\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"2\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"3\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"4\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"5\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"6\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"7\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"8\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"9\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"10\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"11\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"12\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"13\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"14\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"15\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"]}"); diff --git a/api/tutorials/mimiciv/mortality_prediction.html b/api/tutorials/mimiciv/mortality_prediction.html index 2d99bbea7..f588e3835 100644 --- a/api/tutorials/mimiciv/mortality_prediction.html +++ b/api/tutorials/mimiciv/mortality_prediction.html @@ -465,6 +465,7 @@

Import Librariesfrom cycquery import MIMICIVQuerier from datasets import Dataset from datasets.features import ClassLabel +from imblearn.over_sampling import SMOTE from sklearn.compose import ColumnTransformer from sklearn.impute import SimpleImputer from sklearn.pipeline import Pipeline @@ -705,9 +706,9 @@

Compute mortality (labels)
-2023-11-29 09:17:40,862 INFO cycquery.orm    - Database setup, ready to run queries!
-2023-11-29 09:17:47,656 INFO cycquery.orm    - Query returned successfully!
-2023-11-29 09:17:47,657 INFO cycquery.utils.profile - Finished executing function run_query in 4.768326 s
+2023-11-29 18:39:32,429 INFO cycquery.orm    - Database setup, ready to run queries!
+2023-11-29 18:39:39,538 INFO cycquery.orm    - Query returned successfully!
+2023-11-29 18:39:39,539 INFO cycquery.utils.profile - Finished executing function run_query in 5.097803 s
 

@@ -792,9 +793,9 @@

Drop NaNs based on the

-
+
@@ -1253,7 +1259,7 @@

Training mortality_task.train( dataset["train"], model_name=model_name, - transforms=preprocessor, + transforms=preprocessor_pipeline, best_model_params=best_model_params, )

@@ -1264,12 +1270,12 @@

Training
-2023-11-29 09:19:26,103 INFO cyclops.models.wrappers.sk_model - Best reg_lambda: 10
-2023-11-29 09:19:26,104 INFO cyclops.models.wrappers.sk_model - Best n_estimators: 100
-2023-11-29 09:19:26,104 INFO cyclops.models.wrappers.sk_model - Best max_depth: 5
-2023-11-29 09:19:26,105 INFO cyclops.models.wrappers.sk_model - Best learning_rate: 0.1
-2023-11-29 09:19:26,105 INFO cyclops.models.wrappers.sk_model - Best gamma: 2
-2023-11-29 09:19:26,106 INFO cyclops.models.wrappers.sk_model - Best colsample_bytree: 1
+2023-11-29 18:42:54,325 INFO cyclops.models.wrappers.sk_model - Best reg_lambda: 0
+2023-11-29 18:42:54,325 INFO cyclops.models.wrappers.sk_model - Best n_estimators: 500
+2023-11-29 18:42:54,326 INFO cyclops.models.wrappers.sk_model - Best max_depth: 5
+2023-11-29 18:42:54,326 INFO cyclops.models.wrappers.sk_model - Best learning_rate: 0.1
+2023-11-29 18:42:54,326 INFO cyclops.models.wrappers.sk_model - Best gamma: 2
+2023-11-29 18:42:54,327 INFO cyclops.models.wrappers.sk_model - Best colsample_bytree: 0.7
 
XGBClassifier(base_score=None, booster=None, callbacks=None,
-              colsample_bylevel=None, colsample_bynode=None, colsample_bytree=1,
-              early_stopping_rounds=None, enable_categorical=False,
-              eval_metric='logloss', feature_types=None, gamma=2, gpu_id=None,
-              grow_policy=None, importance_type=None,
-              interaction_constraints=None, learning_rate=0.1, max_bin=None,
-              max_cat_threshold=None, max_cat_to_onehot=None,
-              max_delta_step=None, max_depth=5, max_leaves=None,
-              min_child_weight=3, missing=nan, monotone_constraints=None,
-              n_estimators=100, n_jobs=None, num_parallel_tree=None,
-              predictor=None, random_state=123, ...)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
+ colsample_bylevel=None, colsample_bynode=None, + colsample_bytree=0.7, early_stopping_rounds=None, + enable_categorical=False, eval_metric='logloss', + feature_types=None, gamma=2, gpu_id=None, grow_policy=None, + importance_type=None, interaction_constraints=None, + learning_rate=0.1, max_bin=None, max_cat_threshold=None, + max_cat_to_onehot=None, max_delta_step=None, max_depth=5, + max_leaves=None, min_child_weight=3, missing=nan, + monotone_constraints=None, n_estimators=500, n_jobs=None, + num_parallel_tree=None, predictor=None, random_state=123, ...)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
-{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 1, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': 'logloss', 'feature_types': None, 'gamma': 2, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': 3, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 100, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 123, 'reg_alpha': None, 'reg_lambda': 10, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': None, 'seed': 123}
+{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 0.7, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': 'logloss', 'feature_types': None, 'gamma': 2, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': 3, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 500, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 123, 'reg_alpha': None, 'reg_lambda': 0, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': None, 'seed': 123}
 

Log the model parameters to the report.

@@ -1349,7 +1355,7 @@

Prediction

-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+

Log the performance metrics to the report.

We can add a performance metric to the model card using the log_performance_metric method, which expects a dictionary where the keys are in the following format: slice_name/metric_name. For instance, overall/accuracy.

@@ -1653,9 +1659,9 @@

Evaluation
-
diff --git a/api/tutorials/mimiciv/mortality_prediction.ipynb b/api/tutorials/mimiciv/mortality_prediction.ipynb index 16d51bf25..350162df7 100644 --- a/api/tutorials/mimiciv/mortality_prediction.ipynb +++ b/api/tutorials/mimiciv/mortality_prediction.ipynb @@ -21,10 +21,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-11-29T14:17:35.495168Z", - "iopub.status.busy": "2023-11-29T14:17:35.494569Z", - "iopub.status.idle": "2023-11-29T14:17:39.401560Z", - "shell.execute_reply": "2023-11-29T14:17:39.400363Z" + "iopub.execute_input": "2023-11-29T23:39:26.403501Z", + "iopub.status.busy": "2023-11-29T23:39:26.402887Z", + "iopub.status.idle": "2023-11-29T23:39:30.468458Z", + "shell.execute_reply": "2023-11-29T23:39:30.467536Z" } }, "outputs": [], @@ -43,6 +43,7 @@ "from cycquery import MIMICIVQuerier\n", "from datasets import Dataset\n", "from datasets.features import ClassLabel\n", + "from imblearn.over_sampling import SMOTE\n", "from sklearn.compose import ColumnTransformer\n", "from sklearn.impute import SimpleImputer\n", "from sklearn.pipeline import Pipeline\n", @@ -86,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-11-29T14:17:39.406713Z", - "iopub.status.busy": "2023-11-29T14:17:39.406358Z", - "iopub.status.idle": "2023-11-29T14:17:39.410143Z", - "shell.execute_reply": "2023-11-29T14:17:39.409364Z" + "iopub.execute_input": "2023-11-29T23:39:30.473457Z", + "iopub.status.busy": "2023-11-29T23:39:30.472695Z", + "iopub.status.idle": "2023-11-29T23:39:30.477549Z", + "shell.execute_reply": "2023-11-29T23:39:30.476793Z" } }, "outputs": [], @@ -109,10 +110,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-11-29T14:17:39.415177Z", - "iopub.status.busy": "2023-11-29T14:17:39.414875Z", - "iopub.status.idle": "2023-11-29T14:17:39.418690Z", - "shell.execute_reply": "2023-11-29T14:17:39.418041Z" + "iopub.execute_input": "2023-11-29T23:39:30.481724Z", + "iopub.status.busy": "2023-11-29T23:39:30.481160Z", + "iopub.status.idle": "2023-11-29T23:39:30.486458Z", + "shell.execute_reply": "2023-11-29T23:39:30.485781Z" } }, "outputs": [], @@ -144,10 +145,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-11-29T14:17:39.424127Z", - "iopub.status.busy": "2023-11-29T14:17:39.423696Z", - "iopub.status.idle": "2023-11-29T14:18:48.099898Z", - "shell.execute_reply": "2023-11-29T14:18:48.098966Z" + "iopub.execute_input": "2023-11-29T23:39:30.491175Z", + "iopub.status.busy": "2023-11-29T23:39:30.490639Z", + "iopub.status.idle": "2023-11-29T23:41:19.110165Z", + "shell.execute_reply": "2023-11-29T23:41:19.109472Z" } }, "outputs": [ @@ -155,21 +156,21 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-11-29 09:17:40,862 \u001b[1;37mINFO\u001b[0m cycquery.orm - Database setup, ready to run queries!\n" + "2023-11-29 18:39:32,429 \u001b[1;37mINFO\u001b[0m cycquery.orm - Database setup, ready to run queries!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-11-29 09:17:47,656 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" + "2023-11-29 18:39:39,538 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-11-29 09:17:47,657 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 4.768326 s\n" + "2023-11-29 18:39:39,539 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 5.097803 s\n" ] }, { @@ -186,14 +187,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-11-29 09:18:03,520 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" + "2023-11-29 18:40:12,334 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-11-29 09:18:03,522 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 15.155576 s\n" + "2023-11-29 18:40:12,335 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 32.061962 s\n" ] }, { @@ -389,10 +390,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-11-29T14:18:48.105149Z", - "iopub.status.busy": "2023-11-29T14:18:48.104945Z", - "iopub.status.idle": "2023-11-29T14:18:48.245083Z", - "shell.execute_reply": "2023-11-29T14:18:48.244383Z" + "iopub.execute_input": "2023-11-29T23:41:19.114229Z", + "iopub.status.busy": "2023-11-29T23:41:19.114012Z", + "iopub.status.idle": "2023-11-29T23:41:19.267213Z", + "shell.execute_reply": "2023-11-29T23:41:19.266685Z" } }, "outputs": [ @@ -2390,9 +2391,9 @@ } }, "text/html": [ - "
+
@@ -1084,7 +1084,7 @@

Graphics

-
+
@@ -1092,7 +1092,7 @@

Graphics

-
+
@@ -1100,7 +1100,7 @@

Graphics

-
+
@@ -1182,7 +1182,7 @@

Quantitative Analysis

- 0.83 + 0.89 @@ -1215,7 +1215,7 @@

Quantitative Analysis

- 0.21 + 0.38 @@ -1248,7 +1248,7 @@

Quantitative Analysis

- 0.1 + 0.25 @@ -1281,7 +1281,7 @@

Quantitative Analysis

- 0.27 + 0.67 @@ -1314,7 +1314,7 @@

Quantitative Analysis

- 0.86 + 0.79 @@ -1346,7 +1346,7 @@

Graphics

-
+
@@ -1354,7 +1354,7 @@

Graphics

-
+
@@ -1362,7 +1362,7 @@

Graphics

-
+
@@ -1416,7 +1416,7 @@

Graphics

-
+
@@ -1690,6 +1690,10 @@

Model Parameters

+
+

Missing

+ nan +
@@ -1697,41 +1701,45 @@

Model Parameters

N_estimators

- 100 + 500
-
-

Learning_rate

- 0.1 -
-
-

Eval_metric

- logloss -
+
+

Objective

+ binary:logistic +
+
+

Colsample_bytree

+ 0.7 +
+
+

Learning_rate

+ 0.1 +
@@ -1757,10 +1765,6 @@

Eval_metric

-
-

Gamma

- 2 -
@@ -1771,10 +1775,6 @@

Gamma

-
-

Reg_lambda

- 10 -
@@ -1786,8 +1786,8 @@

Reg_lambda

-

Max_depth

- 5 +

Enable_categorical

+ False
@@ -1804,15 +1804,15 @@

Max_depth

-
-

Colsample_bytree

- 1 -
+
+

Reg_lambda

+ 0 +
@@ -1828,20 +1828,24 @@

Colsample_bytree

+
+

Eval_metric

+ logloss +
-
-

Random_state

- 123 -
+
+

Min_child_weight

+ 3 +
@@ -1872,18 +1876,14 @@

Random_state

-
-

Enable_categorical

- False -
-

Missing

- nan +

Seed

+ 123
@@ -1896,8 +1896,8 @@

Missing

-

Min_child_weight

- 3 +

Random_state

+ 123
@@ -1905,8 +1905,8 @@

Min_child_weight

-

Objective

- binary:logistic +

Max_depth

+ 5
@@ -1923,15 +1923,15 @@

Objective

-
-

Seed

- 123 -
+
+

Gamma

+ 2 +
@@ -2213,7 +2213,7 @@

Ethical Considerations

function generate_model_card_plot() { var model_card_plots = [] var overall_indices = [20, 21, 22, 23, 24] - var histories = JSON.parse("{\"0\": [\"0.9942279942279942\", \"1.0\", \"0.9772216244373779\", \"0.9856369246124833\", \"1.0\"], \"1\": [\"0.0\", \"0.0\", \"0.0\", \"0.013299620663894007\", \"0.0\"], \"2\": [\"0.0\", \"0.0\", \"0.0\", \"0.0809989668527891\", \"0.14445721819909296\"], \"3\": [\"0.0\", \"0.0\", \"0.020973815105886143\", \"0.010854554725201294\", \"0.07999137356712058\"], \"4\": [\"0.7714078374455733\", \"0.9255710323617534\", \"0.7945089448143359\", \"0.803954186226459\", \"0.801425933696679\"], \"5\": [\"0.9848771266540642\", \"0.8504471677661822\", \"0.8749386024431693\", \"0.9844580438445864\", \"1.0\"], \"6\": [\"0.4\", \"0.3822896737095082\", \"0.27484991788516855\", \"0.3363899934295726\", \"0.5667436488074996\"], \"7\": [\"0.08695652173913043\", \"0.13372470558538885\", \"0.1479401453349632\", \"0.12822785676290324\", \"0.0\"], \"8\": [\"0.14285714285714285\", \"0.12332398991443574\", \"0.1805536624197745\", \"0.07777050980102032\", \"0.05874753918482507\"], \"9\": [\"0.9017569220504837\", \"0.875569396475515\", \"0.919324204415494\", \"0.8431505226168358\", \"0.9433868075381606\"], \"10\": [\"0.9763663220088626\", \"0.8746009198921261\", \"1.0\", \"0.9548555400773429\", \"0.9825387051292276\"], \"11\": [\"0.5\", \"0.6165795038070493\", \"0.6423729046912994\", \"0.45555579951410063\", \"0.5871637628526757\"], \"12\": [\"0.0625\", \"0.0\", \"0.1520966077315517\", \"0.2295608568836467\", \"0.1493655900542773\"], \"13\": [\"0.1111111111111111\", \"0.0420674856243113\", \"0.0\", \"0.0\", \"0.12932932536952954\"], \"14\": [\"0.8699413767019667\", \"0.9912826396429929\", \"0.9544294676164752\", \"0.8852446236161613\", \"0.7467863972110218\"], \"15\": [\"0.9859906604402935\", \"0.9381671522505842\", \"0.932206806781172\", \"0.8483645910096131\", \"0.889359858178005\"], \"16\": [\"0.0\", \"0.0801605079717288\", \"0.01851684395049885\", \"0.04156759219474436\", \"0.0\"], \"17\": [\"0.0\", \"0.0\", \"0.03938882552373204\", \"0.0476752453423874\", \"0.060820877635413495\"], \"18\": [\"0.0\", \"0.0\", \"0.14887316477419074\", \"0.1310838427809166\", \"0.06904299847498857\"], \"19\": [\"0.8730440967283072\", \"1.0\", \"0.9297742620417593\", \"0.951609220285032\", \"0.9804722823112194\"], \"20\": [\"0.9814230634419909\", \"1.0\", \"0.8800386930779416\", \"0.9097563892160808\", \"0.8273054389631473\"], \"21\": [\"0.3333333333333333\", \"0.33075814040909934\", \"0.33325206024415976\", \"0.2060615956288472\", \"0.20756583671506454\"], \"22\": [\"0.0392156862745098\", \"0.062352922490084575\", \"0.05986752851404827\", \"0.0\", \"0.10427802438781027\"], \"23\": [\"0.07017543859649122\", \"0.0\", \"0.16072699958080439\", \"0.17704571483809475\", \"0.2658757656240651\"], \"24\": [\"0.8726889756616422\", \"0.8894083186308973\", \"0.8685380529009181\", \"0.8402425097015667\", \"0.8632987810626611\"]}"); + var histories = JSON.parse("{\"0\": [\"0.9942279942279942\", \"1.0\", \"1.0\", \"0.8783564126317389\", \"0.8179351114782751\"], \"1\": [\"0.5\", \"0.4689470696078733\", \"0.5521607962170983\", \"0.5117497031163375\", \"0.5468846482859442\"], \"2\": [\"0.25\", \"0.2410629185093236\", \"0.405558516251176\", \"0.4025122855315672\", \"0.5093469738551926\"], \"3\": [\"0.3333333333333333\", \"0.3401123168259615\", \"0.3512857658298257\", \"0.1737522166477075\", \"0.08968971556484677\"], \"4\": [\"0.8679245283018868\", \"0.898539976161913\", \"0.8285065072744036\", \"0.9167610439839499\", \"1.0\"], \"5\": [\"0.9722747321991179\", \"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"6\": [\"0.16129032258064516\", \"0.08489904434145287\", \"0.24867878260814727\", \"0.1657314973006622\", \"0.1602462512471506\"], \"7\": [\"0.21739130434782608\", \"0.2593525012800042\", \"0.13355690779608997\", \"0.0\", \"0.09143021489807017\"], \"8\": [\"0.18518518518518517\", \"0.13756822475992295\", \"0.04595790125882031\", \"0.0\", \"0.13698694730361424\"], \"9\": [\"0.8229734237740465\", \"0.8310310701487316\", \"0.8887032435518512\", \"0.7309328829550903\", \"0.9007205597130927\"], \"10\": [\"0.9638109305760709\", \"0.9396910355865894\", \"0.9482425143984425\", \"1.0\", \"1.0\"], \"11\": [\"0.22580645161290322\", \"0.18647707292184534\", \"0.1920041938246677\", \"0.19589572070652728\", \"0.243423521298061\"], \"12\": [\"0.21875\", \"0.24586123701281476\", \"0.195436557744915\", \"0.12818992139307833\", \"0.22986683516546563\"], \"13\": [\"0.2222222222222222\", \"0.23787166210352517\", \"0.12863906766970545\", \"0.1772291896793858\", \"0.23743722619924515\"], \"14\": [\"0.815194780635401\", \"0.8164472035940429\", \"0.9210628710346137\", \"0.8726448468127834\", \"1.0\"], \"15\": [\"0.9779853235490327\", \"1.0\", \"0.9604537266522587\", \"0.8133761870303216\", \"0.8473061777124823\"], \"16\": [\"0.15\", \"0.22232893480816163\", \"0.26874972111014817\", \"0.18496642710854988\", \"0.01380296974436479\"], \"17\": [\"0.15789473684210525\", \"0.21159988290874593\", \"0.2070842984427737\", \"0.22264546244395172\", \"0.08819446743154422\"], \"18\": [\"0.15384615384615385\", \"0.2896589428944639\", \"0.3844075563070706\", \"0.2943054139466239\", \"0.12599121043336445\"], \"19\": [\"0.8182432432432432\", \"0.7949570687150005\", \"0.7272785530896604\", \"0.633452567709159\", \"0.6069223144240898\"], \"20\": [\"0.9712583245706274\", \"1.0\", \"1.0\", \"0.9410924151381872\", \"0.8885116361216804\"], \"21\": [\"0.19607843137254902\", \"0.32209395214097714\", \"0.2772620578820867\", \"0.3397048909527858\", \"0.38317261122723073\"], \"22\": [\"0.19607843137254902\", \"0.04730887674712522\", \"0.17279446242673727\", \"0.25606872753500287\", \"0.2457789180996587\"], \"23\": [\"0.19607843137254902\", \"0.38495560413767727\", \"0.6021387229110434\", \"0.4974601592658269\", \"0.6698374723441936\"], \"24\": [\"0.8188198905543659\", \"0.9832782328138028\", \"0.9507556939409646\", \"0.888083860111265\", \"0.7922109678314846\"]}"); var thresholds = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\", \"19\": \"0.7\", \"20\": \"0.7\", \"21\": \"0.7\", \"22\": \"0.7\", \"23\": \"0.7\", \"24\": \"0.7\"}"); var timestamps = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"1\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"2\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"3\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"4\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"5\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"6\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"7\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"8\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"9\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"10\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"11\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"12\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"13\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"14\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"15\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"16\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"17\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"18\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"19\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"20\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"21\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"22\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"23\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"24\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"]}"); @@ -2494,10 +2494,10 @@

Ethical Considerations

} } var slices_all = JSON.parse("{\"0\": [\"metric:Accuracy\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"1\": [\"metric:Precision\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"2\": [\"metric:Recall\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"3\": [\"metric:F1 Score\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"4\": [\"metric:AUROC\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"5\": [\"metric:Accuracy\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"6\": [\"metric:Precision\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"7\": [\"metric:Recall\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"8\": [\"metric:F1 Score\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"9\": [\"metric:AUROC\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"10\": [\"metric:Accuracy\", \"gender:M\", \"age:overall_age\"], \"11\": [\"metric:Precision\", \"gender:M\", \"age:overall_age\"], \"12\": [\"metric:Recall\", \"gender:M\", \"age:overall_age\"], \"13\": [\"metric:F1 Score\", \"gender:M\", \"age:overall_age\"], \"14\": [\"metric:AUROC\", \"gender:M\", \"age:overall_age\"], \"15\": [\"metric:Accuracy\", \"gender:F\", \"age:overall_age\"], \"16\": [\"metric:Precision\", \"gender:F\", \"age:overall_age\"], \"17\": [\"metric:Recall\", \"gender:F\", \"age:overall_age\"], \"18\": [\"metric:F1 Score\", \"gender:F\", \"age:overall_age\"], \"19\": [\"metric:AUROC\", \"gender:F\", \"age:overall_age\"], \"20\": [\"metric:Accuracy\", \"age:overall_age\", \"gender:overall_gender\"], \"21\": [\"metric:Precision\", \"age:overall_age\", \"gender:overall_gender\"], \"22\": [\"metric:Recall\", \"age:overall_age\", \"gender:overall_gender\"], \"23\": [\"metric:F1 Score\", \"age:overall_age\", \"gender:overall_gender\"], \"24\": [\"metric:AUROC\", \"age:overall_age\", \"gender:overall_gender\"]}"); - var histories_all = JSON.parse("{\"0\": [\"0.9942279942279942\", \"1.0\", \"0.9772216244373779\", \"0.9856369246124833\", \"1.0\"], \"1\": [\"0.0\", \"0.0\", \"0.0\", \"0.013299620663894007\", \"0.0\"], \"2\": [\"0.0\", \"0.0\", \"0.0\", \"0.0809989668527891\", \"0.14445721819909296\"], \"3\": [\"0.0\", \"0.0\", \"0.020973815105886143\", \"0.010854554725201294\", \"0.07999137356712058\"], \"4\": [\"0.7714078374455733\", \"0.9255710323617534\", \"0.7945089448143359\", \"0.803954186226459\", \"0.801425933696679\"], \"5\": [\"0.9848771266540642\", \"0.8504471677661822\", \"0.8749386024431693\", \"0.9844580438445864\", \"1.0\"], \"6\": [\"0.4\", \"0.3822896737095082\", \"0.27484991788516855\", \"0.3363899934295726\", \"0.5667436488074996\"], \"7\": [\"0.08695652173913043\", \"0.13372470558538885\", \"0.1479401453349632\", \"0.12822785676290324\", \"0.0\"], \"8\": [\"0.14285714285714285\", \"0.12332398991443574\", \"0.1805536624197745\", \"0.07777050980102032\", \"0.05874753918482507\"], \"9\": [\"0.9017569220504837\", \"0.875569396475515\", \"0.919324204415494\", \"0.8431505226168358\", \"0.9433868075381606\"], \"10\": [\"0.9763663220088626\", \"0.8746009198921261\", \"1.0\", \"0.9548555400773429\", \"0.9825387051292276\"], \"11\": [\"0.5\", \"0.6165795038070493\", \"0.6423729046912994\", \"0.45555579951410063\", \"0.5871637628526757\"], \"12\": [\"0.0625\", \"0.0\", \"0.1520966077315517\", \"0.2295608568836467\", \"0.1493655900542773\"], \"13\": [\"0.1111111111111111\", \"0.0420674856243113\", \"0.0\", \"0.0\", \"0.12932932536952954\"], \"14\": [\"0.8699413767019667\", \"0.9912826396429929\", \"0.9544294676164752\", \"0.8852446236161613\", \"0.7467863972110218\"], \"15\": [\"0.9859906604402935\", \"0.9381671522505842\", \"0.932206806781172\", \"0.8483645910096131\", \"0.889359858178005\"], \"16\": [\"0.0\", \"0.0801605079717288\", \"0.01851684395049885\", \"0.04156759219474436\", \"0.0\"], \"17\": [\"0.0\", \"0.0\", \"0.03938882552373204\", \"0.0476752453423874\", \"0.060820877635413495\"], \"18\": [\"0.0\", \"0.0\", \"0.14887316477419074\", \"0.1310838427809166\", \"0.06904299847498857\"], \"19\": [\"0.8730440967283072\", \"1.0\", \"0.9297742620417593\", \"0.951609220285032\", \"0.9804722823112194\"], \"20\": [\"0.9814230634419909\", \"1.0\", \"0.8800386930779416\", \"0.9097563892160808\", \"0.8273054389631473\"], \"21\": [\"0.3333333333333333\", \"0.33075814040909934\", \"0.33325206024415976\", \"0.2060615956288472\", \"0.20756583671506454\"], \"22\": [\"0.0392156862745098\", \"0.062352922490084575\", \"0.05986752851404827\", \"0.0\", \"0.10427802438781027\"], \"23\": [\"0.07017543859649122\", \"0.0\", \"0.16072699958080439\", \"0.17704571483809475\", \"0.2658757656240651\"], \"24\": [\"0.8726889756616422\", \"0.8894083186308973\", \"0.8685380529009181\", \"0.8402425097015667\", \"0.8632987810626611\"]}"); + var histories_all = JSON.parse("{\"0\": [\"0.9942279942279942\", \"1.0\", \"1.0\", \"0.8783564126317389\", \"0.8179351114782751\"], \"1\": [\"0.5\", \"0.4689470696078733\", \"0.5521607962170983\", \"0.5117497031163375\", \"0.5468846482859442\"], \"2\": [\"0.25\", \"0.2410629185093236\", \"0.405558516251176\", \"0.4025122855315672\", \"0.5093469738551926\"], \"3\": [\"0.3333333333333333\", \"0.3401123168259615\", \"0.3512857658298257\", \"0.1737522166477075\", \"0.08968971556484677\"], \"4\": [\"0.8679245283018868\", \"0.898539976161913\", \"0.8285065072744036\", \"0.9167610439839499\", \"1.0\"], \"5\": [\"0.9722747321991179\", \"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"6\": [\"0.16129032258064516\", \"0.08489904434145287\", \"0.24867878260814727\", \"0.1657314973006622\", \"0.1602462512471506\"], \"7\": [\"0.21739130434782608\", \"0.2593525012800042\", \"0.13355690779608997\", \"0.0\", \"0.09143021489807017\"], \"8\": [\"0.18518518518518517\", \"0.13756822475992295\", \"0.04595790125882031\", \"0.0\", \"0.13698694730361424\"], \"9\": [\"0.8229734237740465\", \"0.8310310701487316\", \"0.8887032435518512\", \"0.7309328829550903\", \"0.9007205597130927\"], \"10\": [\"0.9638109305760709\", \"0.9396910355865894\", \"0.9482425143984425\", \"1.0\", \"1.0\"], \"11\": [\"0.22580645161290322\", \"0.18647707292184534\", \"0.1920041938246677\", \"0.19589572070652728\", \"0.243423521298061\"], \"12\": [\"0.21875\", \"0.24586123701281476\", \"0.195436557744915\", \"0.12818992139307833\", \"0.22986683516546563\"], \"13\": [\"0.2222222222222222\", \"0.23787166210352517\", \"0.12863906766970545\", \"0.1772291896793858\", \"0.23743722619924515\"], \"14\": [\"0.815194780635401\", \"0.8164472035940429\", \"0.9210628710346137\", \"0.8726448468127834\", \"1.0\"], \"15\": [\"0.9779853235490327\", \"1.0\", \"0.9604537266522587\", \"0.8133761870303216\", \"0.8473061777124823\"], \"16\": [\"0.15\", \"0.22232893480816163\", \"0.26874972111014817\", \"0.18496642710854988\", \"0.01380296974436479\"], \"17\": [\"0.15789473684210525\", \"0.21159988290874593\", \"0.2070842984427737\", \"0.22264546244395172\", \"0.08819446743154422\"], \"18\": [\"0.15384615384615385\", \"0.2896589428944639\", \"0.3844075563070706\", \"0.2943054139466239\", \"0.12599121043336445\"], \"19\": [\"0.8182432432432432\", \"0.7949570687150005\", \"0.7272785530896604\", \"0.633452567709159\", \"0.6069223144240898\"], \"20\": [\"0.9712583245706274\", \"1.0\", \"1.0\", \"0.9410924151381872\", \"0.8885116361216804\"], \"21\": [\"0.19607843137254902\", \"0.32209395214097714\", \"0.2772620578820867\", \"0.3397048909527858\", \"0.38317261122723073\"], \"22\": [\"0.19607843137254902\", \"0.04730887674712522\", \"0.17279446242673727\", \"0.25606872753500287\", \"0.2457789180996587\"], \"23\": [\"0.19607843137254902\", \"0.38495560413767727\", \"0.6021387229110434\", \"0.4974601592658269\", \"0.6698374723441936\"], \"24\": [\"0.8188198905543659\", \"0.9832782328138028\", \"0.9507556939409646\", \"0.888083860111265\", \"0.7922109678314846\"]}"); var thresholds_all = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\", \"19\": \"0.7\", \"20\": \"0.7\", \"21\": \"0.7\", \"22\": \"0.7\", \"23\": \"0.7\", \"24\": \"0.7\"}"); - var trends_all = JSON.parse("{\"0\": \"neutral\", \"1\": \"neutral\", \"2\": \"positive\", \"3\": \"positive\", \"4\": \"neutral\", \"5\": \"positive\", \"6\": \"positive\", \"7\": \"negative\", \"8\": \"negative\", \"9\": \"neutral\", \"10\": \"neutral\", \"11\": \"neutral\", \"12\": \"positive\", \"13\": \"neutral\", \"14\": \"negative\", \"15\": \"negative\", \"16\": \"neutral\", \"17\": \"positive\", \"18\": \"positive\", \"19\": \"positive\", \"20\": \"negative\", \"21\": \"negative\", \"22\": \"neutral\", \"23\": \"positive\", \"24\": \"neutral\"}"); - var passed_all = JSON.parse("{\"0\": true, \"1\": false, \"2\": false, \"3\": false, \"4\": true, \"5\": true, \"6\": false, \"7\": false, \"8\": false, \"9\": true, \"10\": true, \"11\": false, \"12\": false, \"13\": false, \"14\": true, \"15\": true, \"16\": false, \"17\": false, \"18\": false, \"19\": true, \"20\": true, \"21\": false, \"22\": false, \"23\": false, \"24\": true}"); + var trends_all = JSON.parse("{\"0\": \"negative\", \"1\": \"positive\", \"2\": \"positive\", \"3\": \"negative\", \"4\": \"positive\", \"5\": \"neutral\", \"6\": \"neutral\", \"7\": \"negative\", \"8\": \"negative\", \"9\": \"neutral\", \"10\": \"positive\", \"11\": \"neutral\", \"12\": \"neutral\", \"13\": \"neutral\", \"14\": \"positive\", \"15\": \"negative\", \"16\": \"negative\", \"17\": \"negative\", \"18\": \"neutral\", \"19\": \"negative\", \"20\": \"negative\", \"21\": \"positive\", \"22\": \"positive\", \"23\": \"positive\", \"24\": \"negative\"}"); + var passed_all = JSON.parse("{\"0\": true, \"1\": false, \"2\": false, \"3\": false, \"4\": true, \"5\": true, \"6\": false, \"7\": false, \"8\": false, \"9\": true, \"10\": true, \"11\": false, \"12\": false, \"13\": false, \"14\": true, \"15\": true, \"16\": false, \"17\": false, \"18\": false, \"19\": false, \"20\": true, \"21\": false, \"22\": false, \"23\": false, \"24\": true}"); var names_all = JSON.parse("{\"0\": \"Accuracy\", \"1\": \"Precision\", \"2\": \"Recall\", \"3\": \"F1 Score\", \"4\": \"AUROC\", \"5\": \"Accuracy\", \"6\": \"Precision\", \"7\": \"Recall\", \"8\": \"F1 Score\", \"9\": \"AUROC\", \"10\": \"Accuracy\", \"11\": \"Precision\", \"12\": \"Recall\", \"13\": \"F1 Score\", \"14\": \"AUROC\", \"15\": \"Accuracy\", \"16\": \"Precision\", \"17\": \"Recall\", \"18\": \"F1 Score\", \"19\": \"AUROC\", \"20\": \"Accuracy\", \"21\": \"Precision\", \"22\": \"Recall\", \"23\": \"F1 Score\", \"24\": \"AUROC\"}"); var timestamps_all = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"1\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"2\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"3\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"4\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"5\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"6\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"7\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"8\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"9\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"10\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"11\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"12\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"13\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"14\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"15\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"16\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"17\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"18\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"19\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"20\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"21\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"22\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"23\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"24\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"]}"); @@ -2770,10 +2770,10 @@

Ethical Considerations

} } var slices_all = JSON.parse("{\"0\": [\"metric:Accuracy\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"1\": [\"metric:Precision\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"2\": [\"metric:Recall\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"3\": [\"metric:F1 Score\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"4\": [\"metric:AUROC\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"5\": [\"metric:Accuracy\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"6\": [\"metric:Precision\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"7\": [\"metric:Recall\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"8\": [\"metric:F1 Score\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"9\": [\"metric:AUROC\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"10\": [\"metric:Accuracy\", \"gender:M\", \"age:overall_age\"], \"11\": [\"metric:Precision\", \"gender:M\", \"age:overall_age\"], \"12\": [\"metric:Recall\", \"gender:M\", \"age:overall_age\"], \"13\": [\"metric:F1 Score\", \"gender:M\", \"age:overall_age\"], \"14\": [\"metric:AUROC\", \"gender:M\", \"age:overall_age\"], \"15\": [\"metric:Accuracy\", \"gender:F\", \"age:overall_age\"], \"16\": [\"metric:Precision\", \"gender:F\", \"age:overall_age\"], \"17\": [\"metric:Recall\", \"gender:F\", \"age:overall_age\"], \"18\": [\"metric:F1 Score\", \"gender:F\", \"age:overall_age\"], \"19\": [\"metric:AUROC\", \"gender:F\", \"age:overall_age\"], \"20\": [\"metric:Accuracy\", \"age:overall_age\", \"gender:overall_gender\"], \"21\": [\"metric:Precision\", \"age:overall_age\", \"gender:overall_gender\"], \"22\": [\"metric:Recall\", \"age:overall_age\", \"gender:overall_gender\"], \"23\": [\"metric:F1 Score\", \"age:overall_age\", \"gender:overall_gender\"], \"24\": [\"metric:AUROC\", \"age:overall_age\", \"gender:overall_gender\"]}"); - var histories_all = JSON.parse("{\"0\": [\"0.9942279942279942\", \"1.0\", \"0.9772216244373779\", \"0.9856369246124833\", \"1.0\"], \"1\": [\"0.0\", \"0.0\", \"0.0\", \"0.013299620663894007\", \"0.0\"], \"2\": [\"0.0\", \"0.0\", \"0.0\", \"0.0809989668527891\", \"0.14445721819909296\"], \"3\": [\"0.0\", \"0.0\", \"0.020973815105886143\", \"0.010854554725201294\", \"0.07999137356712058\"], \"4\": [\"0.7714078374455733\", \"0.9255710323617534\", \"0.7945089448143359\", \"0.803954186226459\", \"0.801425933696679\"], \"5\": [\"0.9848771266540642\", \"0.8504471677661822\", \"0.8749386024431693\", \"0.9844580438445864\", \"1.0\"], \"6\": [\"0.4\", \"0.3822896737095082\", \"0.27484991788516855\", \"0.3363899934295726\", \"0.5667436488074996\"], \"7\": [\"0.08695652173913043\", \"0.13372470558538885\", \"0.1479401453349632\", \"0.12822785676290324\", \"0.0\"], \"8\": [\"0.14285714285714285\", \"0.12332398991443574\", \"0.1805536624197745\", \"0.07777050980102032\", \"0.05874753918482507\"], \"9\": [\"0.9017569220504837\", \"0.875569396475515\", \"0.919324204415494\", \"0.8431505226168358\", \"0.9433868075381606\"], \"10\": [\"0.9763663220088626\", \"0.8746009198921261\", \"1.0\", \"0.9548555400773429\", \"0.9825387051292276\"], \"11\": [\"0.5\", \"0.6165795038070493\", \"0.6423729046912994\", \"0.45555579951410063\", \"0.5871637628526757\"], \"12\": [\"0.0625\", \"0.0\", \"0.1520966077315517\", \"0.2295608568836467\", \"0.1493655900542773\"], \"13\": [\"0.1111111111111111\", \"0.0420674856243113\", \"0.0\", \"0.0\", \"0.12932932536952954\"], \"14\": [\"0.8699413767019667\", \"0.9912826396429929\", \"0.9544294676164752\", \"0.8852446236161613\", \"0.7467863972110218\"], \"15\": [\"0.9859906604402935\", \"0.9381671522505842\", \"0.932206806781172\", \"0.8483645910096131\", \"0.889359858178005\"], \"16\": [\"0.0\", \"0.0801605079717288\", \"0.01851684395049885\", \"0.04156759219474436\", \"0.0\"], \"17\": [\"0.0\", \"0.0\", \"0.03938882552373204\", \"0.0476752453423874\", \"0.060820877635413495\"], \"18\": [\"0.0\", \"0.0\", \"0.14887316477419074\", \"0.1310838427809166\", \"0.06904299847498857\"], \"19\": [\"0.8730440967283072\", \"1.0\", \"0.9297742620417593\", \"0.951609220285032\", \"0.9804722823112194\"], \"20\": [\"0.9814230634419909\", \"1.0\", \"0.8800386930779416\", \"0.9097563892160808\", \"0.8273054389631473\"], \"21\": [\"0.3333333333333333\", \"0.33075814040909934\", \"0.33325206024415976\", \"0.2060615956288472\", \"0.20756583671506454\"], \"22\": [\"0.0392156862745098\", \"0.062352922490084575\", \"0.05986752851404827\", \"0.0\", \"0.10427802438781027\"], \"23\": [\"0.07017543859649122\", \"0.0\", \"0.16072699958080439\", \"0.17704571483809475\", \"0.2658757656240651\"], \"24\": [\"0.8726889756616422\", \"0.8894083186308973\", \"0.8685380529009181\", \"0.8402425097015667\", \"0.8632987810626611\"]}"); + var histories_all = JSON.parse("{\"0\": [\"0.9942279942279942\", \"1.0\", \"1.0\", \"0.8783564126317389\", \"0.8179351114782751\"], \"1\": [\"0.5\", \"0.4689470696078733\", \"0.5521607962170983\", \"0.5117497031163375\", \"0.5468846482859442\"], \"2\": [\"0.25\", \"0.2410629185093236\", \"0.405558516251176\", \"0.4025122855315672\", \"0.5093469738551926\"], \"3\": [\"0.3333333333333333\", \"0.3401123168259615\", \"0.3512857658298257\", \"0.1737522166477075\", \"0.08968971556484677\"], \"4\": [\"0.8679245283018868\", \"0.898539976161913\", \"0.8285065072744036\", \"0.9167610439839499\", \"1.0\"], \"5\": [\"0.9722747321991179\", \"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"6\": [\"0.16129032258064516\", \"0.08489904434145287\", \"0.24867878260814727\", \"0.1657314973006622\", \"0.1602462512471506\"], \"7\": [\"0.21739130434782608\", \"0.2593525012800042\", \"0.13355690779608997\", \"0.0\", \"0.09143021489807017\"], \"8\": [\"0.18518518518518517\", \"0.13756822475992295\", \"0.04595790125882031\", \"0.0\", \"0.13698694730361424\"], \"9\": [\"0.8229734237740465\", \"0.8310310701487316\", \"0.8887032435518512\", \"0.7309328829550903\", \"0.9007205597130927\"], \"10\": [\"0.9638109305760709\", \"0.9396910355865894\", \"0.9482425143984425\", \"1.0\", \"1.0\"], \"11\": [\"0.22580645161290322\", \"0.18647707292184534\", \"0.1920041938246677\", \"0.19589572070652728\", \"0.243423521298061\"], \"12\": [\"0.21875\", \"0.24586123701281476\", \"0.195436557744915\", \"0.12818992139307833\", \"0.22986683516546563\"], \"13\": [\"0.2222222222222222\", \"0.23787166210352517\", \"0.12863906766970545\", \"0.1772291896793858\", \"0.23743722619924515\"], \"14\": [\"0.815194780635401\", \"0.8164472035940429\", \"0.9210628710346137\", \"0.8726448468127834\", \"1.0\"], \"15\": [\"0.9779853235490327\", \"1.0\", \"0.9604537266522587\", \"0.8133761870303216\", \"0.8473061777124823\"], \"16\": [\"0.15\", \"0.22232893480816163\", \"0.26874972111014817\", \"0.18496642710854988\", \"0.01380296974436479\"], \"17\": [\"0.15789473684210525\", \"0.21159988290874593\", \"0.2070842984427737\", \"0.22264546244395172\", \"0.08819446743154422\"], \"18\": [\"0.15384615384615385\", \"0.2896589428944639\", \"0.3844075563070706\", \"0.2943054139466239\", \"0.12599121043336445\"], \"19\": [\"0.8182432432432432\", \"0.7949570687150005\", \"0.7272785530896604\", \"0.633452567709159\", \"0.6069223144240898\"], \"20\": [\"0.9712583245706274\", \"1.0\", \"1.0\", \"0.9410924151381872\", \"0.8885116361216804\"], \"21\": [\"0.19607843137254902\", \"0.32209395214097714\", \"0.2772620578820867\", \"0.3397048909527858\", \"0.38317261122723073\"], \"22\": [\"0.19607843137254902\", \"0.04730887674712522\", \"0.17279446242673727\", \"0.25606872753500287\", \"0.2457789180996587\"], \"23\": [\"0.19607843137254902\", \"0.38495560413767727\", \"0.6021387229110434\", \"0.4974601592658269\", \"0.6698374723441936\"], \"24\": [\"0.8188198905543659\", \"0.9832782328138028\", \"0.9507556939409646\", \"0.888083860111265\", \"0.7922109678314846\"]}"); var thresholds_all = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\", \"19\": \"0.7\", \"20\": \"0.7\", \"21\": \"0.7\", \"22\": \"0.7\", \"23\": \"0.7\", \"24\": \"0.7\"}"); - var trends_all = JSON.parse("{\"0\": \"neutral\", \"1\": \"neutral\", \"2\": \"positive\", \"3\": \"positive\", \"4\": \"neutral\", \"5\": \"positive\", \"6\": \"positive\", \"7\": \"negative\", \"8\": \"negative\", \"9\": \"neutral\", \"10\": \"neutral\", \"11\": \"neutral\", \"12\": \"positive\", \"13\": \"neutral\", \"14\": \"negative\", \"15\": \"negative\", \"16\": \"neutral\", \"17\": \"positive\", \"18\": \"positive\", \"19\": \"positive\", \"20\": \"negative\", \"21\": \"negative\", \"22\": \"neutral\", \"23\": \"positive\", \"24\": \"neutral\"}"); - var passed_all = JSON.parse("{\"0\": true, \"1\": false, \"2\": false, \"3\": false, \"4\": true, \"5\": true, \"6\": false, \"7\": false, \"8\": false, \"9\": true, \"10\": true, \"11\": false, \"12\": false, \"13\": false, \"14\": true, \"15\": true, \"16\": false, \"17\": false, \"18\": false, \"19\": true, \"20\": true, \"21\": false, \"22\": false, \"23\": false, \"24\": true}"); + var trends_all = JSON.parse("{\"0\": \"negative\", \"1\": \"positive\", \"2\": \"positive\", \"3\": \"negative\", \"4\": \"positive\", \"5\": \"neutral\", \"6\": \"neutral\", \"7\": \"negative\", \"8\": \"negative\", \"9\": \"neutral\", \"10\": \"positive\", \"11\": \"neutral\", \"12\": \"neutral\", \"13\": \"neutral\", \"14\": \"positive\", \"15\": \"negative\", \"16\": \"negative\", \"17\": \"negative\", \"18\": \"neutral\", \"19\": \"negative\", \"20\": \"negative\", \"21\": \"positive\", \"22\": \"positive\", \"23\": \"positive\", \"24\": \"negative\"}"); + var passed_all = JSON.parse("{\"0\": true, \"1\": false, \"2\": false, \"3\": false, \"4\": true, \"5\": true, \"6\": false, \"7\": false, \"8\": false, \"9\": true, \"10\": true, \"11\": false, \"12\": false, \"13\": false, \"14\": true, \"15\": true, \"16\": false, \"17\": false, \"18\": false, \"19\": false, \"20\": true, \"21\": false, \"22\": false, \"23\": false, \"24\": true}"); var names_all = JSON.parse("{\"0\": \"Accuracy\", \"1\": \"Precision\", \"2\": \"Recall\", \"3\": \"F1 Score\", \"4\": \"AUROC\", \"5\": \"Accuracy\", \"6\": \"Precision\", \"7\": \"Recall\", \"8\": \"F1 Score\", \"9\": \"AUROC\", \"10\": \"Accuracy\", \"11\": \"Precision\", \"12\": \"Recall\", \"13\": \"F1 Score\", \"14\": \"AUROC\", \"15\": \"Accuracy\", \"16\": \"Precision\", \"17\": \"Recall\", \"18\": \"F1 Score\", \"19\": \"AUROC\", \"20\": \"Accuracy\", \"21\": \"Precision\", \"22\": \"Recall\", \"23\": \"F1 Score\", \"24\": \"AUROC\"}"); var timestamps_all = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"1\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"2\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"3\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"4\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"5\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"6\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"7\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"8\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"9\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"10\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"11\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"12\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"13\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"14\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"15\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"16\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"17\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"18\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"19\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"20\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"21\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"22\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"23\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"24\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"]}"); diff --git a/api/tutorials/nihcxr/cxr_classification.html b/api/tutorials/nihcxr/cxr_classification.html index acb9a1e8f..629c8d379 100644 --- a/api/tutorials/nihcxr/cxr_classification.html +++ b/api/tutorials/nihcxr/cxr_classification.html @@ -496,74 +496,74 @@

Generate Historical Reports
-Flattening the indices: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:53<00:00, 18.84 examples/s]
-Flattening the indices: 100%|β–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:00<00:00, 543374.01 examples/s]
-Filter: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:00<00:00, 238055.74 examples/s]
-Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 400/400 [00:00<00:00, 1797.56 examples/s]
-Filter -> Patient Gender:M: 100%|β–ˆβ–ˆβ–ˆ| 400/400 [00:00<00:00, 43661.10 examples/s]
-Filter -> Patient Gender:F: 100%|β–ˆβ–ˆβ–ˆ| 400/400 [00:00<00:00, 43702.05 examples/s]
-Filter -> overall: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 400/400 [00:00<00:00, 46045.71 examples/s]
-Filter -> Patient Age:[19 - 35]: 100%|β–ˆ| 400/400 [00:00<00:00, 41547.30 examples
-Filter -> Patient Age:[35 - 65]: 100%|β–ˆ| 400/400 [00:00<00:00, 42940.33 examples
-Filter -> Patient Age:[65 - 100]: 100%|β–ˆ| 400/400 [00:00<00:00, 40465.05 example
+Flattening the indices: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:52<00:00, 19.12 examples/s]
+Flattening the indices: 100%|β–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:00<00:00, 554435.43 examples/s]
+Filter: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:00<00:00, 238556.71 examples/s]
+Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 400/400 [00:00<00:00, 1790.78 examples/s]
+Filter -> Patient Gender:M: 100%|β–ˆβ–ˆβ–ˆ| 400/400 [00:00<00:00, 43326.23 examples/s]
+Filter -> Patient Gender:F: 100%|β–ˆβ–ˆβ–ˆ| 400/400 [00:00<00:00, 35970.96 examples/s]
+Filter -> overall: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 400/400 [00:00<00:00, 45044.34 examples/s]
+Filter -> Patient Age:[19 - 35]: 100%|β–ˆ| 400/400 [00:00<00:00, 41191.30 examples
+Filter -> Patient Age:[35 - 65]: 100%|β–ˆ| 400/400 [00:00<00:00, 42204.71 examples
+Filter -> Patient Age:[65 - 100]: 100%|β–ˆ| 400/400 [00:00<00:00, 41689.77 example
 Filter -> Patient Age:[19 - 35]&Patient Gender:M: 100%|β–ˆ| 400/400 [00:00<00:00,
 Filter -> Patient Age:[19 - 35]&Patient Gender:F: 100%|β–ˆ| 400/400 [00:00<00:00,
 Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|β–ˆ| 400/400 [00:00<00:00,
 Filter -> Patient Age:[35 - 65]&Patient Gender:F: 100%|β–ˆ| 400/400 [00:00<00:00,
 Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|β–ˆ| 400/400 [00:00<00:00,
 Filter -> Patient Age:[65 - 100]&Patient Gender:F: 100%|β–ˆ| 400/400 [00:00<00:00,
-Filter -> overall: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 400/400 [00:00<00:00, 46872.90 examples/s]
-Flattening the indices: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:49<00:00, 20.05 examples/s]
-Flattening the indices: 100%|β–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:00<00:00, 553849.73 examples/s]
-Filter: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:00<00:00, 237691.49 examples/s]
-Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 396/396 [00:00<00:00, 1795.28 examples/s]
-Filter -> Patient Gender:M: 100%|β–ˆβ–ˆβ–ˆ| 396/396 [00:00<00:00, 43594.34 examples/s]
-Filter -> Patient Gender:F: 100%|β–ˆβ–ˆβ–ˆ| 396/396 [00:00<00:00, 43577.18 examples/s]
-Filter -> overall: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 396/396 [00:00<00:00, 41511.16 examples/s]
-Filter -> Patient Age:[19 - 35]: 100%|β–ˆ| 396/396 [00:00<00:00, 36106.70 examples
-Filter -> Patient Age:[35 - 65]: 100%|β–ˆ| 396/396 [00:00<00:00, 42604.70 examples
-Filter -> Patient Age:[65 - 100]: 100%|β–ˆ| 396/396 [00:00<00:00, 38818.00 example
+Filter -> overall: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 400/400 [00:00<00:00, 46542.61 examples/s]
+Flattening the indices: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:55<00:00, 18.09 examples/s]
+Flattening the indices: 100%|β–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:00<00:00, 549856.32 examples/s]
+Filter: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:00<00:00, 236378.72 examples/s]
+Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 396/396 [00:00<00:00, 1778.59 examples/s]
+Filter -> Patient Gender:M: 100%|β–ˆβ–ˆβ–ˆ| 396/396 [00:00<00:00, 42951.76 examples/s]
+Filter -> Patient Gender:F: 100%|β–ˆβ–ˆβ–ˆ| 396/396 [00:00<00:00, 42136.70 examples/s]
+Filter -> overall: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 396/396 [00:00<00:00, 44147.05 examples/s]
+Filter -> Patient Age:[19 - 35]: 100%|β–ˆ| 396/396 [00:00<00:00, 40585.08 examples
+Filter -> Patient Age:[35 - 65]: 100%|β–ˆ| 396/396 [00:00<00:00, 40974.55 examples
+Filter -> Patient Age:[65 - 100]: 100%|β–ˆ| 396/396 [00:00<00:00, 40960.40 example
 Filter -> Patient Age:[19 - 35]&Patient Gender:M: 100%|β–ˆ| 396/396 [00:00<00:00,
 Filter -> Patient Age:[19 - 35]&Patient Gender:F: 100%|β–ˆ| 396/396 [00:00<00:00,
 Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|β–ˆ| 396/396 [00:00<00:00,
 Filter -> Patient Age:[35 - 65]&Patient Gender:F: 100%|β–ˆ| 396/396 [00:00<00:00,
 Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|β–ˆ| 396/396 [00:00<00:00,
 Filter -> Patient Age:[65 - 100]&Patient Gender:F: 100%|β–ˆ| 396/396 [00:00<00:00,
-Filter -> overall: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 396/396 [00:00<00:00, 46483.39 examples/s]
-Flattening the indices: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:50<00:00, 19.81 examples/s]
-Flattening the indices: 100%|β–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:00<00:00, 556126.23 examples/s]
-Filter: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:00<00:00, 242669.75 examples/s]
-Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 383/383 [00:00<00:00, 1809.86 examples/s]
-Filter -> Patient Gender:M: 100%|β–ˆβ–ˆβ–ˆ| 383/383 [00:00<00:00, 39151.34 examples/s]
-Filter -> Patient Gender:F: 100%|β–ˆβ–ˆβ–ˆ| 383/383 [00:00<00:00, 43045.59 examples/s]
-Filter -> overall: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 383/383 [00:00<00:00, 45120.31 examples/s]
-Filter -> Patient Age:[19 - 35]: 100%|β–ˆ| 383/383 [00:00<00:00, 40864.35 examples
-Filter -> Patient Age:[35 - 65]: 100%|β–ˆ| 383/383 [00:00<00:00, 41867.61 examples
-Filter -> Patient Age:[65 - 100]: 100%|β–ˆ| 383/383 [00:00<00:00, 41341.80 example
+Filter -> overall: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 396/396 [00:00<00:00, 45915.42 examples/s]
+Flattening the indices: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:53<00:00, 18.54 examples/s]
+Flattening the indices: 100%|β–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:00<00:00, 558347.18 examples/s]
+Filter: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:00<00:00, 237785.82 examples/s]
+Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 383/383 [00:00<00:00, 1761.69 examples/s]
+Filter -> Patient Gender:M: 100%|β–ˆβ–ˆβ–ˆ| 383/383 [00:00<00:00, 42496.72 examples/s]
+Filter -> Patient Gender:F: 100%|β–ˆβ–ˆβ–ˆ| 383/383 [00:00<00:00, 41270.64 examples/s]
+Filter -> overall: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 383/383 [00:00<00:00, 44025.94 examples/s]
+Filter -> Patient Age:[19 - 35]: 100%|β–ˆ| 383/383 [00:00<00:00, 39874.36 examples
+Filter -> Patient Age:[35 - 65]: 100%|β–ˆ| 383/383 [00:00<00:00, 41116.42 examples
+Filter -> Patient Age:[65 - 100]: 100%|β–ˆ| 383/383 [00:00<00:00, 40240.94 example
 Filter -> Patient Age:[19 - 35]&Patient Gender:M: 100%|β–ˆ| 383/383 [00:00<00:00,
 Filter -> Patient Age:[19 - 35]&Patient Gender:F: 100%|β–ˆ| 383/383 [00:00<00:00,
 Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|β–ˆ| 383/383 [00:00<00:00,
 Filter -> Patient Age:[35 - 65]&Patient Gender:F: 100%|β–ˆ| 383/383 [00:00<00:00,
 Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|β–ˆ| 383/383 [00:00<00:00,
 Filter -> Patient Age:[65 - 100]&Patient Gender:F: 100%|β–ˆ| 383/383 [00:00<00:00,
-Filter -> overall: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 383/383 [00:00<00:00, 45036.82 examples/s]
-Flattening the indices: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:53<00:00, 18.72 examples/s]
-Flattening the indices: 100%|β–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:00<00:00, 552318.15 examples/s]
-Filter: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:00<00:00, 238217.98 examples/s]
-Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 411/411 [00:00<00:00, 1834.40 examples/s]
-Filter -> Patient Gender:M: 100%|β–ˆβ–ˆβ–ˆ| 411/411 [00:00<00:00, 41788.49 examples/s]
-Filter -> Patient Gender:F: 100%|β–ˆβ–ˆβ–ˆ| 411/411 [00:00<00:00, 43529.59 examples/s]
-Filter -> overall: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 411/411 [00:00<00:00, 46018.66 examples/s]
-Filter -> Patient Age:[19 - 35]: 100%|β–ˆ| 411/411 [00:00<00:00, 42057.65 examples
-Filter -> Patient Age:[35 - 65]: 100%|β–ˆ| 411/411 [00:00<00:00, 42661.33 examples
-Filter -> Patient Age:[65 - 100]: 100%|β–ˆ| 411/411 [00:00<00:00, 42489.93 example
+Filter -> overall: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 383/383 [00:00<00:00, 45243.58 examples/s]
+Flattening the indices: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:50<00:00, 19.64 examples/s]
+Flattening the indices: 100%|β–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:00<00:00, 549352.19 examples/s]
+Filter: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:00<00:00, 234475.85 examples/s]
+Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 411/411 [00:00<00:00, 1788.75 examples/s]
+Filter -> Patient Gender:M: 100%|β–ˆβ–ˆβ–ˆ| 411/411 [00:00<00:00, 43002.94 examples/s]
+Filter -> Patient Gender:F: 100%|β–ˆβ–ˆβ–ˆ| 411/411 [00:00<00:00, 42734.30 examples/s]
+Filter -> overall: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 411/411 [00:00<00:00, 44711.68 examples/s]
+Filter -> Patient Age:[19 - 35]: 100%|β–ˆ| 411/411 [00:00<00:00, 41308.83 examples
+Filter -> Patient Age:[35 - 65]: 100%|β–ˆ| 411/411 [00:00<00:00, 43833.98 examples
+Filter -> Patient Age:[65 - 100]: 100%|β–ˆ| 411/411 [00:00<00:00, 41575.84 example
 Filter -> Patient Age:[19 - 35]&Patient Gender:M: 100%|β–ˆ| 411/411 [00:00<00:00,
 Filter -> Patient Age:[19 - 35]&Patient Gender:F: 100%|β–ˆ| 411/411 [00:00<00:00,
 Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|β–ˆ| 411/411 [00:00<00:00,
 Filter -> Patient Age:[35 - 65]&Patient Gender:F: 100%|β–ˆ| 411/411 [00:00<00:00,
 Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|β–ˆ| 411/411 [00:00<00:00,
 Filter -> Patient Age:[65 - 100]&Patient Gender:F: 100%|β–ˆ| 411/411 [00:00<00:00,
-Filter -> overall: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 411/411 [00:00<00:00, 46849.09 examples/s]
+Filter -> overall: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 411/411 [00:00<00:00, 47578.35 examples/s]
 

CyclOps offers a package for documentation of the model through a model report. The ModelCardReport class is used to populate and generate the model report as an HTML file. The model report has the following sections:

@@ -660,13 +660,13 @@

Model Creation

-
+
-
+
-
+
-
+
@@ -852,61 +852,61 @@

Multilabel AUROC by Pathology and Age
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-

diff --git a/api/tutorials/nihcxr/cxr_classification.ipynb b/api/tutorials/nihcxr/cxr_classification.ipynb index 4d911746c..d6300e920 100644 --- a/api/tutorials/nihcxr/cxr_classification.ipynb +++ b/api/tutorials/nihcxr/cxr_classification.ipynb @@ -24,10 +24,10 @@ "id": "fc1eb72a", "metadata": { "execution": { - "iopub.execute_input": "2023-11-29T14:19:39.486256Z", - "iopub.status.busy": "2023-11-29T14:19:39.485752Z", - "iopub.status.idle": "2023-11-29T14:19:43.257026Z", - "shell.execute_reply": "2023-11-29T14:19:43.255828Z" + "iopub.execute_input": "2023-11-29T23:43:09.098901Z", + "iopub.status.busy": "2023-11-29T23:43:09.098263Z", + "iopub.status.idle": "2023-11-29T23:43:15.528569Z", + "shell.execute_reply": "2023-11-29T23:43:15.527877Z" } }, "outputs": [], @@ -71,10 +71,10 @@ "id": "25c2a16f", "metadata": { "execution": { - "iopub.execute_input": "2023-11-29T14:19:43.263220Z", - "iopub.status.busy": "2023-11-29T14:19:43.262879Z", - "iopub.status.idle": "2023-11-29T14:24:49.460488Z", - "shell.execute_reply": "2023-11-29T14:24:49.458514Z" + "iopub.execute_input": "2023-11-29T23:43:15.533776Z", + "iopub.status.busy": "2023-11-29T23:43:15.533439Z", + "iopub.status.idle": "2023-11-29T23:48:34.441186Z", + "shell.execute_reply": "2023-11-29T23:48:34.439253Z" } }, "outputs": [ @@ -91,14 +91,14 @@ "output_type": "stream", "text": [ "\r", - "Flattening the indices: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:53<00:00, 18.84 examples/s]\r", - "Flattening the indices: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:53<00:00, 18.84 examples/s]\r\n", + "Flattening the indices: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:52<00:00, 19.12 examples/s]\r", + "Flattening the indices: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:52<00:00, 19.12 examples/s]\r\n", "\r", "Flattening the indices: 0%| | 0/1000 [00:00 Patient Gender:M: 0%| | 0/400 [00:00 Patient Gender:M: 100%|β–ˆβ–ˆβ–ˆ| 400/400 [00:00<00:00, 43661.10 examples/s]\r\n" + "Filter -> Patient Gender:M: 100%|β–ˆβ–ˆβ–ˆ| 400/400 [00:00<00:00, 43326.23 examples/s]\r\n" ] }, { @@ -121,10 +121,7 @@ "text": [ "\r", "Filter -> Patient Gender:F: 0%| | 0/400 [00:00 Patient Gender:F: 100%|β–ˆβ–ˆβ–ˆ| 400/400 [00:00<00:00, 43702.05 examples/s]\r\n", - "\r", - "Filter -> overall: 0%| | 0/400 [00:00 overall: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 400/400 [00:00<00:00, 46045.71 examples/s]\r\n" + "Filter -> Patient Gender:F: 100%|β–ˆβ–ˆβ–ˆ| 400/400 [00:00<00:00, 35970.96 examples/s]\r\n" ] }, { @@ -132,8 +129,8 @@ "output_type": "stream", "text": [ "\r", - "Filter -> Patient Age:[19 - 35]: 0%| | 0/400 [00:00 Patient Age:[19 - 35]: 100%|β–ˆ| 400/400 [00:00<00:00, 41547.30 examples\r\n" + "Filter -> overall: 0%| | 0/400 [00:00 overall: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 400/400 [00:00<00:00, 45044.34 examples/s]\r\n" ] }, { @@ -141,10 +138,11 @@ "output_type": "stream", "text": [ "\r", - "Filter -> Patient Age:[35 - 65]: 0%| | 0/400 [00:00 Patient Age:[35 - 65]: 100%|β–ˆ| 400/400 [00:00<00:00, 42940.33 examples\r\n", + "Filter -> Patient Age:[19 - 35]: 0%| | 0/400 [00:00 Patient Age:[19 - 35]: 100%|β–ˆ| 400/400 [00:00<00:00, 41191.30 examples\r\n", "\r", - "Filter -> Patient Age:[65 - 100]: 0%| | 0/400 [00:00 Patient Age:[35 - 65]: 0%| | 0/400 [00:00 Patient Age:[35 - 65]: 100%|β–ˆ| 400/400 [00:00<00:00, 42204.71 examples\r\n" ] }, { @@ -152,40 +150,49 @@ "output_type": "stream", "text": [ "\r", - "Filter -> Patient Age:[65 - 100]: 100%|β–ˆ| 400/400 [00:00<00:00, 40465.05 example\r\n", + "Filter -> Patient Age:[65 - 100]: 0%| | 0/400 [00:00 Patient Age:[65 - 100]: 100%|β–ˆ| 400/400 [00:00<00:00, 41689.77 example\r\n", "\r", "Filter -> Patient Age:[19 - 35]&Patient Gender:M: 0%| | 0/400 [00:00 Patient Age:[19 - 35]&Patient Gender:M: 100%|β–ˆ| 400/400 [00:00<00:00, \r\n", - "\r", - "Filter -> Patient Age:[19 - 35]&Patient Gender:F: 0%| | 0/400 [00:00 Patient Age:[19 - 35]&Patient Gender:F: 100%|β–ˆ| 400/400 [00:00<00:00, \r\n" + "Filter -> Patient Age:[19 - 35]&Patient Gender:M: 100%|β–ˆ| 400/400 [00:00<00:00, \r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ + "\r", + "Filter -> Patient Age:[19 - 35]&Patient Gender:F: 0%| | 0/400 [00:00 Patient Age:[19 - 35]&Patient Gender:F: 100%|β–ˆ| 400/400 [00:00<00:00, \r\n", "\r", "Filter -> Patient Age:[35 - 65]&Patient Gender:M: 0%| | 0/400 [00:00 Patient Age:[35 - 65]&Patient Gender:M: 100%|β–ˆ| 400/400 [00:00<00:00, \r\n", "\r", - "Filter -> Patient Age:[35 - 65]&Patient Gender:F: 0%| | 0/400 [00:00 Patient Age:[35 - 65]&Patient Gender:F: 100%|β–ˆ| 400/400 [00:00<00:00, \r\n" + "Filter -> Patient Age:[35 - 65]&Patient Gender:F: 0%| | 0/400 [00:00 Patient Age:[35 - 65]&Patient Gender:F: 100%|β–ˆ| 400/400 [00:00<00:00, \r\n", "\r", "Filter -> Patient Age:[65 - 100]&Patient Gender:M: 0%| | 0/400 [00:00 Patient Age:[65 - 100]&Patient Gender:M: 100%|β–ˆ| 400/400 [00:00<00:00,\r\n", "\r", - "Filter -> Patient Age:[65 - 100]&Patient Gender:F: 0%| | 0/400 [00:00 Patient Age:[65 - 100]&Patient Gender:F: 0%| | 0/400 [00:00 Patient Age:[65 - 100]&Patient Gender:F: 100%|β–ˆ| 400/400 [00:00<00:00,\r\n", "\r", "Filter -> overall: 0%| | 0/400 [00:00 overall: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 400/400 [00:00<00:00, 46872.90 examples/s]\r\n" + "Filter -> overall: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 400/400 [00:00<00:00, 46542.61 examples/s]\r\n" ] }, { @@ -201,13 +208,7 @@ "output_type": "stream", "text": [ "\r", - "Flattening the indices: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:49<00:00, 20.05 examples/s]\r", - "Flattening the indices: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:49<00:00, 20.05 examples/s]\r\n", - "\r", - "Flattening the indices: 0%| | 0/1000 [00:00 Patient Gender:M: 0%| | 0/396 [00:00 Patient Gender:M: 100%|β–ˆβ–ˆβ–ˆ| 396/396 [00:00<00:00, 43594.34 examples/s]\r\n" + "Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 396/396 [00:00<00:00, 1811.14 examples/s]\r", + "Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 396/396 [00:00<00:00, 1778.59 examples/s]\r\n" ] }, { @@ -237,10 +241,10 @@ "output_type": "stream", "text": [ "\r", - "Filter -> Patient Gender:F: 0%| | 0/396 [00:00 Patient Gender:F: 100%|β–ˆβ–ˆβ–ˆ| 396/396 [00:00<00:00, 43577.18 examples/s]\r\n", + "Filter -> Patient Gender:M: 0%| | 0/396 [00:00 Patient Gender:M: 100%|β–ˆβ–ˆβ–ˆ| 396/396 [00:00<00:00, 42951.76 examples/s]\r\n", "\r", - "Filter -> overall: 0%| | 0/396 [00:00 Patient Gender:F: 0%| | 0/396 [00:00 overall: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 396/396 [00:00<00:00, 41511.16 examples/s]\r\n", + "Filter -> Patient Gender:F: 100%|β–ˆβ–ˆβ–ˆ| 396/396 [00:00<00:00, 42136.70 examples/s]\r\n", "\r", - "Filter -> Patient Age:[19 - 35]: 0%| | 0/396 [00:00 overall: 0%| | 0/396 [00:00 overall: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 396/396 [00:00<00:00, 44147.05 examples/s]\r\n" ] }, { @@ -258,10 +263,10 @@ "output_type": "stream", "text": [ "\r", - "Filter -> Patient Age:[19 - 35]: 100%|β–ˆ| 396/396 [00:00<00:00, 36106.70 examples\r\n", + "Filter -> Patient Age:[19 - 35]: 0%| | 0/396 [00:00 Patient Age:[19 - 35]: 100%|β–ˆ| 396/396 [00:00<00:00, 40585.08 examples\r\n", "\r", - "Filter -> Patient Age:[35 - 65]: 0%| | 0/396 [00:00 Patient Age:[35 - 65]: 100%|β–ˆ| 396/396 [00:00<00:00, 42604.70 examples\r\n" + "Filter -> Patient Age:[35 - 65]: 0%| | 0/396 [00:00 Patient Age:[65 - 100]: 0%| | 0/396 [00:00 Patient Age:[65 - 100]: 100%|β–ˆ| 396/396 [00:00<00:00, 38818.00 example\r\n", - "\r", - "Filter -> Patient Age:[19 - 35]&Patient Gender:M: 0%| | 0/396 [00:00 Patient Age:[19 - 35]&Patient Gender:M: 100%|β–ˆ| 396/396 [00:00<00:00, \r\n", + "Filter -> Patient Age:[35 - 65]: 100%|β–ˆ| 396/396 [00:00<00:00, 40974.55 examples\r\n", "\r", - "Filter -> Patient Age:[19 - 35]&Patient Gender:F: 0%| | 0/396 [00:00 Patient Age:[65 - 100]: 0%| | 0/396 [00:00 Patient Age:[65 - 100]: 100%|β–ˆ| 396/396 [00:00<00:00, 40960.40 example\r\n" ] }, { @@ -283,13 +285,14 @@ "output_type": "stream", "text": [ "\r", + "Filter -> Patient Age:[19 - 35]&Patient Gender:M: 0%| | 0/396 [00:00 Patient Age:[19 - 35]&Patient Gender:M: 100%|β–ˆ| 396/396 [00:00<00:00, \r\n", + "\r", + "Filter -> Patient Age:[19 - 35]&Patient Gender:F: 0%| | 0/396 [00:00 Patient Age:[19 - 35]&Patient Gender:F: 100%|β–ˆ| 396/396 [00:00<00:00, \r\n", "\r", "Filter -> Patient Age:[35 - 65]&Patient Gender:M: 0%| | 0/396 [00:00 Patient Age:[35 - 65]&Patient Gender:M: 100%|β–ˆ| 396/396 [00:00<00:00, \r\n", - "\r", - "Filter -> Patient Age:[35 - 65]&Patient Gender:F: 0%| | 0/396 [00:00 Patient Age:[35 - 65]&Patient Gender:F: 100%|β–ˆ| 396/396 [00:00<00:00, \r\n" + "Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|β–ˆ| 396/396 [00:00<00:00, \r\n" ] }, { @@ -297,20 +300,24 @@ "output_type": "stream", "text": [ "\r", - "Filter -> Patient Age:[65 - 100]&Patient Gender:M: 0%| | 0/396 [00:00 Patient Age:[65 - 100]&Patient Gender:M: 100%|β–ˆ| 396/396 [00:00<00:00,\r\n", + "Filter -> Patient Age:[35 - 65]&Patient Gender:F: 0%| | 0/396 [00:00 Patient Age:[35 - 65]&Patient Gender:F: 100%|β–ˆ| 396/396 [00:00<00:00, \r\n", "\r", - "Filter -> Patient Age:[65 - 100]&Patient Gender:F: 0%| | 0/396 [00:00 Patient Age:[65 - 100]&Patient Gender:F: 100%|β–ˆ| 396/396 [00:00<00:00,\r\n" + "Filter -> Patient Age:[65 - 100]&Patient Gender:M: 0%| | 0/396 [00:00 Patient Age:[65 - 100]&Patient Gender:M: 100%|β–ˆ| 396/396 [00:00<00:00,\r\n", + "\r", + "Filter -> Patient Age:[65 - 100]&Patient Gender:F: 0%| | 0/396 [00:00 Patient Age:[65 - 100]&Patient Gender:F: 100%|β–ˆ| 396/396 [00:00<00:00,\r\n", "\r", "Filter -> overall: 0%| | 0/396 [00:00 overall: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 396/396 [00:00<00:00, 46483.39 examples/s]\r\n" + "Filter -> overall: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 396/396 [00:00<00:00, 45915.42 examples/s]\r\n" ] }, { @@ -326,21 +333,14 @@ "output_type": "stream", "text": [ "\r", - "Flattening the indices: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:50<00:00, 19.82 examples/s]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Flattening the indices: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:50<00:00, 19.81 examples/s]\r\n", + "Flattening the indices: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:53<00:00, 18.54 examples/s]\r", + "Flattening the indices: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:53<00:00, 18.54 examples/s]\r\n", "\r", "Flattening the indices: 0%| | 0/1000 [00:00 Patient Gender:M: 0%| | 0/383 [00:00 Patient Gender:M: 100%|β–ˆβ–ˆβ–ˆ| 383/383 [00:00<00:00, 39151.34 examples/s]\r\n", + "Filter -> Patient Gender:M: 100%|β–ˆβ–ˆβ–ˆ| 383/383 [00:00<00:00, 42496.72 examples/s]\r\n", "\r", - "Filter -> Patient Gender:F: 0%| | 0/383 [00:00 Patient Gender:F: 100%|β–ˆβ–ˆβ–ˆ| 383/383 [00:00<00:00, 43045.59 examples/s]\r\n" + "Filter -> Patient Gender:F: 0%| | 0/383 [00:00 Patient Gender:F: 100%|β–ˆβ–ˆβ–ˆ| 383/383 [00:00<00:00, 41270.64 examples/s]\r\n", "\r", "Filter -> overall: 0%| | 0/383 [00:00 overall: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 383/383 [00:00<00:00, 45120.31 examples/s]\r\n" + "Filter -> overall: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 383/383 [00:00<00:00, 44025.94 examples/s]\r\n" ] }, { @@ -381,10 +382,9 @@ "text": [ "\r", "Filter -> Patient Age:[19 - 35]: 0%| | 0/383 [00:00 Patient Age:[19 - 35]: 100%|β–ˆ| 383/383 [00:00<00:00, 40864.35 examples\r\n", + "Filter -> Patient Age:[19 - 35]: 100%|β–ˆ| 383/383 [00:00<00:00, 39874.36 examples\r\n", "\r", - "Filter -> Patient Age:[35 - 65]: 0%| | 0/383 [00:00 Patient Age:[35 - 65]: 100%|β–ˆ| 383/383 [00:00<00:00, 41867.61 examples\r\n" + "Filter -> Patient Age:[35 - 65]: 0%| | 0/383 [00:00 Patient Age:[65 - 100]: 0%| | 0/383 [00:00 Patient Age:[65 - 100]: 100%|β–ˆ| 383/383 [00:00<00:00, 41341.80 example\r\n", + "Filter -> Patient Age:[35 - 65]: 100%|β–ˆ| 383/383 [00:00<00:00, 41116.42 examples\r\n", "\r", - "Filter -> Patient Age:[19 - 35]&Patient Gender:M: 0%| | 0/383 [00:00 Patient Age:[19 - 35]&Patient Gender:M: 100%|β–ˆ| 383/383 [00:00<00:00, \r\n", + "Filter -> Patient Age:[65 - 100]: 0%| | 0/383 [00:00 Patient Age:[65 - 100]: 100%|β–ˆ| 383/383 [00:00<00:00, 40240.94 example\r\n", "\r", - "Filter -> Patient Age:[19 - 35]&Patient Gender:F: 0%| | 0/383 [00:00 Patient Age:[19 - 35]&Patient Gender:M: 0%| | 0/383 [00:00 Patient Age:[19 - 35]&Patient Gender:M: 100%|β–ˆ| 383/383 [00:00<00:00, \r\n", + "\r", + "Filter -> Patient Age:[19 - 35]&Patient Gender:F: 0%| | 0/383 [00:00 Patient Age:[19 - 35]&Patient Gender:F: 100%|β–ˆ| 383/383 [00:00<00:00, \r\n", "\r", "Filter -> Patient Age:[35 - 65]&Patient Gender:M: 0%| | 0/383 [00:00 Patient Age:[35 - 65]&Patient Gender:M: 100%|β–ˆ| 383/383 [00:00<00:00, \r\n", - "\r", - "Filter -> Patient Age:[35 - 65]&Patient Gender:F: 0%| | 0/383 [00:00 Patient Age:[35 - 65]&Patient Gender:M: 100%|β–ˆ| 383/383 [00:00<00:00, \r\n" ] }, { @@ -419,22 +419,23 @@ "output_type": "stream", "text": [ "\r", + "Filter -> Patient Age:[35 - 65]&Patient Gender:F: 0%| | 0/383 [00:00 Patient Age:[35 - 65]&Patient Gender:F: 100%|β–ˆ| 383/383 [00:00<00:00, \r\n", "\r", "Filter -> Patient Age:[65 - 100]&Patient Gender:M: 0%| | 0/383 [00:00 Patient Age:[65 - 100]&Patient Gender:M: 100%|β–ˆ| 383/383 [00:00<00:00,\r\n", - "\r", - "Filter -> Patient Age:[65 - 100]&Patient Gender:F: 0%| | 0/383 [00:00 Patient Age:[65 - 100]&Patient Gender:F: 100%|β–ˆ| 383/383 [00:00<00:00,\r\n" + "Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|β–ˆ| 383/383 [00:00<00:00,\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ + "\r", + "Filter -> Patient Age:[65 - 100]&Patient Gender:F: 0%| | 0/383 [00:00 Patient Age:[65 - 100]&Patient Gender:F: 100%|β–ˆ| 383/383 [00:00<00:00,\r\n", "\r", "Filter -> overall: 0%| | 0/383 [00:00 overall: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 383/383 [00:00<00:00, 45036.82 examples/s]\r\n" + "Filter -> overall: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 383/383 [00:00<00:00, 45243.58 examples/s]\r\n" ] }, { @@ -450,21 +451,20 @@ "output_type": "stream", "text": [ "\r", - "Flattening the indices: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:53<00:00, 18.73 examples/s]\r", - "Flattening the indices: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:53<00:00, 18.72 examples/s]\r\n", + "Flattening the indices: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:50<00:00, 19.65 examples/s]\r", + "Flattening the indices: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [00:50<00:00, 19.64 examples/s]\r\n", "\r", - "Flattening the indices: 0%| | 0/1000 [00:00 Patient Gender:M: 0%| | 0/411 [00:00 Patient Gender:M: 100%|β–ˆβ–ˆβ–ˆ| 411/411 [00:00<00:00, 41788.49 examples/s]\r\n", + "Filter -> Patient Gender:M: 0%| | 0/411 [00:00 Patient Gender:M: 100%|β–ˆβ–ˆβ–ˆ| 411/411 [00:00<00:00, 43002.94 examples/s]\r\n", "\r", "Filter -> Patient Gender:F: 0%| | 0/411 [00:00 Patient Gender:F: 100%|β–ˆβ–ˆβ–ˆ| 411/411 [00:00<00:00, 43529.59 examples/s]\r\n" + "Filter -> Patient Gender:F: 100%|β–ˆβ–ˆβ–ˆ| 411/411 [00:00<00:00, 42734.30 examples/s]\r\n" ] }, { @@ -497,7 +496,7 @@ "text": [ "\r", "Filter -> overall: 0%| | 0/411 [00:00 overall: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 411/411 [00:00<00:00, 46018.66 examples/s]\r\n" + "Filter -> overall: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 411/411 [00:00<00:00, 44711.68 examples/s]\r\n" ] }, { @@ -506,10 +505,10 @@ "text": [ "\r", "Filter -> Patient Age:[19 - 35]: 0%| | 0/411 [00:00 Patient Age:[19 - 35]: 100%|β–ˆ| 411/411 [00:00<00:00, 42057.65 examples\r\n", + "Filter -> Patient Age:[19 - 35]: 100%|β–ˆ| 411/411 [00:00<00:00, 41308.83 examples\r\n", "\r", "Filter -> Patient Age:[35 - 65]: 0%| | 0/411 [00:00 Patient Age:[35 - 65]: 100%|β–ˆ| 411/411 [00:00<00:00, 42661.33 examples\r\n" + "Filter -> Patient Age:[35 - 65]: 100%|β–ˆ| 411/411 [00:00<00:00, 43833.98 examples\r\n" ] }, { @@ -518,24 +517,23 @@ "text": [ "\r", "Filter -> Patient Age:[65 - 100]: 0%| | 0/411 [00:00 Patient Age:[65 - 100]: 100%|β–ˆ| 411/411 [00:00<00:00, 42489.93 example\r\n", + "Filter -> Patient Age:[65 - 100]: 100%|β–ˆ| 411/411 [00:00<00:00, 41575.84 example\r\n", "\r", - "Filter -> Patient Age:[19 - 35]&Patient Gender:M: 0%| | 0/411 [00:00 Patient Age:[19 - 35]&Patient Gender:M: 100%|β–ˆ| 411/411 [00:00<00:00, \r\n" + "Filter -> Patient Age:[19 - 35]&Patient Gender:M: 0%| | 0/411 [00:00 Patient Age:[19 - 35]&Patient Gender:M: 100%|β–ˆ| 411/411 [00:00<00:00, \r\n", "\r", "Filter -> Patient Age:[19 - 35]&Patient Gender:F: 0%| | 0/411 [00:00 Patient Age:[19 - 35]&Patient Gender:F: 100%|β–ˆ| 411/411 [00:00<00:00, \r\n", "\r", "Filter -> Patient Age:[35 - 65]&Patient Gender:M: 0%| | 0/411 [00:00 Patient Age:[35 - 65]&Patient Gender:M: 100%|β–ˆ| 411/411 [00:00<00:00, \r\n", - "\r", - "Filter -> Patient Age:[35 - 65]&Patient Gender:F: 0%| | 0/411 [00:00 Patient Age:[35 - 65]&Patient Gender:M: 100%|β–ˆ| 411/411 [00:00<00:00, \r\n" ] }, { @@ -543,12 +541,11 @@ "output_type": "stream", "text": [ "\r", + "Filter -> Patient Age:[35 - 65]&Patient Gender:F: 0%| | 0/411 [00:00 Patient Age:[35 - 65]&Patient Gender:F: 100%|β–ˆ| 411/411 [00:00<00:00, \r\n", "\r", "Filter -> Patient Age:[65 - 100]&Patient Gender:M: 0%| | 0/411 [00:00 Patient Age:[65 - 100]&Patient Gender:M: 100%|β–ˆ| 411/411 [00:00<00:00,\r\n", - "\r", - "Filter -> Patient Age:[65 - 100]&Patient Gender:F: 0%| | 0/411 [00:00 Patient Age:[65 - 100]&Patient Gender:M: 100%|β–ˆ| 411/411 [00:00<00:00,\r\n" ] }, { @@ -556,10 +553,11 @@ "output_type": "stream", "text": [ "\r", + "Filter -> Patient Age:[65 - 100]&Patient Gender:F: 0%| | 0/411 [00:00 Patient Age:[65 - 100]&Patient Gender:F: 100%|β–ˆ| 411/411 [00:00<00:00,\r\n", "\r", "Filter -> overall: 0%| | 0/411 [00:00 overall: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 411/411 [00:00<00:00, 46849.09 examples/s]\r\n" + "Filter -> overall: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 411/411 [00:00<00:00, 47578.35 examples/s]\r\n" ] } ], @@ -607,10 +605,10 @@ "id": "03edf1c0", "metadata": { "execution": { - "iopub.execute_input": "2023-11-29T14:24:49.468013Z", - "iopub.status.busy": "2023-11-29T14:24:49.467419Z", - "iopub.status.idle": "2023-11-29T14:24:49.476449Z", - "shell.execute_reply": "2023-11-29T14:24:49.474701Z" + "iopub.execute_input": "2023-11-29T23:48:34.449090Z", + "iopub.status.busy": "2023-11-29T23:48:34.448521Z", + "iopub.status.idle": "2023-11-29T23:48:34.457315Z", + "shell.execute_reply": "2023-11-29T23:48:34.455589Z" } }, "outputs": [], @@ -632,10 +630,10 @@ "id": "6514120e", "metadata": { "execution": { - "iopub.execute_input": "2023-11-29T14:24:49.485734Z", - "iopub.status.busy": "2023-11-29T14:24:49.485220Z", - "iopub.status.idle": "2023-11-29T14:24:52.809542Z", - "shell.execute_reply": "2023-11-29T14:24:52.808643Z" + "iopub.execute_input": "2023-11-29T23:48:34.464249Z", + "iopub.status.busy": "2023-11-29T23:48:34.463627Z", + "iopub.status.idle": "2023-11-29T23:48:37.800142Z", + "shell.execute_reply": "2023-11-29T23:48:37.799474Z" } }, "outputs": [], @@ -679,17 +677,17 @@ "id": "5f624ed4", "metadata": { "execution": { - "iopub.execute_input": "2023-11-29T14:24:52.817523Z", - "iopub.status.busy": "2023-11-29T14:24:52.817314Z", - "iopub.status.idle": "2023-11-29T14:25:06.273155Z", - "shell.execute_reply": "2023-11-29T14:25:06.272503Z" + "iopub.execute_input": "2023-11-29T23:48:37.808659Z", + "iopub.status.busy": "2023-11-29T23:48:37.808286Z", + "iopub.status.idle": "2023-11-29T23:48:51.427047Z", + "shell.execute_reply": "2023-11-29T23:48:51.426393Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f811edb627af44ecbe9a07e16f8dde85", + "model_id": "01d328de08234bd3931eac6a5e4a4653", "version_major": 2, "version_minor": 0 }, @@ -703,7 +701,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b5b09288a3fd435b9cec7232658831f2", + "model_id": "9cdfd76e670f48c18ec7b2af10b452d4", "version_major": 2, "version_minor": 0 }, @@ -763,17 +761,17 @@ "id": "bff27cc1", "metadata": { "execution": { - "iopub.execute_input": "2023-11-29T14:25:06.281965Z", - "iopub.status.busy": "2023-11-29T14:25:06.281627Z", - "iopub.status.idle": "2023-11-29T14:25:06.497817Z", - "shell.execute_reply": "2023-11-29T14:25:06.497116Z" + "iopub.execute_input": "2023-11-29T23:48:51.435548Z", + "iopub.status.busy": "2023-11-29T23:48:51.435212Z", + "iopub.status.idle": "2023-11-29T23:48:51.668034Z", + "shell.execute_reply": "2023-11-29T23:48:51.667293Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a82c4f3c393844ecac905b2da6cbea66", + "model_id": "468d2ba3481f4e59af49e95442b45e8d", "version_major": 2, "version_minor": 0 }, @@ -787,7 +785,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "554333fb244c474ebdc21e8f9ffc4089", + "model_id": "6e62a1b643964824badc574ff7516cce", "version_major": 2, "version_minor": 0 }, @@ -801,7 +799,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a0c3d710533e4604963a8a5af0b05732", + "model_id": "ecb0b9b2a62e4120ac8855a19ac715ff", "version_major": 2, "version_minor": 0 }, @@ -921,17 +919,17 @@ "id": "8c38ef9e", "metadata": { "execution": { - "iopub.execute_input": "2023-11-29T14:25:06.503003Z", - "iopub.status.busy": "2023-11-29T14:25:06.502678Z", - "iopub.status.idle": "2023-11-29T14:25:07.012012Z", - "shell.execute_reply": "2023-11-29T14:25:07.011100Z" + "iopub.execute_input": "2023-11-29T23:48:51.673976Z", + "iopub.status.busy": "2023-11-29T23:48:51.673779Z", + "iopub.status.idle": "2023-11-29T23:48:52.155992Z", + "shell.execute_reply": "2023-11-29T23:48:52.155270Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0bba15c1acf6473fa5dbf7f8521a7379", + "model_id": "01917e6fc20e4a09b2b58563b9317767", "version_major": 2, "version_minor": 0 }, @@ -945,7 +943,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "874155c23c4a4050bfa745395123a1f4", + "model_id": "f6734f9d26094d8ba38dc9d2d4b36f02", "version_major": 2, "version_minor": 0 }, @@ -959,7 +957,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a6e9dc371a834ce9ad3c60fff0cf4b90", + "model_id": "c3b4998fb4fc4dab8cec2b8043dacccc", "version_major": 2, "version_minor": 0 }, @@ -973,7 +971,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bb33d05da2784c22baa6f1bce352dc03", + "model_id": "c84de320ab244e32a573edefee6a5439", "version_major": 2, "version_minor": 0 }, @@ -987,7 +985,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "34ab22f041d04895a710f19fbc3a15ae", + "model_id": "bee59d970be84773819853dc9ceeddf2", "version_major": 2, "version_minor": 0 }, @@ -1001,7 +999,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "52d2b5c6498a44acbf3595ab38bd5ff2", + "model_id": "4464f951cdcd471dbe37fb483580ebcc", "version_major": 2, "version_minor": 0 }, @@ -1015,7 +1013,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cba3be76cb184cc1b3af35e0cd5f5aca", + "model_id": "2cd7a2e377ed4983a64152d9407ba7b9", "version_major": 2, "version_minor": 0 }, @@ -1029,7 +1027,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9dbee1da760144748e8a3b44f36aa497", + "model_id": "9c241b981a7548ce87b283886cd42428", "version_major": 2, "version_minor": 0 }, @@ -1043,7 +1041,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bdc02af1ad4f4a0f99b27e03b1a975a7", + "model_id": "b396ab1fb636440480dffde19b6e8b8e", "version_major": 2, "version_minor": 0 }, @@ -1057,7 +1055,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fc8c00c512884445886e9c54558e7af3", + "model_id": "39c0e5502eed4e4a8b3db90a80b9c966", "version_major": 2, "version_minor": 0 }, @@ -1120,10 +1118,10 @@ "id": "3e674b7a", "metadata": { "execution": { - "iopub.execute_input": "2023-11-29T14:25:07.016813Z", - "iopub.status.busy": "2023-11-29T14:25:07.016612Z", - "iopub.status.idle": "2023-11-29T14:25:07.257678Z", - "shell.execute_reply": "2023-11-29T14:25:07.257186Z" + "iopub.execute_input": "2023-11-29T23:48:52.160498Z", + "iopub.status.busy": "2023-11-29T23:48:52.160297Z", + "iopub.status.idle": "2023-11-29T23:48:52.386769Z", + "shell.execute_reply": "2023-11-29T23:48:52.386109Z" } }, "outputs": [ @@ -2020,9 +2018,9 @@ } }, "text/html": [ - "
+
@@ -671,49 +671,49 @@

Example 4. Sensitivity test experiment with different clinical shifts
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -758,7 +758,7 @@

Example 5. Rolling window experiment with synthetic timestamps using biweekl

diff --git a/api/tutorials/nihcxr/monitor_api.ipynb b/api/tutorials/nihcxr/monitor_api.ipynb index 04022a94f..246cf75b4 100644 --- a/api/tutorials/nihcxr/monitor_api.ipynb +++ b/api/tutorials/nihcxr/monitor_api.ipynb @@ -22,17 +22,17 @@ "id": "8aa3302d", "metadata": { "execution": { - "iopub.execute_input": "2023-11-29T14:25:12.779399Z", - "iopub.status.busy": "2023-11-29T14:25:12.778888Z", - "iopub.status.idle": "2023-11-29T14:25:19.946442Z", - "shell.execute_reply": "2023-11-29T14:25:19.944951Z" + "iopub.execute_input": "2023-11-29T23:48:57.672997Z", + "iopub.status.busy": "2023-11-29T23:48:57.672388Z", + "iopub.status.idle": "2023-11-29T23:49:05.384557Z", + "shell.execute_reply": "2023-11-29T23:49:05.383922Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 1, @@ -79,17 +79,17 @@ "id": "e11920db", "metadata": { "execution": { - "iopub.execute_input": "2023-11-29T14:25:19.952473Z", - "iopub.status.busy": "2023-11-29T14:25:19.951950Z", - "iopub.status.idle": "2023-11-29T14:25:20.567971Z", - "shell.execute_reply": "2023-11-29T14:25:20.566008Z" + "iopub.execute_input": "2023-11-29T23:49:05.389863Z", + "iopub.status.busy": "2023-11-29T23:49:05.389598Z", + "iopub.status.idle": "2023-11-29T23:49:06.015795Z", + "shell.execute_reply": "2023-11-29T23:49:06.014810Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4aaf8865f8c846af8d5ec01f80fd10aa", + "model_id": "f4e238149eed4353900bee379f9b7f2e", "version_major": 2, "version_minor": 0 }, @@ -145,10 +145,10 @@ "id": "54a3523a", "metadata": { "execution": { - "iopub.execute_input": "2023-11-29T14:25:20.574311Z", - "iopub.status.busy": "2023-11-29T14:25:20.573841Z", - "iopub.status.idle": "2023-11-29T14:25:31.022245Z", - "shell.execute_reply": "2023-11-29T14:25:31.021585Z" + "iopub.execute_input": "2023-11-29T23:49:06.019602Z", + "iopub.status.busy": "2023-11-29T23:49:06.019306Z", + "iopub.status.idle": "2023-11-29T23:49:16.636671Z", + "shell.execute_reply": "2023-11-29T23:49:16.636025Z" } }, "outputs": [ @@ -213,10 +213,10 @@ "id": "40b5a90f", "metadata": { "execution": { - "iopub.execute_input": "2023-11-29T14:25:31.028126Z", - "iopub.status.busy": "2023-11-29T14:25:31.027743Z", - "iopub.status.idle": "2023-11-29T14:25:37.698738Z", - "shell.execute_reply": "2023-11-29T14:25:37.698079Z" + "iopub.execute_input": "2023-11-29T23:49:16.642278Z", + "iopub.status.busy": "2023-11-29T23:49:16.642077Z", + "iopub.status.idle": "2023-11-29T23:49:23.458499Z", + "shell.execute_reply": "2023-11-29T23:49:23.457862Z" } }, "outputs": [ @@ -271,17 +271,17 @@ "id": "9ba03fac", "metadata": { "execution": { - "iopub.execute_input": "2023-11-29T14:25:37.704546Z", - "iopub.status.busy": "2023-11-29T14:25:37.704182Z", - "iopub.status.idle": "2023-11-29T14:25:52.961213Z", - "shell.execute_reply": "2023-11-29T14:25:52.960502Z" + "iopub.execute_input": "2023-11-29T23:49:23.464486Z", + "iopub.status.busy": "2023-11-29T23:49:23.464108Z", + "iopub.status.idle": "2023-11-29T23:49:38.717848Z", + "shell.execute_reply": "2023-11-29T23:49:38.717197Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9c63d4fa446844049a8f6d16a0213282", + "model_id": "ac6035f1bae84c7dbf86dda7129f3d68", "version_major": 2, "version_minor": 0 }, @@ -295,7 +295,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b79e713cc0de453fbf98c3402270d1c9", + "model_id": "0b703c70a0f7497a814126a55464b5f3", "version_major": 2, "version_minor": 0 }, @@ -309,7 +309,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d4052ebfbe6741dcb04518df0335c269", + "model_id": "f4b2015a78bf4ca29856b27b53d9cc78", "version_major": 2, "version_minor": 0 }, @@ -323,7 +323,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cfd771536a3041518785e7aab8791e7a", + "model_id": "72eabf60591c4f4990a41bd56c9a1254", "version_major": 2, "version_minor": 0 }, @@ -337,7 +337,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ec7bef0e21a74ab9bea2b109cf91eeaa", + "model_id": "8452e7a5bba1455bb329be7a76ca0a34", "version_major": 2, "version_minor": 0 }, @@ -351,7 +351,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b63612fef4c5466782921d395912a7ad", + "model_id": "77aa3920eaab4e5497146d27f115f27d", "version_major": 2, "version_minor": 0 }, @@ -365,7 +365,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "53d7baae728744daa1d6f69152b22e0a", + "model_id": "e746b71613924f3c9d9896443ce27f85", "version_major": 2, "version_minor": 0 }, @@ -379,7 +379,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7e4f02baf2ed4e6c9daf4ae4b39d46d6", + "model_id": "2ddeb09e511c4c8fbc3496b7002a1a3a", "version_major": 2, "version_minor": 0 }, @@ -456,10 +456,10 @@ "id": "77e4b383", "metadata": { "execution": { - "iopub.execute_input": "2023-11-29T14:25:52.966489Z", - "iopub.status.busy": "2023-11-29T14:25:52.966292Z", - "iopub.status.idle": "2023-11-29T14:25:54.831182Z", - "shell.execute_reply": "2023-11-29T14:25:54.830527Z" + "iopub.execute_input": "2023-11-29T23:49:38.724447Z", + "iopub.status.busy": "2023-11-29T23:49:38.724248Z", + "iopub.status.idle": "2023-11-29T23:49:40.690545Z", + "shell.execute_reply": "2023-11-29T23:49:40.689924Z" }, "tags": [] }, @@ -518,23 +518,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0cf967a6f5e84d248fb97873e37c7ab6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0f17e24ba628450796ec539b34dcc1f3": { + "012dd04f9f084e64b3025dee6b5c39ae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -587,51 +571,30 @@ "width": null } }, - "122ee0dc75344bc698a2992c71753cee": { + "0322e5e8465c45aeab7d751656acd6cc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3f7b03a1b1cd4e21b168f6f29cc78876", - "max": 25596.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0cf967a6f5e84d248fb97873e37c7ab6", + "layout": "IPY_MODEL_3e4c147ac60b4f0aa6d185ee76eee3db", + "placeholder": "​", + "style": "IPY_MODEL_5c0ef1892dec4ad6be175c26845e5560", "tabbable": null, "tooltip": null, - "value": 25596.0 - } - }, - "16d08e51e0534f1b8744a22dc3a8c815": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "Filter (num_proc=6): 100%" } }, - "1da746076a0443239319296e9d43b5de": { + "044f5d7f52b242fb872b53fd976b16a9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -684,7 +647,23 @@ "width": null } }, - "20d977cb7bca4ecaa644d16ed4e43c9c": { + "04767503f4bd4293a85b85095e5017f9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "055305dd67ae4d7da8b386b7ae4749e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -737,25 +716,23 @@ "width": null } }, - "22051ab483e9442fb7b470ee956656fc": { + "05d4216172fc4468b04a711accad2c4f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "23dd0f261a5249deb3d5ba9cf786caf1": { + "09dfedacdd3140caa00d1ebb85a8727a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -770,38 +747,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c65610a2bbb041688ec0bbc8ea2ddc7f", + "layout": "IPY_MODEL_43c29759e9d34dcc88bae6b3f0cf3444", "placeholder": "​", - "style": "IPY_MODEL_c8270a981ef54ffc81b11cfe985ea69a", + "style": "IPY_MODEL_d97776d00853437eba5d0905ec92a3fb", "tabbable": null, "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 63625.71 examples/s]" + "value": "Filter (num_proc=6): 100%" } }, - "26017a2f3200438ca789646f307590fe": { + "0b703c70a0f7497a814126a55464b5f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e364f5298816479793c26519efdf829f", - "placeholder": "​", - "style": "IPY_MODEL_b85108ac82664e63842ae006552261ba", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0322e5e8465c45aeab7d751656acd6cc", + "IPY_MODEL_d1b9d9492a864dba8a876b6fc745d546", + "IPY_MODEL_f10a8e26b35f4c218f3bda4b709f5f49" + ], + "layout": "IPY_MODEL_0c455ccb2f2c480196446ab5a3cf42c3", "tabbable": null, - "tooltip": null, - "value": "Filter (num_proc=6): 100%" + "tooltip": null } }, - "28c3141532c5434cb6a55c009d3af9dc": { + "0c455ccb2f2c480196446ab5a3cf42c3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -854,7 +832,23 @@ "width": null } }, - "2ddfc1d747134aaca40cdc071279da46": { + "0faf230964f94960809691745aa29adb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1074f625c1534d2b8abefa18c6e61e3f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -907,7 +901,43 @@ "width": null } }, - "31b76322047147f09dac6433ead3d4ba": { + "11c4960e0f9f4ca4835759c54d656d8b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "16957735d48a4fa7afc602734619816b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "199207cd95714a969f4c60b2ce1563ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -960,7 +990,25 @@ "width": null } }, - "33b2b6ba0869489cb57dbfeaf7343d58": { + "1ab37540d2d54d95a250b769da32d4a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "235881a4e9f44b70bbe8a48e72dbb6b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1013,30 +1061,7 @@ "width": null } }, - "33ec99614f56404d9e8b5dd3013eae6e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_37ec88b712d14800be313c8f28895f10", - "placeholder": "​", - "style": "IPY_MODEL_4eeecd6935074ea4b6e13e35e01f78df", - "tabbable": null, - "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 61395.99 examples/s]" - } - }, - "340686c947a64e25b3f438fef9c52c96": { + "2593a958032f4cb8b6dc4860a17af13f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1089,7 +1114,7 @@ "width": null } }, - "37ec88b712d14800be313c8f28895f10": { + "25d90d8141d440699a19e1de9844ff58": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1142,7 +1167,33 @@ "width": null } }, - "3b26d165416a420293db058dc23aa994": { + "25fa7370f072484d8c20459efaeef2fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bc03633437d64785bc42c90d264c4a0b", + "max": 25596.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_efc4c433a4274850b0ae6f79076d51ea", + "tabbable": null, + "tooltip": null, + "value": 25596.0 + } + }, + "27465ba97f7b46569d5b6370cae16eb4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1195,7 +1246,7 @@ "width": null } }, - "3b739b5cd8f1493eb17103f8023ba3cb": { + "27615c57d1964ee3954b643577355082": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1248,30 +1299,7 @@ "width": null } }, - "3c332a82d8ed4af6b052e42f146f033a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c3d665871cba47c2aa8397f3d52f2755", - "placeholder": "​", - "style": "IPY_MODEL_8e62b44324254dc2accc460ff9d52851", - "tabbable": null, - "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 70235.91 examples/s]" - } - }, - "3f7b03a1b1cd4e21b168f6f29cc78876": { + "27fee31e3f474ccca0d9498275f43131": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1324,7 +1352,23 @@ "width": null } }, - "424c0f7911bd458f899858f2a021bb6c": { + "2af7e4ba5c5f45d288ca57434ac1ebe6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2b28df5490f4479aaf510d98ed6fbca0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1377,73 +1421,72 @@ "width": null } }, - "452f976eb3c04235b9aa579d5c5f9712": { + "2bde1dee07c245189d92a62fc6159a58": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9910449c1b874665b49bedfb908504f4", - "max": 25596.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a47fc36774f6455bb00142772335408b", + "layout": "IPY_MODEL_95774ba88b434c67ae36c372ed264b43", + "placeholder": "​", + "style": "IPY_MODEL_b87faf66e72947a89de32c10c6bbb531", "tabbable": null, "tooltip": null, - "value": 25596.0 + "value": " 25596/25596 [00:00<00:00, 66415.90 examples/s]" } }, - "4aaf8865f8c846af8d5ec01f80fd10aa": { + "2dc426150a4b43369bebcffd6ff12fc4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a3b20e16d9fe49588a2b84762c8ea2ed", - "IPY_MODEL_6fec54f2ca434dd5992b547ab6162d43", - "IPY_MODEL_7fa4571311434077b278a6e61559952a" - ], - "layout": "IPY_MODEL_79ebc0a1c8be43ff8cebe8c70458bdc8", - "tabbable": null, - "tooltip": null - } - }, - "4c0b0e800daa4ebc850d1eee6b948586": { - "model_module": "@jupyter-widgets/controls", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2ddeb09e511c4c8fbc3496b7002a1a3a": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_09dfedacdd3140caa00d1ebb85a8727a", + "IPY_MODEL_3bae34388d50487f8a4ef7065dd6eec3", + "IPY_MODEL_2bde1dee07c245189d92a62fc6159a58" + ], + "layout": "IPY_MODEL_e0ec70288edf4ad5ba6923c6ca1be108", + "tabbable": null, + "tooltip": null } }, - "4eeecd6935074ea4b6e13e35e01f78df": { + "2e3f7f4657a6413c8170b8eae742619a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1461,7 +1504,7 @@ "text_color": null } }, - "500d2cf4a30f4edd9d1ce8478f599ffa": { + "31394095733f4fbabdad95403d4e3141": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1476,15 +1519,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_340686c947a64e25b3f438fef9c52c96", + "layout": "IPY_MODEL_87fd3670685449cf8ad057dcb36b5fef", "placeholder": "​", - "style": "IPY_MODEL_bcdf119d01b2460692ac0c265f1b8429", + "style": "IPY_MODEL_2e3f7f4657a6413c8170b8eae742619a", "tabbable": null, "tooltip": null, "value": "Filter (num_proc=6): 100%" } }, - "5348d9f608b64f0b815225dce4899613": { + "3164a7aa0edf42718d45585614451955": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "31799e643a4c483193ba1598e97022e9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1537,70 +1598,77 @@ "width": null } }, - "539ff8e9e20d4c35b488ee693fa88b61": { + "34e2cf8f8cd44a5c8108545c5522f610": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "53d7baae728744daa1d6f69152b22e0a": { + "3a190c09183840b995ecfbc2b9afc7ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ba19fbc5e0e24c078318321067b8ee4c", - "IPY_MODEL_d4129e46f7ef44d586630906c1407036", - "IPY_MODEL_cc409689cd784b449f1d81cfa6959d35" - ], - "layout": "IPY_MODEL_3b739b5cd8f1493eb17103f8023ba3cb", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ce3e2e6c02654dc780c9c900e46963f0", + "max": 25596.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5494ef2d8d3943c086b0ec2d404c1443", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 25596.0 } }, - "56168e5284c34f9d92e305871fbb7e13": { + "3bae34388d50487f8a4ef7065dd6eec3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e4e524d81d4a40e5b6c6a83a03f77ae9", - "placeholder": "​", - "style": "IPY_MODEL_6cea61cc4f444324ad6766676e1a11d4", + "layout": "IPY_MODEL_87068a232eae43e190c451340a140814", + "max": 25596.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0faf230964f94960809691745aa29adb", "tabbable": null, "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 60051.42 examples/s]" + "value": 25596.0 } }, - "5698f48039a04d05b06b58e6bed31b49": { + "3e4c147ac60b4f0aa6d185ee76eee3db": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1653,23 +1721,7 @@ "width": null } }, - "5dcdf2976dea4638985c260e8b5dc3b5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "5fb45d113f834bb2b07d4f7ad8659efd": { + "3e80c9049a8441c19b9e107e05ada835": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1722,7 +1774,25 @@ "width": null } }, - "60ace7a7382042f0b7102ee88ebd3179": { + "3eb0a7c63d9c4980be964945dfc06a75": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "42b7abdd2cf84ab8ac8ca0599b0e82bb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1775,33 +1845,7 @@ "width": null } }, - "64bba222615644ffad5c3cffd98b6419": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3b26d165416a420293db058dc23aa994", - "max": 25596.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5dcdf2976dea4638985c260e8b5dc3b5", - "tabbable": null, - "tooltip": null, - "value": 25596.0 - } - }, - "6a77dbd7c5bc4f76be4d47c76bdc20ac": { + "43c29759e9d34dcc88bae6b3f0cf3444": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1854,51 +1898,53 @@ "width": null } }, - "6cea61cc4f444324ad6766676e1a11d4": { + "4a7ce92c5bca4dceb82da59d802f897a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ed82ad717edf4453a635d81c375715f3", + "placeholder": "​", + "style": "IPY_MODEL_3eb0a7c63d9c4980be964945dfc06a75", + "tabbable": null, + "tooltip": null, + "value": "Filter (num_proc=6): 100%" } }, - "6fec54f2ca434dd5992b547ab6162d43": { + "4c1fd3b95a4640c8a666633188ab08a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6a77dbd7c5bc4f76be4d47c76bdc20ac", - "max": 25596.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e5a1b69d3b684b37846954104b72bb84", + "layout": "IPY_MODEL_012dd04f9f084e64b3025dee6b5c39ae", + "placeholder": "​", + "style": "IPY_MODEL_11c4960e0f9f4ca4835759c54d656d8b", "tabbable": null, "tooltip": null, - "value": 25596.0 + "value": " 25596/25596 [00:00<00:00, 62123.19 examples/s]" } }, - "755a751f8a3b4d40bb1f6b8599414213": { + "5494ef2d8d3943c086b0ec2d404c1443": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1914,7 +1960,7 @@ "description_width": "" } }, - "78d5c64ea7df43d8b00e5a49fb537114": { + "57fed41ad4e24e29a092db13b5269e9c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1967,107 +2013,69 @@ "width": null } }, - "79ebc0a1c8be43ff8cebe8c70458bdc8": { - "model_module": "@jupyter-widgets/base", + "5a13afc548c44c43ae28a5d766704d35": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7e4f02baf2ed4e6c9daf4ae4b39d46d6": { + "5ac96feca9614a36ae53d7eee77f2346": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9f595dd428fd4158a0087b373606da3d", - "IPY_MODEL_f05010b6b890473290e907b487d35c58", - "IPY_MODEL_dcb3d29970be45e8a450717bd3444795" - ], - "layout": "IPY_MODEL_c698a1b702d143d78daa31890cd43884", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ae58774b70bb4d4a944f4273f1f6b981", + "max": 25596.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_82faa9b576314a5e8a29750d15732d8a", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 25596.0 } }, - "7fa4571311434077b278a6e61559952a": { + "5c0ef1892dec4ad6be175c26845e5560": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5698f48039a04d05b06b58e6bed31b49", - "placeholder": "​", - "style": "IPY_MODEL_e966b0748c234c728ca95aaa28e599ca", - "tabbable": null, - "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 71068.92 examples/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7fedbfbe0ef34e31a29349ba54371c30": { + "5cfe1e3c51924ff08456180c65770674": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2120,60 +2128,89 @@ "width": null } }, - "81e175b579604b0dbd45064ee7ed69a2": { - "model_module": "@jupyter-widgets/base", + "5f42e7cd5c814a4c95abd71a0d413722": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5ffc78c28baa44749fde0652461d0445": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6f79a6f002a340a99f4d4861929d30a8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_31799e643a4c483193ba1598e97022e9", + "placeholder": "​", + "style": "IPY_MODEL_34e2cf8f8cd44a5c8108545c5522f610", + "tabbable": null, + "tooltip": null, + "value": "Filter (num_proc=6): 100%" + } + }, + "72a9d271eddd4dd2a77d85f2e256ba22": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_25d90d8141d440699a19e1de9844ff58", + "placeholder": "​", + "style": "IPY_MODEL_3164a7aa0edf42718d45585614451955", + "tabbable": null, + "tooltip": null, + "value": " 25596/25596 [00:00<00:00, 60065.51 examples/s]" } }, - "825766ddd2a24c48ab8698bcafb2fcf2": { + "72c75ccf616f45b0aeb93e845aa6701a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2226,30 +2263,31 @@ "width": null } }, - "84069ba0d7e44a9d87d8ae5a01eea9c1": { + "72eabf60591c4f4990a41bd56c9a1254": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_424c0f7911bd458f899858f2a021bb6c", - "placeholder": "​", - "style": "IPY_MODEL_16d08e51e0534f1b8744a22dc3a8c815", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_99ed8ca08ec443bd925ba234506579bc", + "IPY_MODEL_eff897b2462b440faf8397b7f24d107d", + "IPY_MODEL_cb608934c5cd4a6a8b98152569012b7e" + ], + "layout": "IPY_MODEL_2593a958032f4cb8b6dc4860a17af13f", "tabbable": null, - "tooltip": null, - "value": "Filter (num_proc=6): 100%" + "tooltip": null } }, - "861dd4aaf9b4435384b78a726940572e": { + "748218991dca4794a68bf07e2ca90ce0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2302,129 +2340,117 @@ "width": null } }, - "863f5be311d647fd9fe8eea3be81a257": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "879f896bb82348e296f1e2301bd9ee3a": { + "77aa3920eaab4e5497146d27f115f27d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_77bbb30d625e484383873a6e71514aa5", + "IPY_MODEL_a7ada6dd32c2462db3788a3459d66c70", + "IPY_MODEL_4c1fd3b95a4640c8a666633188ab08a6" + ], + "layout": "IPY_MODEL_8f2eaac799c74aee88574d4c37a53114", + "tabbable": null, + "tooltip": null } }, - "8930cf25c6bc4288a1aa214d7cb98e35": { + "77bbb30d625e484383873a6e71514aa5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_81e175b579604b0dbd45064ee7ed69a2", - "max": 25596.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_539ff8e9e20d4c35b488ee693fa88b61", + "layout": "IPY_MODEL_199207cd95714a969f4c60b2ce1563ce", + "placeholder": "​", + "style": "IPY_MODEL_c907044d41994e77b34fbab222387668", "tabbable": null, "tooltip": null, - "value": 25596.0 + "value": "Filter (num_proc=6): 100%" } }, - "8ae880df28ea4de1ae92657b43250273": { + "7f2c48c0a08647b7aa8e26b615ead552": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_33b2b6ba0869489cb57dbfeaf7343d58", - "max": 25596.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4c0b0e800daa4ebc850d1eee6b948586", + "layout": "IPY_MODEL_93db986d7d2c4067b3470a79141045f1", + "placeholder": "​", + "style": "IPY_MODEL_e45df4f25496440080420c86fbb3d5ff", "tabbable": null, "tooltip": null, - "value": 25596.0 + "value": " 25596/25596 [00:00<00:00, 65015.44 examples/s]" } }, - "8e62b44324254dc2accc460ff9d52851": { + "82faa9b576314a5e8a29750d15732d8a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "9015a5614a9d400aa2f7563025fa63b5": { + "8452e7a5bba1455bb329be7a76ca0a34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_31394095733f4fbabdad95403d4e3141", + "IPY_MODEL_25fa7370f072484d8c20459efaeef2fe", + "IPY_MODEL_eb87422c30ce405c8b1be54347b4b6a6" + ], + "layout": "IPY_MODEL_044f5d7f52b242fb872b53fd976b16a9", + "tabbable": null, + "tooltip": null } }, - "97ddb8456be94492b0689658e35f9e9e": { + "87068a232eae43e190c451340a140814": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2477,7 +2503,7 @@ "width": null } }, - "9910449c1b874665b49bedfb908504f4": { + "87fd3670685449cf8ad057dcb36b5fef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2530,49 +2556,7 @@ "width": null } }, - "9c63d4fa446844049a8f6d16a0213282": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_500d2cf4a30f4edd9d1ce8478f599ffa", - "IPY_MODEL_8930cf25c6bc4288a1aa214d7cb98e35", - "IPY_MODEL_56168e5284c34f9d92e305871fbb7e13" - ], - "layout": "IPY_MODEL_f0f89490606b4698b8820a3d17d667fd", - "tabbable": null, - "tooltip": null - } - }, - "9d21f19940424f42becfc385ca4614cb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9e50a980b7ef4559a22b263aa33b9c88": { + "8eefef3710e14e7e96b5f357f0d5ed23": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2625,213 +2609,238 @@ "width": null } }, - "9f595dd428fd4158a0087b373606da3d": { - "model_module": "@jupyter-widgets/controls", + "8f2eaac799c74aee88574d4c37a53114": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_28c3141532c5434cb6a55c009d3af9dc", - "placeholder": "​", - "style": "IPY_MODEL_dd4331bc24d744329b082825528fb412", - "tabbable": null, - "tooltip": null, - "value": "Filter (num_proc=6): 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a3b20e16d9fe49588a2b84762c8ea2ed": { + "9167bb1846fa4421902fa48d0ddf0c02": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0f17e24ba628450796ec539b34dcc1f3", - "placeholder": "​", - "style": "IPY_MODEL_9015a5614a9d400aa2f7563025fa63b5", + "layout": "IPY_MODEL_5cfe1e3c51924ff08456180c65770674", + "max": 25596.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fe423b394e72406593a2c943756e2d99", "tabbable": null, "tooltip": null, - "value": "Filter (num_proc=6): 100%" - } - }, - "a3f72e5d4df6405289485043a5042245": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a47fc36774f6455bb00142772335408b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": 25596.0 } }, - "a49171fb28b048e3a2b5b2a7a9236e6d": { - "model_module": "@jupyter-widgets/controls", + "93db986d7d2c4067b3470a79141045f1": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "af5f7310d8b14e6da12d9c9b6bb10aa8": { - "model_module": "@jupyter-widgets/controls", + "95774ba88b434c67ae36c372ed264b43": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b63612fef4c5466782921d395912a7ad": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c2e92a5a78484cccbbd9acba1d4a3a06", - "IPY_MODEL_64bba222615644ffad5c3cffd98b6419", - "IPY_MODEL_23dd0f261a5249deb3d5ba9cf786caf1" - ], - "layout": "IPY_MODEL_825766ddd2a24c48ab8698bcafb2fcf2", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b79e713cc0de453fbf98c3402270d1c9": { + "99ed8ca08ec443bd925ba234506579bc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c0c32a4836ff47ec8e7bd8e4447f5025", - "IPY_MODEL_8ae880df28ea4de1ae92657b43250273", - "IPY_MODEL_e903197d2356469eb7cd657a9ab8b58e" - ], - "layout": "IPY_MODEL_9e50a980b7ef4559a22b263aa33b9c88", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_748218991dca4794a68bf07e2ca90ce0", + "placeholder": "​", + "style": "IPY_MODEL_2dc426150a4b43369bebcffd6ff12fc4", "tabbable": null, - "tooltip": null - } - }, - "b85108ac82664e63842ae006552261ba": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null, + "value": "Filter (num_proc=6): 100%" } }, - "b9d4c84fbfa7419e9ebcdc33de3849a7": { + "9c54de1da1394b1ebe8aba6c46f5a4b4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2ddfc1d747134aaca40cdc071279da46", - "max": 25596.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_879f896bb82348e296f1e2301bd9ee3a", + "layout": "IPY_MODEL_27fee31e3f474ccca0d9498275f43131", + "placeholder": "​", + "style": "IPY_MODEL_16957735d48a4fa7afc602734619816b", "tabbable": null, "tooltip": null, - "value": 25596.0 + "value": " 25596/25596 [00:00<00:00, 67826.70 examples/s]" } }, - "ba19fbc5e0e24c078318321067b8ee4c": { + "a190344e731a4108970d8153d4dfacde": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2846,51 +2855,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5fb45d113f834bb2b07d4f7ad8659efd", + "layout": "IPY_MODEL_3e80c9049a8441c19b9e107e05ada835", "placeholder": "​", - "style": "IPY_MODEL_a3f72e5d4df6405289485043a5042245", + "style": "IPY_MODEL_5f42e7cd5c814a4c95abd71a0d413722", "tabbable": null, "tooltip": null, "value": "Filter (num_proc=6): 100%" } }, - "bcdf119d01b2460692ac0c265f1b8429": { + "a7ada6dd32c2462db3788a3459d66c70": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "bd597a0dbc53448c8fcfaffd5e5945f7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_57fed41ad4e24e29a092db13b5269e9c", + "max": 25596.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c3ee75ffa014479593bfd87f23fce8af", + "tabbable": null, + "tooltip": null, + "value": 25596.0 } }, - "c0c32a4836ff47ec8e7bd8e4447f5025": { + "ac15d5e6d2c345daa59959fd45a01ead": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2905,38 +2904,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d7630aaf7f9f4a32af402af292549016", + "layout": "IPY_MODEL_b21dcb5252a84ff4b9e3876bdf244f6b", "placeholder": "​", - "style": "IPY_MODEL_fd1a0d3d293d41dbb7c71308dde08841", + "style": "IPY_MODEL_c03360ca7950440085847588b69ef271", "tabbable": null, "tooltip": null, - "value": "Filter (num_proc=6): 100%" + "value": " 25596/25596 [00:00<00:00, 68463.64 examples/s]" } }, - "c2e92a5a78484cccbbd9acba1d4a3a06": { + "ac6035f1bae84c7dbf86dda7129f3d68": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1da746076a0443239319296e9d43b5de", - "placeholder": "​", - "style": "IPY_MODEL_863f5be311d647fd9fe8eea3be81a257", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4a7ce92c5bca4dceb82da59d802f897a", + "IPY_MODEL_c1d9d75bd42148feb2f02f40dfd7bdff", + "IPY_MODEL_7f2c48c0a08647b7aa8e26b615ead552" + ], + "layout": "IPY_MODEL_8eefef3710e14e7e96b5f357f0d5ed23", "tabbable": null, - "tooltip": null, - "value": "Filter (num_proc=6): 100%" + "tooltip": null } }, - "c3d665871cba47c2aa8397f3d52f2755": { + "ae58774b70bb4d4a944f4273f1f6b981": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2989,7 +2989,7 @@ "width": null } }, - "c65610a2bbb041688ec0bbc8ea2ddc7f": { + "b21dcb5252a84ff4b9e3876bdf244f6b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3042,7 +3042,25 @@ "width": null } }, - "c698a1b702d143d78daa31890cd43884": { + "b87faf66e72947a89de32c10c6bbb531": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bc03633437d64785bc42c90d264c4a0b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3095,7 +3113,7 @@ "width": null } }, - "c8270a981ef54ffc81b11cfe985ea69a": { + "c03360ca7950440085847588b69ef271": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3113,122 +3131,90 @@ "text_color": null } }, - "cc409689cd784b449f1d81cfa6959d35": { + "c1d9d75bd42148feb2f02f40dfd7bdff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_dbacb944ae564482bfb42399a3c60f65", - "placeholder": "​", - "style": "IPY_MODEL_22051ab483e9442fb7b470ee956656fc", + "layout": "IPY_MODEL_235881a4e9f44b70bbe8a48e72dbb6b4", + "max": 25596.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_04767503f4bd4293a85b85095e5017f9", "tabbable": null, "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 67294.25 examples/s]" + "value": 25596.0 } }, - "cce0cb05bded43e2b35fa9fe7acb9cd2": { + "c3ee75ffa014479593bfd87f23fce8af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "cfd771536a3041518785e7aab8791e7a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_84069ba0d7e44a9d87d8ae5a01eea9c1", - "IPY_MODEL_122ee0dc75344bc698a2992c71753cee", - "IPY_MODEL_e60602fc0a1449438ae96de0671fb08f" - ], - "layout": "IPY_MODEL_20d977cb7bca4ecaa644d16ed4e43c9c", - "tabbable": null, - "tooltip": null + "bar_color": null, + "description_width": "" } }, - "d4052ebfbe6741dcb04518df0335c269": { + "c907044d41994e77b34fbab222387668": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e83942c7ccc446f488509ceb43cc0eca", - "IPY_MODEL_b9d4c84fbfa7419e9ebcdc33de3849a7", - "IPY_MODEL_3c332a82d8ed4af6b052e42f146f033a" - ], - "layout": "IPY_MODEL_97ddb8456be94492b0689658e35f9e9e", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d4129e46f7ef44d586630906c1407036": { + "cb608934c5cd4a6a8b98152569012b7e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_60ace7a7382042f0b7102ee88ebd3179", - "max": 25596.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_755a751f8a3b4d40bb1f6b8599414213", + "layout": "IPY_MODEL_2b28df5490f4479aaf510d98ed6fbca0", + "placeholder": "​", + "style": "IPY_MODEL_d8f68869fcfd4ad29ebb975c9cba5b01", "tabbable": null, "tooltip": null, - "value": 25596.0 + "value": " 25596/25596 [00:00<00:00, 56822.87 examples/s]" } }, - "d7630aaf7f9f4a32af402af292549016": { + "ce3e2e6c02654dc780c9c900e46963f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3281,7 +3267,33 @@ "width": null } }, - "d902c7167641448491eb5894c9e174ec": { + "d1b9d9492a864dba8a876b6fc745d546": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_72c75ccf616f45b0aeb93e845aa6701a", + "max": 25596.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2af7e4ba5c5f45d288ca57434ac1ebe6", + "tabbable": null, + "tooltip": null, + "value": 25596.0 + } + }, + "d6ebdf49b22543898897f07f0a001d19": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3334,7 +3346,7 @@ "width": null } }, - "dbacb944ae564482bfb42399a3c60f65": { + "d7c4d913b76c47df94938c754634aa42": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3387,30 +3399,25 @@ "width": null } }, - "dcb3d29970be45e8a450717bd3444795": { + "d8f68869fcfd4ad29ebb975c9cba5b01": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7fedbfbe0ef34e31a29349ba54371c30", - "placeholder": "​", - "style": "IPY_MODEL_bd597a0dbc53448c8fcfaffd5e5945f7", - "tabbable": null, - "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 74506.63 examples/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "dd4331bc24d744329b082825528fb412": { + "d97776d00853437eba5d0905ec92a3fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3428,7 +3435,30 @@ "text_color": null } }, - "e364f5298816479793c26519efdf829f": { + "dd084943c94e4501b279711b0d105ba3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d7c4d913b76c47df94938c754634aa42", + "placeholder": "​", + "style": "IPY_MODEL_5ffc78c28baa44749fde0652461d0445", + "tabbable": null, + "tooltip": null, + "value": "Filter (num_proc=6): 100%" + } + }, + "e0ec70288edf4ad5ba6923c6ca1be108": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3481,7 +3511,72 @@ "width": null } }, - "e4e524d81d4a40e5b6c6a83a03f77ae9": { + "e45df4f25496440080420c86fbb3d5ff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e746b71613924f3c9d9896443ce27f85": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a190344e731a4108970d8153d4dfacde", + "IPY_MODEL_9167bb1846fa4421902fa48d0ddf0c02", + "IPY_MODEL_72a9d271eddd4dd2a77d85f2e256ba22" + ], + "layout": "IPY_MODEL_27465ba97f7b46569d5b6370cae16eb4", + "tabbable": null, + "tooltip": null + } + }, + "eb87422c30ce405c8b1be54347b4b6a6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d6ebdf49b22543898897f07f0a001d19", + "placeholder": "​", + "style": "IPY_MODEL_5a13afc548c44c43ae28a5d766704d35", + "tabbable": null, + "tooltip": null, + "value": " 25596/25596 [00:00<00:00, 57560.13 examples/s]" + } + }, + "ed82ad717edf4453a635d81c375715f3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3534,7 +3629,7 @@ "width": null } }, - "e5a1b69d3b684b37846954104b72bb84": { + "efc4c433a4274850b0ae6f79076d51ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3550,53 +3645,33 @@ "description_width": "" } }, - "e60602fc0a1449438ae96de0671fb08f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d902c7167641448491eb5894c9e174ec", - "placeholder": "​", - "style": "IPY_MODEL_af5f7310d8b14e6da12d9c9b6bb10aa8", - "tabbable": null, - "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 63127.90 examples/s]" - } - }, - "e83942c7ccc446f488509ceb43cc0eca": { + "eff897b2462b440faf8397b7f24d107d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_861dd4aaf9b4435384b78a726940572e", - "placeholder": "​", - "style": "IPY_MODEL_9d21f19940424f42becfc385ca4614cb", + "layout": "IPY_MODEL_055305dd67ae4d7da8b386b7ae4749e3", + "max": 25596.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_05d4216172fc4468b04a711accad2c4f", "tabbable": null, "tooltip": null, - "value": "Filter (num_proc=6): 100%" + "value": 25596.0 } }, - "e903197d2356469eb7cd657a9ab8b58e": { + "f10a8e26b35f4c218f3bda4b709f5f49": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3611,33 +3686,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_78d5c64ea7df43d8b00e5a49fb537114", + "layout": "IPY_MODEL_27615c57d1964ee3954b643577355082", "placeholder": "​", - "style": "IPY_MODEL_cce0cb05bded43e2b35fa9fe7acb9cd2", + "style": "IPY_MODEL_1ab37540d2d54d95a250b769da32d4a5", "tabbable": null, "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 71825.83 examples/s]" - } - }, - "e966b0748c234c728ca95aaa28e599ca": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 25596/25596 [00:00<00:00, 58492.75 examples/s]" } }, - "ec7bef0e21a74ab9bea2b109cf91eeaa": { + "f4b2015a78bf4ca29856b27b53d9cc78": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3652,110 +3709,53 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_26017a2f3200438ca789646f307590fe", - "IPY_MODEL_452f976eb3c04235b9aa579d5c5f9712", - "IPY_MODEL_33ec99614f56404d9e8b5dd3013eae6e" + "IPY_MODEL_6f79a6f002a340a99f4d4861929d30a8", + "IPY_MODEL_5ac96feca9614a36ae53d7eee77f2346", + "IPY_MODEL_ac15d5e6d2c345daa59959fd45a01ead" ], - "layout": "IPY_MODEL_5348d9f608b64f0b815225dce4899613", + "layout": "IPY_MODEL_1074f625c1534d2b8abefa18c6e61e3f", "tabbable": null, "tooltip": null } }, - "f05010b6b890473290e907b487d35c58": { + "f4e238149eed4353900bee379f9b7f2e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_31b76322047147f09dac6433ead3d4ba", - "max": 25596.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a49171fb28b048e3a2b5b2a7a9236e6d", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dd084943c94e4501b279711b0d105ba3", + "IPY_MODEL_3a190c09183840b995ecfbc2b9afc7ce", + "IPY_MODEL_9c54de1da1394b1ebe8aba6c46f5a4b4" + ], + "layout": "IPY_MODEL_42b7abdd2cf84ab8ac8ca0599b0e82bb", "tabbable": null, - "tooltip": null, - "value": 25596.0 - } - }, - "f0f89490606b4698b8820a3d17d667fd": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "tooltip": null } }, - "fd1a0d3d293d41dbb7c71308dde08841": { + "fe423b394e72406593a2c943756e2d99": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } } }, diff --git a/api/tutorials/nihcxr/nihcxr_report_periodic.html b/api/tutorials/nihcxr/nihcxr_report_periodic.html index 8fc347266..b1ec80291 100644 --- a/api/tutorials/nihcxr/nihcxr_report_periodic.html +++ b/api/tutorials/nihcxr/nihcxr_report_periodic.html @@ -6639,7 +6639,7 @@

Graphics

-
+
@@ -6647,7 +6647,7 @@

Graphics

-
+
@@ -6655,7 +6655,7 @@

Graphics

-
+
diff --git a/api/tutorials/synthea/length_of_stay_report_periodic.html b/api/tutorials/synthea/length_of_stay_report_periodic.html index ae032d4b6..7e1011736 100644 --- a/api/tutorials/synthea/length_of_stay_report_periodic.html +++ b/api/tutorials/synthea/length_of_stay_report_periodic.html @@ -679,7 +679,7 @@

A quick glance of your most import
- 0.89 + 0.93 @@ -712,7 +712,7 @@

A quick glance of your most import
- 0.87 + 0.89 @@ -745,7 +745,7 @@

A quick glance of your most import
- 0.81 + 1.0 @@ -778,11 +778,11 @@

A quick glance of your most import
- 0.43 + 0.91 - + @@ -811,7 +811,7 @@

A quick glance of your most import
- 0.82 + 0.95 @@ -1076,7 +1076,7 @@

Graphics

-
+
@@ -1084,7 +1084,7 @@

Graphics

-
+
@@ -1092,7 +1092,7 @@

Graphics

-
+
@@ -1100,7 +1100,7 @@

Graphics

-
+
@@ -1108,7 +1108,7 @@

Graphics

-
+
@@ -1190,7 +1190,7 @@

Quantitative Analysis

- 0.89 + 0.93 @@ -1223,7 +1223,7 @@

Quantitative Analysis

- 0.87 + 0.89 @@ -1256,7 +1256,7 @@

Quantitative Analysis

- 0.81 + 1.0 @@ -1289,11 +1289,11 @@

Quantitative Analysis

- 0.43 + 0.91 - + @@ -1322,7 +1322,7 @@

Quantitative Analysis

- 0.82 + 0.95 @@ -1354,7 +1354,7 @@

Graphics

-
+
@@ -1362,7 +1362,7 @@

Graphics

-
+
@@ -1370,7 +1370,7 @@

Graphics

-
+
@@ -1378,7 +1378,7 @@

Graphics

-
+
@@ -1432,7 +1432,7 @@

Graphics

-
+
@@ -1711,6 +1711,10 @@

Model Parameters

+
+

Eval_metric

+ logloss +
@@ -1721,6 +1725,10 @@

Model Parameters

+
+

Objective

+ binary:logistic +
@@ -1731,18 +1739,14 @@

Model Parameters

-
-

Gamma

- 0 -
-

Objective

- binary:logistic +

Learning_rate

+ 0.1
@@ -1754,23 +1758,23 @@

Objective

+
+

Gamma

+ 1 +
-
-

Eval_metric

- logloss -
-

Random_state

- 123 +

Enable_categorical

+ False
@@ -1782,11 +1786,19 @@

Random_state

+
+

N_estimators

+ 100 +
+
+

Missing

+ nan +
@@ -1802,19 +1814,11 @@

Random_state

-
-

Colsample_bytree

- 1 -
-
-

N_estimators

- 100 -
@@ -1840,10 +1844,6 @@

N_estimators

-
-

Seed

- 123 -
@@ -1855,22 +1855,26 @@

Seed

-

Max_depth

- 2 +

Min_child_weight

+ 3
+
+

Seed

+ 123 +
-

Reg_lambda

- 0 +

Colsample_bytree

+ 1
@@ -1882,10 +1886,6 @@

Reg_lambda

-
-

Missing

- nan -
@@ -1906,10 +1906,6 @@

Missing

-
-

Learning_rate

- 0.1 -
@@ -1921,8 +1917,8 @@

Learning_rate

-

Min_child_weight

- 3 +

Reg_lambda

+ 0
@@ -1939,14 +1935,18 @@

Min_child_weight

+
+

Max_depth

+ 5 +
-

Enable_categorical

- False +

Random_state

+ 123
@@ -2229,7 +2229,7 @@

Ethical Considerations

function generate_model_card_plot() { var model_card_plots = [] var overall_indices = [20, 21, 22, 23, 24] - var histories = JSON.parse("{\"0\": [\"0.8407079646017699\", \"1.0\", \"0.9535555373183686\", \"1.0\", \"1.0\"], \"1\": [\"0.9298245614035088\", \"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"2\": [\"0.7910447761194029\", \"0.5926933018663191\", \"0.7804670449245223\", \"0.7376407871492293\", \"0.5465348419641338\"], \"3\": [\"0.8548387096774194\", \"0.8153626474813961\", \"0.8514536200701625\", \"0.7768058779525989\", \"0.9854854312948707\"], \"4\": [\"0.9404607397793641\", \"0.8949636650610477\", \"0.906660291459166\", \"1.0\", \"1.0\"], \"5\": [\"0.8301886792452831\", \"0.8563736847647581\", \"0.8159982068421708\", \"0.8976179235519609\", \"1.0\"], \"6\": [\"0.8076923076923077\", \"0.7489210047899432\", \"0.8053678177629117\", \"0.8245493123311662\", \"0.8602189635308329\"], \"7\": [\"0.84\", \"0.754932693657288\", \"0.8060551802168078\", \"0.8583120562770775\", \"0.7654831866690714\"], \"8\": [\"0.8235294117647058\", \"0.8678531368225659\", \"0.7177282163127113\", \"0.5624705834178083\", \"0.5616873017920673\"], \"9\": [\"0.9507142857142857\", \"1.0\", \"0.9465364681982098\", \"1.0\", \"1.0\"], \"10\": [\"0.8833333333333333\", \"0.8134373089391121\", \"0.8094512573637288\", \"0.926398911190699\", \"0.8356058060491123\"], \"11\": [\"0.92\", \"0.985763050396293\", \"1.0\", \"0.9981546744973446\", \"0.9214991146376794\"], \"12\": [\"0.8961038961038961\", \"0.9053193773895977\", \"0.9347053929206671\", \"0.9982678399334953\", \"0.9423920940755381\"], \"13\": [\"0.9078947368421053\", \"0.9631849389365184\", \"0.9115969990336185\", \"1.0\", \"1.0\"], \"14\": [\"0.9655693144065237\", \"0.9338487311886668\", \"0.8562982565514443\", \"0.9169671708467616\", \"1.0\"], \"15\": [\"0.839622641509434\", \"0.9909832332361683\", \"0.8561460131501516\", \"0.9618850129643587\", \"0.906302716196539\"], \"16\": [\"0.9322033898305084\", \"0.9619683130407325\", \"0.90319102893862\", \"0.9550894165208688\", \"0.7316873930091807\"], \"17\": [\"0.8088235294117647\", \"0.801040203984305\", \"0.5784983418354932\", \"0.8580198138648689\", \"0.8461423924959066\"], \"18\": [\"0.8661417322834646\", \"0.7935975730984981\", \"0.7540499044764887\", \"0.7601284940848867\", \"0.7811671348977473\"], \"19\": [\"0.9498839009287925\", \"0.9962061190255244\", \"1.0\", \"1.0\", \"1.0\"], \"20\": [\"0.8628318584070797\", \"0.737794983624541\", \"0.9184235579351778\", \"0.926906430307438\", \"0.8918726769134402\"], \"21\": [\"0.9253731343283582\", \"0.8136738471845688\", \"0.7582821532532101\", \"0.8641482557796041\", \"0.8728445339677502\"], \"22\": [\"0.8551724137931035\", \"1.0\", \"0.8748691363088327\", \"0.7434526661116921\", \"0.807609405356592\"], \"23\": [\"0.8888888888888888\", \"0.8206604807347216\", \"0.9141701918855193\", \"0.738897020529353\", \"0.4267928290546515\"], \"24\": [\"0.9565346956151555\", \"0.8544008378981168\", \"0.8690954806184567\", \"0.8444433614751495\", \"0.8193378299658584\"]}"); + var histories = JSON.parse("{\"0\": [\"0.8898305084745762\", \"0.8503665091179831\", \"0.9297893524213725\", \"0.9968649240360706\", \"0.7822091484783841\"], \"1\": [\"0.9076923076923077\", \"1.0\", \"0.9509263047426283\", \"0.822297690478797\", \"0.8505985356131066\"], \"2\": [\"0.8939393939393939\", \"0.7693094653236543\", \"0.857554969295508\", \"0.8282108223025169\", \"0.9483171901689129\"], \"3\": [\"0.9007633587786259\", \"0.947750980693716\", \"1.0\", \"0.9782977085649905\", \"1.0\"], \"4\": [\"0.9763986013986015\", \"0.8799968936240172\", \"0.9899524971821883\", \"1.0\", \"1.0\"], \"5\": [\"0.8627450980392157\", \"0.8375093723886025\", \"0.669219656542432\", \"0.5774399949368754\", \"0.8513074631970157\"], \"6\": [\"0.9545454545454546\", \"0.9422570049130763\", \"0.8574708500081492\", \"0.6909954069345352\", \"0.638113357974244\"], \"7\": [\"0.7777777777777778\", \"0.6717003359337058\", \"0.7136402491180235\", \"0.7664181016107113\", \"0.8691103024576424\"], \"8\": [\"0.8571428571428571\", \"0.9190515536816062\", \"0.8958017802138195\", \"0.9032199382279366\", \"0.9743762460470176\"], \"9\": [\"0.9629629629629629\", \"0.8297611919690245\", \"0.8008443684149205\", \"0.8629042201151046\", \"1.0\"], \"10\": [\"0.890625\", \"1.0\", \"0.9848587671065657\", \"1.0\", \"1.0\"], \"11\": [\"0.9375\", \"0.9206221922549943\", \"0.9500162535923238\", \"0.8310571410227544\", \"0.780674650584581\"], \"12\": [\"0.8928571428571429\", \"1.0\", \"1.0\", \"1.0\", \"0.8773269912469804\"], \"13\": [\"0.9146341463414634\", \"0.9851122655596797\", \"0.9412701945324977\", \"0.892033287798631\", \"0.825499671513943\"], \"14\": [\"0.9724025974025974\", \"0.9336867901149665\", \"0.8990109038544556\", \"0.9758490692558033\", \"0.9082361030605376\"], \"15\": [\"0.8979591836734694\", \"0.8904362342089817\", \"1.0\", \"0.897424859655856\", \"1.0\"], \"16\": [\"0.9636363636363636\", \"1.0\", \"0.9874804701903391\", \"0.9369851224345842\", \"0.7753682688195168\"], \"17\": [\"0.8688524590163934\", \"0.6267373915643667\", \"0.6155239788832984\", \"0.8026722384348319\", \"0.8498116096512208\"], \"18\": [\"0.9137931034482759\", \"0.8075796411912217\", \"0.8178161462088959\", \"0.724906288361865\", \"0.7165394046442614\"], \"19\": [\"0.9709791758972087\", \"0.9442408675109836\", \"1.0\", \"1.0\", \"0.9855426996664309\"], \"20\": [\"0.8938053097345132\", \"0.87235241164168\", \"0.9502525766474152\", \"0.9891285897021805\", \"0.9325922357451697\"], \"21\": [\"0.9481481481481482\", \"1.0\", \"0.8271202175124691\", \"0.8487388093255679\", \"0.89054754569421\"], \"22\": [\"0.8827586206896552\", \"0.9187154413270038\", \"0.9592043988393847\", \"1.0\", \"1.0\"], \"23\": [\"0.9142857142857143\", \"0.7819232779227007\", \"0.8834517715341084\", \"0.9191318127346609\", \"0.9073776138358788\"], \"24\": [\"0.9724137931034482\", \"1.0\", \"0.9178292117210768\", \"1.0\", \"0.9490257063743417\"]}"); var thresholds = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\", \"19\": \"0.7\", \"20\": \"0.7\", \"21\": \"0.7\", \"22\": \"0.7\", \"23\": \"0.7\", \"24\": \"0.7\"}"); var timestamps = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"1\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"2\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"3\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"4\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"5\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"6\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"7\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"8\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"9\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"10\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"11\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"12\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"13\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"14\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"15\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"16\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"17\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"18\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"19\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"20\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"21\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"22\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"23\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"24\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"]}"); @@ -2510,10 +2510,10 @@

Ethical Considerations

} } var slices_all = JSON.parse("{\"0\": [\"metric:Accuracy\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"1\": [\"metric:Precision\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"2\": [\"metric:Recall\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"3\": [\"metric:F1 Score\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"4\": [\"metric:AUROC\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"5\": [\"metric:Accuracy\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"6\": [\"metric:Precision\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"7\": [\"metric:Recall\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"8\": [\"metric:F1 Score\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"9\": [\"metric:AUROC\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"10\": [\"metric:Accuracy\", \"gender:M\", \"age:overall_age\"], \"11\": [\"metric:Precision\", \"gender:M\", \"age:overall_age\"], \"12\": [\"metric:Recall\", \"gender:M\", \"age:overall_age\"], \"13\": [\"metric:F1 Score\", \"gender:M\", \"age:overall_age\"], \"14\": [\"metric:AUROC\", \"gender:M\", \"age:overall_age\"], \"15\": [\"metric:Accuracy\", \"gender:F\", \"age:overall_age\"], \"16\": [\"metric:Precision\", \"gender:F\", \"age:overall_age\"], \"17\": [\"metric:Recall\", \"gender:F\", \"age:overall_age\"], \"18\": [\"metric:F1 Score\", \"gender:F\", \"age:overall_age\"], \"19\": [\"metric:AUROC\", \"gender:F\", \"age:overall_age\"], \"20\": [\"metric:Accuracy\", \"age:overall_age\", \"gender:overall_gender\"], \"21\": [\"metric:Precision\", \"age:overall_age\", \"gender:overall_gender\"], \"22\": [\"metric:Recall\", \"age:overall_age\", \"gender:overall_gender\"], \"23\": [\"metric:F1 Score\", \"age:overall_age\", \"gender:overall_gender\"], \"24\": [\"metric:AUROC\", \"age:overall_age\", \"gender:overall_gender\"]}"); - var histories_all = JSON.parse("{\"0\": [\"0.8407079646017699\", \"1.0\", \"0.9535555373183686\", \"1.0\", \"1.0\"], \"1\": [\"0.9298245614035088\", \"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"2\": [\"0.7910447761194029\", \"0.5926933018663191\", \"0.7804670449245223\", \"0.7376407871492293\", \"0.5465348419641338\"], \"3\": [\"0.8548387096774194\", \"0.8153626474813961\", \"0.8514536200701625\", \"0.7768058779525989\", \"0.9854854312948707\"], \"4\": [\"0.9404607397793641\", \"0.8949636650610477\", \"0.906660291459166\", \"1.0\", \"1.0\"], \"5\": [\"0.8301886792452831\", \"0.8563736847647581\", \"0.8159982068421708\", \"0.8976179235519609\", \"1.0\"], \"6\": [\"0.8076923076923077\", \"0.7489210047899432\", \"0.8053678177629117\", \"0.8245493123311662\", \"0.8602189635308329\"], \"7\": [\"0.84\", \"0.754932693657288\", \"0.8060551802168078\", \"0.8583120562770775\", \"0.7654831866690714\"], \"8\": [\"0.8235294117647058\", \"0.8678531368225659\", \"0.7177282163127113\", \"0.5624705834178083\", \"0.5616873017920673\"], \"9\": [\"0.9507142857142857\", \"1.0\", \"0.9465364681982098\", \"1.0\", \"1.0\"], \"10\": [\"0.8833333333333333\", \"0.8134373089391121\", \"0.8094512573637288\", \"0.926398911190699\", \"0.8356058060491123\"], \"11\": [\"0.92\", \"0.985763050396293\", \"1.0\", \"0.9981546744973446\", \"0.9214991146376794\"], \"12\": [\"0.8961038961038961\", \"0.9053193773895977\", \"0.9347053929206671\", \"0.9982678399334953\", \"0.9423920940755381\"], \"13\": [\"0.9078947368421053\", \"0.9631849389365184\", \"0.9115969990336185\", \"1.0\", \"1.0\"], \"14\": [\"0.9655693144065237\", \"0.9338487311886668\", \"0.8562982565514443\", \"0.9169671708467616\", \"1.0\"], \"15\": [\"0.839622641509434\", \"0.9909832332361683\", \"0.8561460131501516\", \"0.9618850129643587\", \"0.906302716196539\"], \"16\": [\"0.9322033898305084\", \"0.9619683130407325\", \"0.90319102893862\", \"0.9550894165208688\", \"0.7316873930091807\"], \"17\": [\"0.8088235294117647\", \"0.801040203984305\", \"0.5784983418354932\", \"0.8580198138648689\", \"0.8461423924959066\"], \"18\": [\"0.8661417322834646\", \"0.7935975730984981\", \"0.7540499044764887\", \"0.7601284940848867\", \"0.7811671348977473\"], \"19\": [\"0.9498839009287925\", \"0.9962061190255244\", \"1.0\", \"1.0\", \"1.0\"], \"20\": [\"0.8628318584070797\", \"0.737794983624541\", \"0.9184235579351778\", \"0.926906430307438\", \"0.8918726769134402\"], \"21\": [\"0.9253731343283582\", \"0.8136738471845688\", \"0.7582821532532101\", \"0.8641482557796041\", \"0.8728445339677502\"], \"22\": [\"0.8551724137931035\", \"1.0\", \"0.8748691363088327\", \"0.7434526661116921\", \"0.807609405356592\"], \"23\": [\"0.8888888888888888\", \"0.8206604807347216\", \"0.9141701918855193\", \"0.738897020529353\", \"0.4267928290546515\"], \"24\": [\"0.9565346956151555\", \"0.8544008378981168\", \"0.8690954806184567\", \"0.8444433614751495\", \"0.8193378299658584\"]}"); + var histories_all = JSON.parse("{\"0\": [\"0.8898305084745762\", \"0.8503665091179831\", \"0.9297893524213725\", \"0.9968649240360706\", \"0.7822091484783841\"], \"1\": [\"0.9076923076923077\", \"1.0\", \"0.9509263047426283\", \"0.822297690478797\", \"0.8505985356131066\"], \"2\": [\"0.8939393939393939\", \"0.7693094653236543\", \"0.857554969295508\", \"0.8282108223025169\", \"0.9483171901689129\"], \"3\": [\"0.9007633587786259\", \"0.947750980693716\", \"1.0\", \"0.9782977085649905\", \"1.0\"], \"4\": [\"0.9763986013986015\", \"0.8799968936240172\", \"0.9899524971821883\", \"1.0\", \"1.0\"], \"5\": [\"0.8627450980392157\", \"0.8375093723886025\", \"0.669219656542432\", \"0.5774399949368754\", \"0.8513074631970157\"], \"6\": [\"0.9545454545454546\", \"0.9422570049130763\", \"0.8574708500081492\", \"0.6909954069345352\", \"0.638113357974244\"], \"7\": [\"0.7777777777777778\", \"0.6717003359337058\", \"0.7136402491180235\", \"0.7664181016107113\", \"0.8691103024576424\"], \"8\": [\"0.8571428571428571\", \"0.9190515536816062\", \"0.8958017802138195\", \"0.9032199382279366\", \"0.9743762460470176\"], \"9\": [\"0.9629629629629629\", \"0.8297611919690245\", \"0.8008443684149205\", \"0.8629042201151046\", \"1.0\"], \"10\": [\"0.890625\", \"1.0\", \"0.9848587671065657\", \"1.0\", \"1.0\"], \"11\": [\"0.9375\", \"0.9206221922549943\", \"0.9500162535923238\", \"0.8310571410227544\", \"0.780674650584581\"], \"12\": [\"0.8928571428571429\", \"1.0\", \"1.0\", \"1.0\", \"0.8773269912469804\"], \"13\": [\"0.9146341463414634\", \"0.9851122655596797\", \"0.9412701945324977\", \"0.892033287798631\", \"0.825499671513943\"], \"14\": [\"0.9724025974025974\", \"0.9336867901149665\", \"0.8990109038544556\", \"0.9758490692558033\", \"0.9082361030605376\"], \"15\": [\"0.8979591836734694\", \"0.8904362342089817\", \"1.0\", \"0.897424859655856\", \"1.0\"], \"16\": [\"0.9636363636363636\", \"1.0\", \"0.9874804701903391\", \"0.9369851224345842\", \"0.7753682688195168\"], \"17\": [\"0.8688524590163934\", \"0.6267373915643667\", \"0.6155239788832984\", \"0.8026722384348319\", \"0.8498116096512208\"], \"18\": [\"0.9137931034482759\", \"0.8075796411912217\", \"0.8178161462088959\", \"0.724906288361865\", \"0.7165394046442614\"], \"19\": [\"0.9709791758972087\", \"0.9442408675109836\", \"1.0\", \"1.0\", \"0.9855426996664309\"], \"20\": [\"0.8938053097345132\", \"0.87235241164168\", \"0.9502525766474152\", \"0.9891285897021805\", \"0.9325922357451697\"], \"21\": [\"0.9481481481481482\", \"1.0\", \"0.8271202175124691\", \"0.8487388093255679\", \"0.89054754569421\"], \"22\": [\"0.8827586206896552\", \"0.9187154413270038\", \"0.9592043988393847\", \"1.0\", \"1.0\"], \"23\": [\"0.9142857142857143\", \"0.7819232779227007\", \"0.8834517715341084\", \"0.9191318127346609\", \"0.9073776138358788\"], \"24\": [\"0.9724137931034482\", \"1.0\", \"0.9178292117210768\", \"1.0\", \"0.9490257063743417\"]}"); var thresholds_all = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\", \"19\": \"0.7\", \"20\": \"0.7\", \"21\": \"0.7\", \"22\": \"0.7\", \"23\": \"0.7\", \"24\": \"0.7\"}"); - var trends_all = JSON.parse("{\"0\": \"positive\", \"1\": \"positive\", \"2\": \"negative\", \"3\": \"positive\", \"4\": \"positive\", \"5\": \"positive\", \"6\": \"positive\", \"7\": \"neutral\", \"8\": \"negative\", \"9\": \"neutral\", \"10\": \"neutral\", \"11\": \"neutral\", \"12\": \"positive\", \"13\": \"positive\", \"14\": \"neutral\", \"15\": \"positive\", \"16\": \"negative\", \"17\": \"positive\", \"18\": \"negative\", \"19\": \"positive\", \"20\": \"positive\", \"21\": \"neutral\", \"22\": \"negative\", \"23\": \"negative\", \"24\": \"negative\"}"); - var passed_all = JSON.parse("{\"0\": true, \"1\": true, \"2\": false, \"3\": true, \"4\": true, \"5\": true, \"6\": true, \"7\": true, \"8\": false, \"9\": true, \"10\": true, \"11\": true, \"12\": true, \"13\": true, \"14\": true, \"15\": true, \"16\": true, \"17\": true, \"18\": true, \"19\": true, \"20\": true, \"21\": true, \"22\": true, \"23\": false, \"24\": true}"); + var trends_all = JSON.parse("{\"0\": \"neutral\", \"1\": \"negative\", \"2\": \"positive\", \"3\": \"positive\", \"4\": \"positive\", \"5\": \"negative\", \"6\": \"negative\", \"7\": \"positive\", \"8\": \"positive\", \"9\": \"positive\", \"10\": \"positive\", \"11\": \"negative\", \"12\": \"neutral\", \"13\": \"negative\", \"14\": \"neutral\", \"15\": \"positive\", \"16\": \"negative\", \"17\": \"positive\", \"18\": \"negative\", \"19\": \"neutral\", \"20\": \"positive\", \"21\": \"negative\", \"22\": \"positive\", \"23\": \"positive\", \"24\": \"neutral\"}"); + var passed_all = JSON.parse("{\"0\": true, \"1\": true, \"2\": true, \"3\": true, \"4\": true, \"5\": true, \"6\": false, \"7\": true, \"8\": true, \"9\": true, \"10\": true, \"11\": true, \"12\": true, \"13\": true, \"14\": true, \"15\": true, \"16\": true, \"17\": true, \"18\": true, \"19\": true, \"20\": true, \"21\": true, \"22\": true, \"23\": true, \"24\": true}"); var names_all = JSON.parse("{\"0\": \"Accuracy\", \"1\": \"Precision\", \"2\": \"Recall\", \"3\": \"F1 Score\", \"4\": \"AUROC\", \"5\": \"Accuracy\", \"6\": \"Precision\", \"7\": \"Recall\", \"8\": \"F1 Score\", \"9\": \"AUROC\", \"10\": \"Accuracy\", \"11\": \"Precision\", \"12\": \"Recall\", \"13\": \"F1 Score\", \"14\": \"AUROC\", \"15\": \"Accuracy\", \"16\": \"Precision\", \"17\": \"Recall\", \"18\": \"F1 Score\", \"19\": \"AUROC\", \"20\": \"Accuracy\", \"21\": \"Precision\", \"22\": \"Recall\", \"23\": \"F1 Score\", \"24\": \"AUROC\"}"); var timestamps_all = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"1\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"2\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"3\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"4\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"5\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"6\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"7\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"8\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"9\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"10\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"11\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"12\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"13\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"14\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"15\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"16\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"17\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"18\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"19\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"20\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"21\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"22\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"23\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"24\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"]}"); @@ -2786,10 +2786,10 @@

Ethical Considerations

} } var slices_all = JSON.parse("{\"0\": [\"metric:Accuracy\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"1\": [\"metric:Precision\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"2\": [\"metric:Recall\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"3\": [\"metric:F1 Score\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"4\": [\"metric:AUROC\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"5\": [\"metric:Accuracy\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"6\": [\"metric:Precision\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"7\": [\"metric:Recall\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"8\": [\"metric:F1 Score\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"9\": [\"metric:AUROC\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"10\": [\"metric:Accuracy\", \"gender:M\", \"age:overall_age\"], \"11\": [\"metric:Precision\", \"gender:M\", \"age:overall_age\"], \"12\": [\"metric:Recall\", \"gender:M\", \"age:overall_age\"], \"13\": [\"metric:F1 Score\", \"gender:M\", \"age:overall_age\"], \"14\": [\"metric:AUROC\", \"gender:M\", \"age:overall_age\"], \"15\": [\"metric:Accuracy\", \"gender:F\", \"age:overall_age\"], \"16\": [\"metric:Precision\", \"gender:F\", \"age:overall_age\"], \"17\": [\"metric:Recall\", \"gender:F\", \"age:overall_age\"], \"18\": [\"metric:F1 Score\", \"gender:F\", \"age:overall_age\"], \"19\": [\"metric:AUROC\", \"gender:F\", \"age:overall_age\"], \"20\": [\"metric:Accuracy\", \"age:overall_age\", \"gender:overall_gender\"], \"21\": [\"metric:Precision\", \"age:overall_age\", \"gender:overall_gender\"], \"22\": [\"metric:Recall\", \"age:overall_age\", \"gender:overall_gender\"], \"23\": [\"metric:F1 Score\", \"age:overall_age\", \"gender:overall_gender\"], \"24\": [\"metric:AUROC\", \"age:overall_age\", \"gender:overall_gender\"]}"); - var histories_all = JSON.parse("{\"0\": [\"0.8407079646017699\", \"1.0\", \"0.9535555373183686\", \"1.0\", \"1.0\"], \"1\": [\"0.9298245614035088\", \"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"2\": [\"0.7910447761194029\", \"0.5926933018663191\", \"0.7804670449245223\", \"0.7376407871492293\", \"0.5465348419641338\"], \"3\": [\"0.8548387096774194\", \"0.8153626474813961\", \"0.8514536200701625\", \"0.7768058779525989\", \"0.9854854312948707\"], \"4\": [\"0.9404607397793641\", \"0.8949636650610477\", \"0.906660291459166\", \"1.0\", \"1.0\"], \"5\": [\"0.8301886792452831\", \"0.8563736847647581\", \"0.8159982068421708\", \"0.8976179235519609\", \"1.0\"], \"6\": [\"0.8076923076923077\", \"0.7489210047899432\", \"0.8053678177629117\", \"0.8245493123311662\", \"0.8602189635308329\"], \"7\": [\"0.84\", \"0.754932693657288\", \"0.8060551802168078\", \"0.8583120562770775\", \"0.7654831866690714\"], \"8\": [\"0.8235294117647058\", \"0.8678531368225659\", \"0.7177282163127113\", \"0.5624705834178083\", \"0.5616873017920673\"], \"9\": [\"0.9507142857142857\", \"1.0\", \"0.9465364681982098\", \"1.0\", \"1.0\"], \"10\": [\"0.8833333333333333\", \"0.8134373089391121\", \"0.8094512573637288\", \"0.926398911190699\", \"0.8356058060491123\"], \"11\": [\"0.92\", \"0.985763050396293\", \"1.0\", \"0.9981546744973446\", \"0.9214991146376794\"], \"12\": [\"0.8961038961038961\", \"0.9053193773895977\", \"0.9347053929206671\", \"0.9982678399334953\", \"0.9423920940755381\"], \"13\": [\"0.9078947368421053\", \"0.9631849389365184\", \"0.9115969990336185\", \"1.0\", \"1.0\"], \"14\": [\"0.9655693144065237\", \"0.9338487311886668\", \"0.8562982565514443\", \"0.9169671708467616\", \"1.0\"], \"15\": [\"0.839622641509434\", \"0.9909832332361683\", \"0.8561460131501516\", \"0.9618850129643587\", \"0.906302716196539\"], \"16\": [\"0.9322033898305084\", \"0.9619683130407325\", \"0.90319102893862\", \"0.9550894165208688\", \"0.7316873930091807\"], \"17\": [\"0.8088235294117647\", \"0.801040203984305\", \"0.5784983418354932\", \"0.8580198138648689\", \"0.8461423924959066\"], \"18\": [\"0.8661417322834646\", \"0.7935975730984981\", \"0.7540499044764887\", \"0.7601284940848867\", \"0.7811671348977473\"], \"19\": [\"0.9498839009287925\", \"0.9962061190255244\", \"1.0\", \"1.0\", \"1.0\"], \"20\": [\"0.8628318584070797\", \"0.737794983624541\", \"0.9184235579351778\", \"0.926906430307438\", \"0.8918726769134402\"], \"21\": [\"0.9253731343283582\", \"0.8136738471845688\", \"0.7582821532532101\", \"0.8641482557796041\", \"0.8728445339677502\"], \"22\": [\"0.8551724137931035\", \"1.0\", \"0.8748691363088327\", \"0.7434526661116921\", \"0.807609405356592\"], \"23\": [\"0.8888888888888888\", \"0.8206604807347216\", \"0.9141701918855193\", \"0.738897020529353\", \"0.4267928290546515\"], \"24\": [\"0.9565346956151555\", \"0.8544008378981168\", \"0.8690954806184567\", \"0.8444433614751495\", \"0.8193378299658584\"]}"); + var histories_all = JSON.parse("{\"0\": [\"0.8898305084745762\", \"0.8503665091179831\", \"0.9297893524213725\", \"0.9968649240360706\", \"0.7822091484783841\"], \"1\": [\"0.9076923076923077\", \"1.0\", \"0.9509263047426283\", \"0.822297690478797\", \"0.8505985356131066\"], \"2\": [\"0.8939393939393939\", \"0.7693094653236543\", \"0.857554969295508\", \"0.8282108223025169\", \"0.9483171901689129\"], \"3\": [\"0.9007633587786259\", \"0.947750980693716\", \"1.0\", \"0.9782977085649905\", \"1.0\"], \"4\": [\"0.9763986013986015\", \"0.8799968936240172\", \"0.9899524971821883\", \"1.0\", \"1.0\"], \"5\": [\"0.8627450980392157\", \"0.8375093723886025\", \"0.669219656542432\", \"0.5774399949368754\", \"0.8513074631970157\"], \"6\": [\"0.9545454545454546\", \"0.9422570049130763\", \"0.8574708500081492\", \"0.6909954069345352\", \"0.638113357974244\"], \"7\": [\"0.7777777777777778\", \"0.6717003359337058\", \"0.7136402491180235\", \"0.7664181016107113\", \"0.8691103024576424\"], \"8\": [\"0.8571428571428571\", \"0.9190515536816062\", \"0.8958017802138195\", \"0.9032199382279366\", \"0.9743762460470176\"], \"9\": [\"0.9629629629629629\", \"0.8297611919690245\", \"0.8008443684149205\", \"0.8629042201151046\", \"1.0\"], \"10\": [\"0.890625\", \"1.0\", \"0.9848587671065657\", \"1.0\", \"1.0\"], \"11\": [\"0.9375\", \"0.9206221922549943\", \"0.9500162535923238\", \"0.8310571410227544\", \"0.780674650584581\"], \"12\": [\"0.8928571428571429\", \"1.0\", \"1.0\", \"1.0\", \"0.8773269912469804\"], \"13\": [\"0.9146341463414634\", \"0.9851122655596797\", \"0.9412701945324977\", \"0.892033287798631\", \"0.825499671513943\"], \"14\": [\"0.9724025974025974\", \"0.9336867901149665\", \"0.8990109038544556\", \"0.9758490692558033\", \"0.9082361030605376\"], \"15\": [\"0.8979591836734694\", \"0.8904362342089817\", \"1.0\", \"0.897424859655856\", \"1.0\"], \"16\": [\"0.9636363636363636\", \"1.0\", \"0.9874804701903391\", \"0.9369851224345842\", \"0.7753682688195168\"], \"17\": [\"0.8688524590163934\", \"0.6267373915643667\", \"0.6155239788832984\", \"0.8026722384348319\", \"0.8498116096512208\"], \"18\": [\"0.9137931034482759\", \"0.8075796411912217\", \"0.8178161462088959\", \"0.724906288361865\", \"0.7165394046442614\"], \"19\": [\"0.9709791758972087\", \"0.9442408675109836\", \"1.0\", \"1.0\", \"0.9855426996664309\"], \"20\": [\"0.8938053097345132\", \"0.87235241164168\", \"0.9502525766474152\", \"0.9891285897021805\", \"0.9325922357451697\"], \"21\": [\"0.9481481481481482\", \"1.0\", \"0.8271202175124691\", \"0.8487388093255679\", \"0.89054754569421\"], \"22\": [\"0.8827586206896552\", \"0.9187154413270038\", \"0.9592043988393847\", \"1.0\", \"1.0\"], \"23\": [\"0.9142857142857143\", \"0.7819232779227007\", \"0.8834517715341084\", \"0.9191318127346609\", \"0.9073776138358788\"], \"24\": [\"0.9724137931034482\", \"1.0\", \"0.9178292117210768\", \"1.0\", \"0.9490257063743417\"]}"); var thresholds_all = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\", \"19\": \"0.7\", \"20\": \"0.7\", \"21\": \"0.7\", \"22\": \"0.7\", \"23\": \"0.7\", \"24\": \"0.7\"}"); - var trends_all = JSON.parse("{\"0\": \"positive\", \"1\": \"positive\", \"2\": \"negative\", \"3\": \"positive\", \"4\": \"positive\", \"5\": \"positive\", \"6\": \"positive\", \"7\": \"neutral\", \"8\": \"negative\", \"9\": \"neutral\", \"10\": \"neutral\", \"11\": \"neutral\", \"12\": \"positive\", \"13\": \"positive\", \"14\": \"neutral\", \"15\": \"positive\", \"16\": \"negative\", \"17\": \"positive\", \"18\": \"negative\", \"19\": \"positive\", \"20\": \"positive\", \"21\": \"neutral\", \"22\": \"negative\", \"23\": \"negative\", \"24\": \"negative\"}"); - var passed_all = JSON.parse("{\"0\": true, \"1\": true, \"2\": false, \"3\": true, \"4\": true, \"5\": true, \"6\": true, \"7\": true, \"8\": false, \"9\": true, \"10\": true, \"11\": true, \"12\": true, \"13\": true, \"14\": true, \"15\": true, \"16\": true, \"17\": true, \"18\": true, \"19\": true, \"20\": true, \"21\": true, \"22\": true, \"23\": false, \"24\": true}"); + var trends_all = JSON.parse("{\"0\": \"neutral\", \"1\": \"negative\", \"2\": \"positive\", \"3\": \"positive\", \"4\": \"positive\", \"5\": \"negative\", \"6\": \"negative\", \"7\": \"positive\", \"8\": \"positive\", \"9\": \"positive\", \"10\": \"positive\", \"11\": \"negative\", \"12\": \"neutral\", \"13\": \"negative\", \"14\": \"neutral\", \"15\": \"positive\", \"16\": \"negative\", \"17\": \"positive\", \"18\": \"negative\", \"19\": \"neutral\", \"20\": \"positive\", \"21\": \"negative\", \"22\": \"positive\", \"23\": \"positive\", \"24\": \"neutral\"}"); + var passed_all = JSON.parse("{\"0\": true, \"1\": true, \"2\": true, \"3\": true, \"4\": true, \"5\": true, \"6\": false, \"7\": true, \"8\": true, \"9\": true, \"10\": true, \"11\": true, \"12\": true, \"13\": true, \"14\": true, \"15\": true, \"16\": true, \"17\": true, \"18\": true, \"19\": true, \"20\": true, \"21\": true, \"22\": true, \"23\": true, \"24\": true}"); var names_all = JSON.parse("{\"0\": \"Accuracy\", \"1\": \"Precision\", \"2\": \"Recall\", \"3\": \"F1 Score\", \"4\": \"AUROC\", \"5\": \"Accuracy\", \"6\": \"Precision\", \"7\": \"Recall\", \"8\": \"F1 Score\", \"9\": \"AUROC\", \"10\": \"Accuracy\", \"11\": \"Precision\", \"12\": \"Recall\", \"13\": \"F1 Score\", \"14\": \"AUROC\", \"15\": \"Accuracy\", \"16\": \"Precision\", \"17\": \"Recall\", \"18\": \"F1 Score\", \"19\": \"AUROC\", \"20\": \"Accuracy\", \"21\": \"Precision\", \"22\": \"Recall\", \"23\": \"F1 Score\", \"24\": \"AUROC\"}"); var timestamps_all = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"1\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"2\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"3\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"4\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"5\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"6\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"7\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"8\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"9\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"10\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"11\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"12\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"13\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"14\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"15\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"16\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"17\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"18\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"19\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"20\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"21\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"22\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"23\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"24\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"]}"); diff --git a/api/tutorials/synthea/los_prediction.html b/api/tutorials/synthea/los_prediction.html index 63cb33dbd..ddfd922fa 100644 --- a/api/tutorials/synthea/los_prediction.html +++ b/api/tutorials/synthea/los_prediction.html @@ -677,17 +677,17 @@

Compute length of stay (labels)
-2023-11-29 09:26:02,994 INFO cycquery.orm    - Database setup, ready to run queries!
-2023-11-29 09:26:06,250 INFO cycquery.orm    - Query returned successfully!
-2023-11-29 09:26:06,251 INFO cycquery.utils.profile - Finished executing function run_query in 2.746726 s
-2023-11-29 09:26:08,026 INFO cycquery.orm    - Query returned successfully!
-2023-11-29 09:26:08,027 INFO cycquery.utils.profile - Finished executing function run_query in 1.774474 s
-2023-11-29 09:26:09,566 INFO cycquery.orm    - Query returned successfully!
-2023-11-29 09:26:09,568 INFO cycquery.utils.profile - Finished executing function run_query in 0.397723 s
-2023-11-29 09:26:10,062 INFO cycquery.orm    - Query returned successfully!
-2023-11-29 09:26:10,063 INFO cycquery.utils.profile - Finished executing function run_query in 0.489374 s
-2023-11-29 09:26:10,171 INFO cycquery.orm    - Query returned successfully!
-2023-11-29 09:26:10,172 INFO cycquery.utils.profile - Finished executing function run_query in 0.107587 s
+2023-11-29 18:49:49,298 INFO cycquery.orm    - Database setup, ready to run queries!
+2023-11-29 18:49:54,098 INFO cycquery.orm    - Query returned successfully!
+2023-11-29 18:49:54,099 INFO cycquery.utils.profile - Finished executing function run_query in 3.737664 s
+2023-11-29 18:49:55,881 INFO cycquery.orm    - Query returned successfully!
+2023-11-29 18:49:55,883 INFO cycquery.utils.profile - Finished executing function run_query in 1.782846 s
+2023-11-29 18:49:57,410 INFO cycquery.orm    - Query returned successfully!
+2023-11-29 18:49:57,411 INFO cycquery.utils.profile - Finished executing function run_query in 0.359313 s
+2023-11-29 18:49:57,835 INFO cycquery.orm    - Query returned successfully!
+2023-11-29 18:49:57,836 INFO cycquery.utils.profile - Finished executing function run_query in 0.423024 s
+2023-11-29 18:49:57,929 INFO cycquery.orm    - Query returned successfully!
+2023-11-29 18:49:57,930 INFO cycquery.utils.profile - Finished executing function run_query in 0.093229 s
 

@@ -740,9 +740,9 @@

Drop NaNs based on the

-
+
@@ -1304,12 +1304,12 @@

Training

-2023-11-29 09:26:17,479 INFO cyclops.models.wrappers.sk_model - Best reg_lambda: 0
-2023-11-29 09:26:17,480 INFO cyclops.models.wrappers.sk_model - Best n_estimators: 100
-2023-11-29 09:26:17,480 INFO cyclops.models.wrappers.sk_model - Best max_depth: 2
-2023-11-29 09:26:17,481 INFO cyclops.models.wrappers.sk_model - Best learning_rate: 0.1
-2023-11-29 09:26:17,482 INFO cyclops.models.wrappers.sk_model - Best gamma: 0
-2023-11-29 09:26:17,483 INFO cyclops.models.wrappers.sk_model - Best colsample_bytree: 1
+2023-11-29 18:50:06,745 INFO cyclops.models.wrappers.sk_model - Best reg_lambda: 0
+2023-11-29 18:50:06,746 INFO cyclops.models.wrappers.sk_model - Best n_estimators: 100
+2023-11-29 18:50:06,746 INFO cyclops.models.wrappers.sk_model - Best max_depth: 5
+2023-11-29 18:50:06,746 INFO cyclops.models.wrappers.sk_model - Best learning_rate: 0.1
+2023-11-29 18:50:06,747 INFO cyclops.models.wrappers.sk_model - Best gamma: 1
+2023-11-29 18:50:06,747 INFO cyclops.models.wrappers.sk_model - Best colsample_bytree: 1
 
@@ -1320,21 +1320,21 @@

Training
XGBClassifier(base_score=None, booster=None, callbacks=None,
               colsample_bylevel=None, colsample_bynode=None, colsample_bytree=1,
               early_stopping_rounds=None, enable_categorical=False,
-              eval_metric='logloss', feature_types=None, gamma=0, gpu_id=None,
+              eval_metric='logloss', feature_types=None, gamma=1, gpu_id=None,
               grow_policy=None, importance_type=None,
               interaction_constraints=None, learning_rate=0.1, max_bin=None,
               max_cat_threshold=None, max_cat_to_onehot=None,
-              max_delta_step=None, max_depth=2, max_leaves=None,
+              max_delta_step=None, max_depth=5, max_leaves=None,
               min_child_weight=3, missing=nan, monotone_constraints=None,
               n_estimators=100, n_jobs=None, num_parallel_tree=None,
               predictor=None, random_state=123, ...)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

@@ -1353,7 +1353,7 @@

Training

-{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 1, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': 'logloss', 'feature_types': None, 'gamma': 0, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 2, 'max_leaves': None, 'min_child_weight': 3, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 100, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 123, 'reg_alpha': None, 'reg_lambda': 0, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': None, 'seed': 123}
+{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 1, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': 'logloss', 'feature_types': None, 'gamma': 1, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': 3, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 100, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 123, 'reg_alpha': None, 'reg_lambda': 0, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': None, 'seed': 123}
 

Log the model parameters to the report.

@@ -1389,7 +1389,7 @@

Prediction

-
+

-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+

Log the performance metrics to the report.

We can add a performance metric to the model card using the log_performance_metric method, which expects a dictionary where the keys are in the following format: slice_name/metric_name. For instance, overall/accuracy.

@@ -1700,9 +1700,9 @@

Evaluation
-
diff --git a/api/tutorials/synthea/los_prediction.ipynb b/api/tutorials/synthea/los_prediction.ipynb index 982e37c31..4d1b52b5a 100644 --- a/api/tutorials/synthea/los_prediction.ipynb +++ b/api/tutorials/synthea/los_prediction.ipynb @@ -33,10 +33,10 @@ "id": "53009e6b", "metadata": { "execution": { - "iopub.execute_input": "2023-11-29T14:25:58.454492Z", - "iopub.status.busy": "2023-11-29T14:25:58.453997Z", - "iopub.status.idle": "2023-11-29T14:26:02.347632Z", - "shell.execute_reply": "2023-11-29T14:26:02.346626Z" + "iopub.execute_input": "2023-11-29T23:49:44.158745Z", + "iopub.status.busy": "2023-11-29T23:49:44.158120Z", + "iopub.status.idle": "2023-11-29T23:49:48.192318Z", + "shell.execute_reply": "2023-11-29T23:49:48.191623Z" } }, "outputs": [], @@ -96,10 +96,10 @@ "id": "afae58a8-5708-4e05-8695-25ba3ce1a71f", "metadata": { "execution": { - "iopub.execute_input": "2023-11-29T14:26:02.353911Z", - "iopub.status.busy": "2023-11-29T14:26:02.353185Z", - "iopub.status.idle": "2023-11-29T14:26:02.357858Z", - "shell.execute_reply": "2023-11-29T14:26:02.357136Z" + "iopub.execute_input": "2023-11-29T23:49:48.196826Z", + "iopub.status.busy": "2023-11-29T23:49:48.195846Z", + "iopub.status.idle": "2023-11-29T23:49:48.202886Z", + "shell.execute_reply": "2023-11-29T23:49:48.201479Z" }, "tags": [] }, @@ -122,10 +122,10 @@ "id": "739b109a-011b-4e6e-a3de-964edeffddbd", "metadata": { "execution": { - "iopub.execute_input": "2023-11-29T14:26:02.362976Z", - "iopub.status.busy": "2023-11-29T14:26:02.362564Z", - "iopub.status.idle": "2023-11-29T14:26:02.367521Z", - "shell.execute_reply": "2023-11-29T14:26:02.366586Z" + "iopub.execute_input": "2023-11-29T23:49:48.207103Z", + "iopub.status.busy": "2023-11-29T23:49:48.206400Z", + "iopub.status.idle": "2023-11-29T23:49:48.212674Z", + "shell.execute_reply": "2023-11-29T23:49:48.211265Z" }, "tags": [] }, @@ -156,10 +156,10 @@ "id": "e497df9f-0f3d-4e9c-845c-539627a37f67", "metadata": { "execution": { - "iopub.execute_input": "2023-11-29T14:26:02.373034Z", - "iopub.status.busy": "2023-11-29T14:26:02.372485Z", - "iopub.status.idle": "2023-11-29T14:26:10.209350Z", - "shell.execute_reply": "2023-11-29T14:26:10.208075Z" + "iopub.execute_input": "2023-11-29T23:49:48.217658Z", + "iopub.status.busy": "2023-11-29T23:49:48.217068Z", + "iopub.status.idle": "2023-11-29T23:49:57.965818Z", + "shell.execute_reply": "2023-11-29T23:49:57.965127Z" }, "tags": [] }, @@ -168,77 +168,77 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-11-29 09:26:02,994 \u001b[1;37mINFO\u001b[0m cycquery.orm - Database setup, ready to run queries!\n" + "2023-11-29 18:49:49,298 \u001b[1;37mINFO\u001b[0m cycquery.orm - Database setup, ready to run queries!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-11-29 09:26:06,250 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" + "2023-11-29 18:49:54,098 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-11-29 09:26:06,251 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 2.746726 s\n" + "2023-11-29 18:49:54,099 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 3.737664 s\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-11-29 09:26:08,026 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" + "2023-11-29 18:49:55,881 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-11-29 09:26:08,027 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 1.774474 s\n" + "2023-11-29 18:49:55,883 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 1.782846 s\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-11-29 09:26:09,566 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" + "2023-11-29 18:49:57,410 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-11-29 09:26:09,568 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 0.397723 s\n" + "2023-11-29 18:49:57,411 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 0.359313 s\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-11-29 09:26:10,062 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" + "2023-11-29 18:49:57,835 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-11-29 09:26:10,063 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 0.489374 s\n" + "2023-11-29 18:49:57,836 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 0.423024 s\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-11-29 09:26:10,171 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" + "2023-11-29 18:49:57,929 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-11-29 09:26:10,172 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 0.107587 s\n" + "2023-11-29 18:49:57,930 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 0.093229 s\n" ] } ], @@ -397,10 +397,10 @@ "id": "c576ee51-e825-4970-86e8-3e5f221f145c", "metadata": { "execution": { - "iopub.execute_input": "2023-11-29T14:26:10.213563Z", - "iopub.status.busy": "2023-11-29T14:26:10.213171Z", - "iopub.status.idle": "2023-11-29T14:26:10.301336Z", - "shell.execute_reply": "2023-11-29T14:26:10.300459Z" + "iopub.execute_input": "2023-11-29T23:49:57.971033Z", + "iopub.status.busy": "2023-11-29T23:49:57.970733Z", + "iopub.status.idle": "2023-11-29T23:49:58.072632Z", + "shell.execute_reply": "2023-11-29T23:49:58.071959Z" }, "tags": [] }, @@ -1496,9 +1496,9 @@ } }, "text/html": [ - "
+ diff --git a/blog/atom.xml b/blog/atom.xml index c654e3f21..68c182b33 100644 --- a/blog/atom.xml +++ b/blog/atom.xml @@ -32,8 +32,8 @@ Our new version follows the release of
import numpy as np
import torch
from torchmetrics.functional.classification.confusion_matrix import (
binary_confusion_matrix as torch_binary_confusion_matrix,
)
from cyclops.evaluate.metrics.experimental.functional.confusion_matrix import (
binary_confusion_matrix,
)


y_true = np.random.randint(0, 2, size=10)
y_pred = np.random.rand(10)
target = torch.asarray(y_true)
preds = torch.asarray(y_pred)

print("cyclops confusion matrix\n", binary_confusion_matrix(y_true, y_pred_discrete))
print("torchmetrics confusion matrix\n", torch_binary_confusion_matrix(y_true, y_pred_discrete))

results in

cyclops confusion matrix
[[2 3]
[4 1]]
torchmetrics confusion matrix
[[2 3]
[4 1]]
-

A simple and unified data API​

-

To process and create datasets for training, inference and evaluation. We use the popular πŸ€— datasets library for efficiently slicing different modalities of data to create subsets for evaluation and monitoring. It has new methods, improved generalizability, and uses Pandas 2.0.

+

A simple and unified data package​

+

We are introducing a simple and unified python package to process and create datasets for training, inference and evaluation. We use the popular πŸ€— datasets library for efficiently slicing different modalities (tabular, time-series and images) of data to create subsets for evaluation and monitoring. The package has new methods, improved generalizability, and uses Pandas 2.0.

Check out an example tutorial that showcases the use of the cyclops.data API to create slices of data for evaluation!

Next steps​

We believe that the model report will enable increased transparency around model development, and help with auditing of ML systems that are deployed in clinical settings. We are working with early adopter stakeholders on a few different use cases to pilot the model report. Stay tuned for updates and improvements as we learn more about how clinical ML teams use cyclops!

]]> diff --git a/blog/cyclops-0.2.0-release/index.html b/blog/cyclops-0.2.0-release/index.html index 083d48e87..afc1eee03 100644 --- a/blog/cyclops-0.2.0-release/index.html +++ b/blog/cyclops-0.2.0-release/index.html @@ -5,7 +5,7 @@ cyclops 0.2.0 release | cyclops - + @@ -28,10 +28,10 @@

import numpy as np
import torch
from torchmetrics.functional.classification.confusion_matrix import (
binary_confusion_matrix as torch_binary_confusion_matrix,
)
from cyclops.evaluate.metrics.experimental.functional.confusion_matrix import (
binary_confusion_matrix,
)


y_true = np.random.randint(0, 2, size=10)
y_pred = np.random.rand(10)
target = torch.asarray(y_true)
preds = torch.asarray(y_pred)

print("cyclops confusion matrix\n", binary_confusion_matrix(y_true, y_pred_discrete))
print("torchmetrics confusion matrix\n", torch_binary_confusion_matrix(y_true, y_pred_discrete))

results in

cyclops confusion matrix
[[2 3]
[4 1]]
torchmetrics confusion matrix
[[2 3]
[4 1]]
-

A simple and unified data API​

-

To process and create datasets for training, inference and evaluation. We use the popular πŸ€— datasets library for efficiently slicing different modalities of data to create subsets for evaluation and monitoring. It has new methods, improved generalizability, and uses Pandas 2.0.

+

A simple and unified data package​

+

We are introducing a simple and unified python package to process and create datasets for training, inference and evaluation. We use the popular πŸ€— datasets library for efficiently slicing different modalities (tabular, time-series and images) of data to create subsets for evaluation and monitoring. The package has new methods, improved generalizability, and uses Pandas 2.0.

Check out an example tutorial that showcases the use of the cyclops.data API to create slices of data for evaluation!

Next steps​

-

We believe that the model report will enable increased transparency around model development, and help with auditing of ML systems that are deployed in clinical settings. We are working with early adopter stakeholders on a few different use cases to pilot the model report. Stay tuned for updates and improvements as we learn more about how clinical ML teams use cyclops!

+

We believe that the model report will enable increased transparency around model development, and help with auditing of ML systems that are deployed in clinical settings. We are working with early adopter stakeholders on a few different use cases to pilot the model report. Stay tuned for updates and improvements as we learn more about how clinical ML teams use cyclops!

\ No newline at end of file diff --git a/blog/index.html b/blog/index.html index 06dd7e3d1..a535a4259 100644 --- a/blog/index.html +++ b/blog/index.html @@ -5,7 +5,7 @@ Blog | cyclops - + @@ -28,8 +28,8 @@

import numpy as np
import torch
from torchmetrics.functional.classification.confusion_matrix import (
binary_confusion_matrix as torch_binary_confusion_matrix,
)
from cyclops.evaluate.metrics.experimental.functional.confusion_matrix import (
binary_confusion_matrix,
)


y_true = np.random.randint(0, 2, size=10)
y_pred = np.random.rand(10)
target = torch.asarray(y_true)
preds = torch.asarray(y_pred)

print("cyclops confusion matrix\n", binary_confusion_matrix(y_true, y_pred_discrete))
print("torchmetrics confusion matrix\n", torch_binary_confusion_matrix(y_true, y_pred_discrete))

results in

cyclops confusion matrix
[[2 3]
[4 1]]
torchmetrics confusion matrix
[[2 3]
[4 1]]
-

A simple and unified data API​

-

To process and create datasets for training, inference and evaluation. We use the popular πŸ€— datasets library for efficiently slicing different modalities of data to create subsets for evaluation and monitoring. It has new methods, improved generalizability, and uses Pandas 2.0.

+

A simple and unified data package​

+

We are introducing a simple and unified python package to process and create datasets for training, inference and evaluation. We use the popular πŸ€— datasets library for efficiently slicing different modalities (tabular, time-series and images) of data to create subsets for evaluation and monitoring. The package has new methods, improved generalizability, and uses Pandas 2.0.

Check out an example tutorial that showcases the use of the cyclops.data API to create slices of data for evaluation!

Next steps​

We believe that the model report will enable increased transparency around model development, and help with auditing of ML systems that are deployed in clinical settings. We are working with early adopter stakeholders on a few different use cases to pilot the model report. Stay tuned for updates and improvements as we learn more about how clinical ML teams use cyclops!

diff --git a/blog/rss.xml b/blog/rss.xml index 25920ba87..4e8328b98 100644 --- a/blog/rss.xml +++ b/blog/rss.xml @@ -33,8 +33,8 @@ Our new version follows the release of
import numpy as np
import torch
from torchmetrics.functional.classification.confusion_matrix import (
binary_confusion_matrix as torch_binary_confusion_matrix,
)
from cyclops.evaluate.metrics.experimental.functional.confusion_matrix import (
binary_confusion_matrix,
)


y_true = np.random.randint(0, 2, size=10)
y_pred = np.random.rand(10)
target = torch.asarray(y_true)
preds = torch.asarray(y_pred)

print("cyclops confusion matrix\n", binary_confusion_matrix(y_true, y_pred_discrete))
print("torchmetrics confusion matrix\n", torch_binary_confusion_matrix(y_true, y_pred_discrete))

results in

cyclops confusion matrix
[[2 3]
[4 1]]
torchmetrics confusion matrix
[[2 3]
[4 1]]
-

A simple and unified data API​

-

To process and create datasets for training, inference and evaluation. We use the popular πŸ€— datasets library for efficiently slicing different modalities of data to create subsets for evaluation and monitoring. It has new methods, improved generalizability, and uses Pandas 2.0.

+

A simple and unified data package​

+

We are introducing a simple and unified python package to process and create datasets for training, inference and evaluation. We use the popular πŸ€— datasets library for efficiently slicing different modalities (tabular, time-series and images) of data to create subsets for evaluation and monitoring. The package has new methods, improved generalizability, and uses Pandas 2.0.

Check out an example tutorial that showcases the use of the cyclops.data API to create slices of data for evaluation!

Next steps​

We believe that the model report will enable increased transparency around model development, and help with auditing of ML systems that are deployed in clinical settings. We are working with early adopter stakeholders on a few different use cases to pilot the model report. Stay tuned for updates and improvements as we learn more about how clinical ML teams use cyclops!

]]> diff --git a/blog/tags/0-2-0/index.html b/blog/tags/0-2-0/index.html index ba819a202..1276bc586 100644 --- a/blog/tags/0-2-0/index.html +++ b/blog/tags/0-2-0/index.html @@ -5,7 +5,7 @@ One post tagged with "0.2.0" | cyclops - + @@ -28,8 +28,8 @@

import numpy as np
import torch
from torchmetrics.functional.classification.confusion_matrix import (
binary_confusion_matrix as torch_binary_confusion_matrix,
)
from cyclops.evaluate.metrics.experimental.functional.confusion_matrix import (
binary_confusion_matrix,
)


y_true = np.random.randint(0, 2, size=10)
y_pred = np.random.rand(10)
target = torch.asarray(y_true)
preds = torch.asarray(y_pred)

print("cyclops confusion matrix\n", binary_confusion_matrix(y_true, y_pred_discrete))
print("torchmetrics confusion matrix\n", torch_binary_confusion_matrix(y_true, y_pred_discrete))

results in

cyclops confusion matrix
[[2 3]
[4 1]]
torchmetrics confusion matrix
[[2 3]
[4 1]]
-

A simple and unified data API​

-

To process and create datasets for training, inference and evaluation. We use the popular πŸ€— datasets library for efficiently slicing different modalities of data to create subsets for evaluation and monitoring. It has new methods, improved generalizability, and uses Pandas 2.0.

+

A simple and unified data package​

+

We are introducing a simple and unified python package to process and create datasets for training, inference and evaluation. We use the popular πŸ€— datasets library for efficiently slicing different modalities (tabular, time-series and images) of data to create subsets for evaluation and monitoring. The package has new methods, improved generalizability, and uses Pandas 2.0.

Check out an example tutorial that showcases the use of the cyclops.data API to create slices of data for evaluation!

Next steps​

We believe that the model report will enable increased transparency around model development, and help with auditing of ML systems that are deployed in clinical settings. We are working with early adopter stakeholders on a few different use cases to pilot the model report. Stay tuned for updates and improvements as we learn more about how clinical ML teams use cyclops!

diff --git a/blog/tags/index.html b/blog/tags/index.html index 24d94dbed..d6f03f559 100644 --- a/blog/tags/index.html +++ b/blog/tags/index.html @@ -5,7 +5,7 @@ Tags | cyclops - + diff --git a/docs/intro/index.html b/docs/intro/index.html index 54bcad3bf..a88c7f33a 100644 --- a/docs/intro/index.html +++ b/docs/intro/index.html @@ -5,7 +5,7 @@ intro | cyclops - + diff --git a/index.html b/index.html index 47fbbe8e8..65e72180a 100644 --- a/index.html +++ b/index.html @@ -5,7 +5,7 @@ cyclops | cyclops - + diff --git a/markdown-page/index.html b/markdown-page/index.html index efafa5458..1d1cdf51e 100644 --- a/markdown-page/index.html +++ b/markdown-page/index.html @@ -5,7 +5,7 @@ Markdown page example | cyclops - +