diff --git a/api/examples/heart_failure_report_periodic.html b/api/examples/heart_failure_report_periodic.html index 42d5c8cad..fc7293dcd 100644 --- a/api/examples/heart_failure_report_periodic.html +++ b/api/examples/heart_failure_report_periodic.html @@ -1064,23 +1064,23 @@
We can visualize the BinaryF1Score
and BinaryPrecision
for the different slices
-2024-06-22 11:26:08,664 INFO cyclops.models.wrappers.sk_model - Best scale_pos_weight: 9
+2024-06-23 17:50:07,717 INFO cyclops.models.wrappers.sk_model - Best scale_pos_weight: 9
-2024-06-22 11:26:08,672 INFO cyclops.models.wrappers.sk_model - Best reg_lambda: 1
+2024-06-23 17:50:07,722 INFO cyclops.models.wrappers.sk_model - Best reg_lambda: 0
-2024-06-22 11:26:08,674 INFO cyclops.models.wrappers.sk_model - Best n_estimators: 500
+2024-06-23 17:50:07,724 INFO cyclops.models.wrappers.sk_model - Best n_estimators: 500
-2024-06-22 11:26:08,675 INFO cyclops.models.wrappers.sk_model - Best max_depth: 5
+2024-06-23 17:50:07,725 INFO cyclops.models.wrappers.sk_model - Best max_depth: 5
-2024-06-22 11:26:08,676 INFO cyclops.models.wrappers.sk_model - Best learning_rate: 0.1
+2024-06-23 17:50:07,726 INFO cyclops.models.wrappers.sk_model - Best learning_rate: 0.1
-2024-06-22 11:26:08,678 INFO cyclops.models.wrappers.sk_model - Best gamma: 0
+2024-06-23 17:50:07,728 INFO cyclops.models.wrappers.sk_model - Best gamma: 0
-2024-06-22 11:26:08,679 INFO cyclops.models.wrappers.sk_model - Best colsample_bytree: 0.7
+2024-06-23 17:50:07,729 INFO cyclops.models.wrappers.sk_model - Best colsample_bytree: 0.7
-{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 0.7, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': 'logloss', 'feature_types': None, 'gamma': 0, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': 3, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 500, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 123, 'reg_alpha': None, 'reg_lambda': 1, 'sampling_method': None, 'scale_pos_weight': 9, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': None, 'seed': 123}
+{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 0.7, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': 'logloss', 'feature_types': None, 'gamma': 0, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': 3, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 500, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 123, 'reg_alpha': None, 'reg_lambda': 0, 'sampling_method': None, 'scale_pos_weight': 9, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': None, 'seed': 123}
Log the model parameters to the report.
@@ -1814,7 +1814,7 @@Log the performance metrics to the report.
We can add a performance metric to the model card using the log_performance_metric
method, which expects a dictionary where the keys are in the following format: slice_name/metric_name
. For instance, overall/accuracy
.
-2024-06-22 11:27:03,972 INFO cyclops.models.wrappers.sk_model - Best alpha: 0.001
+2024-06-23 17:51:01,714 INFO cyclops.models.wrappers.sk_model - Best alpha: 0.001
-2024-06-22 11:27:03,974 INFO cyclops.models.wrappers.sk_model - Best eta0: 0.01
+2024-06-23 17:51:01,718 INFO cyclops.models.wrappers.sk_model - Best eta0: 0.01
-2024-06-22 11:27:03,975 INFO cyclops.models.wrappers.sk_model - Best learning_rate: adaptive
+2024-06-23 17:51:01,719 INFO cyclops.models.wrappers.sk_model - Best learning_rate: adaptive
Log the performance metrics to the report.
We can add a performance metric to the model card using the log_performance_metric
method, which expects a dictionary where the keys are in the following format: slice_name/metric_name
. For instance, overall/accuracy
.
-2024-06-22 11:27:44,063 INFO cycquery.orm - Database setup, ready to run queries!
+2024-06-23 17:51:40,599 INFO cycquery.orm - Database setup, ready to run queries!
-2024-06-22 11:28:05,493 INFO cycquery.orm - Query returned successfully!
+2024-06-23 17:51:59,829 INFO cycquery.orm - Query returned successfully!
-2024-06-22 11:28:05,496 INFO cycquery.utils.profile - Finished executing function run_query in 19.191247 s
+2024-06-23 17:51:59,831 INFO cycquery.utils.profile - Finished executing function run_query in 16.893647 s
-2024-06-22 11:30:49,671 INFO cycquery.orm - Query returned successfully!
+2024-06-23 17:54:34,379 INFO cycquery.orm - Query returned successfully!
-2024-06-22 11:30:49,673 INFO cycquery.utils.profile - Finished executing function run_query in 161.002521 s
+2024-06-23 17:54:34,382 INFO cycquery.utils.profile - Finished executing function run_query in 151.679064 s
-2024-06-22 11:59:59,281 INFO cyclops.models.wrappers.sk_model - Best reg_lambda: 10
+2024-06-23 18:01:51,540 INFO cyclops.models.wrappers.sk_model - Best reg_lambda: 0
-2024-06-22 11:59:59,284 INFO cyclops.models.wrappers.sk_model - Best n_estimators: 250
+2024-06-23 18:01:51,561 INFO cyclops.models.wrappers.sk_model - Best n_estimators: 500
-2024-06-22 11:59:59,285 INFO cyclops.models.wrappers.sk_model - Best max_depth: 5
+2024-06-23 18:01:51,564 INFO cyclops.models.wrappers.sk_model - Best max_depth: 5
-2024-06-22 11:59:59,287 INFO cyclops.models.wrappers.sk_model - Best learning_rate: 0.1
+2024-06-23 18:01:51,566 INFO cyclops.models.wrappers.sk_model - Best learning_rate: 0.1
-2024-06-22 11:59:59,288 INFO cyclops.models.wrappers.sk_model - Best gamma: 1
+2024-06-23 18:01:51,568 INFO cyclops.models.wrappers.sk_model - Best gamma: 2
-2024-06-22 11:59:59,289 INFO cyclops.models.wrappers.sk_model - Best colsample_bytree: 1
+2024-06-23 18:01:51,569 INFO cyclops.models.wrappers.sk_model - Best colsample_bytree: 0.7
XGBClassifier(base_score=None, booster=None, callbacks=None, + colsample_bylevel=None, colsample_bynode=None, + colsample_bytree=0.7, early_stopping_rounds=None, + enable_categorical=False, eval_metric='logloss', + feature_types=None, gamma=2, gpu_id=None, grow_policy=None, + importance_type=None, interaction_constraints=None, + learning_rate=0.1, max_bin=None, max_cat_threshold=None, + max_cat_to_onehot=None, max_delta_step=None, max_depth=5, + max_leaves=None, min_child_weight=3, missing=nan, + monotone_constraints=None, n_estimators=500, n_jobs=None, + num_parallel_tree=None, predictor=None, random_state=123, ...)
-{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 1, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': 'logloss', 'feature_types': None, 'gamma': 1, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': 3, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 250, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 123, 'reg_alpha': None, 'reg_lambda': 10, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': None, 'seed': 123}
+{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 0.7, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': 'logloss', 'feature_types': None, 'gamma': 2, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': 3, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 500, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 123, 'reg_alpha': None, 'reg_lambda': 0, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': None, 'seed': 123}
Log the model parameters to the report.
@@ -1729,7 +1729,7 @@Log the performance metrics to the report.
We can add a performance metric to the model card using the log_performance_metric
method, which expects a dictionary where the keys are in the following format: slice_name/metric_name
. For instance, overall/accuracy
.
-2024-06-22 12:27:06,982 INFO cycquery.orm - Database setup, ready to run queries!
+2024-06-23 18:27:50,616 INFO cycquery.orm - Database setup, ready to run queries!
-2024-06-22 12:27:33,373 INFO cycquery.orm - Query returned successfully!
+2024-06-23 18:28:17,546 INFO cycquery.orm - Query returned successfully!
-2024-06-22 12:27:38,633 INFO cycquery.orm - Query returned successfully!
+2024-06-23 18:28:22,581 INFO cycquery.orm - Query returned successfully!
-2024-06-22 12:27:44,560 INFO cycquery.orm - Query returned successfully!
+2024-06-23 18:28:29,007 INFO cycquery.orm - Query returned successfully!
-2024-06-22 12:27:47,055 INFO cycquery.orm - Query returned successfully!
+2024-06-23 18:28:31,472 INFO cycquery.orm - Query returned successfully!
-2024-06-22 12:27:47,243 INFO cycquery.orm - Query returned successfully!
+2024-06-23 18:28:31,659 INFO cycquery.orm - Query returned successfully!
-2024-06-22 12:36:38,435 INFO cyclops.models.wrappers.sk_model - Best reg_lambda: 1
+2024-06-23 18:29:11,730 INFO cyclops.models.wrappers.sk_model - Best reg_lambda: 0
-2024-06-22 12:36:38,437 INFO cyclops.models.wrappers.sk_model - Best n_estimators: 100
+2024-06-23 18:29:11,732 INFO cyclops.models.wrappers.sk_model - Best n_estimators: 500
-2024-06-22 12:36:38,438 INFO cyclops.models.wrappers.sk_model - Best max_depth: 5
+2024-06-23 18:29:11,734 INFO cyclops.models.wrappers.sk_model - Best max_depth: 5
-2024-06-22 12:36:38,440 INFO cyclops.models.wrappers.sk_model - Best learning_rate: 0.01
+2024-06-23 18:29:11,735 INFO cyclops.models.wrappers.sk_model - Best learning_rate: 0.1
-2024-06-22 12:36:38,441 INFO cyclops.models.wrappers.sk_model - Best gamma: 2
+2024-06-23 18:29:11,736 INFO cyclops.models.wrappers.sk_model - Best gamma: 10
-2024-06-22 12:36:38,442 INFO cyclops.models.wrappers.sk_model - Best colsample_bytree: 1
+2024-06-23 18:29:11,737 INFO cyclops.models.wrappers.sk_model - Best colsample_bytree: 0.8
XGBClassifier(base_score=None, booster=None, callbacks=None, + colsample_bylevel=None, colsample_bynode=None, + colsample_bytree=0.8, early_stopping_rounds=None, + enable_categorical=False, eval_metric='logloss', + feature_types=None, gamma=10, gpu_id=None, grow_policy=None, + importance_type=None, interaction_constraints=None, + learning_rate=0.1, max_bin=None, max_cat_threshold=None, + max_cat_to_onehot=None, max_delta_step=None, max_depth=5, + max_leaves=None, min_child_weight=3, missing=nan, + monotone_constraints=None, n_estimators=500, n_jobs=None, + num_parallel_tree=None, predictor=None, random_state=123, ...)
-{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 1, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': 'logloss', 'feature_types': None, 'gamma': 2, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.01, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': 3, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 100, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 123, 'reg_alpha': None, 'reg_lambda': 1, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': None, 'seed': 123}
+{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 0.8, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': 'logloss', 'feature_types': None, 'gamma': 10, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': 3, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 500, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 123, 'reg_alpha': None, 'reg_lambda': 0, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': None, 'seed': 123}
Log the model parameters to the report.
@@ -1787,7 +1787,7 @@Log the performance metrics to the report.
We can add a performance metric to the model card using the log_performance_metric
method, which expects a dictionary where the keys are in the following format: slice_name/metric_name
. For instance, overall/accuracy
.