From 51796de6f0dfbe4bde65b5962fb494a64a0c285f Mon Sep 17 00:00:00 2001 From: amrit110 Date: Mon, 27 Nov 2023 21:38:15 -0500 Subject: [PATCH] deploy: 03f6c5cefdb8be5b8685c950eaad48ec7d59d62e --- api/_modules/cyclops/evaluate/evaluator.html | 178 +- .../cyclops/evaluate/fairness/evaluator.html | 35 +- .../cyclops/tasks/classification.html | 12 +- .../kaggle/heart_failure_prediction.ipynb.txt | 2 +- .../mimiciv/mortality_prediction.ipynb.txt | 4 +- .../nihcxr/cxr_classification.ipynb.txt | 16 +- .../synthea/los_prediction.ipynb.txt | 4 +- .../cyclops.evaluate.evaluator.evaluate.html | 39 +- ....fairness.evaluator.evaluate_fairness.html | 4 +- api/searchindex.js | 2 +- .../kaggle/heart_failure_prediction.html | 72 +- .../kaggle/heart_failure_prediction.ipynb | 462 +- .../kaggle/heart_failure_report_periodic.html | 170 +- .../mimiciv/mortality_prediction.html | 144 +- .../mimiciv/mortality_prediction.ipynb | 4384 +++++++++-------- .../mimiciv/mortality_report_periodic.html | 138 +- api/tutorials/nihcxr/cxr_classification.html | 146 +- api/tutorials/nihcxr/cxr_classification.ipynb | 392 +- api/tutorials/nihcxr/monitor_api.html | 20 +- api/tutorials/nihcxr/monitor_api.ipynb | 132 +- .../nihcxr/nihcxr_report_periodic.html | 6 +- .../length_of_stay_report_periodic.html | 136 +- api/tutorials/synthea/los_prediction.html | 136 +- api/tutorials/synthea/los_prediction.ipynb | 3240 ++++++------ 24 files changed, 4843 insertions(+), 5031 deletions(-) diff --git a/api/_modules/cyclops/evaluate/evaluator.html b/api/_modules/cyclops/evaluate/evaluator.html index 28b25bae2..2de466d05 100644 --- a/api/_modules/cyclops/evaluate/evaluator.html +++ b/api/_modules/cyclops/evaluate/evaluator.html @@ -169,11 +169,10 @@

Source code for cyclops.evaluate.evaluator

 import logging
 import warnings
 from dataclasses import asdict
-from typing import Any, Callable, Dict, List, Optional, Sequence, Union, get_args
+from typing import Any, Dict, List, Optional, Sequence, Union
 
 from datasets import Dataset, DatasetDict, config, load_dataset
 from datasets.splits import Split
-from sklearn.compose import ColumnTransformer
 
 from cyclops.data.slicer import SliceSpec
 from cyclops.data.utils import (
@@ -184,8 +183,7 @@ 

Source code for cyclops.evaluate.evaluator

 from cyclops.evaluate.fairness.config import FairnessConfig
 from cyclops.evaluate.fairness.evaluator import evaluate_fairness
 from cyclops.evaluate.metrics.metric import Metric, MetricCollection
-from cyclops.evaluate.utils import choose_split
-from cyclops.models.wrappers import WrappedModel
+from cyclops.evaluate.utils import _format_column_names, choose_split
 from cyclops.utils.log import setup_logging
 
 
@@ -199,13 +197,8 @@ 

Source code for cyclops.evaluate.evaluator

     dataset: Union[str, Dataset, DatasetDict],
     metrics: Union[Metric, Sequence[Metric], Dict[str, Metric], MetricCollection],
     target_columns: Union[str, List[str]],
-    feature_columns: Optional[Union[str, List[str]]] = None,
-    prediction_column_prefix: str = "predictions",
-    remove_columns: Optional[Union[str, List[str]]] = None,
-    models: Optional[
-        Union[WrappedModel, Sequence[WrappedModel], Dict[str, WrappedModel]]
-    ] = None,
-    transforms: Optional[Union[Callable[..., Any], ColumnTransformer]] = None,
+    prediction_columns: Union[str, List[str]],
+    ignore_columns: Optional[Union[str, List[str]]] = None,
     slice_spec: Optional[SliceSpec] = None,
     split: Optional[Union[str, Split]] = None,
     batch_size: Optional[int] = config.DEFAULT_MAX_BATCH_SIZE,
@@ -225,30 +218,19 @@ 

Source code for cyclops.evaluate.evaluator

     metrics : Union[Metric, Sequence[Metric], Dict[str, Metric], MetricCollection]
         The metrics to compute.
     target_columns : Union[str, List[str]]
-        The name of the column(s) containing the target values.
-    feature_columns : Union[str, List[str]], optional
-        The name of the column(s) containing the feature values. This must be provided
-        if `models` is not None.
-    prediction_column_prefix : str, optional
-        The prefix of the column(s) containing the predictions. If `models` is not
-        None, the predictions will be added to the dataset and the column names will
-        be `{prediction_column_prefix}.{model_name}`. If `models` is None, the
-        predictions will be read from the dataset and the column names must start
-        with `prediction_column_prefix`.
-    remove_columns : Union[str, List[str]], optional
-        The name of the column(s) to remove from the dataset before filtering
-        and computing metrics. This is useful if the dataset contains columns
-        that are not needed for computing metrics but may be expensive to
-        keep in memory (e.g. image columns).
-    models : Union[WrappedModel, Sequence[WrappedModel], Dict[str, WrappedModel]]
-        The model(s) to evaluate. If a `Sequence` of `WrappedModel`, each model will
-        be evaluated on the entire dataset and the model class name will be used as
-        the model name. If a `Dict` of `WrappedModel`, each model will be evaluated
-        on the entire dataset and the keys will be used as the model names.
-    transforms : Callable, optional
-        A function that transforms the dataset before doing inference. This is
-        useful if the dataset needs to be transformed before being passed to
-        the model.
+        The name of the column(s) containing the target values. A string value
+        indicates a single column. A list of strings indicates a multi-label
+        task - the target values will be the union of the columns.
+    prediction_columns : Union[str, List[str]]
+        The names of the prediction columns used to compute metrics. If a string, it
+        should be the name of a column in the dataset. If a list, it should be a list
+        of column names in the dataset. Lists allow for evaluating multiple models
+        on the same dataset.
+    ignore_columns : Union[str, List[str]], optional
+        The name of the column(s) to ignore while filtering the dataset and computing
+        metrics. This is useful if the dataset contains columns that are not needed
+        for computing metrics but may be expensive to keep in memory
+        (e.g. image columns).
     slice_spec : SliceSpec, optional
         The slice specification to use for computing metrics. If None, no slices
         will be computed - the metrics will be computed on the entire dataset.
@@ -291,84 +273,33 @@ 

Source code for cyclops.evaluate.evaluator

     ------
     ValueError
         - If `dataset` is a `DatasetDict` and `split` is None.
-        - If `models` is None and `dataset` does not have a column that starts
-          with `prediction_column_prefix`.
-        - If `models` is not None and `feature_columns` is None.
-        - If multiple models are provided and only one set of results is found
-          after computing metrics.
 
     """
     dataset = _load_data(dataset, split, **(load_dataset_kwargs or {}))
+    metrics = _prepare_metrics(metrics)
 
-    column_names: List[str] = dataset.column_names
     check_required_columns(
-        column_names,
+        dataset.column_names,
         target_columns,
-        feature_columns,
-        remove_columns,
+        prediction_columns,
+        ignore_columns,
     )
 
-    metrics = _prepare_metrics(metrics)
-
-    if models is None and not any(
-        col.startswith(prediction_column_prefix) for col in column_names
-    ):
-        raise ValueError(
-            "Got `model=None` but `dataset` does not have a column that "
-            f"starts with `{prediction_column_prefix}`. Please specify a "
-            f"model or add a column that starts with `{prediction_column_prefix}` "
-            "to the dataset.",
-        )
-
-    if models is not None:
-        if feature_columns is None:
-            raise ValueError(
-                "Got `models` but `feature_columns` is None. Please specify "
-                "`feature_columns` argument.",
-            )
-        models = _prepare_models(models)
-        for model_name, model in models.items():
-            dataset = model.predict_proba(
-                dataset,
-                feature_columns=feature_columns,
-                prediction_column_prefix=prediction_column_prefix,
-                model_name=model_name,
-                transforms=transforms,
-                only_predictions=False,
-            )
-
-    # compute metrics for each model
-    results = {}
-
     if slice_spec is None:
         slice_spec = SliceSpec()
 
     metric_results = _compute_metrics(
-        dataset,
-        metrics,
-        slice_spec,
+        dataset=dataset,
+        metrics=metrics,
+        slice_spec=slice_spec,
         target_columns=target_columns,
-        prediction_column_prefix=prediction_column_prefix,
-        remove_columns=remove_columns,
+        prediction_columns=prediction_columns,
+        ignore_columns=ignore_columns,
         batch_size=batch_size,
         raise_on_empty_slice=raise_on_empty_slice,
     )
-    if "default" in metric_results:
-        if models is not None and len(models) > 1:
-            raise ValueError(
-                "Got multiple models but only one set of predictions. "
-                "Please make sure that the predictions for each model "
-                f"starts with `{prediction_column_prefix}` followed by "
-                "the model name. For example, if the model name is "
-                "`my_model`, the predictions should be in a column "
-                f"called `{prediction_column_prefix}.my_model`.",
-            )
-        if models is not None:  # only one model; replace "default" with model name
-            model_name = list(models.keys())[0]
-            metric_results[model_name] = metric_results.pop("default")
-        else:  # no models; don't name the results
-            metric_results = metric_results.pop("default")
 
+    results = {}
     results.update(metric_results)
 
     if fairness_config is not None:
@@ -377,13 +308,9 @@ 

Source code for cyclops.evaluate.evaluator

 
         fairness_config.dataset = dataset
         fairness_config.target_columns = target_columns
-        fairness_config.prediction_columns = [
-            col
-            for col in dataset.column_names
-            if col.startswith(prediction_column_prefix)
-        ]
+        fairness_config.prediction_columns = prediction_columns
         fairness_config.batch_size = batch_size
-        fairness_config.remove_columns = remove_columns
+        fairness_config.remove_columns = ignore_columns
 
         fairness_results = evaluate_fairness(**asdict(fairness_config))
         results["fairness"] = fairness_results
@@ -463,47 +390,19 @@ 

Source code for cyclops.evaluate.evaluator

     )
 
 
-def _prepare_models(
-    model: Union[WrappedModel, Sequence[WrappedModel], Dict[str, WrappedModel]],
-) -> Dict[str, WrappedModel]:
-    """Prepare models for evaluation."""
-    if isinstance(model, get_args(WrappedModel)):
-        model_name: str = model.model_.__class__.__name__
-        return {model_name: model}
-    if isinstance(model, (list, tuple)):
-        assert all(isinstance(m, get_args(WrappedModel)) for m in model)
-        return {m.getattr("model_").__class__.__name__: m for m in model}
-    if isinstance(model, dict):
-        assert all(isinstance(m, get_args(WrappedModel)) for m in model.values())
-        return model
-
-    raise TypeError(
-        f"Invalid type for `model`: {type(model)}. "
-        "Expected one of: WrappedModel, Sequence[WrappedModel], "
-        "Dict[str, WrappedModel].",
-    )
-
-
 def _compute_metrics(
     dataset: Dataset,
     metrics: MetricCollection,
     slice_spec: SliceSpec,
     target_columns: Union[str, List[str]],
-    prediction_column_prefix: str = "predictions",
-    remove_columns: Optional[Union[str, List[str]]] = None,
+    prediction_columns: Union[str, List[str]],
+    ignore_columns: Optional[Union[str, List[str]]] = None,
     batch_size: Optional[int] = config.DEFAULT_MAX_BATCH_SIZE,
     raise_on_empty_slice: bool = False,
 ) -> Dict[str, Dict[str, Any]]:
     """Compute metrics for a dataset."""
-    if isinstance(target_columns, str):
-        target_columns = [target_columns]
-
-    # get the predictions (there could be multiple)
-    # any column starting with `prediction_column_prefix` is considered a
-    # prediction column, for a single model
-    prediction_columns = [
-        col for col in dataset.column_names if col.startswith(prediction_column_prefix)
-    ]
+    target_columns = _format_column_names(target_columns)
+    prediction_columns = _format_column_names(prediction_columns)
 
     # temporarily stop decoding features to save memory
     set_decode(dataset, False, exclude=target_columns + prediction_columns)
@@ -514,9 +413,8 @@ 

Source code for cyclops.evaluate.evaluator

         output_all_columns=True,
     ):
         results: Dict[str, Dict[str, Any]] = {}
-
         for slice_name, slice_fn in slice_spec.slices():
-            sliced_dataset = dataset.remove_columns(remove_columns or []).filter(
+            sliced_dataset = dataset.remove_columns(ignore_columns or []).filter(
                 slice_fn,
                 batched=True,
                 batch_size=batch_size,
@@ -569,13 +467,7 @@ 

Source code for cyclops.evaluate.evaluator

                     metric_output = metrics.compute()
                     metrics.reset_state()
 
-                # get the model name from the prediction column name
-                # model name is everything after the first `prediction_column_prefix.`
-                model_name: str = "default"
-                pred_col_split = prediction_column.split(".", 1)
-                if len(pred_col_split) == 2:
-                    model_name = pred_col_split[1]
-
+                model_name: str = "model_for_%s" % prediction_column
                 results.setdefault(model_name, {})
                 results[model_name][slice_name] = metric_output
 
diff --git a/api/_modules/cyclops/evaluate/fairness/evaluator.html b/api/_modules/cyclops/evaluate/fairness/evaluator.html
index 8efebf209..22e88731c 100644
--- a/api/_modules/cyclops/evaluate/fairness/evaluator.html
+++ b/api/_modules/cyclops/evaluate/fairness/evaluator.html
@@ -196,6 +196,7 @@ 

Source code for cyclops.evaluate.fairness.evaluator

_check_thresholds, _get_value_if_singleton_array, ) +from cyclops.evaluate.utils import _format_column_names from cyclops.utils.log import setup_logging @@ -210,7 +211,7 @@

Source code for cyclops.evaluate.fairness.evaluator

dataset: Dataset, groups: Union[str, List[str]], target_columns: Union[str, List[str]], - prediction_columns: Union[str, List[str]] = "predictions", + prediction_columns: Union[str, List[str]], group_values: Optional[Dict[str, Any]] = None, group_bins: Optional[Dict[str, Union[int, List[Any]]]] = None, group_base_values: Optional[Dict[str, Any]] = None, @@ -245,7 +246,7 @@

Source code for cyclops.evaluate.fairness.evaluator

The target or targets columns used to compute metrics. If a string, it should be the name of a column in the dataset. If a list, it should be a list of column names in the dataset. Lists will be treated as multilabel targets. - prediction_columns : Union[str, List[str]], default="predictions" + prediction_columns : Union[str, List[str]] The names of the prediction columns used to compute metrics. If a string, it should be the name of a column in the dataset. If a list, it should be a list of column names in the dataset. Lists allow for evaluating multiple models @@ -583,36 +584,6 @@

Source code for cyclops.evaluate.fairness.evaluator

) -def _format_column_names(column_names: Union[str, List[str]]) -> List[str]: - """Format the column names to list of strings if not already a list. - - Parameters - ---------- - column_names : Union[str, List[str]] - The column names to format. - - Returns - ------- - List[str] - The formatted column names. - - Raises - ------ - TypeError - If any of the column names are not strings or list of strings. - - """ - if isinstance(column_names, str): - return [column_names] - if isinstance(column_names, list): - return column_names - - raise TypeError( - f"Expected column name {column_names} to be a string or " - f"list of strings, but got {type(column_names)}.", - ) - - def _get_unique_values( dataset: Dataset, groups: List[str], diff --git a/api/_modules/cyclops/tasks/classification.html b/api/_modules/cyclops/tasks/classification.html index 801f0a618..c0cfe2b83 100644 --- a/api/_modules/cyclops/tasks/classification.html +++ b/api/_modules/cyclops/tasks/classification.html @@ -516,8 +516,10 @@

Source code for cyclops.tasks.classification

metrics=metrics_collection,
             target_columns=self.task_target,
             slice_spec=slice_spec,
-            prediction_column_prefix=prediction_column_prefix,
-            remove_columns=remove_columns,
+            prediction_columns=[
+                f"{prediction_column_prefix}.{model_name}" for model_name in model_names
+            ],
+            ignore_columns=remove_columns,
             split=splits_mapping["test"],
             batch_size=batch_size,
             fairness_config=fairness_config,
@@ -718,8 +720,10 @@ 

Source code for cyclops.tasks.classification

metrics=metrics_collection,
             slice_spec=slice_spec,
             target_columns=self.task_target,
-            prediction_column_prefix=prediction_column_prefix,
-            remove_columns=remove_columns,
+            prediction_columns=[
+                f"{prediction_column_prefix}.{model_name}" for model_name in model_names
+            ],
+            ignore_columns=remove_columns,
             split=splits_mapping["test"],
             batch_size=batch_size,
             fairness_config=fairness_config,
diff --git a/api/_sources/tutorials/kaggle/heart_failure_prediction.ipynb.txt b/api/_sources/tutorials/kaggle/heart_failure_prediction.ipynb.txt
index 2722c0ba2..8601a4fc1 100644
--- a/api/_sources/tutorials/kaggle/heart_failure_prediction.ipynb.txt
+++ b/api/_sources/tutorials/kaggle/heart_failure_prediction.ipynb.txt
@@ -885,12 +885,12 @@
    "metadata": {},
    "outputs": [],
    "source": [
+    "model_name = f\"model_for_preds.{model_name}\"\n",
     "results_flat = flatten_results_dict(\n",
     "    results=results,\n",
     "    remove_metrics=[\"BinaryROCCurve\", \"BinaryPrecisionRecallCurve\"],\n",
     "    model_name=model_name,\n",
     ")\n",
-    "\n",
     "results_female_flat = flatten_results_dict(\n",
     "    results=results_female,\n",
     "    model_name=model_name,\n",
diff --git a/api/_sources/tutorials/mimiciv/mortality_prediction.ipynb.txt b/api/_sources/tutorials/mimiciv/mortality_prediction.ipynb.txt
index 1574cc617..0658f18e5 100644
--- a/api/_sources/tutorials/mimiciv/mortality_prediction.ipynb.txt
+++ b/api/_sources/tutorials/mimiciv/mortality_prediction.ipynb.txt
@@ -916,12 +916,12 @@
    "metadata": {},
    "outputs": [],
    "source": [
+    "model_name = f\"model_for_preds.{model_name}\"\n",
     "results_flat = flatten_results_dict(\n",
     "    results=results,\n",
     "    remove_metrics=[\"BinaryROCCurve\", \"BinaryPrecisionRecallCurve\"],\n",
     "    model_name=model_name,\n",
-    ")\n",
-    "print(results_flat)"
+    ")"
    ]
   },
   {
diff --git a/api/_sources/tutorials/nihcxr/cxr_classification.ipynb.txt b/api/_sources/tutorials/nihcxr/cxr_classification.ipynb.txt
index 06de21e8a..32974c7e9 100644
--- a/api/_sources/tutorials/nihcxr/cxr_classification.ipynb.txt
+++ b/api/_sources/tutorials/nihcxr/cxr_classification.ipynb.txt
@@ -294,10 +294,9 @@
     "nih_eval_results_gender = evaluator.evaluate(\n",
     "    dataset=nih_ds,\n",
     "    metrics=[ppv, npv, sensitivity, specificity],\n",
-    "    feature_columns=\"image\",\n",
     "    target_columns=pathologies,\n",
-    "    prediction_column_prefix=\"predictions\",\n",
-    "    remove_columns=\"image\",\n",
+    "    prediction_columns=\"predictions.densenet\",\n",
+    "    ignore_columns=\"image\",\n",
     "    slice_spec=slice_spec,\n",
     ")"
    ]
@@ -354,10 +353,9 @@
     "nih_eval_results_age = evaluator.evaluate(\n",
     "    dataset=nih_ds,\n",
     "    metrics=[ppv, npv, sensitivity, specificity],\n",
-    "    feature_columns=\"image\",\n",
     "    target_columns=pathologies,\n",
-    "    prediction_column_prefix=\"predictions\",\n",
-    "    remove_columns=\"image\",\n",
+    "    prediction_columns=\"predictions.densenet\",\n",
+    "    ignore_columns=\"image\",\n",
     "    slice_spec=slice_spec,\n",
     ")"
    ]
@@ -459,7 +457,7 @@
    "outputs": [],
    "source": [
     "results_flat = {}\n",
-    "for slice_, metrics in nih_eval_results_age[\"densenet\"].items():\n",
+    "for slice_, metrics in nih_eval_results_age[\"model_for_predictions.densenet\"].items():\n",
     "    for name, metric in metrics.items():\n",
     "        results_flat[f\"{slice_}/{name}\"] = metric.mean()\n",
     "        for itr, m in enumerate(metric):\n",
@@ -467,7 +465,9 @@
     "                results_flat[f\"pathology:{pathologies[itr]}/{name}\"] = m\n",
     "            else:\n",
     "                results_flat[f\"{slice_}&pathology:{pathologies[itr]}/{name}\"] = m\n",
-    "for slice_, metrics in nih_eval_results_gender[\"densenet\"].items():\n",
+    "for slice_, metrics in nih_eval_results_gender[\n",
+    "    \"model_for_predictions.densenet\"\n",
+    "].items():\n",
     "    for name, metric in metrics.items():\n",
     "        results_flat[f\"{slice_}/{name}\"] = metric.mean()\n",
     "        for itr, m in enumerate(metric):\n",
diff --git a/api/_sources/tutorials/synthea/los_prediction.ipynb.txt b/api/_sources/tutorials/synthea/los_prediction.ipynb.txt
index c1f864997..c0130d714 100644
--- a/api/_sources/tutorials/synthea/los_prediction.ipynb.txt
+++ b/api/_sources/tutorials/synthea/los_prediction.ipynb.txt
@@ -1092,12 +1092,12 @@
    },
    "outputs": [],
    "source": [
+    "model_name = f\"model_for_preds.{model_name}\"\n",
     "results_flat = flatten_results_dict(\n",
     "    results=results,\n",
     "    remove_metrics=[\"BinaryROCCurve\", \"BinaryPrecisionRecallCurve\"],\n",
     "    model_name=model_name,\n",
-    ")\n",
-    "print(results_flat)"
+    ")"
    ]
   },
   {
diff --git a/api/reference/api/_autosummary/cyclops.evaluate.evaluator.evaluate.html b/api/reference/api/_autosummary/cyclops.evaluate.evaluator.evaluate.html
index 7419e9b03..eb04977b7 100644
--- a/api/reference/api/_autosummary/cyclops.evaluate.evaluator.evaluate.html
+++ b/api/reference/api/_autosummary/cyclops.evaluate.evaluator.evaluate.html
@@ -191,7 +191,7 @@
 

cyclops.evaluate.evaluator.evaluate

-evaluate(dataset, metrics, target_columns, feature_columns=None, prediction_column_prefix='predictions', remove_columns=None, models=None, transforms=None, slice_spec=None, split=None, batch_size=1000, raise_on_empty_slice=False, fairness_config=None, override_fairness_metrics=True, load_dataset_kwargs=None)[source]
+evaluate(dataset, metrics, target_columns, prediction_columns, ignore_columns=None, slice_spec=None, split=None, batch_size=1000, raise_on_empty_slice=False, fairness_config=None, override_fairness_metrics=True, load_dataset_kwargs=None)[source]

Evaluate one or more models on a dataset using one or more metrics.

Parameters:
@@ -200,25 +200,17 @@

cyclops.evaluate.evaluator.evaluateMetric, Sequence[Metric], Dict[str, Metric], MetricCollection]) – The metrics to compute.

-
  • target_columns (Union[str, List[str]]) – The name of the column(s) containing the target values.

  • -
  • feature_columns (Union[str, List[str]], optional) – The name of the column(s) containing the feature values. This must be provided -if models is not None.

  • -
  • prediction_column_prefix (str, optional) – The prefix of the column(s) containing the predictions. If models is not -None, the predictions will be added to the dataset and the column names will -be {prediction_column_prefix}.{model_name}. If models is None, the -predictions will be read from the dataset and the column names must start -with prediction_column_prefix.

  • -
  • remove_columns (Union[str, List[str]], optional) – The name of the column(s) to remove from the dataset before filtering -and computing metrics. This is useful if the dataset contains columns -that are not needed for computing metrics but may be expensive to -keep in memory (e.g. image columns).

  • -
  • models (Union[WrappedModel, Sequence[WrappedModel], Dict[str, WrappedModel]]) – The model(s) to evaluate. If a Sequence of WrappedModel, each model will -be evaluated on the entire dataset and the model class name will be used as -the model name. If a Dict of WrappedModel, each model will be evaluated -on the entire dataset and the keys will be used as the model names.

  • -
  • transforms (Callable, optional) – A function that transforms the dataset before doing inference. This is -useful if the dataset needs to be transformed before being passed to -the model.

  • +
  • target_columns (Union[str, List[str]]) – The name of the column(s) containing the target values. A string value +indicates a single column. A list of strings indicates a multi-label +task - the target values will be the union of the columns.

  • +
  • prediction_columns (Union[str, List[str]]) – The names of the prediction columns used to compute metrics. If a string, it +should be the name of a column in the dataset. If a list, it should be a list +of column names in the dataset. Lists allow for evaluating multiple models +on the same dataset.

  • +
  • ignore_columns (Union[str, List[str]], optional) – The name of the column(s) to ignore while filtering the dataset and computing +metrics. This is useful if the dataset contains columns that are not needed +for computing metrics but may be expensive to keep in memory +(e.g. image columns).

  • slice_spec (SliceSpec, optional) – The slice specification to use for computing metrics. If None, no slices will be computed - the metrics will be computed on the entire dataset. Note that this is not used for computing fairness metrics.

  • @@ -254,12 +246,7 @@

    cyclops.evaluate.evaluator.evaluateRaises:

    ValueError

      -
    • If dataset is a DatasetDict and split is None. - - If models is None and dataset does not have a column that starts - with prediction_column_prefix. - - If models is not None and feature_columns is None. - - If multiple models are provided and only one set of results is found - after computing metrics.

    • +
    • If dataset is a DatasetDict and split is None.

    diff --git a/api/reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.evaluate_fairness.html b/api/reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.evaluate_fairness.html index 085a42ef9..24c395f4b 100644 --- a/api/reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.evaluate_fairness.html +++ b/api/reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.evaluate_fairness.html @@ -192,7 +192,7 @@

    cyclops.evaluate.fairness.evaluator.evaluate_fairness

    -evaluate_fairness(metrics, dataset, groups, target_columns, prediction_columns='predictions', group_values=None, group_bins=None, group_base_values=None, thresholds=None, compute_optimal_threshold=False, remove_columns=None, batch_size=1000, raise_on_empty_slice=False, metric_name=None, metric_kwargs=None)[source]
    +evaluate_fairness(metrics, dataset, groups, target_columns, prediction_columns, group_values=None, group_bins=None, group_base_values=None, thresholds=None, compute_optimal_threshold=False, remove_columns=None, batch_size=1000, raise_on_empty_slice=False, metric_name=None, metric_kwargs=None)[source]

    Compute fairness indicators.

    This function computes fairness indicators for a dataset that includes predictions and targets.

    @@ -211,7 +211,7 @@

    cyclops.evaluate.fairness.evaluator.evaluate_fairness

    target_columns (Union[str, List[str]]) – The target or targets columns used to compute metrics. If a string, it should be the name of a column in the dataset. If a list, it should be a list of column names in the dataset. Lists will be treated as multilabel targets.

    -
  • prediction_columns (Union[str, List[str]], default="predictions") – The names of the prediction columns used to compute metrics. If a string, it +

  • prediction_columns (Union[str, List[str]]) – The names of the prediction columns used to compute metrics. If a string, it should be the name of a column in the dataset. If a list, it should be a list of column names in the dataset. Lists allow for evaluating multiple models on the same dataset.

  • diff --git a/api/searchindex.js b/api/searchindex.js index e60162c50..0c04aae86 100644 --- a/api/searchindex.js +++ b/api/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["api", "contributing", "index", "intro", "reference/api/_autosummary/cyclops.data.features.medical_image", "reference/api/_autosummary/cyclops.data.features.medical_image.MedicalImage", "reference/api/_autosummary/cyclops.data.slicer", "reference/api/_autosummary/cyclops.data.slicer.SliceSpec", "reference/api/_autosummary/cyclops.data.slicer.compound_filter", "reference/api/_autosummary/cyclops.data.slicer.filter_datetime", "reference/api/_autosummary/cyclops.data.slicer.filter_non_null", "reference/api/_autosummary/cyclops.data.slicer.filter_range", "reference/api/_autosummary/cyclops.data.slicer.filter_string_contains", "reference/api/_autosummary/cyclops.data.slicer.filter_value", "reference/api/_autosummary/cyclops.data.slicer.is_datetime", "reference/api/_autosummary/cyclops.data.slicer.overall", "reference/api/_autosummary/cyclops.evaluate.evaluator", "reference/api/_autosummary/cyclops.evaluate.evaluator.evaluate", "reference/api/_autosummary/cyclops.evaluate.fairness.config", "reference/api/_autosummary/cyclops.evaluate.fairness.config.FairnessConfig", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.evaluate_fairness", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.Accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.BinaryAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MulticlassAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MultilabelAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.AUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.BinaryAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MulticlassAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MultilabelAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.F1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.FbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.factory", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.create_metric", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.auroc", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.binary_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.stat_scores", "reference/api/_autosummary/cyclops.evaluate.metrics.metric", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.Metric", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.MetricCollection", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.OperatorMetric", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Precision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Recall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.BinaryROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MulticlassROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MultilabelROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.ROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.BinarySensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.Sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.BinarySpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MulticlassSpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MultilabelSpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.Specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.BinaryStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MulticlassStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MultilabelStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.StatScores", "reference/api/_autosummary/cyclops.monitor.clinical_applicator", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.ClinicalShiftApplicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.binary_noise_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_association_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_swap_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.gaussian_noise_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.knockout_shift", "reference/api/_autosummary/cyclops.report.report", "reference/api/_autosummary/cyclops.report.report.ModelCardReport", "reference/api/_autosummary/cyclops.tasks.classification", "reference/api/_autosummary/cyclops.tasks.classification.BinaryTabularClassificationTask", "reference/api/_autosummary/cyclops.tasks.classification.MultilabelImageClassificationTask", "reference/api/cyclops.data", "reference/api/cyclops.evaluate", "reference/api/cyclops.monitor", "reference/api/cyclops.report", "reference/api/cyclops.tasks", "tutorials", "tutorials/kaggle/heart_failure_prediction", "tutorials/mimiciv/mortality_prediction", "tutorials/nihcxr/cxr_classification", "tutorials/nihcxr/monitor_api", "tutorials/synthea/los_prediction", "tutorials_monitor", "tutorials_use_cases"], "filenames": ["api.rst", "contributing.rst", "index.rst", "intro.rst", "reference/api/_autosummary/cyclops.data.features.medical_image.rst", "reference/api/_autosummary/cyclops.data.features.medical_image.MedicalImage.rst", "reference/api/_autosummary/cyclops.data.slicer.rst", "reference/api/_autosummary/cyclops.data.slicer.SliceSpec.rst", "reference/api/_autosummary/cyclops.data.slicer.compound_filter.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_datetime.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_non_null.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_range.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_string_contains.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_value.rst", "reference/api/_autosummary/cyclops.data.slicer.is_datetime.rst", "reference/api/_autosummary/cyclops.data.slicer.overall.rst", "reference/api/_autosummary/cyclops.evaluate.evaluator.rst", "reference/api/_autosummary/cyclops.evaluate.evaluator.evaluate.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.config.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.config.FairnessConfig.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.evaluate_fairness.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.Accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.BinaryAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.AUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.BinaryAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MulticlassAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MultilabelAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.F1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.FbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.create_metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.auroc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.binary_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.stat_scores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.Metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.MetricCollection.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.OperatorMetric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.BinaryROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MulticlassROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MultilabelROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.ROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.BinarySensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.Sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.BinarySpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MulticlassSpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MultilabelSpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.Specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.BinaryStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.StatScores.rst", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.rst", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.binary_noise_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_association_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_swap_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.gaussian_noise_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.knockout_shift.rst", "reference/api/_autosummary/cyclops.report.report.rst", "reference/api/_autosummary/cyclops.report.report.ModelCardReport.rst", "reference/api/_autosummary/cyclops.tasks.classification.rst", "reference/api/_autosummary/cyclops.tasks.classification.BinaryTabularClassificationTask.rst", "reference/api/_autosummary/cyclops.tasks.classification.MultilabelImageClassificationTask.rst", "reference/api/cyclops.data.rst", "reference/api/cyclops.evaluate.rst", "reference/api/cyclops.monitor.rst", "reference/api/cyclops.report.rst", "reference/api/cyclops.tasks.rst", "tutorials.rst", "tutorials/kaggle/heart_failure_prediction.ipynb", "tutorials/mimiciv/mortality_prediction.ipynb", "tutorials/nihcxr/cxr_classification.ipynb", "tutorials/nihcxr/monitor_api.ipynb", "tutorials/synthea/los_prediction.ipynb", "tutorials_monitor.rst", "tutorials_use_cases.rst"], "titles": ["API Reference", "Contributing to cyclops", "Welcome to cyclops\u2019s documentation!", "\ud83d\udc23 Getting Started", "cyclops.data.features.medical_image", "cyclops.data.features.medical_image.MedicalImage", "cyclops.data.slicer", "cyclops.data.slicer.SliceSpec", "cyclops.data.slicer.compound_filter", "cyclops.data.slicer.filter_datetime", "cyclops.data.slicer.filter_non_null", "cyclops.data.slicer.filter_range", "cyclops.data.slicer.filter_string_contains", "cyclops.data.slicer.filter_value", "cyclops.data.slicer.is_datetime", "cyclops.data.slicer.overall", "cyclops.evaluate.evaluator", "cyclops.evaluate.evaluator.evaluate", "cyclops.evaluate.fairness.config", "cyclops.evaluate.fairness.config.FairnessConfig", "cyclops.evaluate.fairness.evaluator", "cyclops.evaluate.fairness.evaluator.evaluate_fairness", "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values", "cyclops.evaluate.metrics.accuracy", "cyclops.evaluate.metrics.accuracy.Accuracy", "cyclops.evaluate.metrics.accuracy.BinaryAccuracy", "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy", "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy", "cyclops.evaluate.metrics.auroc", "cyclops.evaluate.metrics.auroc.AUROC", "cyclops.evaluate.metrics.auroc.BinaryAUROC", "cyclops.evaluate.metrics.auroc.MulticlassAUROC", "cyclops.evaluate.metrics.auroc.MultilabelAUROC", "cyclops.evaluate.metrics.f_beta", "cyclops.evaluate.metrics.f_beta.BinaryF1Score", "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore", "cyclops.evaluate.metrics.f_beta.F1Score", "cyclops.evaluate.metrics.f_beta.FbetaScore", "cyclops.evaluate.metrics.f_beta.MulticlassF1Score", "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore", "cyclops.evaluate.metrics.f_beta.MultilabelF1Score", "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore", "cyclops.evaluate.metrics.factory", "cyclops.evaluate.metrics.factory.create_metric", "cyclops.evaluate.metrics.functional.accuracy", "cyclops.evaluate.metrics.functional.auroc", "cyclops.evaluate.metrics.functional.f_beta", "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score", "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.f1_score", "cyclops.evaluate.metrics.functional.f_beta.fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score", "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score", "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score", "cyclops.evaluate.metrics.functional.precision_recall", "cyclops.evaluate.metrics.functional.precision_recall.binary_precision", "cyclops.evaluate.metrics.functional.precision_recall.binary_recall", "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision", "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall", "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision", "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall", "cyclops.evaluate.metrics.functional.precision_recall.precision", "cyclops.evaluate.metrics.functional.precision_recall.recall", "cyclops.evaluate.metrics.functional.precision_recall_curve", "cyclops.evaluate.metrics.functional.roc", "cyclops.evaluate.metrics.functional.roc.binary_roc_curve", "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve", "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve", "cyclops.evaluate.metrics.functional.roc.roc_curve", "cyclops.evaluate.metrics.functional.sensitivity", "cyclops.evaluate.metrics.functional.specificity", "cyclops.evaluate.metrics.functional.stat_scores", "cyclops.evaluate.metrics.metric", "cyclops.evaluate.metrics.metric.Metric", "cyclops.evaluate.metrics.metric.MetricCollection", "cyclops.evaluate.metrics.metric.OperatorMetric", "cyclops.evaluate.metrics.precision_recall", "cyclops.evaluate.metrics.precision_recall.BinaryPrecision", "cyclops.evaluate.metrics.precision_recall.BinaryRecall", "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision", "cyclops.evaluate.metrics.precision_recall.MulticlassRecall", "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision", "cyclops.evaluate.metrics.precision_recall.MultilabelRecall", "cyclops.evaluate.metrics.precision_recall.Precision", "cyclops.evaluate.metrics.precision_recall.Recall", "cyclops.evaluate.metrics.precision_recall_curve", "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve", "cyclops.evaluate.metrics.roc", "cyclops.evaluate.metrics.roc.BinaryROCCurve", "cyclops.evaluate.metrics.roc.MulticlassROCCurve", "cyclops.evaluate.metrics.roc.MultilabelROCCurve", "cyclops.evaluate.metrics.roc.ROCCurve", "cyclops.evaluate.metrics.sensitivity", "cyclops.evaluate.metrics.sensitivity.BinarySensitivity", "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity", "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity", "cyclops.evaluate.metrics.sensitivity.Sensitivity", "cyclops.evaluate.metrics.specificity", "cyclops.evaluate.metrics.specificity.BinarySpecificity", "cyclops.evaluate.metrics.specificity.MulticlassSpecificity", "cyclops.evaluate.metrics.specificity.MultilabelSpecificity", "cyclops.evaluate.metrics.specificity.Specificity", "cyclops.evaluate.metrics.stat_scores", "cyclops.evaluate.metrics.stat_scores.BinaryStatScores", "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores", "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores", "cyclops.evaluate.metrics.stat_scores.StatScores", "cyclops.monitor.clinical_applicator", "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator", "cyclops.monitor.synthetic_applicator", "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator", "cyclops.monitor.synthetic_applicator.binary_noise_shift", "cyclops.monitor.synthetic_applicator.feature_association_shift", "cyclops.monitor.synthetic_applicator.feature_swap_shift", "cyclops.monitor.synthetic_applicator.gaussian_noise_shift", "cyclops.monitor.synthetic_applicator.knockout_shift", "cyclops.report.report", "cyclops.report.report.ModelCardReport", "cyclops.tasks.classification", "cyclops.tasks.classification.BinaryTabularClassificationTask", "cyclops.tasks.classification.MultilabelImageClassificationTask", "cyclops.data", "cyclops.evaluate", "cyclops.monitor", "cyclops.report", "cyclops.tasks", "Tutorials", "Heart Failure Prediction", "Mortality Prediction", "Chest X-Ray Disease Classification", "NIHCXR Clinical Drift Experiments Tutorial", "Prolonged Length of Stay Prediction", "monitor API", "Example use cases"], "terms": {"cyclop": [0, 131, 132, 133, 134, 135], "data": [0, 2, 3, 24, 26, 27, 49, 50, 52, 54, 69, 72, 89, 95, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 130, 133, 134, 136], "slicer": [0, 131, 132, 133, 134, 135], "compound_filt": 0, "filter_datetim": 0, "filter_non_nul": 0, "filter_rang": 0, "filter_string_contain": 0, "filter_valu": [0, 133], "is_datetim": 0, "overal": [0, 7, 21, 121, 131, 132, 133, 135], "slicespec": [0, 17, 112, 124, 131, 132, 133, 134, 135], "spec_list": [0, 7, 131, 132, 133, 134, 135], "include_overal": [0, 7, 131], "valid": [0, 7, 9, 17, 121, 123, 124, 131, 132, 133], "column_nam": [0, 7, 9, 10, 11, 12, 13, 133], "_registri": [0, 7], "add_slice_spec": [0, 7], "get_slic": [0, 7], "slice": [0, 3, 7, 8, 17, 21, 121, 123, 124, 131, 132, 133, 135], "featur": [0, 7, 9, 10, 11, 12, 13, 15, 17, 112, 116, 117, 121, 123, 124, 130, 133, 137], "medical_imag": 0, "medicalimag": 0, "__call__": [0, 5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "cast_storag": [0, 5], "decode_exampl": [0, 5], "embed_storag": [0, 5], "encode_exampl": [0, 5], "flatten": [0, 5, 131, 132, 133, 135], "task": [0, 2, 3, 24, 25, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 44, 47, 48, 49, 50, 51, 53, 54, 58, 60, 61, 62, 63, 66, 67, 68, 69, 78, 80, 81, 82, 83, 84, 85, 90, 92, 93, 94, 95, 98, 99, 100, 102, 103, 104, 105, 110, 130, 133, 137], "classif": [0, 3, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 44, 47, 48, 49, 50, 51, 53, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 78, 79, 80, 81, 82, 83, 84, 85, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 130, 131, 132, 135], "binarytabularclassificationtask": [0, 131, 132, 135], "__init__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 133], "add_model": [0, 123, 124], "data_typ": [0, 123, 124], "evalu": [0, 2, 3, 121, 123, 124, 130, 133, 137], "get_model": [0, 123, 124], "list_model": [0, 123, 124, 131, 132, 135], "list_models_param": [0, 123, 124, 131, 132, 135], "load_model": [0, 123, 124], "models_count": [0, 123, 124], "predict": [0, 3, 17, 19, 21, 24, 26, 27, 30, 31, 32, 34, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 67, 80, 81, 82, 84, 85, 87, 88, 89, 92, 93, 94, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 130, 133], "save_model": [0, 123, 124], "task_typ": [0, 123, 124, 131, 132, 135], "train": [0, 3, 17, 121, 123, 124, 130, 133, 136, 137], "multilabelimageclassificationtask": 0, "metric": [0, 17, 19, 21, 121, 123, 124, 130, 131, 132, 135, 137], "__add__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "__mul__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "add_stat": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "clone": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "comput": [0, 17, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 123, 124, 130, 133, 137], "name": [0, 3, 7, 8, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 124, 131, 132, 133, 134, 135], "reset_st": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "update_st": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "metriccollect": [0, 17, 21, 123, 124, 131, 132, 135], "add_metr": [0, 75], "clear": [0, 75], "get": [0, 2, 75, 123, 124, 131, 132, 135], "item": [0, 75, 131, 132, 133, 134, 135], "kei": [0, 7, 17, 21, 75, 121, 131, 132, 133, 134, 135], "pop": [0, 75, 131, 132, 135], "popitem": [0, 75], "setdefault": [0, 75], "updat": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 133, 134, 135], "valu": [0, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 130, 132, 133, 134, 135, 137], "operatormetr": 0, "factori": [0, 7, 133], "create_metr": [0, 131, 132, 133, 135], "accuraci": [0, 131, 132, 135], "binaryaccuraci": [0, 131, 132, 135], "multiclassaccuraci": 0, "multilabelaccuraci": 0, "auroc": [0, 130, 131, 132, 135, 137], "binaryauroc": [0, 29, 131, 132, 135], "multiclassauroc": [0, 29], "multilabelauroc": [0, 29], "precision_recal": 0, "binaryprecis": [0, 131, 132, 135], "binaryrecal": [0, 97, 131, 132, 135], "multiclassprecis": 0, "multiclassrecal": [0, 98], "multilabelprecis": 0, "multilabelrecal": [0, 99], "precis": [0, 24, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 60, 64, 66, 77, 78, 80, 82, 85, 86, 87, 88, 89, 90, 92, 100, 105, 131, 132, 133, 135], "recal": [0, 24, 38, 51, 55, 57, 59, 61, 64, 66, 77, 79, 81, 83, 86, 87, 88, 89, 90, 92, 97, 98, 99, 105, 131, 132, 133, 135], "precision_recall_curv": [0, 131, 132, 135], "binaryprecisionrecallcurv": [0, 30, 92, 131, 132, 135], "multiclassprecisionrecallcurv": [0, 31, 93], "multilabelprecisionrecallcurv": [0, 32, 94], "precisionrecallcurv": 0, "roc": [0, 28, 29, 30, 31, 32, 45, 131, 132, 135], "binaryroccurv": [0, 131, 132, 135], "multiclassroccurv": 0, "multilabelroccurv": 0, "roccurv": 0, "sensit": [0, 121, 130, 131, 132, 133, 135, 136], "binarysensit": 0, "multiclasssensit": 0, "multilabelsensit": [0, 133], "specif": [0, 7, 17, 115, 118, 123, 124, 131, 132, 133, 135], "binaryspecif": 0, "multiclassspecif": 0, "multilabelspecif": [0, 133], "f_beta": 0, "binaryf1scor": [0, 131, 132, 135], "binaryfbetascor": [0, 34], "f1score": 0, "fbetascor": [0, 36], "multiclassf1scor": 0, "multiclassfbetascor": [0, 38], "multilabelf1scor": 0, "multilabelfbetascor": [0, 40], "stat_scor": [0, 133, 135], "binarystatscor": [0, 25, 35, 78, 79, 102, 135], "multiclassstatscor": [0, 26, 39, 80, 81, 103], "multilabelstatscor": [0, 27, 41, 82, 83, 104, 133], "statscor": 0, "function": [0, 5, 6, 7, 8, 16, 17, 20, 21, 25, 35, 41, 42, 76, 93, 102, 104, 107, 109, 110, 113, 121, 131, 132, 133, 135], "binary_precis": 0, "binary_recal": 0, "multiclass_precis": 0, "multiclass_recal": 0, "multilabel_precis": 0, "multilabel_recal": 0, "binary_roc_curv": 0, "multiclass_roc_curv": 0, "multilabel_roc_curv": 0, "roc_curv": [0, 131, 132, 135], "binary_f1_scor": 0, "binary_fbeta_scor": 0, "f1_score": [0, 131, 132, 135], "fbeta_scor": 0, "multiclass_f1_scor": 0, "multiclass_fbeta_scor": 0, "multilabel_f1_scor": 0, "multilabel_fbeta_scor": 0, "fair": [0, 17, 121, 123, 124, 131, 132, 133, 135], "evaluate_fair": 0, "warn_too_many_unique_valu": 0, "config": [0, 123], "fairnessconfig": [0, 17, 123, 124, 131, 132, 135], "monitor": [0, 2, 3, 130, 131, 132, 134, 135], "clinical_appl": 0, "clinicalshiftappl": [0, 134], "ag": [0, 112, 130, 134, 137], "apply_shift": [0, 112, 114, 134], "custom": [0, 112, 121, 134], "hospital_typ": [0, 112], "month": [0, 7, 9, 112], "sex": [0, 112, 130, 132, 134, 135, 137], "time": [0, 3, 7, 75, 112, 121, 130, 132, 133, 135, 136, 137], "synthetic_appl": 0, "binary_noise_shift": 0, "feature_association_shift": 0, "feature_swap_shift": 0, "gaussian_noise_shift": 0, "knockout_shift": 0, "syntheticshiftappl": [0, 113], "report": [0, 2, 3, 110, 130, 137], "modelcardreport": [0, 131, 132, 133, 135], "export": [0, 121, 131, 132, 133, 135], "from_json_fil": [0, 121], "log_cit": [0, 121, 133], "log_dataset": [0, 121, 131], "log_descriptor": [0, 121, 131, 132, 133, 135], "log_fairness_assess": [0, 121, 131, 132, 133, 135], "log_from_dict": [0, 121, 131, 132, 133, 135], "log_imag": [0, 121], "log_licens": [0, 121, 131, 132, 135], "log_model_paramet": [0, 121, 131, 132, 135], "log_own": [0, 121, 131, 132, 133, 135], "log_performance_metr": [0, 121, 131, 132, 135], "log_plotly_figur": [0, 121, 131, 132, 133, 135], "log_quantitative_analysi": [0, 121, 131, 132, 133, 135], "log_refer": [0, 121, 131, 132, 135], "log_regul": [0, 121], "log_risk": [0, 121, 131, 132, 133, 135], "log_use_cas": [0, 121, 131, 132, 133, 135], "log_us": [0, 121, 131, 132, 133, 135], "log_vers": [0, 121, 131, 132, 135], "thank": 1, "your": [1, 131], "interest": [1, 131, 132, 135], "To": [1, 3, 5, 131, 135], "submit": 1, "pr": 1, "pleas": [1, 131, 132, 133, 134, 135], "fill": 1, "out": [1, 121, 131, 132, 135], "templat": [1, 121], "along": [1, 112, 131, 132, 133, 135], "If": [1, 5, 7, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124, 131, 132, 135], "fix": 1, "an": [1, 3, 5, 7, 17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 51, 60, 61, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 131, 132, 133, 135, 137], "issu": [1, 21], "don": [1, 132], "t": [1, 3, 5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 132], "forget": 1, "link": [1, 121, 131, 132, 133, 135], "onc": [1, 75, 131, 132, 135], "python": [1, 3, 132, 135], "virtual": [1, 3], "environ": [1, 3, 131, 132, 135], "i": [1, 3, 5, 7, 9, 10, 11, 12, 13, 14, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 131, 132, 133, 135, 137], "setup": [1, 132, 135], "you": [1, 3, 5, 75, 131, 132, 133, 135, 136], "can": [1, 3, 5, 7, 21, 25, 38, 51, 69, 74, 75, 84, 85, 95, 100, 110, 121, 123, 124, 131, 132, 133, 135, 136], "run": [1, 3, 131, 132, 135], "us": [1, 2, 5, 7, 8, 17, 21, 24, 29, 30, 31, 32, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 62, 63, 66, 67, 68, 69, 75, 76, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 102, 105, 107, 110, 112, 114, 121, 123, 124, 130, 131, 132, 133, 135, 136], "all": [1, 7, 8, 9, 10, 11, 12, 13, 15, 63, 73, 75, 108, 109, 110, 123, 131, 132, 133, 134, 135], "file": [1, 5, 121, 131, 132, 133, 135], "For": [1, 21, 76, 121, 131, 132, 135], "style": 1, "we": [1, 3, 121, 131, 132, 133, 135], "recommend": [1, 76], "googl": 1, "guid": 1, "appli": [1, 8, 25, 29, 59, 62, 63, 66, 67, 68, 75, 76, 93, 104, 109, 110, 112, 123, 124, 131, 132, 135], "black": 1, "format": [1, 5, 7, 89, 121, 131, 132, 135], "docstr": 1, "numpi": [1, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 116, 117, 118, 119, 124, 131, 132, 133, 134, 135], "also": [1, 3, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 133, 135, 137], "flake8": 1, "pylint": 1, "further": 1, "static": 1, "analysi": [1, 121, 131, 132, 133, 135], "The": [1, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 60, 61, 63, 66, 68, 69, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 131, 132, 133, 135, 136, 137], "show": [1, 131, 132, 133, 135], "error": [1, 17, 21], "which": [1, 9, 10, 11, 12, 13, 21, 90, 121, 131, 132, 133, 135, 137], "need": [1, 17, 21, 74, 110, 131, 132, 135], "befor": [1, 17, 21, 22, 123, 131, 132, 135], "last": 1, "least": 1, "type": [1, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 130, 133, 137], "hint": 1, "our": [1, 131, 132, 135], "check": [1, 14, 89], "mypi": 1, "current": [1, 121, 131, 132, 135], "ar": [1, 5, 7, 11, 12, 17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 97, 98, 99, 100, 103, 104, 105, 108, 109, 110, 112, 116, 121, 131, 132, 133, 135], "strict": 1, "enforc": 1, "more": [1, 7, 16, 17, 123, 124, 131, 137], "api": [1, 2, 3, 130, 131, 137], "becom": 1, "stabl": [1, 131, 132, 133, 134, 135], "start": [2, 17, 131, 132, 135], "instal": [2, 131], "pip": [2, 131], "develop": [2, 131, 132, 133, 135], "poetri": [2, 131, 132, 133, 134, 135], "contribut": 2, "notebook": [2, 131, 132, 133, 135], "citat": [2, 121, 131, 132, 133, 135], "pre": [2, 131, 132, 135], "commit": 2, "hook": 2, "code": [2, 131, 132, 135], "guidelin": [2, 3], "tutori": [2, 131, 136, 137], "exampl": [2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 15, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 130, 131, 132, 133, 135, 136], "case": [2, 3, 75, 115, 121, 130, 131, 132, 135, 136], "refer": [2, 3, 121, 131, 132, 133, 135], "toolkit": 3, "facilit": 3, "research": 3, "deploy": 3, "ml": [3, 131, 132, 135], "model": [3, 16, 17, 21, 121, 123, 124, 130, 136, 137], "healthcar": 3, "It": [3, 38, 51, 75, 84, 85, 100, 105, 136], "provid": [3, 7, 9, 12, 17, 21, 69, 110, 121, 131, 132, 133, 135], "few": 3, "high": [3, 131, 132, 133, 135], "level": [3, 21, 131, 132, 133, 135], "creat": [3, 6, 7, 21, 42, 43, 75, 84, 85, 100, 115, 118, 119, 121, 123, 124, 130, 133, 137], "dataset": [3, 6, 7, 16, 17, 19, 21, 26, 38, 39, 51, 52, 58, 61, 68, 69, 80, 81, 83, 88, 89, 90, 94, 95, 98, 99, 103, 104, 112, 114, 121, 123, 124, 125, 130, 136, 137], "infer": [3, 17], "popular": [3, 131], "effici": 3, "load": [3, 17, 121, 123, 124, 130, 132, 135, 136, 137], "differ": [3, 24, 29, 36, 37, 46, 55, 62, 63, 64, 69, 70, 72, 74, 84, 85, 90, 95, 100, 105, 110, 130, 131, 132, 133, 135, 136], "modal": 3, "common": [3, 131, 132], "implement": [3, 137], "scikit": [3, 131], "learn": [3, 131, 133], "pytorch": 3, "formul": [3, 131, 132, 135], "binari": [3, 5, 24, 25, 29, 30, 34, 35, 36, 37, 47, 48, 49, 50, 56, 57, 60, 61, 62, 63, 66, 69, 72, 78, 79, 84, 85, 87, 90, 92, 95, 97, 100, 102, 104, 105, 107, 110, 115, 123, 124, 131, 132, 135, 137], "multi": [3, 133], "label": [3, 24, 25, 27, 29, 32, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 68, 69, 78, 79, 81, 82, 83, 84, 85, 87, 89, 90, 92, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 109, 110, 116, 117, 119, 123, 124, 130, 131, 133, 137], "tabular": [3, 123, 124, 130], "seri": [3, 123], "imag": [3, 4, 5, 17, 21, 118, 121, 124, 125, 130, 133, 134], "clinic": [3, 111, 112, 130, 136], "detect": [3, 133, 136], "shift": [3, 111, 112, 114, 116, 117, 130, 136], "relev": [3, 121, 131, 132, 135, 136], "card": [3, 121, 130, 131, 132, 135, 137], "end": [3, 131, 132, 133, 135], "nih": [3, 130, 133, 134], "chest": [3, 130], "x": [3, 114, 115, 116, 117, 118, 119, 123, 130, 131, 132, 134, 135], "rai": [3, 130], "mimic": 3, "iv": 3, "python3": [3, 131, 132, 133, 134, 135], "m": [3, 131, 132, 133, 134, 135], "pycyclop": [3, 131, 132, 133, 134, 135], "base": [3, 5, 7, 17, 19, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 130, 131, 137], "doesn": [3, 5], "includ": [3, 7, 11, 21, 72, 112, 114, 131, 132, 133, 135, 136, 137], "packag": [3, 125, 126, 127, 128, 129, 131, 132, 133, 134, 135], "addit": [3, 75, 121, 123, 124, 131, 132, 133, 135], "depend": 3, "set": [3, 7, 17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 131, 132, 133, 135], "up": [3, 131, 132, 133, 135], "henc": 3, "make": [3, 131, 132, 135], "sure": [3, 131], "sourc": [3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 130, 136], "env": 3, "info": [3, 131, 132, 135], "path": [3, 5, 112, 121, 123, 124, 131, 132, 135], "bin": [3, 21], "activ": [3, 135], "In": [3, 75, 131, 132, 135], "order": [3, 5, 17, 107, 108, 109], "test": [3, 17, 121, 123, 124, 130, 131, 132, 135, 136, 137], "codestyl": 3, "unit": 3, "integr": [3, 131], "built": 3, "sphinx": 3, "local": 3, "doc": 3, "cd": 3, "html": [3, 121, 131, 132, 133, 134, 135], "sphinxopt": 3, "d": [3, 75, 112, 133], "nbsphinx_allow_error": 3, "true": [3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 24, 26, 27, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 112, 114, 116, 121, 123, 124, 131, 132, 133, 134, 135], "welcom": 3, "see": [3, 7, 121, 131, 132, 133, 134, 135], "jupyt": [3, 131, 132, 133, 134, 135], "insid": 3, "ipython": 3, "kernel": 3, "after": [3, 17, 131, 132, 135], "ipykernel": 3, "user": [3, 121, 131, 132, 135], "name_of_kernel": 3, "now": 3, "navig": 3, "": [3, 7, 10, 14, 17, 21, 75, 121, 123, 124, 131, 132, 133, 134, 135], "tab": [3, 131], "cite": 3, "when": [3, 5, 17, 21, 24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 75, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105, 123, 124, 131, 132, 135], "project": 3, "paper": 3, "articl": 3, "krishnan2022": 3, "12": [3, 7, 131, 132, 133, 135], "02": [3, 69, 132], "22283021": 3, "author": [3, 131, 133], "krishnan": 3, "amrit": 3, "subasri": 3, "vallijah": 3, "mckeen": 3, "kaden": 3, "kore": 3, "ali": 3, "ogidi": 3, "franklin": 3, "alinoori": 3, "mahshid": 3, "lalani": 3, "nadim": 3, "dhalla": 3, "azra": 3, "verma": 3, "amol": 3, "razak": 3, "fahad": 3, "pandya": 3, "deval": 3, "dolatabadi": 3, "elham": 3, "titl": [3, 131, 132, 133, 135], "cyclic": 3, "toward": 3, "operation": 3, "health": [3, 131, 132, 135], "eloc": 3, "id": [3, 5, 112, 131, 133, 135], "2022": [3, 7, 131, 132, 133, 135], "year": [3, 7, 9, 131, 132, 133, 135], "doi": 3, "10": [3, 131, 132, 133, 134, 135], "1101": 3, "publish": [3, 131], "cold": 3, "spring": 3, "harbor": 3, "laboratori": [3, 135], "press": 3, "url": [3, 133], "http": [3, 121, 131, 132, 133, 134, 135], "www": [3, 131], "medrxiv": 3, "org": [3, 121, 131, 132, 133, 135], "content": [3, 121], "earli": 3, "08": [3, 134], "journal": 3, "medic": [4, 5, 125, 133, 135, 137], "class": [4, 5, 6, 7, 17, 18, 19, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 69, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 116, 117, 119, 120, 121, 122, 123, 124, 131, 132, 133, 135], "decod": [5, 133], "none": [5, 7, 9, 17, 19, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 124, 131, 132, 133, 134, 135], "reader": 5, "itkread": 5, "suffix": 5, "jpg": 5, "read": [5, 17], "paramet": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 131, 132, 133, 135], "union": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124], "str": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 131, 132, 135], "imageread": 5, "option": [5, 7, 9, 10, 11, 12, 13, 17, 21, 24, 27, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 69, 75, 80, 81, 82, 83, 84, 85, 90, 95, 98, 99, 100, 103, 104, 105, 108, 112, 114, 121, 123, 124, 133], "default": [5, 7, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 124, 131, 132, 135], "monai": 5, "byte": 5, "bool": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 75, 76, 108, 109, 110, 112, 116, 117, 121, 123, 124, 131, 132, 133, 135], "whether": [5, 7, 17, 21, 75, 108, 109, 110, 112, 121, 132, 135, 137], "fals": [5, 7, 9, 10, 11, 12, 13, 14, 17, 19, 21, 29, 30, 40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105, 107, 108, 109, 110, 117, 118, 123, 124, 131, 132, 133, 135], "return": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 132, 133, 135], "dictionari": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 75, 121, 123, 124, 131, 132, 135], "image_path": 5, "image_byt": 5, "method": [5, 7, 19, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 131, 132, 135], "attribut": [5, 7, 19, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 131, 132, 135], "call": [5, 121], "self": [5, 133], "storag": 5, "cast": [5, 131, 132, 135], "arrow": 5, "arrai": [5, 24, 26, 27, 29, 30, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 63, 66, 67, 68, 69, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 119, 124, 133, 135], "convert": [5, 25, 35, 41, 48, 61, 69, 95, 102, 104, 107, 131, 132, 135], "pyarrow": 5, "rtype": 5, "structarrai": 5, "pa": 5, "string": [5, 7, 9, 12, 17, 21, 75, 121, 133], "must": [5, 9, 17, 21, 121], "contain": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 27, 103, 104, 121, 131, 132, 133, 135, 137], "struct": 5, "matter": 5, "list": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 115, 116, 117, 118, 119, 121, 123, 124, 131, 132, 135], "arg": [5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "stringarrai": 5, "listarrai": 5, "token_per_repo_id": 5, "from": [5, 7, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 119, 121, 123, 124, 131, 132, 133, 134, 135, 137], "serial": 5, "version": [5, 121, 131, 132, 133, 135], "dict": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 75, 121, 123, 124], "access": 5, "privat": 5, "repositori": [5, 131], "hub": 5, "pass": [5, 17, 43, 75, 112, 121, 123, 124, 131, 132, 135], "repo_id": 5, "token": [5, 131], "deseri": 5, "np": [5, 11, 14, 21, 123, 124, 131, 132, 133, 134, 135], "ndarrai": [5, 14, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 116, 117, 118, 119, 123, 124], "metadata": [5, 131, 132, 133, 135], "emb": 5, "encod": 5, "input": [5, 24, 46, 55, 60, 61, 64, 69, 70, 72, 87, 89, 95, 115, 118, 123, 124], "state": [5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 133], "itself": 5, "otherwis": [5, 14, 24, 27, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110], "tupl": [5, 7, 66, 67, 68, 69, 75, 87, 88, 89, 92, 93, 94, 112, 123, 124], "classlabel": [5, 131, 132, 135], "translat": 5, "translationvariablelanguag": 5, "sequenc": [5, 17, 75, 123, 124, 133], "array2d": 5, "array3d": 5, "array4d": 5, "array5d": 5, "audio": 5, "subset": 6, "hug": [6, 123, 124, 130, 137], "face": [6, 123, 124, 130, 137], "object": [7, 19, 21, 112, 114, 121, 123, 124, 131, 132, 135], "ani": [7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124, 131, 132, 133, 135], "A": [7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 25, 75, 76, 104, 109, 121, 131, 132, 133, 135], "each": [7, 8, 17, 21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 69, 75, 76, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110, 131, 132, 135], "map": [7, 8, 22, 75, 123, 124, 131, 132, 133, 135], "column": [7, 8, 9, 10, 11, 12, 13, 17, 21, 112, 123, 124, 131, 132, 133, 135], "one": [7, 16, 17, 21, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 69, 76, 80, 81, 82, 83, 84, 85, 95, 98, 99, 100, 105, 123, 124], "follow": [7, 17, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105, 121, 131, 132, 133, 135], "exact": [7, 13], "select": [7, 112, 116, 131, 132, 133, 135], "thi": [7, 17, 21, 24, 25, 26, 27, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105, 110, 121, 123, 131, 132, 133, 135, 137], "singl": [7, 75, 121, 123, 124, 131, 132, 135, 137], "row": [7, 131, 133], "where": [7, 8, 9, 10, 11, 12, 13, 60, 61, 63, 75, 121, 123, 124, 131, 132, 135, 137], "support": [7, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 72, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 107, 108, 109, 136], "e": [7, 9, 10, 17, 21, 75, 116, 117, 118, 121, 131, 132, 135], "g": [7, 9, 17, 21, 116, 117, 118, 121, 131, 132, 135], "2021": [7, 131, 132, 135], "01": [7, 29, 31, 32, 131, 132, 134, 135], "00": [7, 131, 132, 133, 134, 135], "min_valu": [7, 11, 131, 132, 133, 134, 135], "minimum": [7, 11], "specifi": [7, 17, 75, 112, 121, 123, 124, 131, 132, 135], "min_inclus": [7, 11, 131, 132, 135], "indic": [7, 21, 27, 60, 61, 115, 118, 131, 132, 133, 135], "rang": [7, 11, 29, 30, 66, 67, 68, 93, 131, 132, 133, 135], "work": [7, 27, 103, 104, 121, 131, 132, 133, 135], "numer": [7, 11, 131, 132, 135], "datetim": [7, 9, 11, 14, 121, 131, 132, 135], "inf": [7, 11, 131, 132, 135], "max_valu": [7, 11, 131, 132, 133, 134, 135], "boolean": [7, 8, 9, 10, 11, 12, 13, 15], "greater": [7, 22, 135], "than": [7, 11, 22, 48, 52, 54, 123, 124, 131, 132, 135, 137], "equal": [7, 11, 21], "maximum": [7, 11, 22, 29, 30], "max_inclus": [7, 11, 131, 132, 135], "less": [7, 11, 48, 52, 54, 132, 135], "match": [7, 9, 12, 13, 17], "between": [7, 21, 38, 51, 69, 95], "1": [7, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 116, 117, 118, 119, 121, 130, 131, 132, 133, 135, 136, 137], "dai": [7, 9, 132, 135, 137], "31": [7, 131, 132, 135], "hour": [7, 9, 132], "0": [7, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 115, 116, 117, 118, 119, 121, 131, 132, 133, 134, 135], "23": [7, 131, 132, 133, 135], "negat": [7, 9, 10, 11, 12, 13, 133], "flag": [7, 132], "doe": [7, 9, 11, 12, 13, 17, 21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 74, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 110, 121], "keep_nul": [7, 9, 11, 12, 13], "keep": [7, 17, 21, 135], "null": [7, 9, 10, 11, 12, 13, 132, 135], "conjunct": [7, 133], "its": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 60, 61, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 133, 135], "own": [7, 131, 132, 135], "callabl": [7, 8, 17, 21, 76, 121], "import": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 130, 136, 137], "slice_spec": [7, 17, 123, 124, 131, 132, 133, 135], "feature_1": 7, "feature_2": 7, "feature_3": 7, "value_1": 7, "value_2": 7, "2020": [7, 9, 133], "5": [7, 24, 25, 27, 29, 31, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 115, 118, 119, 130, 131, 132, 133, 135, 136], "60": [7, 135], "6": [7, 24, 26, 35, 36, 38, 39, 49, 56, 59, 62, 63, 78, 79, 80, 81, 83, 84, 85, 87, 88, 90, 92, 93, 95, 97, 98, 99, 100, 104, 107, 108, 110, 131, 132, 133, 134, 135], "7": [7, 29, 30, 31, 36, 39, 40, 69, 80, 81, 82, 84, 85, 87, 88, 89, 93, 98, 100, 105, 108, 109, 110, 131, 132, 133, 135, 137], "8": [7, 24, 26, 27, 29, 30, 31, 34, 35, 36, 37, 38, 40, 41, 47, 49, 50, 53, 54, 56, 59, 60, 62, 66, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 105, 107, 109, 110, 131, 132, 133, 135], "2000": 7, "2010": 7, "slice_nam": [7, 121, 131, 132, 135], "slice_func": 7, "print": [7, 131, 132, 133, 135], "do": [7, 17, 131, 132, 133, 135], "someth": 7, "here": [7, 131, 132, 135], "filter": [7, 9, 10, 11, 12, 13, 17, 21, 131, 132, 133, 134, 135], "add": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124, 131, 132, 135], "detail": [7, 131, 132, 133, 135], "registri": [7, 131, 132, 135], "gener": [7, 69, 95, 112, 121, 130, 136, 137], "slice_funct": 8, "combin": [8, 131], "result": [8, 17, 38, 51, 123, 124, 131, 132, 134, 135], "multipl": [8, 17, 21, 75, 121], "bitwis": 8, "AND": 8, "signatur": 8, "should": [8, 21, 69, 76, 95, 117, 121, 123, 124, 131, 132, 133, 135], "kwarg": [8, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 123, 124], "given": [9, 11, 12, 13, 14, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 75, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110, 121, 123, 124], "int": [9, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 116, 117, 118, 119, 121, 123, 124, 131, 132, 133, 135], "compon": 9, "have": [9, 12, 13, 17, 114, 131, 132, 137], "nan": [9, 10, 17, 21, 130, 137], "nat": 9, "rais": [9, 11, 12, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124], "typeerror": [9, 11, 12, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121], "float": [11, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 109, 110, 115, 116, 117, 118, 119, 121, 133], "valueerror": [11, 17, 21, 48, 50, 52, 54, 58, 59, 60, 61, 62, 63, 69, 121, 123, 124], "either": [11, 30, 31, 32, 75, 87, 88, 89, 92, 93, 94, 110, 121, 131, 132, 135], "substr": 12, "ha": [13, 75, 121, 131, 132, 133, 135], "find": [13, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 123, 133], "perform": [13, 26, 27, 31, 32, 121, 130, 132, 135, 136, 137], "datetime64": 14, "target_column": [17, 19, 21, 131, 132, 133, 135], "feature_column": [17, 133, 134], "prediction_column_prefix": [17, 123, 124, 131, 132, 133, 135], "remove_column": [17, 19, 21, 123, 124, 133], "transform": [17, 66, 67, 68, 93, 123, 124, 131, 132, 133, 134, 135], "split": [17, 112, 121, 123, 124, 131, 132, 133, 135], "batch_siz": [17, 19, 21, 112, 123, 124, 131, 132, 135], "1000": [17, 19, 21, 112, 123, 131, 133], "raise_on_empty_slic": [17, 21], "fairness_config": [17, 123, 124, 131, 132, 135], "override_fairness_metr": [17, 123, 124, 131, 132, 135], "load_dataset_kwarg": 17, "datasetdict": [17, 123, 124], "load_dataset": 17, "argument": [17, 21, 43, 75, 123, 124, 131, 132, 135], "target": [17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 116, 117, 123, 124, 130, 131, 132, 135, 136, 137], "prefix": [17, 75], "ad": [17, 114, 121, 123, 124, 131, 132, 135], "model_nam": [17, 123, 124, 131, 132, 133, 134, 135], "remov": [17, 21, 75, 119, 123, 124, 131, 132, 133, 135], "mai": [17, 21, 131, 132, 133, 135], "expens": [17, 21], "memori": [17, 21], "wrappedmodel": [17, 123, 124], "entir": [17, 131, 132, 135], "being": 17, "note": [17, 121, 131, 132, 135], "chosen": 17, "avail": [17, 121, 131, 132, 135, 137], "first": [17, 21, 25, 76, 104, 131, 132, 135], "eval": 17, "val": 17, "dev": 17, "batch": [17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 123, 124, 132, 133], "size": [17, 21, 112, 123, 124, 131, 132, 133, 135], "neg": [17, 35, 48, 49, 50, 51, 52, 53, 54, 59, 61, 62, 63, 72, 81, 83, 85, 98, 99, 100, 105, 107, 108, 109, 133, 135], "integ": [17, 21, 121], "empti": [17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "warn": [17, 22, 24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 105], "log": [17, 121, 130, 131, 132, 135, 137], "configur": [17, 18, 19, 123, 124, 131, 132, 135], "overridden": [17, 123, 124], "prediction_column": [17, 19, 21], "keyword": [17, 21, 43, 75, 123, 124], "onli": [17, 21, 24, 27, 29, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 62, 63, 75, 80, 81, 82, 84, 85, 98, 100, 103, 104, 105, 108, 109, 110], "found": [17, 75, 121, 131, 132, 133, 134, 135], "group": [19, 21, 22, 75, 121, 131, 132, 135], "group_valu": [19, 21], "group_bin": [19, 21, 131, 132, 135], "group_base_valu": [19, 21, 131, 132, 135], "threshold": [19, 21, 24, 25, 27, 29, 30, 31, 32, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 53, 54, 56, 57, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 102, 104, 105, 107, 109, 110, 121, 130, 131, 132, 135, 137], "compute_optimal_threshold": [19, 21], "metric_nam": [19, 21, 43, 121, 131, 132, 133, 135], "metric_kwarg": [19, 21], "take": [21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 112, 131], "allow": [21, 22, 131, 132, 135, 136], "intersect": 21, "treat": 21, "multilabel": [21, 24, 27, 29, 32, 36, 37, 40, 41, 49, 50, 53, 54, 60, 61, 62, 63, 68, 69, 72, 82, 83, 84, 85, 89, 90, 94, 95, 99, 100, 104, 105, 109, 110, 130, 137], "same": [21, 75, 116], "uniqu": [21, 22, 29, 30, 31, 32, 66, 67, 68, 69, 74, 87, 88, 89, 92, 93, 94, 95, 110, 133, 137], "limit": [21, 131, 132, 133, 135], "number": [21, 22, 24, 26, 27, 29, 30, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 103, 104, 105, 108, 110, 112, 116, 117, 121, 123, 124, 132, 135, 136], "continu": [21, 131, 132, 133, 135], "veri": 21, "slow": 21, "larg": 21, "denomin": 21, "pariti": 21, "across": [21, 116, 136], "linspac": 21, "monoton": [21, 69, 95], "optim": [21, 131], "oper": [21, 65, 76, 131, 132, 135], "necessari": 21, "control": [21, 115], "usag": [21, 131, 132, 135], "rel": 21, "small": 21, "32": [21, 131, 132, 133, 135], "avoid": 21, "encount": [21, 132, 135], "nest": 21, "second": [21, 76], "third": 21, "omit": 21, "requir": [21, 24, 29, 36, 37, 49, 50, 69, 84, 85, 90, 95, 100, 105, 110, 121, 123, 124, 131, 132, 135], "huggingfac": [21, 112, 123, 124], "runtimeerror": 21, "unique_valu": 22, "max_unique_valu": 22, "50": [22, 131, 132, 133, 134, 135], "score": [24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 66, 70, 72, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 133], "liter": [24, 25, 26, 27, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 69, 78, 79, 80, 81, 82, 83, 84, 85, 90, 95, 97, 98, 99, 100, 103, 104, 105, 110, 121], "multiclass": [24, 26, 29, 31, 36, 37, 38, 39, 49, 50, 51, 52, 58, 59, 62, 63, 67, 69, 72, 80, 81, 84, 85, 88, 90, 93, 95, 98, 100, 103, 105, 108, 110], "One": [24, 29, 31, 32, 35, 48, 59, 62, 63, 69, 95, 132, 133, 135], "pos_label": [24, 25, 30, 34, 35, 36, 37, 47, 48, 49, 50, 56, 57, 62, 63, 66, 69, 78, 79, 84, 85, 87, 90, 92, 95, 97, 100, 102, 105, 107, 110], "consid": [24, 26, 27, 36, 37, 49, 50, 62, 63, 84, 85, 90, 95, 100, 103, 104, 105, 132], "posit": [24, 25, 29, 30, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 90, 92, 95, 97, 98, 99, 100, 102, 105, 107, 108, 109, 110, 131, 132, 133, 135], "num_class": [24, 26, 29, 31, 36, 37, 38, 39, 49, 50, 51, 52, 58, 59, 61, 62, 63, 67, 69, 80, 81, 84, 85, 88, 90, 93, 95, 98, 100, 103, 105, 108, 110, 131, 132, 135], "decid": [24, 36, 37, 40, 41, 49, 50, 53, 54, 56, 57, 60, 61, 78, 79, 82, 83, 84, 85, 97, 99, 100, 105], "top_k": [24, 26, 27, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110, 133], "probabl": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 80, 81, 82, 84, 85, 93, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 131, 135], "logit": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 72, 80, 81, 82, 84, 85, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110], "top": [24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110], "k": [24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 75, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110, 134], "num_label": [24, 27, 29, 32, 36, 37, 40, 41, 49, 50, 53, 54, 60, 61, 62, 63, 68, 69, 82, 83, 84, 85, 89, 90, 94, 95, 99, 100, 104, 105, 109, 110, 133], "averag": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 131], "micro": [24, 26, 27, 29, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "macro": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "weight": [24, 26, 27, 29, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 133, 134, 135], "calcul": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "global": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "unweight": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "mean": [24, 26, 27, 29, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 131, 132, 133, 135], "imbal": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 119], "account": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 131, 133], "instanc": [24, 26, 27, 31, 32, 36, 37, 38, 39, 40, 41, 43, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 131, 132, 133, 135], "alter": [24, 26, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105], "zero_divis": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 105], "zero": [24, 25, 26, 27, 34, 36, 37, 38, 39, 40, 41, 47, 49, 50, 51, 52, 53, 54, 56, 57, 58, 60, 61, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "divis": [24, 25, 26, 27, 34, 36, 37, 38, 39, 40, 41, 47, 49, 50, 51, 52, 53, 54, 56, 57, 58, 60, 61, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "act": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "pred": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 135], "75": [24, 25, 29, 30, 66, 67, 68, 90, 92, 95, 103, 104, 105, 131, 133], "05": [24, 26, 27, 29, 31, 32, 36, 38, 39, 40, 49, 53, 62, 67, 68, 69, 80, 81, 84, 85, 88, 90, 93, 94, 95, 98, 100, 103, 104, 105, 108, 110, 131, 132, 133, 134], "95": [24, 26, 27, 36, 38, 49, 62, 69, 88, 90, 93, 94, 95, 133, 135], "p": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 133], "zip": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "2": [24, 26, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 56, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 75, 78, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 92, 93, 95, 97, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 121, 130, 131, 132, 133, 135, 136], "3": [24, 26, 27, 29, 31, 34, 35, 36, 37, 38, 39, 40, 47, 49, 50, 51, 52, 53, 56, 58, 59, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 130, 131, 132, 133, 135, 136], "66666667": [24, 26, 36, 38, 49, 51, 61, 63, 81, 85, 87, 88, 90, 93, 94, 95, 98, 100, 104], "initi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 130, 131, 132, 135, 137], "other": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131], "two": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "scalar": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "togeth": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "multipli": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "variabl": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 137], "attributeerror": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "alreadi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 135], "exist": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124], "copi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 133, 135], "abstract": [24, 29, 36, 37, 73, 74, 84, 85, 90, 95, 100, 105, 110], "final": [24, 29, 36, 37, 74, 84, 85, 90, 95, 100, 105, 110, 132, 133, 135], "reset": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "_update_count": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "_comput": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "sigmoid": [25, 35, 41, 66, 68, 69, 102, 104, 107, 109, 110], "them": [25, 104, 131, 132, 135, 136], "875": [25, 135], "problem": [26, 88, 108, 109, 110, 137], "highest": [26, 27, 62, 63, 103, 104], "determin": [26, 27, 29, 30, 31, 32, 66, 67, 68, 87, 88, 89, 90, 92, 93, 94], "dtype": [26, 27, 31, 32, 38, 39, 40, 41, 66, 67, 68, 69, 80, 81, 82, 83, 87, 88, 89, 92, 93, 94, 98, 99, 103, 104, 115, 116, 117, 118, 119, 131, 133], "float64": [26, 27, 31, 32, 38, 39, 40, 41, 66, 67, 68, 69, 80, 81, 82, 83, 87, 88, 89, 92, 93, 94, 98, 99, 103, 104, 115, 116, 117, 118, 119, 133], "binar": [27, 29, 30, 31, 32, 34, 47, 67, 68, 93, 94, 109, 110], "output": [27, 69, 121, 131, 132, 135], "classifi": [27, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 102, 131, 132, 135], "correct": [27, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102, 103, 104], "per": [27, 75, 132, 135], "area": [28, 29, 30, 31, 32, 45, 131, 132, 135], "under": [28, 29, 30, 31, 32, 45, 131, 132, 135], "curv": [28, 29, 30, 31, 32, 45, 64, 65, 66, 67, 68, 69, 86, 87, 88, 89, 90, 92, 93, 94, 95, 131, 132, 135], "max_fpr": [29, 30], "rate": [29, 30, 66, 67, 68, 69, 131, 132, 133, 135], "partial": [29, 30, 133], "auc": 29, "automat": [29, 30, 31, 32, 66, 67, 68, 87, 88, 89, 90, 92, 93, 94], "applic": [29, 111, 112, 114], "4": [29, 30, 34, 35, 36, 37, 40, 47, 50, 59, 63, 69, 82, 83, 84, 85, 87, 88, 90, 92, 93, 94, 95, 99, 100, 105, 107, 108, 109, 110, 130, 131, 132, 133, 135, 136], "35": [29, 30, 69, 87, 92, 95, 103, 104, 105, 131, 132, 133, 134, 135], "9": [29, 30, 31, 32, 34, 36, 37, 38, 39, 40, 41, 49, 50, 53, 54, 56, 60, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 89, 90, 93, 94, 95, 97, 98, 99, 100, 103, 104, 105, 107, 109, 110, 131, 132, 133, 135], "6111111111111112": [29, 30], "89": [29, 31, 32, 69], "06": [29, 31, 69, 132, 133], "94": [29, 31, 133], "22222222": [29, 31], "625": [29, 32, 35, 103], "aucroc": 30, "confus": [30, 31, 32, 87, 88, 89, 92, 93, 94, 135], "matrix": [30, 31, 32, 87, 88, 89, 92, 93, 94, 115, 116, 117, 118, 119, 135], "f": [33, 35, 37, 38, 39, 41, 46, 48, 50, 51, 52, 54, 75, 131, 132, 133, 134, 135], "beta": [33, 35, 37, 39, 41, 46, 48, 50, 52, 54], "f1": [34, 36, 38, 40, 46, 47, 49, 51, 53], "form": [34, 47, 131, 132, 135], "6666666666666666": [34, 36, 47, 56, 78, 84], "harmon": [35, 37, 39, 41, 48, 50, 52, 54, 131, 132, 135], "8333333333333334": [35, 37, 50, 59, 62, 135], "85714286": [36, 38], "9090909090909091": 37, "83333333": [37, 41, 50, 54], "55555556": [37, 50, 103], "90909091": [37, 39, 41], "85": [39, 80, 81, 84, 85, 98, 100, 131, 132, 135], "total": [40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 108, 132, 135], "count": [40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 131, 132, 133, 135], "predicit": 41, "constructor": 43, "arraylik": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 93, 102], "ground": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102], "truth": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102], "npt": [48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63], "7142857142857143": 48, "estim": [49, 50, 66, 67, 68, 69, 93, 102, 123], "shape": [49, 50, 51, 52, 53, 54, 60, 61, 108, 109, 133, 134], "expect": [60, 61, 131, 132, 135], "like": [60, 61, 75, 131], "n": [60, 61, 131, 132, 133], "l": [60, 61], "sampl": [60, 61, 63, 119], "presenc": [60, 61, 133], "absenc": [60, 61], "rest": 61, "ratio": [62, 63, 105, 135], "correctli": [62, 131, 132, 133, 135], "observ": [62, 131, 135, 137], "precision_scor": 62, "tp": [63, 107, 108, 109, 133, 135], "fn": [63, 107, 108, 109, 133, 135], "intuit": 63, "abil": [63, 131, 132, 135], "recall_scor": 63, "3333333333333333": 63, "receiv": [65, 131, 132, 135], "characterist": [65, 131, 132, 135], "decis": [66, 67, 68, 69, 93, 121, 131, 132, 135], "fpr": [66, 67, 68, 69, 131, 132, 135], "tpr": [66, 67, 68, 69], "25": [66, 67, 68, 88, 90, 92, 93, 95, 105, 116, 117, 131, 132, 134, 135], "softmax": [67, 69, 93], "1d": [67, 68, 69, 95], "33333333": [67, 85, 88, 90, 93, 94, 95, 100], "non": 69, "thei": 69, "evenli": [69, 95], "space": [69, 95], "increas": [69, 95], "assertionerror": [69, 121], "03": [69, 133], "stat": [72, 106, 107, 108, 109, 110], "abc": 74, "properti": [74, 110, 123, 124], "other_metr": 75, "postfix": 75, "userdict": 75, "collect": [75, 131, 137], "want": 75, "behav": 75, "themselv": 75, "intern": 75, "similar": 75, "reduc": 75, "els": [75, 133, 134], "keep_bas": 75, "iter": 75, "underli": 75, "moduledict": 75, "hashabl": 75, "v": 75, "correspond": [75, 123, 124], "keyerror": [75, 121], "some": [75, 131, 132, 135], "pair": 75, "present": 75, "lack": 75, "metric_a": 76, "metric_b": 76, "metric1": 76, "metric2": 76, "unari": 76, "appropri": [84, 85, 100, 131, 132, 135], "375": [88, 90], "suniqu": 90, "45": [90, 105, 131, 132, 133, 135], "42857143": 90, "15": [103, 104, 105, 131, 132, 133, 135], "57142857": 103, "sum": [105, 108, 109, 110, 132, 133, 135], "_abstractscor": [107, 108, 109], "fp": [107, 108, 109, 133, 135], "tn": [107, 108, 109, 133, 135], "classwis": [108, 110], "over": [108, 109, 110, 130, 132, 133, 135, 137], "labelwis": [109, 110, 133], "prior": [110, 131], "modul": [111, 120, 121, 131, 132, 135], "shift_typ": [112, 114], "shift_id": [112, 134], "induc": [112, 114], "synthet": [112, 114, 121, 130, 135, 136, 137], "categor": [112, 131, 132, 135], "origin": 112, "util": [112, 131, 132, 133, 135], "load_nih": 112, "mnt": [112, 131, 132, 133, 134, 135], "nihcxr": [112, 130, 133, 136], "hospital_type_1": 112, "hospital_type_2": 112, "hospital_type_3": 112, "hospital_type_4": 112, "hospital_type_5": 112, "ds_sourc": [112, 134], "ds_target": [112, 134], "num_proc": [112, 134], "process": [112, 130, 131, 133, 135, 137], "build": 112, "hospit": [112, 131, 132, 135, 137], "drift_detect": 114, "experiment": 114, "sklearn": [114, 131, 132, 135], "load_diabet": 114, "y": [114, 116, 117, 119, 123, 131, 132, 133, 135], "return_x_i": 114, "x_tr": 114, "x_te": 114, "y_tr": 114, "y_te": 114, "train_test_split": [114, 131, 132, 135], "test_siz": 114, "random_st": [114, 131, 132, 135], "42": [114, 131, 132, 134, 135], "gn_shift": 114, "x_shift": 114, "x_train": [114, 123], "noise_amt": [114, 118], "delta": [114, 115, 118, 119], "ko_shift": 114, "cp_shift": 114, "mfa_shift": 114, "bn_shift": 114, "tolerance_shift": 114, "ds_shift": 114, "nois": [114, 115, 118], "prob": 115, "covari": [115, 116, 117, 118, 119], "proport": [115, 131, 132, 133, 135], "fraction": [115, 118, 119, 135], "affect": [115, 118, 121, 131, 132, 135], "n_shuffl": [116, 117], "keep_rows_const": 116, "repermute_each_column": 116, "multiwai": 116, "associ": [116, 131, 132, 133, 135], "swap": [116, 117], "individu": [116, 131, 132, 135], "within": [116, 132], "cl": [116, 117], "etc": [116, 117, 131, 132, 133, 135], "floatnumpi": 116, "shuffl": [116, 117, 131], "permut": 116, "placehold": 116, "shift_class": [117, 119], "rank": 117, "changepoint": 117, "axi": [117, 132, 135], "x_ref": 117, "y_ref": 117, "normal": [118, 131, 132, 135], "clip": [118, 131, 132, 135], "gaussian": 118, "standard": [118, 131, 132, 135], "deviat": 118, "divid": 118, "255": [118, 133, 134], "placehol": 119, "output_dir": [121, 131, 132, 135], "serv": 121, "interfac": 121, "popul": [121, 130, 131, 132, 135, 137], "modelcard": 121, "directori": [121, 131, 132, 135], "save": [121, 123, 124, 131, 132, 135], "output_filenam": [121, 131, 132, 133, 135], "template_path": 121, "interact": [121, 132, 135], "save_json": 121, "synthetic_timestamp": [121, 131, 132, 133, 135], "date": [121, 131, 132, 135], "jinja2": 121, "json": [121, 131, 132, 135], "timestamp": [121, 130, 132, 133, 136], "back": 121, "classmethod": 121, "cyclops_report": [121, 131, 132, 135], "section_nam": [121, 131, 132, 133, 135], "model_detail": [121, 131, 132, 135], "extra": 121, "section": [121, 131, 132, 133, 135], "repres": [121, 133], "bibtex": 121, "entri": 121, "plain": 121, "text": [121, 133], "descript": [121, 131, 132, 133, 135], "license_id": [121, 131], "sensitive_featur": [121, 131], "sensitive_feature_justif": [121, 131], "inform": [121, 131], "about": [121, 131, 132, 133, 135], "resourc": [121, 131, 132, 135], "context": 121, "homepag": 121, "spdx": [121, 131], "identifi": [121, 130, 133, 137], "licens": [121, 131, 132, 133, 135], "apach": [121, 131, 132, 135], "unknown": 121, "unlicens": 121, "proprietari": 121, "justif": [121, 131], "field": [121, 130, 131, 132, 135, 137], "descriptor": 121, "new": [121, 131, 132, 135], "pydant": 121, "basemodel": 121, "subclass": 121, "As": 121, "long": 121, "conflict": 121, "defin": [121, 131, 132, 133, 135], "model_card": 121, "cylop": 121, "tradeoff": [121, 133], "trade": 121, "off": 121, "interpret": 121, "consider": [121, 131, 132, 133, 135], "affected_group": [121, 131, 132, 133, 135], "benefit": [121, 131, 132, 133, 135], "harm": [121, 131, 132, 133, 135], "mitigation_strategi": [121, 131, 132, 133, 135], "assess": 121, "mitig": [121, 131, 132, 133, 135], "strategi": [121, 131, 132, 133, 135], "relat": 121, "img_path": 121, "caption": [121, 131, 132, 133, 135], "full": 121, "whole": [121, 131, 132, 135], "left": [121, 135], "blank": 121, "instead": 121, "param": [121, 131, 132, 135], "contact": [121, 131, 132, 133, 135], "role": 121, "owner": [121, 131, 132, 133, 135], "quantit": [121, 131, 132, 133, 135], "slash": 121, "fig": [121, 131, 132, 133, 135], "plotli": [121, 131, 132, 133, 135], "figur": [121, 131, 132, 135], "plot": [121, 131, 132, 133, 135], "analysis_typ": 121, "metric_slic": [121, 131, 132, 133, 135], "decision_threshold": 121, "pass_fail_threshold": [121, 131, 132, 133, 135], "pass_fail_threshold_fn": [121, 131, 132, 133, 135], "explain": 121, "fail": 121, "regul": 121, "regulatori": [121, 131, 132, 135], "compli": 121, "risk": [121, 131, 132, 133, 135, 137], "kind": [121, 131, 132, 133, 135], "primari": [121, 131, 132, 133, 135], "scope": [121, 131, 132, 135], "usecas": 121, "version_str": [121, 131, 132, 135], "semant": 121, "v1": 121, "dt_date": 121, "dt_datetim": 121, "unix": 121, "yyyi": 121, "mm": 121, "dd": 121, "hh": 121, "ss": 121, "ffffff": 121, "z": 121, "summar": 121, "chang": [121, 131, 132, 133, 135], "made": [121, 131, 132, 135], "task_featur": [123, 124, 131, 132, 135], "task_target": [123, 124, 131, 132, 135], "basetask": [123, 124], "ptmodel": [123, 124, 133], "skmodel": [123, 124], "splits_map": [123, 124], "fit": [123, 131, 132, 135], "columntransform": [123, 131, 132, 135], "slicingconfig": 123, "default_max_batch_s": 123, "unnecessari": [123, 124], "filepath": [123, 124], "pretrain": [123, 124, 133], "proba": [123, 131, 132, 135], "mortal": [123, 130], "pd": [123, 132], "datafram": [123, 131, 132, 135], "notfittederror": 123, "destin": [123, 124], "parent": [123, 124], "dirctori": [123, 124], "best_model_param": [123, 131, 132, 135], "y_train": 123, "pipelin": [123, 131, 132, 135], "best": [123, 131, 132, 135], "64": [124, 131, 132, 133, 134, 135], "compos": [124, 131, 132, 133, 134, 135], "pathologi": [124, 130, 131, 137], "represent": [124, 131, 132, 135], "kaggl": [130, 131], "heart": 130, "failur": 130, "librari": [130, 136, 137], "constant": [130, 137], "distribut": [130, 133, 137], "outcom": [130, 137], "preprocessor": [130, 137], "creation": [130, 137], "mimiciv": [130, 132], "queri": [130, 137], "inspect": [130, 131, 137], "preprocess": [130, 131, 137], "drop": [130, 131, 137], "nan_threshold": [130, 131, 137], "gender": [130, 131, 133, 134, 137], "synthea": [130, 135], "prolong": [130, 132], "length": [130, 132, 133], "stai": [130, 132], "diseas": [130, 131, 137], "histor": [130, 131, 137], "period": [130, 137], "w": [130, 137], "drift": [130, 136], "experi": [130, 136], "dimension": [130, 136], "reduct": [130, 136], "techniqu": [130, 136], "roll": [130, 136], "window": [130, 136], "biweekli": [130, 136], "showcas": [131, 132, 135, 137], "patient": [131, 132, 133, 134, 135, 137], "shutil": [131, 132, 133, 135], "express": [131, 132, 133, 135], "px": [131, 132, 133, 135], "kaggle_api_extend": 131, "kaggleapi": 131, "imput": [131, 132, 135], "simpleimput": [131, 132, 135], "minmaxscal": [131, 132, 135], "onehotencod": [131, 132, 135], "noqa": [131, 132, 133, 135], "e402": [131, 132, 133, 135], "catalog": [131, 132, 135], "create_model": [131, 132, 135], "tabularfeatur": [131, 132, 135], "classificationplott": [131, 132, 135], "flatten_results_dict": [131, 132, 135], "join": [131, 132, 135], "load_datafram": 131, "wizuawxh": [131, 132, 133, 134, 135], "py3": [131, 132, 133, 134, 135], "lib": [131, 132, 133, 134, 135], "site": [131, 132, 133, 134, 135, 137], "tqdm": [131, 132, 133, 134, 135], "auto": [131, 132, 133, 134, 135], "py": [131, 132, 133, 134, 135], "21": [131, 132, 133, 134, 135], "tqdmwarn": [131, 132, 133, 134, 135], "iprogress": [131, 132, 133, 134, 135], "ipywidget": [131, 132, 133, 134, 135], "readthedoc": [131, 132, 133, 134, 135], "io": [131, 132, 133, 134, 135], "en": [131, 132, 133, 134, 135], "user_instal": [131, 132, 133, 134, 135], "autonotebook": [131, 132, 133, 134, 135], "notebook_tqdm": [131, 132, 133, 134, 135], "offer": [131, 132, 133, 135], "document": [131, 132, 133, 135], "through": [131, 132, 133, 135], "overview": [131, 132, 133, 135], "how": [131, 132, 133, 135], "quick": [131, 132, 133, 135], "glanc": [131, 132, 133, 135], "sever": [131, 132, 133, 135], "subgroup": [131, 132, 133, 135], "statist": [131, 132, 133, 135, 136], "subpopul": [131, 132, 133, 135], "technic": [131, 132, 133, 135], "architectur": [131, 132, 133, 135], "involv": [131, 132, 133, 135], "intend": [131, 132, 133, 135], "go": [131, 132, 133, 135], "tool": [131, 132, 133, 135], "progress": [131, 132, 133, 135], "subject": [131, 132, 133, 135], "data_dir": [131, 133], "random_se": [131, 132, 135], "train_siz": [131, 132, 135], "sign": [131, 135], "com": [131, 133], "Then": 131, "profil": [131, 132, 135], "usernam": 131, "trigger": 131, "download": 131, "credenti": 131, "place": 131, "locat": 131, "machin": [131, 133], "authent": 131, "dataset_download_fil": 131, "fedesoriano": 131, "unzip": 131, "df": 131, "csv": [131, 135], "file_format": 131, "reset_index": [131, 132, 135], "index": [131, 132, 133, 135], "2023": [131, 132, 133, 135], "11": [131, 132, 133, 135, 137], "27": [131, 132, 133, 135], "242": 131, "chestpaintyp": 131, "restingbp": 131, "cholesterol": 131, "fastingb": 131, "restingecg": 131, "40": [131, 132, 135], "ata": 131, "140": 131, "289": 131, "49": [131, 133, 135], "nap": 131, "160": 131, "180": 131, "37": [131, 132, 133, 135], "130": 131, "283": 131, "st": 131, "48": [131, 132, 135], "asi": 131, "138": 131, "214": 131, "54": [131, 133, 135], "150": 131, "195": 131, "913": 131, "ta": 131, "110": 131, "264": 131, "914": 131, "68": [131, 133], "144": 131, "193": 131, "915": 131, "57": [131, 133], "131": 131, "916": 131, "236": 131, "lvh": 131, "917": 131, "38": [131, 132, 133, 135], "175": 131, "maxhr": 131, "exerciseangina": 131, "oldpeak": 131, "st_slope": 131, "heartdiseas": 131, "172": 131, "156": 131, "flat": 131, "98": [131, 133], "108": 131, "122": 131, "132": 131, "141": 131, "115": 131, "174": 131, "173": 131, "918": 131, "13": [131, 132, 133, 135], "pie": [131, 132, 133, 135], "update_layout": [131, 132, 133, 135], "histogram": [131, 132, 133, 135], "xaxis_titl": [131, 132, 133, 135], "yaxis_titl": [131, 132, 133, 135], "bargap": [131, 132, 133, 135], "astyp": [131, 132, 135], "update_trac": [131, 132, 133, 135], "textinfo": [131, 132, 135], "percent": [131, 132, 135], "title_text": [131, 132, 135], "hovertempl": [131, 132, 135], "br": [131, 132, 135], "class_count": [131, 132, 135], "value_count": [131, 132, 135], "class_ratio": [131, 132, 135], "8070866141732284": 131, "14": [131, 132, 133, 135, 137], "39": [131, 132, 133, 135], "20": [131, 132, 133, 135], "wa": [131, 132, 133, 135], "li": 131, "et": 131, "al": 131, "most": 131, "features_list": [131, 132, 135], "sort": [131, 132, 135], "help": [131, 132, 133, 135], "essenti": [131, 132, 135], "step": [131, 132, 135], "understand": [131, 132, 135], "u": [131, 132, 135], "16": [131, 132, 133, 135], "tab_featur": [131, 132, 135], "ordin": [131, 132, 135], "might": [131, 132, 135], "17": [131, 132, 135], "numeric_transform": [131, 132, 135], "scaler": [131, 132, 135], "binary_transform": [131, 132, 135], "most_frequ": [131, 132, 135], "18": [131, 132, 133, 134, 135], "numeric_featur": [131, 132, 135], "features_by_typ": [131, 132, 135], "numeric_indic": [131, 132, 135], "get_loc": [131, 132, 135], "19": [131, 132, 133, 135], "binary_featur": [131, 132, 135], "ordinal_featur": [131, 132], "binary_indic": [131, 132, 135], "ordinal_indic": [131, 132], "num": [131, 132, 135], "onehot": [131, 132, 135], "handle_unknown": [131, 132, 135], "ignor": [131, 132, 133, 135], "remaind": [131, 132, 135], "passthrough": [131, 132, 135], "let": [131, 132, 135], "done": [131, 132, 135], "independ": 131, "everi": 131, "uci": 131, "archiv": 131, "ic": 131, "edu": 131, "databas": [131, 132, 135], "cleandoc": 131, "misc": 131, "cc0": 131, "demograph": [131, 133], "often": 131, "strong": 131, "correl": 131, "older": [131, 132, 135], "higher": 131, "panda": [131, 132, 135], "power": [131, 132, 135], "easi": [131, 132, 135], "compat": [131, 132, 135], "22": [131, 132, 133, 135], "from_panda": [131, 132, 135], "cleanup_cache_fil": [131, 132, 135], "num_row": 131, "cast_column": [131, 132, 135], "stratify_by_column": [131, 132, 135], "seed": [131, 132, 133, 134, 135], "100": [131, 132, 133, 134, 135], "lt": [131, 132, 133, 134, 135], "157944": 131, "straightforward": [131, 132, 135], "maintain": [131, 132, 135], "instanti": [131, 132, 135], "line": [131, 132, 135], "sgd": 131, "logisit": [131, 132, 135], "regress": [131, 132, 135], "sgdclassif": 131, "24": [131, 132, 133, 135], "sgd_classifi": 131, "123": [131, 132, 135], "verbos": [131, 132, 135], "class_weight": 131, "balanc": 131, "encapsul": [131, 132, 135], "cohes": [131, 132, 135], "structur": [131, 132, 135], "smooth": [131, 132, 135], "manag": [131, 132, 135], "heart_failure_prediction_task": 131, "26": [131, 132, 135], "hyperparamet": [131, 132, 135], "search": [131, 132, 135], "grid": [131, 132, 135], "alpha": 131, "0001": 131, "001": 131, "learning_r": [131, 132, 135], "invscal": 131, "adapt": 131, "eta0": 131, "roc_auc": 131, "271": 131, "wrapper": [131, 132, 133, 135], "sk_model": [131, 132, 135], "272": 131, "273": [131, 132], "sgdclassifi": 131, "x27": [131, 132, 135], "early_stop": 131, "loss": 131, "log_loss": 131, "rerun": [131, 132, 135], "cell": [131, 132, 135], "trust": [131, 132, 135], "On": [131, 132, 133, 135], "github": [131, 132, 133, 135], "unabl": [131, 132, 135], "render": [131, 132, 135], "try": [131, 132, 135], "page": [131, 132, 135], "nbviewer": [131, 132, 135], "sgdclassifiersgdclassifi": 131, "28": [131, 132, 135], "model_param": [131, 132, 135], "epsilon": 131, "fit_intercept": 131, "l1_ratio": 131, "max_it": 131, "n_iter_no_chang": 131, "n_job": [131, 132, 135], "penalti": 131, "l2": 131, "power_t": 131, "tol": 131, "validation_fract": 131, "warm_start": 131, "29": [131, 132, 135], "30": [131, 132, 133, 134, 135, 137], "y_pred": [131, 132, 135], "only_predict": [131, 132, 135], "len": [131, 132, 133, 135], "184": 131, "4762": 131, "43": [131, 132, 133, 135], "variou": [131, 132, 135], "perspect": [131, 132, 135], "metric_collect": [131, 132, 135], "certain": [131, 132, 135], "70": 131, "33": [131, 132, 135], "fnr": [131, 132, 135], "ber": [131, 132, 135], "fairness_metric_collect": [131, 132, 135], "34": [131, 132, 133, 135], "dataset_with_pr": [131, 132, 135], "4880": 131, "09": [131, 132, 133, 135], "11564": 131, "50870": 131, "gt": [131, 132, 133, 134, 135], "14149": 131, "14741": 131, "59": [131, 132], "22400": 131, "14599": 131, "14391": 131, "14235": 131, "81": [131, 133], "36": [131, 132, 133, 135], "results_femal": 131, "_": [131, 135], "8916": 131, "52": [131, 133], "11795": 131, "51330": 131, "18219": 131, "right": [131, 132, 135], "results_flat": [131, 132, 133, 135], "remove_metr": [131, 132, 135], "results_female_flat": 131, "plw2901": [131, 132, 133, 135], "actual": [131, 132, 133, 135], "known": [131, 132, 133, 135], "measur": [131, 132, 135], "lambda": [131, 132, 133, 134, 135], "plotter": [131, 132, 134, 135], "class_nam": [131, 132, 135], "set_templ": [131, 132, 135], "plotly_whit": [131, 132, 135], "extract": [131, 132, 135], "slice_result": [131, 132, 135], "dict_kei": [131, 132, 135], "roc_plot": [131, 132, 135], "roc_curve_comparison": [131, 132, 135], "femal": [131, 132, 133, 134, 135], "41": [131, 132, 133, 135], "overall_perform": [131, 132, 135], "metric_valu": [131, 132, 135], "overall_performance_plot": [131, 132, 135], "metrics_valu": [131, 132, 135], "slice_metr": [131, 132, 135], "44": [131, 132, 133, 135], "slice_metrics_plot": [131, 132, 135], "metrics_comparison_bar": [131, 132, 135], "comparison": [131, 132, 133, 135], "reform": [131, 132, 135], "fairness_result": [131, 132, 135], "deepcopi": [131, 132, 135], "fairness_metr": [131, 132, 135], "group_siz": [131, 132, 135], "46": [131, 132, 133, 135], "fairness_plot": [131, 132, 135], "metrics_comparison_scatt": [131, 132, 135], "leverag": 131, "get_metrics_trend": 131, "gather": 131, "merg": [131, 132, 135], "recent": 131, "wish": 131, "metrics_trend": 131, "purpos": 131, "three": 131, "dummi": 131, "demonstr": [131, 137], "trend": 131, "audienc": [131, 132, 135], "organ": [131, 132, 135], "store": [131, 132, 135], "regulatory_requir": [131, 132, 135], "47": [131, 133, 135], "todai": [131, 132, 135], "releas": [131, 132, 135], "team": [131, 132, 135], "vectorinstitut": [131, 132, 135], "email": [131, 132, 133, 135], "ai": [131, 132, 135], "linear_model": 131, "e501": [131, 132, 135], "next": [131, 132, 135], "use_cas": [131, 132, 135], "These": [131, 132, 135], "could": [131, 132, 135], "downstream": [131, 132, 135], "fairness_assess": [131, 132, 135], "well": [131, 132, 133, 135], "taken": [131, 132, 135], "ethical_consider": [131, 132, 135], "clinician": [131, 132, 135], "engin": [131, 132, 135], "condit": 131, "improv": [131, 132, 135], "bias": [131, 132, 133, 135], "lead": [131, 132, 135], "wors": [131, 132, 135], "retrain": [131, 132, 135], "below": [131, 132, 135], "By": [131, 132, 135], "folder": [131, 132, 135], "_model_card": [131, 132, 135], "report_path": [131, 132, 133, 135], "heart_failure_report_period": 131, "quantitative_analysi": [131, 132, 135], "performance_metr": [131, 132, 135], "random": [131, 132, 134, 135], "rmtree": [131, 132, 135], "view": [131, 132, 133, 135, 137], "die": 132, "admiss": 132, "cycqueri": [132, 135], "op": [132, 135], "qo": [132, 135], "graph_object": [132, 135], "mimicivqueri": 132, "aggreg": 132, "restrict_timestamp": 132, "clean": 132, "normalize_nam": 132, "add_years_approxim": 132, "deathtim": 132, "lab": [132, 133], "event": 132, "querier": [132, 135], "dbm": [132, 135], "postgresql": [132, 135], "port": [132, 135], "5432": [132, 135], "host": [132, 135], "localhost": [132, 135], "postgr": [132, 135], "password": [132, 135], "pwd": [132, 135], "def": [132, 133, 135], "get_encount": [132, 135], "mimiciv_hosp": 132, "drop_op": 132, "insur": 132, "languag": 132, "marital_statu": 132, "edregtim": 132, "edouttim": 132, "patient_encount": [132, 135], "subject_id": 132, "admittim": 132, "dt": 132, "anchor_year": 132, "anchor_ag": 132, "col": 132, "dischtim": 132, "anchor_year_differ": 132, "hadm_id": 132, "admission_loc": 132, "hospital_expire_flag": 132, "compute_mortality_outcom": 132, "death": 132, "invalid": 132, "isna": 132, "shorter": 132, "di": 132, "mortality_outcom": 132, "get_labev": 132, "labev": 132, "index_col": 132, "batch_mod": 132, "process_labev": 132, "revers": 132, "deidentifi": 132, "charttim": 132, "categori": [132, 135], "start_timestamp": 132, "set_index": 132, "renam": [132, 135], "mean_aggreg": 132, "aggfunc": [132, 135], "valuenum": 132, "window_dur": 132, "timestamp_col": 132, "time_bi": 132, "agg_bi": 132, "means_df": 132, "batch_num": 132, "labevents_batch": 132, "enumer": [132, 133], "aggregate_valu": 132, "window_start_tim": 132, "pivot": 132, "add_prefix": [132, 135], "lab_": 132, "concat": 132, "break": 132, "run_queri": [132, 135], "cohort": [132, 135], "852": 132, "orm": [132, 135], "readi": [132, 135], "061": 132, "successfulli": [132, 135], "062": 132, "finish": [132, 135], "execut": [132, 135], "079080": 132, "105518": 132, "5925": 132, "832": 132, "833": 132, "008839": 132, "null_count": [132, 135], "isnul": [132, 135], "bar": [132, 133, 135], "height": [132, 133], "600": [132, 133], "respect": [132, 135], "larger": [132, 135], "thresh_nan": [132, 135], "dropna": [132, 135], "thresh": [132, 135], "heavili": 132, "unbalanc": 132, "55": 132, "36758893280632": 132, "tolist": 132, "lab_l": 132, "lab_pt": 132, "lab_whit": 132, "blood": [132, 135], "lab_chlorid": 132, "lab_anion": 132, "gap": 132, "lab_ptt": 132, "lab_potassium": 132, "lab_h": 132, "lab_mch": 132, "lab_inr": 132, "pt": 132, "lab_i": 132, "lab_sodium": 132, "lab_calcium": 132, "lab_glucos": 132, "lab_urea": 132, "nitrogen": [132, 135], "lab_bilirubin": 132, "lab_hemoglobin": 132, "lab_bicarbon": 132, "lab_rdw": 132, "lab_mchc": 132, "lab_mcv": 132, "lab_alanin": 132, "aminotransferas": [132, 135], "alt": 132, "lab_aspar": 132, "ast": 132, "lab_hematocrit": 132, "lab_r": 132, "lab_magnesium": 132, "lab_creatinin": 132, "lab_platelet": 132, "lab_phosph": 132, "lab_ph": 132, "lab_alkalin": 132, "phosphatas": [132, 135], "sd": 132, "14261": 132, "836760": 132, "xgboost": [132, 135], "xgbclassif": [132, 135], "xgb_classifi": [132, 135], "mortality_task": 132, "n_estim": [132, 135], "250": [132, 135], "500": [132, 135], "max_depth": [132, 135], "reg_lambda": [132, 135], "colsample_bytre": [132, 135], "gamma": [132, 135], "07": [132, 135], "274": 132, "275": 132, "xgbclassifi": [132, 135], "base_scor": [132, 135], "booster": [132, 135], "callback": [132, 135], "colsample_bylevel": [132, 135], "colsample_bynod": [132, 135], "early_stopping_round": [132, 135], "enable_categor": [132, 135], "eval_metr": [132, 135], "logloss": [132, 135], "feature_typ": [132, 135], "gpu_id": [132, 135], "grow_polici": [132, 135], "importance_typ": [132, 135], "interaction_constraint": [132, 135], "max_bin": [132, 135], "max_cat_threshold": [132, 135], "max_cat_to_onehot": [132, 135], "max_delta_step": [132, 135], "max_leav": [132, 135], "min_child_weight": [132, 135], "miss": [132, 135], "monotone_constraint": [132, 135], "num_parallel_tre": [132, 135], "predictor": [132, 135], "xgbclassifierxgbclassifi": [132, 135], "logist": [132, 135], "use_label_encod": [132, 135], "reg_alpha": [132, 135], "sampling_method": [132, 135], "scale_pos_weight": [132, 135], "subsampl": [132, 135], "tree_method": [132, 135], "validate_paramet": [132, 135], "2853": 132, "4120": 132, "80": [132, 133, 135], "4080": 132, "72": [132, 135], "4227": 132, "233663": 132, "7564": 132, "76": [132, 135], "7970": 132, "8195": 132, "8503": 132, "8730": 132, "51": [132, 133], "amp": [132, 133, 135], "7944": 132, "7677": 132, "7442": 132, "62": [132, 133], "7506": 132, "7107": 132, "96": [132, 134], "7448": 132, "74": [132, 135], "9942279942279942": 132, "7688679245283019": 132, "9848771266540642": 132, "9124596908706772": 132, "9763663220088626": 132, "8732743948562784": 132, "9866577718478986": 132, "856987908961593": 132, "9817735716789344": 132, "867867489608263": 132, "python_api": [132, 135], "mortality_report_period": 132, "torchxrayvis": [133, 134], "functool": 133, "torchvis": [133, 134], "densenet": [133, 134], "loader": [133, 134], "load_nihcxr": [133, 134], "lambdad": [133, 134], "resiz": [133, 134], "apply_transform": 133, "generate_nihcxr_report": 133, "53": 133, "66": 133, "490906": 133, "214773": 133, "400": 133, "1643": 133, "65": [133, 134], "42922": 133, "35339": 133, "43264": 133, "78": [133, 135], "40339": 133, "40435": 133, "39774": 133, "44234": 133, "67": [133, 135], "547702": 133, "230620": 133, "99": 133, "396": 133, "1845": 133, "42850": 133, "92": [133, 134, 135], "43490": 133, "45366": 133, "40392": 133, "42426": 133, "40831": 133, "46050": 133, "540991": 133, "211353": 133, "383": 133, "1757": 133, "41916": 133, "77": 133, "38010": 133, "04": 133, "42929": 133, "38396": 133, "40972": 133, "22248": 133, "46180": 133, "300516": 133, "125266": 133, "411": 133, "1583": 133, "43730": 133, "43618": 133, "47375": 133, "40968": 133, "43210": 133, "41431": 133, "46774": 133, "clinical_dataset": [133, 134], "nih_d": [133, 134], "spatial_s": [133, 134], "224": [133, 134], "allow_missing_kei": [133, 134], "func": [133, 134], "1024": [133, 134], "newaxi": [133, 134], "densenet121": [133, 134], "res224": [133, 134], "No": 133, "adjust": 133, "101969": 133, "661": 133, "1783": 133, "int64": 133, "originalimag": 133, "width": [133, 135], "originalimagepixelspac": 133, "unnam": 133, "atelectasi": 133, "float32": 133, "cardiomegali": 133, "consolid": 133, "edema": 133, "effus": 133, "emphysema": 133, "fibrosi": 133, "hernia": 133, "infiltr": 133, "mass": [133, 135], "nodul": 133, "pleural_thicken": 133, "pneumonia": 133, "pneumothorax": 133, "__index_level_0__": 133, "multilabelpositivepredictivevalu": 133, "registry_kei": 133, "positive_predictive_valu": 133, "super": 133, "overrid": 133, "_final_st": 133, "multilabelnegativepredictivevalu": 133, "negative_predictive_valu": 133, "ppv": 133, "npv": 133, "nih_eval_results_gend": 133, "46857": 133, "45079": 133, "45122": 133, "nih_eval_results_ag": 133, "44839": 133, "43468": 133, "44189": 133, "43112": 133, "48012": 133, "45367": 133, "43131": 133, "43892": 133, "41827": 133, "47371": 133, "male": [133, 134], "1200": 133, "showlegend": 133, "slice_": 133, "itr": 133, "among": 133, "112": [133, 137], "120": [133, 137], "frontal": [133, 137], "805": [133, 137], "fourteen": 133, "mine": 133, "radiolog": 133, "pleural": 133, "thicken": 133, "remain": 133, "arxiv": 133, "ab": 133, "2111": 133, "00595": 133, "inproceed": 133, "cohen2022xrv": 133, "cohen": 133, "joseph": 133, "paul": 133, "viviano": 133, "bertin": 133, "morrison": 133, "torabian": 133, "parsa": 133, "guarrera": 133, "matteo": 133, "lungren": 133, "matthew": 133, "chaudhari": 133, "akshai": 133, "brook": 133, "rupert": 133, "hashir": 133, "mohammad": 133, "bertrand": 133, "hadrien": 133, "booktitl": 133, "deep": 133, "mlmed": 133, "arxivid": 133, "cohen2020limit": 133, "cross": 133, "domain": 133, "autom": [133, 135], "2002": 133, "02497": 133, "medicin": 133, "josephpcohen": 133, "radiologist": 133, "scientist": 133, "inabl": 133, "addition": 133, "poor": 133, "qualiti": 133, "artifact": 133, "geograph": 133, "region": 133, "ethic": 133, "ensur": 133, "divers": 133, "regularli": 133, "human": 133, "expertis": 133, "address": 133, "rare": 133, "nihcxr_report_period": 133, "torch": 134, "detector": 134, "reductor": 134, "tstester": 134, "plot_drift_experi": 134, "plot_drift_timeseri": 134, "manual_se": 134, "_c": 134, "0x7fd8b43d6f50": 134, "shifter": 134, "source_d": 134, "target_d": 134, "25596": 134, "61434": 134, "dr_method": 134, "bbse": 134, "soft": 134, "txrv": 134, "ae": 134, "sensitivity_test": 134, "tester": 134, "tester_method": 134, "source_sample_s": 134, "target_sample_s": 134, "num_run": 134, "detect_shift": 134, "chexpert": 134, "chex": 134, "padchest": 134, "pc": 134, "source_slic": 134, "target_slic": 134, "50427": 134, "50201": 134, "47663": 134, "49544": 134, "49566": 134, "86": [134, 135], "47122": 134, "49778": 134, "47880": 134, "rolling_window_drift": 134, "timestamp_column": 134, "window_s": 134, "4w": 134, "longer": 135, "v3": 135, "instruct": 135, "etl": 135, "datasetqueri": 135, "num_dai": 135, "synthea_demo": 135, "nativ": 135, "sequenti": 135, "patient_id": 135, "birthdat": 135, "race": 135, "ethnic": 135, "isout": 135, "encounter_id": 135, "extracttimestampcompon": 135, "start_year": 135, "birthdate_year": 135, "addcolumn": 135, "new_col_label": 135, "stop": 135, "lo": 135, "conditiongreaterthan": 135, "conditionlessthan": 135, "get_observ": 135, "conditionin": 135, "vital": 135, "conditionequ": 135, "groupby_op": 135, "groupbyaggreg": 135, "n_ob": 135, "observations_count": 135, "observations_stat": 135, "pivot_t": 135, "max": 135, "obs_": 135, "get_med": 135, "n_med": 135, "get_procedur": 135, "procedur": [135, 137], "n_procedur": 135, "cohort_queri": 135, "to_merg": 135, "extend": 135, "append": 135, "to_merge_df": 135, "819": 135, "079": 135, "080": 135, "934621": 135, "873": 135, "793854": 135, "431": 135, "432": 135, "391219": 135, "933": 135, "935": 135, "498290": 135, "040": 135, "041": 135, "105283": 135, "length_of_stai": 135, "length_of_stay_count": 135, "length_of_stay_kei": 135, "5573997233748271": 135, "obs_alanin": 135, "enzymat": 135, "volum": 135, "serum": 135, "plasma": 135, "obs_albumin": 135, "obs_alkalin": 135, "obs_aspart": 135, "obs_bilirubin": 135, "obs_bodi": 135, "obs_calcium": 135, "obs_carbon": 135, "dioxid": 135, "mole": 135, "obs_chlorid": 135, "obs_creatinin": 135, "obs_diastol": 135, "pressur": 135, "obs_erythrocyt": 135, "obs_ferritin": 135, "obs_glomerular": 135, "filtrat": 135, "73": 135, "sq": 135, "obs_glucos": 135, "obs_hematocrit": 135, "obs_hemoglobin": 135, "obs_leukocyt": 135, "obs_mch": 135, "entit": 135, "obs_mchc": 135, "obs_mcv": 135, "obs_oxygen": 135, "satur": 135, "arteri": 135, "obs_platelet": 135, "obs_potassium": 135, "obs_protein": 135, "obs_sodium": 135, "obs_systol": 135, "obs_troponin": 135, "cardiac": 135, "obs_urea": 135, "1126": 135, "163803": 135, "63": 135, "los_task": 135, "035": 135, "036": 135, "037": 135, "038": 135, "226": 135, "4590": 135, "4563": 135, "4130": 135, "74786": 135, "8399": 135, "8520": 135, "9129": 135, "91": 135, "8949": 135, "9191": 135, "8043": 135, "7924": 135, "8162": 135, "8142": 135, "8218": 135, "7867": 135, "8016528925619835": 135, "8823529411764706": 135, "7894736842105263": 135, "926608187134503": 135, "9056603773584906": 135, "9523809523809523": 135, "8888888888888888": 135, "9698275862068966": 135, "8650793650793651": 135, "8961038961038961": 135, "8846153846153846": 135, "8903225806451613": 135, "9552617521367521": 135, "69": 135, "9818181818181818": 135, "8059701492537313": 135, "8852459016393442": 135, "9739936680235187": 135, "8628318584070797": 135, "9318181818181818": 135, "8482758620689655": 135, "8880866425992779": 135, "9593018305661984": 135, "145": 135, "confusion_matrix": 135, "conf_plot": 135, "plot_confusion_matrix": 135, "length_of_stay_report_period": 135, "goal": 137, "ehr": 137, "icu": 137}, "objects": {"cyclops": [[125, 0, 0, "-", "data"], [126, 0, 0, "-", "evaluate"], [127, 0, 0, "-", "monitor"], [128, 0, 0, "-", "report"], [129, 0, 0, "-", "tasks"]], "cyclops.data": [[125, 0, 0, "-", "features"], [6, 0, 0, "-", "slicer"]], "cyclops.data.features": [[4, 0, 0, "-", "medical_image"]], "cyclops.data.features.medical_image": [[5, 1, 1, "", "MedicalImage"]], "cyclops.data.features.medical_image.MedicalImage": [[5, 2, 1, "", "__call__"], [5, 2, 1, "", "cast_storage"], [5, 2, 1, "", "decode_example"], [5, 2, 1, "", "embed_storage"], [5, 2, 1, "", "encode_example"], [5, 2, 1, "", "flatten"]], "cyclops.data.slicer": [[7, 1, 1, "", "SliceSpec"], [8, 4, 1, "", "compound_filter"], [9, 4, 1, "", "filter_datetime"], [10, 4, 1, "", "filter_non_null"], [11, 4, 1, "", "filter_range"], [12, 4, 1, "", "filter_string_contains"], [13, 4, 1, "", "filter_value"], [14, 4, 1, "", "is_datetime"], [15, 4, 1, "", "overall"]], "cyclops.data.slicer.SliceSpec": [[7, 3, 1, "", "_registry"], [7, 2, 1, "", "add_slice_spec"], [7, 3, 1, "", "column_names"], [7, 2, 1, "", "get_slices"], [7, 3, 1, "", "include_overall"], [7, 2, 1, "", "slices"], [7, 3, 1, "", "spec_list"], [7, 3, 1, "", "validate"]], "cyclops.evaluate": [[16, 0, 0, "-", "evaluator"], [126, 0, 0, "-", "fairness"], [126, 0, 0, "-", "metrics"]], "cyclops.evaluate.evaluator": [[17, 4, 1, "", "evaluate"]], "cyclops.evaluate.fairness": [[18, 0, 0, "-", "config"], [20, 0, 0, "-", "evaluator"]], "cyclops.evaluate.fairness.config": [[19, 1, 1, "", "FairnessConfig"]], "cyclops.evaluate.fairness.evaluator": [[21, 4, 1, "", "evaluate_fairness"], [22, 4, 1, "", "warn_too_many_unique_values"]], "cyclops.evaluate.metrics": [[23, 0, 0, "-", "accuracy"], [28, 0, 0, "-", "auroc"], [33, 0, 0, "-", "f_beta"], [42, 0, 0, "-", "factory"], [126, 0, 0, "-", "functional"], [73, 0, 0, "-", "metric"], [77, 0, 0, "-", "precision_recall"], [86, 0, 0, "-", "precision_recall_curve"], [91, 0, 0, "-", "roc"], [96, 0, 0, "-", "sensitivity"], [101, 0, 0, "-", "specificity"], [106, 0, 0, "-", "stat_scores"]], "cyclops.evaluate.metrics.accuracy": [[24, 1, 1, "", "Accuracy"], [25, 1, 1, "", "BinaryAccuracy"], [26, 1, 1, "", "MulticlassAccuracy"], [27, 1, 1, "", "MultilabelAccuracy"]], "cyclops.evaluate.metrics.accuracy.Accuracy": [[24, 2, 1, "", "__add__"], [24, 2, 1, "", "__call__"], [24, 2, 1, "", "__init__"], [24, 2, 1, "", "__mul__"], [24, 2, 1, "", "add_state"], [24, 2, 1, "", "clone"], [24, 2, 1, "", "compute"], [24, 2, 1, "", "reset_state"], [24, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.BinaryAccuracy": [[25, 2, 1, "", "__add__"], [25, 2, 1, "", "__call__"], [25, 2, 1, "", "__init__"], [25, 2, 1, "", "__mul__"], [25, 2, 1, "", "add_state"], [25, 2, 1, "", "clone"], [25, 2, 1, "", "compute"], [25, 2, 1, "", "reset_state"], [25, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy": [[26, 2, 1, "", "__add__"], [26, 2, 1, "", "__call__"], [26, 2, 1, "", "__init__"], [26, 2, 1, "", "__mul__"], [26, 2, 1, "", "add_state"], [26, 2, 1, "", "clone"], [26, 2, 1, "", "compute"], [26, 2, 1, "", "reset_state"], [26, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy": [[27, 2, 1, "", "__add__"], [27, 2, 1, "", "__call__"], [27, 2, 1, "", "__init__"], [27, 2, 1, "", "__mul__"], [27, 2, 1, "", "add_state"], [27, 2, 1, "", "clone"], [27, 2, 1, "", "compute"], [27, 2, 1, "", "reset_state"], [27, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc": [[29, 1, 1, "", "AUROC"], [30, 1, 1, "", "BinaryAUROC"], [31, 1, 1, "", "MulticlassAUROC"], [32, 1, 1, "", "MultilabelAUROC"]], "cyclops.evaluate.metrics.auroc.AUROC": [[29, 2, 1, "", "__add__"], [29, 2, 1, "", "__call__"], [29, 2, 1, "", "__init__"], [29, 2, 1, "", "__mul__"], [29, 2, 1, "", "add_state"], [29, 2, 1, "", "clone"], [29, 2, 1, "", "compute"], [29, 2, 1, "", "reset_state"], [29, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.BinaryAUROC": [[30, 2, 1, "", "__add__"], [30, 2, 1, "", "__call__"], [30, 2, 1, "", "__init__"], [30, 2, 1, "", "__mul__"], [30, 2, 1, "", "add_state"], [30, 2, 1, "", "clone"], [30, 2, 1, "", "compute"], [30, 2, 1, "", "reset_state"], [30, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.MulticlassAUROC": [[31, 2, 1, "", "__add__"], [31, 2, 1, "", "__call__"], [31, 2, 1, "", "__init__"], [31, 2, 1, "", "__mul__"], [31, 2, 1, "", "add_state"], [31, 2, 1, "", "clone"], [31, 2, 1, "", "compute"], [31, 2, 1, "", "reset_state"], [31, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.MultilabelAUROC": [[32, 2, 1, "", "__add__"], [32, 2, 1, "", "__call__"], [32, 2, 1, "", "__init__"], [32, 2, 1, "", "__mul__"], [32, 2, 1, "", "add_state"], [32, 2, 1, "", "clone"], [32, 2, 1, "", "compute"], [32, 2, 1, "", "reset_state"], [32, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta": [[34, 1, 1, "", "BinaryF1Score"], [35, 1, 1, "", "BinaryFbetaScore"], [36, 1, 1, "", "F1Score"], [37, 1, 1, "", "FbetaScore"], [38, 1, 1, "", "MulticlassF1Score"], [39, 1, 1, "", "MulticlassFbetaScore"], [40, 1, 1, "", "MultilabelF1Score"], [41, 1, 1, "", "MultilabelFbetaScore"]], "cyclops.evaluate.metrics.f_beta.BinaryF1Score": [[34, 2, 1, "", "__add__"], [34, 2, 1, "", "__call__"], [34, 2, 1, "", "__init__"], [34, 2, 1, "", "__mul__"], [34, 2, 1, "", "add_state"], [34, 2, 1, "", "clone"], [34, 2, 1, "", "compute"], [34, 2, 1, "", "reset_state"], [34, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore": [[35, 2, 1, "", "__add__"], [35, 2, 1, "", "__call__"], [35, 2, 1, "", "__init__"], [35, 2, 1, "", "__mul__"], [35, 2, 1, "", "add_state"], [35, 2, 1, "", "clone"], [35, 2, 1, "", "compute"], [35, 2, 1, "", "reset_state"], [35, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.F1Score": [[36, 2, 1, "", "__add__"], [36, 2, 1, "", "__call__"], [36, 2, 1, "", "__init__"], [36, 2, 1, "", "__mul__"], [36, 2, 1, "", "add_state"], [36, 2, 1, "", "clone"], [36, 2, 1, "", "compute"], [36, 2, 1, "", "reset_state"], [36, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.FbetaScore": [[37, 2, 1, "", "__add__"], [37, 2, 1, "", "__call__"], [37, 2, 1, "", "__init__"], [37, 2, 1, "", "__mul__"], [37, 2, 1, "", "add_state"], [37, 2, 1, "", "clone"], [37, 2, 1, "", "compute"], [37, 2, 1, "", "reset_state"], [37, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MulticlassF1Score": [[38, 2, 1, "", "__add__"], [38, 2, 1, "", "__call__"], [38, 2, 1, "", "__init__"], [38, 2, 1, "", "__mul__"], [38, 2, 1, "", "add_state"], [38, 2, 1, "", "clone"], [38, 2, 1, "", "compute"], [38, 2, 1, "", "reset_state"], [38, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore": [[39, 2, 1, "", "__add__"], [39, 2, 1, "", "__call__"], [39, 2, 1, "", "__init__"], [39, 2, 1, "", "__mul__"], [39, 2, 1, "", "add_state"], [39, 2, 1, "", "clone"], [39, 2, 1, "", "compute"], [39, 2, 1, "", "reset_state"], [39, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MultilabelF1Score": [[40, 2, 1, "", "__add__"], [40, 2, 1, "", "__call__"], [40, 2, 1, "", "__init__"], [40, 2, 1, "", "__mul__"], [40, 2, 1, "", "add_state"], [40, 2, 1, "", "clone"], [40, 2, 1, "", "compute"], [40, 2, 1, "", "reset_state"], [40, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore": [[41, 2, 1, "", "__add__"], [41, 2, 1, "", "__call__"], [41, 2, 1, "", "__init__"], [41, 2, 1, "", "__mul__"], [41, 2, 1, "", "add_state"], [41, 2, 1, "", "clone"], [41, 2, 1, "", "compute"], [41, 2, 1, "", "reset_state"], [41, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.factory": [[43, 4, 1, "", "create_metric"]], "cyclops.evaluate.metrics.functional": [[44, 0, 0, "-", "accuracy"], [45, 0, 0, "-", "auroc"], [46, 0, 0, "-", "f_beta"], [55, 0, 0, "-", "precision_recall"], [64, 0, 0, "-", "precision_recall_curve"], [65, 0, 0, "-", "roc"], [70, 0, 0, "-", "sensitivity"], [71, 0, 0, "-", "specificity"], [72, 0, 0, "-", "stat_scores"]], "cyclops.evaluate.metrics.functional.f_beta": [[47, 4, 1, "", "binary_f1_score"], [48, 4, 1, "", "binary_fbeta_score"], [49, 4, 1, "", "f1_score"], [50, 4, 1, "", "fbeta_score"], [51, 4, 1, "", "multiclass_f1_score"], [52, 4, 1, "", "multiclass_fbeta_score"], [53, 4, 1, "", "multilabel_f1_score"], [54, 4, 1, "", "multilabel_fbeta_score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[56, 4, 1, "", "binary_precision"], [57, 4, 1, "", "binary_recall"], [58, 4, 1, "", "multiclass_precision"], [59, 4, 1, "", "multiclass_recall"], [60, 4, 1, "", "multilabel_precision"], [61, 4, 1, "", "multilabel_recall"], [62, 4, 1, "", "precision"], [63, 4, 1, "", "recall"]], "cyclops.evaluate.metrics.functional.roc": [[66, 4, 1, "", "binary_roc_curve"], [67, 4, 1, "", "multiclass_roc_curve"], [68, 4, 1, "", "multilabel_roc_curve"], [69, 4, 1, "", "roc_curve"]], "cyclops.evaluate.metrics.metric": [[74, 1, 1, "", "Metric"], [75, 1, 1, "", "MetricCollection"], [76, 1, 1, "", "OperatorMetric"]], "cyclops.evaluate.metrics.metric.Metric": [[74, 2, 1, "", "__add__"], [74, 2, 1, "", "__call__"], [74, 2, 1, "", "__init__"], [74, 2, 1, "", "__mul__"], [74, 2, 1, "", "add_state"], [74, 2, 1, "", "clone"], [74, 2, 1, "", "compute"], [74, 5, 1, "", "name"], [74, 2, 1, "", "reset_state"], [74, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.metric.MetricCollection": [[75, 2, 1, "", "__call__"], [75, 2, 1, "", "__init__"], [75, 2, 1, "", "add_metrics"], [75, 2, 1, "", "clear"], [75, 2, 1, "", "clone"], [75, 2, 1, "", "compute"], [75, 2, 1, "", "get"], [75, 2, 1, "", "items"], [75, 2, 1, "", "keys"], [75, 2, 1, "", "pop"], [75, 2, 1, "", "popitem"], [75, 2, 1, "", "reset_state"], [75, 2, 1, "", "setdefault"], [75, 2, 1, "", "update"], [75, 2, 1, "", "update_state"], [75, 2, 1, "", "values"]], "cyclops.evaluate.metrics.metric.OperatorMetric": [[76, 2, 1, "", "__add__"], [76, 2, 1, "", "__call__"], [76, 2, 1, "", "__init__"], [76, 2, 1, "", "__mul__"], [76, 2, 1, "", "add_state"], [76, 2, 1, "", "clone"], [76, 2, 1, "", "compute"], [76, 2, 1, "", "reset_state"], [76, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall": [[78, 1, 1, "", "BinaryPrecision"], [79, 1, 1, "", "BinaryRecall"], [80, 1, 1, "", "MulticlassPrecision"], [81, 1, 1, "", "MulticlassRecall"], [82, 1, 1, "", "MultilabelPrecision"], [83, 1, 1, "", "MultilabelRecall"], [84, 1, 1, "", "Precision"], [85, 1, 1, "", "Recall"]], "cyclops.evaluate.metrics.precision_recall.BinaryPrecision": [[78, 2, 1, "", "__add__"], [78, 2, 1, "", "__call__"], [78, 2, 1, "", "__init__"], [78, 2, 1, "", "__mul__"], [78, 2, 1, "", "add_state"], [78, 2, 1, "", "clone"], [78, 2, 1, "", "compute"], [78, 2, 1, "", "reset_state"], [78, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.BinaryRecall": [[79, 2, 1, "", "__add__"], [79, 2, 1, "", "__call__"], [79, 2, 1, "", "__init__"], [79, 2, 1, "", "__mul__"], [79, 2, 1, "", "add_state"], [79, 2, 1, "", "clone"], [79, 2, 1, "", "compute"], [79, 2, 1, "", "reset_state"], [79, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision": [[80, 2, 1, "", "__add__"], [80, 2, 1, "", "__call__"], [80, 2, 1, "", "__init__"], [80, 2, 1, "", "__mul__"], [80, 2, 1, "", "add_state"], [80, 2, 1, "", "clone"], [80, 2, 1, "", "compute"], [80, 2, 1, "", "reset_state"], [80, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MulticlassRecall": [[81, 2, 1, "", "__add__"], [81, 2, 1, "", "__call__"], [81, 2, 1, "", "__init__"], [81, 2, 1, "", "__mul__"], [81, 2, 1, "", "add_state"], [81, 2, 1, "", "clone"], [81, 2, 1, "", "compute"], [81, 2, 1, "", "reset_state"], [81, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision": [[82, 2, 1, "", "__add__"], [82, 2, 1, "", "__call__"], [82, 2, 1, "", "__init__"], [82, 2, 1, "", "__mul__"], [82, 2, 1, "", "add_state"], [82, 2, 1, "", "clone"], [82, 2, 1, "", "compute"], [82, 2, 1, "", "reset_state"], [82, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MultilabelRecall": [[83, 2, 1, "", "__add__"], [83, 2, 1, "", "__call__"], [83, 2, 1, "", "__init__"], [83, 2, 1, "", "__mul__"], [83, 2, 1, "", "add_state"], [83, 2, 1, "", "clone"], [83, 2, 1, "", "compute"], [83, 2, 1, "", "reset_state"], [83, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.Precision": [[84, 2, 1, "", "__add__"], [84, 2, 1, "", "__call__"], [84, 2, 1, "", "__init__"], [84, 2, 1, "", "__mul__"], [84, 2, 1, "", "add_state"], [84, 2, 1, "", "clone"], [84, 2, 1, "", "compute"], [84, 2, 1, "", "reset_state"], [84, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.Recall": [[85, 2, 1, "", "__add__"], [85, 2, 1, "", "__call__"], [85, 2, 1, "", "__init__"], [85, 2, 1, "", "__mul__"], [85, 2, 1, "", "add_state"], [85, 2, 1, "", "clone"], [85, 2, 1, "", "compute"], [85, 2, 1, "", "reset_state"], [85, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve": [[87, 1, 1, "", "BinaryPrecisionRecallCurve"], [88, 1, 1, "", "MulticlassPrecisionRecallCurve"], [89, 1, 1, "", "MultilabelPrecisionRecallCurve"], [90, 1, 1, "", "PrecisionRecallCurve"]], "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve": [[87, 2, 1, "", "__add__"], [87, 2, 1, "", "__call__"], [87, 2, 1, "", "__init__"], [87, 2, 1, "", "__mul__"], [87, 2, 1, "", "add_state"], [87, 2, 1, "", "clone"], [87, 2, 1, "", "compute"], [87, 2, 1, "", "reset_state"], [87, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve": [[88, 2, 1, "", "__add__"], [88, 2, 1, "", "__call__"], [88, 2, 1, "", "__init__"], [88, 2, 1, "", "__mul__"], [88, 2, 1, "", "add_state"], [88, 2, 1, "", "clone"], [88, 2, 1, "", "compute"], [88, 2, 1, "", "reset_state"], [88, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve": [[89, 2, 1, "", "__add__"], [89, 2, 1, "", "__call__"], [89, 2, 1, "", "__init__"], [89, 2, 1, "", "__mul__"], [89, 2, 1, "", "add_state"], [89, 2, 1, "", "clone"], [89, 2, 1, "", "compute"], [89, 2, 1, "", "reset_state"], [89, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve": [[90, 2, 1, "", "__add__"], [90, 2, 1, "", "__call__"], [90, 2, 1, "", "__init__"], [90, 2, 1, "", "__mul__"], [90, 2, 1, "", "add_state"], [90, 2, 1, "", "clone"], [90, 2, 1, "", "compute"], [90, 2, 1, "", "reset_state"], [90, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc": [[92, 1, 1, "", "BinaryROCCurve"], [93, 1, 1, "", "MulticlassROCCurve"], [94, 1, 1, "", "MultilabelROCCurve"], [95, 1, 1, "", "ROCCurve"]], "cyclops.evaluate.metrics.roc.BinaryROCCurve": [[92, 2, 1, "", "__add__"], [92, 2, 1, "", "__call__"], [92, 2, 1, "", "__init__"], [92, 2, 1, "", "__mul__"], [92, 2, 1, "", "add_state"], [92, 2, 1, "", "clone"], [92, 2, 1, "", "compute"], [92, 2, 1, "", "reset_state"], [92, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.MulticlassROCCurve": [[93, 2, 1, "", "__add__"], [93, 2, 1, "", "__call__"], [93, 2, 1, "", "__init__"], [93, 2, 1, "", "__mul__"], [93, 2, 1, "", "add_state"], [93, 2, 1, "", "clone"], [93, 2, 1, "", "compute"], [93, 2, 1, "", "reset_state"], [93, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.MultilabelROCCurve": [[94, 2, 1, "", "__add__"], [94, 2, 1, "", "__call__"], [94, 2, 1, "", "__init__"], [94, 2, 1, "", "__mul__"], [94, 2, 1, "", "add_state"], [94, 2, 1, "", "clone"], [94, 2, 1, "", "compute"], [94, 2, 1, "", "reset_state"], [94, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.ROCCurve": [[95, 2, 1, "", "__add__"], [95, 2, 1, "", "__call__"], [95, 2, 1, "", "__init__"], [95, 2, 1, "", "__mul__"], [95, 2, 1, "", "add_state"], [95, 2, 1, "", "clone"], [95, 2, 1, "", "compute"], [95, 2, 1, "", "reset_state"], [95, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity": [[97, 1, 1, "", "BinarySensitivity"], [98, 1, 1, "", "MulticlassSensitivity"], [99, 1, 1, "", "MultilabelSensitivity"], [100, 1, 1, "", "Sensitivity"]], "cyclops.evaluate.metrics.sensitivity.BinarySensitivity": [[97, 2, 1, "", "__add__"], [97, 2, 1, "", "__call__"], [97, 2, 1, "", "__init__"], [97, 2, 1, "", "__mul__"], [97, 2, 1, "", "add_state"], [97, 2, 1, "", "clone"], [97, 2, 1, "", "compute"], [97, 2, 1, "", "reset_state"], [97, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity": [[98, 2, 1, "", "__add__"], [98, 2, 1, "", "__call__"], [98, 2, 1, "", "__init__"], [98, 2, 1, "", "__mul__"], [98, 2, 1, "", "add_state"], [98, 2, 1, "", "clone"], [98, 2, 1, "", "compute"], [98, 2, 1, "", "reset_state"], [98, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity": [[99, 2, 1, "", "__add__"], [99, 2, 1, "", "__call__"], [99, 2, 1, "", "__init__"], [99, 2, 1, "", "__mul__"], [99, 2, 1, "", "add_state"], [99, 2, 1, "", "clone"], [99, 2, 1, "", "compute"], [99, 2, 1, "", "reset_state"], [99, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.Sensitivity": [[100, 2, 1, "", "__add__"], [100, 2, 1, "", "__call__"], [100, 2, 1, "", "__init__"], [100, 2, 1, "", "__mul__"], [100, 2, 1, "", "add_state"], [100, 2, 1, "", "clone"], [100, 2, 1, "", "compute"], [100, 2, 1, "", "reset_state"], [100, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity": [[102, 1, 1, "", "BinarySpecificity"], [103, 1, 1, "", "MulticlassSpecificity"], [104, 1, 1, "", "MultilabelSpecificity"], [105, 1, 1, "", "Specificity"]], "cyclops.evaluate.metrics.specificity.BinarySpecificity": [[102, 2, 1, "", "__add__"], [102, 2, 1, "", "__call__"], [102, 2, 1, "", "__init__"], [102, 2, 1, "", "__mul__"], [102, 2, 1, "", "add_state"], [102, 2, 1, "", "clone"], [102, 2, 1, "", "compute"], [102, 2, 1, "", "reset_state"], [102, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.MulticlassSpecificity": [[103, 2, 1, "", "__add__"], [103, 2, 1, "", "__call__"], [103, 2, 1, "", "__init__"], [103, 2, 1, "", "__mul__"], [103, 2, 1, "", "add_state"], [103, 2, 1, "", "clone"], [103, 2, 1, "", "compute"], [103, 2, 1, "", "reset_state"], [103, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.MultilabelSpecificity": [[104, 2, 1, "", "__add__"], [104, 2, 1, "", "__call__"], [104, 2, 1, "", "__init__"], [104, 2, 1, "", "__mul__"], [104, 2, 1, "", "add_state"], [104, 2, 1, "", "clone"], [104, 2, 1, "", "compute"], [104, 2, 1, "", "reset_state"], [104, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.Specificity": [[105, 2, 1, "", "__add__"], [105, 2, 1, "", "__call__"], [105, 2, 1, "", "__init__"], [105, 2, 1, "", "__mul__"], [105, 2, 1, "", "add_state"], [105, 2, 1, "", "clone"], [105, 2, 1, "", "compute"], [105, 2, 1, "", "reset_state"], [105, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores": [[107, 1, 1, "", "BinaryStatScores"], [108, 1, 1, "", "MulticlassStatScores"], [109, 1, 1, "", "MultilabelStatScores"], [110, 1, 1, "", "StatScores"]], "cyclops.evaluate.metrics.stat_scores.BinaryStatScores": [[107, 2, 1, "", "__add__"], [107, 2, 1, "", "__call__"], [107, 2, 1, "", "__init__"], [107, 2, 1, "", "__mul__"], [107, 2, 1, "", "add_state"], [107, 2, 1, "", "clone"], [107, 2, 1, "", "compute"], [107, 2, 1, "", "reset_state"], [107, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores": [[108, 2, 1, "", "__add__"], [108, 2, 1, "", "__call__"], [108, 2, 1, "", "__init__"], [108, 2, 1, "", "__mul__"], [108, 2, 1, "", "add_state"], [108, 2, 1, "", "clone"], [108, 2, 1, "", "compute"], [108, 2, 1, "", "reset_state"], [108, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores": [[109, 2, 1, "", "__add__"], [109, 2, 1, "", "__call__"], [109, 2, 1, "", "__init__"], [109, 2, 1, "", "__mul__"], [109, 2, 1, "", "add_state"], [109, 2, 1, "", "clone"], [109, 2, 1, "", "compute"], [109, 2, 1, "", "reset_state"], [109, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.StatScores": [[110, 2, 1, "", "__add__"], [110, 2, 1, "", "__call__"], [110, 2, 1, "", "__init__"], [110, 2, 1, "", "__mul__"], [110, 2, 1, "", "add_state"], [110, 2, 1, "", "clone"], [110, 2, 1, "", "compute"], [110, 5, 1, "", "name"], [110, 2, 1, "", "reset_state"], [110, 2, 1, "", "update_state"]], "cyclops.monitor": [[111, 0, 0, "-", "clinical_applicator"], [113, 0, 0, "-", "synthetic_applicator"]], "cyclops.monitor.clinical_applicator": [[112, 1, 1, "", "ClinicalShiftApplicator"]], "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator": [[112, 2, 1, "", "age"], [112, 2, 1, "", "apply_shift"], [112, 2, 1, "", "custom"], [112, 2, 1, "", "hospital_type"], [112, 2, 1, "", "month"], [112, 2, 1, "", "sex"], [112, 2, 1, "", "time"]], "cyclops.monitor.synthetic_applicator": [[114, 1, 1, "", "SyntheticShiftApplicator"], [115, 4, 1, "", "binary_noise_shift"], [116, 4, 1, "", "feature_association_shift"], [117, 4, 1, "", "feature_swap_shift"], [118, 4, 1, "", "gaussian_noise_shift"], [119, 4, 1, "", "knockout_shift"]], "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator": [[114, 2, 1, "", "apply_shift"]], "cyclops.report": [[120, 0, 0, "-", "report"]], "cyclops.report.report": [[121, 1, 1, "", "ModelCardReport"]], "cyclops.report.report.ModelCardReport": [[121, 2, 1, "", "export"], [121, 2, 1, "", "from_json_file"], [121, 2, 1, "", "log_citation"], [121, 2, 1, "", "log_dataset"], [121, 2, 1, "", "log_descriptor"], [121, 2, 1, "", "log_fairness_assessment"], [121, 2, 1, "", "log_from_dict"], [121, 2, 1, "", "log_image"], [121, 2, 1, "", "log_license"], [121, 2, 1, "", "log_model_parameters"], [121, 2, 1, "", "log_owner"], [121, 2, 1, "", "log_performance_metrics"], [121, 2, 1, "", "log_plotly_figure"], [121, 2, 1, "", "log_quantitative_analysis"], [121, 2, 1, "", "log_reference"], [121, 2, 1, "", "log_regulation"], [121, 2, 1, "", "log_risk"], [121, 2, 1, "", "log_use_case"], [121, 2, 1, "", "log_user"], [121, 2, 1, "", "log_version"]], "cyclops.tasks": [[122, 0, 0, "-", "classification"]], "cyclops.tasks.classification": [[123, 1, 1, "", "BinaryTabularClassificationTask"], [124, 1, 1, "", "MultilabelImageClassificationTask"]], "cyclops.tasks.classification.BinaryTabularClassificationTask": [[123, 2, 1, "", "__init__"], [123, 2, 1, "", "add_model"], [123, 5, 1, "", "data_type"], [123, 2, 1, "", "evaluate"], [123, 2, 1, "", "get_model"], [123, 2, 1, "", "list_models"], [123, 2, 1, "", "list_models_params"], [123, 2, 1, "", "load_model"], [123, 5, 1, "", "models_count"], [123, 2, 1, "", "predict"], [123, 2, 1, "", "save_model"], [123, 5, 1, "", "task_type"], [123, 2, 1, "", "train"]], "cyclops.tasks.classification.MultilabelImageClassificationTask": [[124, 2, 1, "", "__init__"], [124, 2, 1, "", "add_model"], [124, 5, 1, "", "data_type"], [124, 2, 1, "", "evaluate"], [124, 2, 1, "", "get_model"], [124, 2, 1, "", "list_models"], [124, 2, 1, "", "list_models_params"], [124, 2, 1, "", "load_model"], [124, 5, 1, "", "models_count"], [124, 2, 1, "", "predict"], [124, 2, 1, "", "save_model"], [124, 5, 1, "", "task_type"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:attribute", "4": "py:function", "5": "py:property"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "attribute", "Python attribute"], "4": ["py", "function", "Python function"], "5": ["py", "property", "Python property"]}, "titleterms": {"api": [0, 136], "refer": 0, "contribut": [1, 3], "cyclop": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129], "pre": 1, "commit": 1, "hook": 1, "code": 1, "guidelin": 1, "welcom": 2, "": 2, "document": [2, 3], "content": 2, "get": 3, "start": 3, "instal": 3, "us": [3, 134, 137], "pip": 3, "develop": 3, "poetri": 3, "notebook": 3, "citat": 3, "data": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 125, 131, 132, 135, 137], "featur": [4, 5, 125, 131, 132, 135], "medical_imag": [4, 5], "medicalimag": 5, "slicer": [6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "slicespec": 7, "compound_filt": 8, "filter_datetim": 9, "filter_non_nul": 10, "filter_rang": 11, "filter_string_contain": 12, "filter_valu": 13, "is_datetim": 14, "overal": 15, "evalu": [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 126, 131, 132, 135], "fair": [18, 19, 20, 21, 22, 126], "config": [18, 19], "fairnessconfig": 19, "evaluate_fair": 21, "warn_too_many_unique_valu": 22, "metric": [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 126, 133], "accuraci": [23, 24, 25, 26, 27, 44], "binaryaccuraci": 25, "multiclassaccuraci": 26, "multilabelaccuraci": 27, "auroc": [28, 29, 30, 31, 32, 45, 133], "binaryauroc": 30, "multiclassauroc": 31, "multilabelauroc": 32, "f_beta": [33, 34, 35, 36, 37, 38, 39, 40, 41, 46, 47, 48, 49, 50, 51, 52, 53, 54], "binaryf1scor": 34, "binaryfbetascor": 35, "f1score": 36, "fbetascor": 37, "multiclassf1scor": 38, "multiclassfbetascor": 39, "multilabelf1scor": 40, "multilabelfbetascor": 41, "factori": [42, 43], "create_metr": 43, "function": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 126], "binary_f1_scor": 47, "binary_fbeta_scor": 48, "f1_score": 49, "fbeta_scor": 50, "multiclass_f1_scor": 51, "multiclass_fbeta_scor": 52, "multilabel_f1_scor": 53, "multilabel_fbeta_scor": 54, "precision_recal": [55, 56, 57, 58, 59, 60, 61, 62, 63, 77, 78, 79, 80, 81, 82, 83, 84, 85], "binary_precis": 56, "binary_recal": 57, "multiclass_precis": 58, "multiclass_recal": 59, "multilabel_precis": 60, "multilabel_recal": 61, "precis": [62, 84], "recal": [63, 85], "precision_recall_curv": [64, 86, 87, 88, 89, 90], "roc": [65, 66, 67, 68, 69, 91, 92, 93, 94, 95], "binary_roc_curv": 66, "multiclass_roc_curv": 67, "multilabel_roc_curv": 68, "roc_curv": 69, "sensit": [70, 96, 97, 98, 99, 100, 134], "specif": [71, 101, 102, 103, 104, 105], "stat_scor": [72, 106, 107, 108, 109, 110], "metriccollect": 75, "operatormetr": 76, "binaryprecis": 78, "binaryrecal": 79, "multiclassprecis": 80, "multiclassrecal": 81, "multilabelprecis": 82, "multilabelrecal": 83, "binaryprecisionrecallcurv": 87, "multiclassprecisionrecallcurv": 88, "multilabelprecisionrecallcurv": 89, "precisionrecallcurv": 90, "binaryroccurv": 92, "multiclassroccurv": 93, "multilabelroccurv": 94, "roccurv": 95, "binarysensit": 97, "multiclasssensit": 98, "multilabelsensit": 99, "binaryspecif": 102, "multiclassspecif": 103, "multilabelspecif": 104, "binarystatscor": 107, "multiclassstatscor": 108, "multilabelstatscor": 109, "statscor": 110, "monitor": [111, 112, 113, 114, 115, 116, 117, 118, 119, 127, 136], "clinical_appl": [111, 112], "clinicalshiftappl": 112, "synthetic_appl": [113, 114, 115, 116, 117, 118, 119], "syntheticshiftappl": 114, "binary_noise_shift": 115, "feature_association_shift": 116, "feature_swap_shift": 117, "gaussian_noise_shift": 118, "knockout_shift": 119, "report": [120, 121, 128, 131, 132, 133, 135], "modelcardreport": 121, "task": [122, 123, 124, 129, 131, 132, 135], "classif": [122, 123, 124, 133, 137], "binarytabularclassificationtask": 123, "multilabelimageclassificationtask": 124, "tutori": [130, 134], "heart": [131, 137], "failur": [131, 137], "predict": [131, 132, 135, 137], "import": [131, 132, 133, 134, 135], "librari": [131, 132, 133, 134, 135], "constant": [131, 132, 135], "load": [131, 133, 134], "sex": [131, 133], "valu": 131, "ag": [131, 132, 133, 135], "distribut": [131, 132, 135], "outcom": [131, 132, 135], "identifi": [131, 132, 135], "type": [131, 132, 135], "creat": [131, 132, 135], "preprocessor": [131, 132, 135], "hug": [131, 132, 135], "face": [131, 132, 135], "dataset": [131, 132, 133, 134, 135], "model": [131, 132, 133, 134, 135], "creation": [131, 132, 133, 135], "train": [131, 132, 134, 135], "perform": [131, 133], "over": 131, "time": 131, "gener": [131, 132, 133, 134, 135], "mortal": [132, 137], "queri": [132, 135], "process": 132, "comput": [132, 135], "label": [132, 135], "inspect": [132, 135], "preprocess": [132, 135], "drop": [132, 135], "nan": [132, 135], "base": [132, 135], "nan_threshold": [132, 135], "gender": [132, 135], "chest": [133, 137], "x": [133, 137], "rai": [133, 137], "diseas": 133, "histor": 133, "initi": 133, "period": 133, "multilabel": 133, "pathologi": 133, "log": 133, "test": [133, 134], "w": 133, "threshold": 133, "popul": 133, "card": 133, "field": 133, "nihcxr": 134, "clinic": 134, "drift": 134, "experi": 134, "exampl": [134, 137], "1": 134, "sourc": 134, "target": 134, "2": 134, "3": 134, "dimension": 134, "reduct": 134, "techniqu": 134, "differ": 134, "4": 134, "shift": 134, "5": 134, "roll": 134, "window": 134, "synthet": 134, "timestamp": 134, "biweekli": 134, "prolong": [135, 137], "length": [135, 137], "stai": [135, 137], "case": 137, "tabular": 137, "kaggl": 137, "mimiciv": 137, "synthea": 137, "imag": 137, "nih": 137}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1, "sphinx.ext.intersphinx": 1, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"API Reference": [[0, "api-reference"]], "Contributing to cyclops": [[1, "contributing-to-cyclops"]], "Pre-commit hooks": [[1, "pre-commit-hooks"]], "Coding guidelines": [[1, "coding-guidelines"]], "Welcome to cyclops\u2019s documentation!": [[2, "welcome-to-cyclops-s-documentation"]], "Contents:": [[2, null]], "\ud83d\udc23 Getting Started": [[3, "getting-started"]], "Installing cyclops using pip": [[3, "installing-cyclops-using-pip"]], "\ud83e\uddd1\ud83c\udfff\u200d\ud83d\udcbb Developing": [[3, "developing"]], "Using poetry": [[3, "using-poetry"]], "Contributing": [[3, "contributing"]], "\ud83d\udcda Documentation": [[3, "documentation"]], "\ud83d\udcd3 Notebooks": [[3, "notebooks"]], "\ud83c\udf93 Citation": [[3, "citation"]], "cyclops.data.features.medical_image": [[4, "module-cyclops.data.features.medical_image"]], "cyclops.data.features.medical_image.MedicalImage": [[5, "cyclops-data-features-medical-image-medicalimage"]], "cyclops.data.slicer": [[6, "module-cyclops.data.slicer"]], "cyclops.data.slicer.SliceSpec": [[7, "cyclops-data-slicer-slicespec"]], "cyclops.data.slicer.compound_filter": [[8, "cyclops-data-slicer-compound-filter"]], "cyclops.data.slicer.filter_datetime": [[9, "cyclops-data-slicer-filter-datetime"]], "cyclops.data.slicer.filter_non_null": [[10, "cyclops-data-slicer-filter-non-null"]], "cyclops.data.slicer.filter_range": [[11, "cyclops-data-slicer-filter-range"]], "cyclops.data.slicer.filter_string_contains": [[12, "cyclops-data-slicer-filter-string-contains"]], "cyclops.data.slicer.filter_value": [[13, "cyclops-data-slicer-filter-value"]], "cyclops.data.slicer.is_datetime": [[14, "cyclops-data-slicer-is-datetime"]], "cyclops.data.slicer.overall": [[15, "cyclops-data-slicer-overall"]], "cyclops.evaluate.evaluator": [[16, "module-cyclops.evaluate.evaluator"]], "cyclops.evaluate.evaluator.evaluate": [[17, "cyclops-evaluate-evaluator-evaluate"]], "cyclops.evaluate.fairness.config": [[18, "module-cyclops.evaluate.fairness.config"]], "cyclops.evaluate.fairness.config.FairnessConfig": [[19, "cyclops-evaluate-fairness-config-fairnessconfig"]], "cyclops.evaluate.fairness.evaluator": [[20, "module-cyclops.evaluate.fairness.evaluator"]], "cyclops.evaluate.fairness.evaluator.evaluate_fairness": [[21, "cyclops-evaluate-fairness-evaluator-evaluate-fairness"]], "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values": [[22, "cyclops-evaluate-fairness-evaluator-warn-too-many-unique-values"]], "cyclops.evaluate.metrics.accuracy": [[23, "module-cyclops.evaluate.metrics.accuracy"]], "cyclops.evaluate.metrics.accuracy.Accuracy": [[24, "cyclops-evaluate-metrics-accuracy-accuracy"]], "cyclops.evaluate.metrics.accuracy.BinaryAccuracy": [[25, "cyclops-evaluate-metrics-accuracy-binaryaccuracy"]], "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy": [[26, "cyclops-evaluate-metrics-accuracy-multiclassaccuracy"]], "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy": [[27, "cyclops-evaluate-metrics-accuracy-multilabelaccuracy"]], "cyclops.evaluate.metrics.auroc": [[28, "module-cyclops.evaluate.metrics.auroc"]], "cyclops.evaluate.metrics.auroc.AUROC": [[29, "cyclops-evaluate-metrics-auroc-auroc"]], "cyclops.evaluate.metrics.auroc.BinaryAUROC": [[30, "cyclops-evaluate-metrics-auroc-binaryauroc"]], "cyclops.evaluate.metrics.auroc.MulticlassAUROC": [[31, "cyclops-evaluate-metrics-auroc-multiclassauroc"]], "cyclops.evaluate.metrics.auroc.MultilabelAUROC": [[32, "cyclops-evaluate-metrics-auroc-multilabelauroc"]], "cyclops.evaluate.metrics.f_beta": [[33, "module-cyclops.evaluate.metrics.f_beta"]], "cyclops.evaluate.metrics.f_beta.BinaryF1Score": [[34, "cyclops-evaluate-metrics-f-beta-binaryf1score"]], "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore": [[35, "cyclops-evaluate-metrics-f-beta-binaryfbetascore"]], "cyclops.evaluate.metrics.f_beta.F1Score": [[36, "cyclops-evaluate-metrics-f-beta-f1score"]], "cyclops.evaluate.metrics.f_beta.FbetaScore": [[37, "cyclops-evaluate-metrics-f-beta-fbetascore"]], "cyclops.evaluate.metrics.f_beta.MulticlassF1Score": [[38, "cyclops-evaluate-metrics-f-beta-multiclassf1score"]], "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore": [[39, "cyclops-evaluate-metrics-f-beta-multiclassfbetascore"]], "cyclops.evaluate.metrics.f_beta.MultilabelF1Score": [[40, "cyclops-evaluate-metrics-f-beta-multilabelf1score"]], "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore": [[41, "cyclops-evaluate-metrics-f-beta-multilabelfbetascore"]], "cyclops.evaluate.metrics.factory": [[42, "module-cyclops.evaluate.metrics.factory"]], "cyclops.evaluate.metrics.factory.create_metric": [[43, "cyclops-evaluate-metrics-factory-create-metric"]], "cyclops.evaluate.metrics.functional.accuracy": [[44, "module-cyclops.evaluate.metrics.functional.accuracy"]], "cyclops.evaluate.metrics.functional.auroc": [[45, "module-cyclops.evaluate.metrics.functional.auroc"]], "cyclops.evaluate.metrics.functional.f_beta": [[46, "module-cyclops.evaluate.metrics.functional.f_beta"]], "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score": [[47, "cyclops-evaluate-metrics-functional-f-beta-binary-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score": [[48, "cyclops-evaluate-metrics-functional-f-beta-binary-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.f1_score": [[49, "cyclops-evaluate-metrics-functional-f-beta-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.fbeta_score": [[50, "cyclops-evaluate-metrics-functional-f-beta-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score": [[51, "cyclops-evaluate-metrics-functional-f-beta-multiclass-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score": [[52, "cyclops-evaluate-metrics-functional-f-beta-multiclass-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score": [[53, "cyclops-evaluate-metrics-functional-f-beta-multilabel-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score": [[54, "cyclops-evaluate-metrics-functional-f-beta-multilabel-fbeta-score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[55, "module-cyclops.evaluate.metrics.functional.precision_recall"]], "cyclops.evaluate.metrics.functional.precision_recall.binary_precision": [[56, "cyclops-evaluate-metrics-functional-precision-recall-binary-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.binary_recall": [[57, "cyclops-evaluate-metrics-functional-precision-recall-binary-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision": [[58, "cyclops-evaluate-metrics-functional-precision-recall-multiclass-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall": [[59, "cyclops-evaluate-metrics-functional-precision-recall-multiclass-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision": [[60, "cyclops-evaluate-metrics-functional-precision-recall-multilabel-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall": [[61, "cyclops-evaluate-metrics-functional-precision-recall-multilabel-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.precision": [[62, "cyclops-evaluate-metrics-functional-precision-recall-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.recall": [[63, "cyclops-evaluate-metrics-functional-precision-recall-recall"]], "cyclops.evaluate.metrics.functional.precision_recall_curve": [[64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"]], "cyclops.evaluate.metrics.functional.roc": [[65, "module-cyclops.evaluate.metrics.functional.roc"]], "cyclops.evaluate.metrics.functional.roc.binary_roc_curve": [[66, "cyclops-evaluate-metrics-functional-roc-binary-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve": [[67, "cyclops-evaluate-metrics-functional-roc-multiclass-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve": [[68, "cyclops-evaluate-metrics-functional-roc-multilabel-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.roc_curve": [[69, "cyclops-evaluate-metrics-functional-roc-roc-curve"]], "cyclops.evaluate.metrics.functional.sensitivity": [[70, "module-cyclops.evaluate.metrics.functional.sensitivity"]], "cyclops.evaluate.metrics.functional.specificity": [[71, "module-cyclops.evaluate.metrics.functional.specificity"]], "cyclops.evaluate.metrics.functional.stat_scores": [[72, "module-cyclops.evaluate.metrics.functional.stat_scores"]], "cyclops.evaluate.metrics.metric": [[73, "module-cyclops.evaluate.metrics.metric"]], "cyclops.evaluate.metrics.metric.Metric": [[74, "cyclops-evaluate-metrics-metric-metric"]], "cyclops.evaluate.metrics.metric.MetricCollection": [[75, "cyclops-evaluate-metrics-metric-metriccollection"]], "cyclops.evaluate.metrics.metric.OperatorMetric": [[76, "cyclops-evaluate-metrics-metric-operatormetric"]], "cyclops.evaluate.metrics.precision_recall": [[77, "module-cyclops.evaluate.metrics.precision_recall"]], "cyclops.evaluate.metrics.precision_recall.BinaryPrecision": [[78, "cyclops-evaluate-metrics-precision-recall-binaryprecision"]], "cyclops.evaluate.metrics.precision_recall.BinaryRecall": [[79, "cyclops-evaluate-metrics-precision-recall-binaryrecall"]], "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision": [[80, "cyclops-evaluate-metrics-precision-recall-multiclassprecision"]], "cyclops.evaluate.metrics.precision_recall.MulticlassRecall": [[81, "cyclops-evaluate-metrics-precision-recall-multiclassrecall"]], "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision": [[82, "cyclops-evaluate-metrics-precision-recall-multilabelprecision"]], "cyclops.evaluate.metrics.precision_recall.MultilabelRecall": [[83, "cyclops-evaluate-metrics-precision-recall-multilabelrecall"]], "cyclops.evaluate.metrics.precision_recall.Precision": [[84, "cyclops-evaluate-metrics-precision-recall-precision"]], "cyclops.evaluate.metrics.precision_recall.Recall": [[85, "cyclops-evaluate-metrics-precision-recall-recall"]], "cyclops.evaluate.metrics.precision_recall_curve": [[86, "module-cyclops.evaluate.metrics.precision_recall_curve"]], "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve": [[87, "cyclops-evaluate-metrics-precision-recall-curve-binaryprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve": [[88, "cyclops-evaluate-metrics-precision-recall-curve-multiclassprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve": [[89, "cyclops-evaluate-metrics-precision-recall-curve-multilabelprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve": [[90, "cyclops-evaluate-metrics-precision-recall-curve-precisionrecallcurve"]], "cyclops.evaluate.metrics.roc": [[91, "module-cyclops.evaluate.metrics.roc"]], "cyclops.evaluate.metrics.roc.BinaryROCCurve": [[92, "cyclops-evaluate-metrics-roc-binaryroccurve"]], "cyclops.evaluate.metrics.roc.MulticlassROCCurve": [[93, "cyclops-evaluate-metrics-roc-multiclassroccurve"]], "cyclops.evaluate.metrics.roc.MultilabelROCCurve": [[94, "cyclops-evaluate-metrics-roc-multilabelroccurve"]], "cyclops.evaluate.metrics.roc.ROCCurve": [[95, "cyclops-evaluate-metrics-roc-roccurve"]], "cyclops.evaluate.metrics.sensitivity": [[96, "module-cyclops.evaluate.metrics.sensitivity"]], "cyclops.evaluate.metrics.sensitivity.BinarySensitivity": [[97, "cyclops-evaluate-metrics-sensitivity-binarysensitivity"]], "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity": [[98, "cyclops-evaluate-metrics-sensitivity-multiclasssensitivity"]], "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity": [[99, "cyclops-evaluate-metrics-sensitivity-multilabelsensitivity"]], "cyclops.evaluate.metrics.sensitivity.Sensitivity": [[100, "cyclops-evaluate-metrics-sensitivity-sensitivity"]], "cyclops.evaluate.metrics.specificity": [[101, "module-cyclops.evaluate.metrics.specificity"]], "cyclops.evaluate.metrics.specificity.BinarySpecificity": [[102, "cyclops-evaluate-metrics-specificity-binaryspecificity"]], "cyclops.evaluate.metrics.specificity.MulticlassSpecificity": [[103, "cyclops-evaluate-metrics-specificity-multiclassspecificity"]], "cyclops.evaluate.metrics.specificity.MultilabelSpecificity": [[104, "cyclops-evaluate-metrics-specificity-multilabelspecificity"]], "cyclops.evaluate.metrics.specificity.Specificity": [[105, "cyclops-evaluate-metrics-specificity-specificity"]], "cyclops.evaluate.metrics.stat_scores": [[106, "module-cyclops.evaluate.metrics.stat_scores"]], "cyclops.evaluate.metrics.stat_scores.BinaryStatScores": [[107, "cyclops-evaluate-metrics-stat-scores-binarystatscores"]], "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores": [[108, "cyclops-evaluate-metrics-stat-scores-multiclassstatscores"]], "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores": [[109, "cyclops-evaluate-metrics-stat-scores-multilabelstatscores"]], "cyclops.evaluate.metrics.stat_scores.StatScores": [[110, "cyclops-evaluate-metrics-stat-scores-statscores"]], "cyclops.monitor.clinical_applicator": [[111, "module-cyclops.monitor.clinical_applicator"]], "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator": [[112, "cyclops-monitor-clinical-applicator-clinicalshiftapplicator"]], "cyclops.monitor.synthetic_applicator": [[113, "module-cyclops.monitor.synthetic_applicator"]], "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator": [[114, "cyclops-monitor-synthetic-applicator-syntheticshiftapplicator"]], "cyclops.monitor.synthetic_applicator.binary_noise_shift": [[115, "cyclops-monitor-synthetic-applicator-binary-noise-shift"]], "cyclops.monitor.synthetic_applicator.feature_association_shift": [[116, "cyclops-monitor-synthetic-applicator-feature-association-shift"]], "cyclops.monitor.synthetic_applicator.feature_swap_shift": [[117, "cyclops-monitor-synthetic-applicator-feature-swap-shift"]], "cyclops.monitor.synthetic_applicator.gaussian_noise_shift": [[118, "cyclops-monitor-synthetic-applicator-gaussian-noise-shift"]], "cyclops.monitor.synthetic_applicator.knockout_shift": [[119, "cyclops-monitor-synthetic-applicator-knockout-shift"]], "cyclops.report.report": [[120, "module-cyclops.report.report"]], "cyclops.report.report.ModelCardReport": [[121, "cyclops-report-report-modelcardreport"]], "cyclops.tasks.classification": [[122, "module-cyclops.tasks.classification"]], "cyclops.tasks.classification.BinaryTabularClassificationTask": [[123, "cyclops-tasks-classification-binarytabularclassificationtask"]], "cyclops.tasks.classification.MultilabelImageClassificationTask": [[124, "cyclops-tasks-classification-multilabelimageclassificationtask"]], "cyclops.data": [[125, "module-cyclops.data"]], "cyclops.data.features": [[125, "module-cyclops.data.features"]], "cyclops.evaluate": [[126, "module-cyclops.evaluate"]], "cyclops.evaluate.metrics": [[126, "module-cyclops.evaluate.metrics"]], "cyclops.evaluate.metrics.functional": [[126, "module-cyclops.evaluate.metrics.functional"]], "cyclops.evaluate.fairness": [[126, "module-cyclops.evaluate.fairness"]], "cyclops.monitor": [[127, "module-cyclops.monitor"]], "cyclops.report": [[128, "module-cyclops.report"]], "cyclops.tasks": [[129, "module-cyclops.tasks"]], "Tutorials": [[130, "tutorials"]], "Heart Failure Prediction": [[131, "Heart-Failure-Prediction"]], "Import Libraries": [[131, "Import-Libraries"], [132, "Import-Libraries"], [133, "Import-Libraries"], [135, "Import-Libraries"]], "Constants": [[131, "Constants"], [132, "Constants"], [135, "Constants"]], "Data Loading": [[131, "Data-Loading"]], "Sex values": [[131, "Sex-values"]], "Age distribution": [[131, "Age-distribution"], [132, "Age-distribution"], [135, "Age-distribution"]], "Outcome distribution": [[131, "Outcome-distribution"], [132, "Outcome-distribution"], [135, "Outcome-distribution"]], "Identifying feature types": [[131, "Identifying-feature-types"], [132, "Identifying-feature-types"], [135, "Identifying-feature-types"]], "Creating data preprocessors": [[131, "Creating-data-preprocessors"], [132, "Creating-data-preprocessors"], [135, "Creating-data-preprocessors"]], "Creating Hugging Face Dataset": [[131, "Creating-Hugging-Face-Dataset"], [132, "Creating-Hugging-Face-Dataset"], [135, "Creating-Hugging-Face-Dataset"]], "Model Creation": [[131, "Model-Creation"], [132, "Model-Creation"], [133, "Model-Creation"], [135, "Model-Creation"]], "Task Creation": [[131, "Task-Creation"], [132, "Task-Creation"], [135, "Task-Creation"]], "Training": [[131, "Training"], [132, "Training"], [135, "Training"]], "Prediction": [[131, "Prediction"], [132, "Prediction"], [135, "Prediction"]], "Evaluation": [[131, "Evaluation"], [132, "Evaluation"], [135, "Evaluation"]], "Performance over time": [[131, "Performance-over-time"]], "Report Generation": [[131, "Report-Generation"], [132, "Report-Generation"], [135, "Report-Generation"]], "Mortality Prediction": [[132, "Mortality-Prediction"]], "Data Querying & Processing": [[132, "Data-Querying-&-Processing"]], "Compute mortality (labels)": [[132, "Compute-mortality-(labels)"]], "Data Inspection and Preprocessing": [[132, "Data-Inspection-and-Preprocessing"], [135, "Data-Inspection-and-Preprocessing"]], "Drop NaNs based on the NAN_THRESHOLD": [[132, "Drop-NaNs-based-on-the-NAN_THRESHOLD"], [135, "Drop-NaNs-based-on-the-NAN_THRESHOLD"]], "Gender distribution": [[132, "Gender-distribution"], [135, "Gender-distribution"]], "Chest X-Ray Disease Classification": [[133, "Chest-X-Ray-Disease-Classification"]], "Generate Historical Reports": [[133, "Generate-Historical-Reports"]], "Initialize Periodic Report": [[133, "Initialize-Periodic-Report"]], "Load Dataset": [[133, "Load-Dataset"]], "Multilabel AUROC by Pathology and Sex": [[133, "Multilabel-AUROC-by-Pathology-and-Sex"]], "Multilabel AUROC by Pathology and Age": [[133, "Multilabel-AUROC-by-Pathology-and-Age"]], "Log Performance Metrics as Tests w/ Thresholds": [[133, "Log-Performance-Metrics-as-Tests-w/-Thresholds"]], "Populate Model Card Fields": [[133, "Populate-Model-Card-Fields"]], "NIHCXR Clinical Drift Experiments Tutorial": [[134, "NIHCXR-Clinical-Drift-Experiments-Tutorial"]], "Import Libraries and Load NIHCXR Dataset": [[134, "Import-Libraries-and-Load-NIHCXR-Dataset"]], "Example 1. Generate Source/Target Dataset for Experiments (1-2)": [[134, "Example-1.-Generate-Source/Target-Dataset-for-Experiments-(1-2)"]], "Example 2. Sensitivity test experiment with 3 dimensionality reduction techniques": [[134, "Example-2.-Sensitivity-test-experiment-with-3-dimensionality-reduction-techniques"]], "Example 3. Sensitivity test experiment with models trained on different datasets": [[134, "Example-3.-Sensitivity-test-experiment-with-models-trained-on-different-datasets"]], "Example 4. Sensitivity test experiment with different clinical shifts": [[134, "Example-4.-Sensitivity-test-experiment-with-different-clinical-shifts"]], "Example 5. Rolling window experiment with synthetic timestamps using biweekly window": [[134, "Example-5.-Rolling-window-experiment-with-synthetic-timestamps-using-biweekly-window"]], "Prolonged Length of Stay Prediction": [[135, "Prolonged-Length-of-Stay-Prediction"]], "Data Querying": [[135, "Data-Querying"]], "Compute length of stay (labels)": [[135, "Compute-length-of-stay-(labels)"]], "Length of stay distribution": [[135, "Length-of-stay-distribution"]], "monitor API": [[136, "monitor-api"]], "Example use cases": [[137, "example-use-cases"]], "Tabular data": [[137, "tabular-data"]], "Kaggle Heart Failure Prediction": [[137, "kaggle-heart-failure-prediction"]], "MIMICIV Mortality Prediction": [[137, "mimiciv-mortality-prediction"]], "Synthea Prolonged Length of Stay Prediction": [[137, "synthea-prolonged-length-of-stay-prediction"]], "Image data": [[137, "image-data"]], "NIH Chest X-ray classification": [[137, "nih-chest-x-ray-classification"]]}, "indexentries": {"cyclops.data.features.medical_image": [[4, "module-cyclops.data.features.medical_image"]], "module": [[4, "module-cyclops.data.features.medical_image"], [6, "module-cyclops.data.slicer"], [16, "module-cyclops.evaluate.evaluator"], [18, "module-cyclops.evaluate.fairness.config"], [20, "module-cyclops.evaluate.fairness.evaluator"], [23, "module-cyclops.evaluate.metrics.accuracy"], [28, "module-cyclops.evaluate.metrics.auroc"], [33, "module-cyclops.evaluate.metrics.f_beta"], [42, "module-cyclops.evaluate.metrics.factory"], [44, "module-cyclops.evaluate.metrics.functional.accuracy"], [45, "module-cyclops.evaluate.metrics.functional.auroc"], [46, "module-cyclops.evaluate.metrics.functional.f_beta"], [55, "module-cyclops.evaluate.metrics.functional.precision_recall"], [64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"], [65, "module-cyclops.evaluate.metrics.functional.roc"], [70, "module-cyclops.evaluate.metrics.functional.sensitivity"], [71, "module-cyclops.evaluate.metrics.functional.specificity"], [72, "module-cyclops.evaluate.metrics.functional.stat_scores"], [73, "module-cyclops.evaluate.metrics.metric"], [77, "module-cyclops.evaluate.metrics.precision_recall"], [86, "module-cyclops.evaluate.metrics.precision_recall_curve"], [91, "module-cyclops.evaluate.metrics.roc"], [96, "module-cyclops.evaluate.metrics.sensitivity"], [101, "module-cyclops.evaluate.metrics.specificity"], [106, "module-cyclops.evaluate.metrics.stat_scores"], [111, "module-cyclops.monitor.clinical_applicator"], [113, "module-cyclops.monitor.synthetic_applicator"], [120, "module-cyclops.report.report"], [122, "module-cyclops.tasks.classification"], [125, "module-cyclops.data"], [125, "module-cyclops.data.features"], [126, "module-cyclops.evaluate"], [126, "module-cyclops.evaluate.fairness"], [126, "module-cyclops.evaluate.metrics"], [126, "module-cyclops.evaluate.metrics.functional"], [127, "module-cyclops.monitor"], [128, "module-cyclops.report"], [129, "module-cyclops.tasks"]], "medicalimage (class in cyclops.data.features.medical_image)": [[5, "cyclops.data.features.medical_image.MedicalImage"]], "__call__() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.__call__"]], "cast_storage() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.cast_storage"]], "decode_example() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.decode_example"]], "embed_storage() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.embed_storage"]], "encode_example() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.encode_example"]], "flatten() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.flatten"]], "cyclops.data.slicer": [[6, "module-cyclops.data.slicer"]], "slicespec (class in cyclops.data.slicer)": [[7, "cyclops.data.slicer.SliceSpec"]], "_registry (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec._registry"]], "add_slice_spec() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.add_slice_spec"]], "column_names (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.column_names"]], "get_slices() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.get_slices"]], "include_overall (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.include_overall"]], "slices() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.slices"]], "spec_list (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.spec_list"]], "validate (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.validate"]], "compound_filter() (in module cyclops.data.slicer)": [[8, "cyclops.data.slicer.compound_filter"]], "filter_datetime() (in module cyclops.data.slicer)": [[9, "cyclops.data.slicer.filter_datetime"]], "filter_non_null() (in module cyclops.data.slicer)": [[10, "cyclops.data.slicer.filter_non_null"]], "filter_range() (in module cyclops.data.slicer)": [[11, "cyclops.data.slicer.filter_range"]], "filter_string_contains() (in module cyclops.data.slicer)": [[12, "cyclops.data.slicer.filter_string_contains"]], "filter_value() (in module cyclops.data.slicer)": [[13, "cyclops.data.slicer.filter_value"]], "is_datetime() (in module cyclops.data.slicer)": [[14, "cyclops.data.slicer.is_datetime"]], "overall() (in module cyclops.data.slicer)": [[15, "cyclops.data.slicer.overall"]], "cyclops.evaluate.evaluator": [[16, "module-cyclops.evaluate.evaluator"]], "evaluate() (in module cyclops.evaluate.evaluator)": [[17, "cyclops.evaluate.evaluator.evaluate"]], "cyclops.evaluate.fairness.config": [[18, "module-cyclops.evaluate.fairness.config"]], "fairnessconfig (class in cyclops.evaluate.fairness.config)": [[19, "cyclops.evaluate.fairness.config.FairnessConfig"]], "cyclops.evaluate.fairness.evaluator": [[20, "module-cyclops.evaluate.fairness.evaluator"]], "evaluate_fairness() (in module cyclops.evaluate.fairness.evaluator)": [[21, "cyclops.evaluate.fairness.evaluator.evaluate_fairness"]], "warn_too_many_unique_values() (in module cyclops.evaluate.fairness.evaluator)": [[22, "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values"]], "cyclops.evaluate.metrics.accuracy": [[23, "module-cyclops.evaluate.metrics.accuracy"]], "accuracy (class in cyclops.evaluate.metrics.accuracy)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy"]], "__add__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__add__"]], "__call__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__call__"]], "__init__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__init__"]], "__mul__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__mul__"]], "add_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.add_state"]], "clone() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.clone"]], "compute() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.compute"]], "reset_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.reset_state"]], "update_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.update_state"]], "binaryaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy"]], "__add__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__add__"]], "__call__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__call__"]], "__init__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__init__"]], "__mul__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__mul__"]], "add_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.add_state"]], "clone() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.clone"]], "compute() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.compute"]], "reset_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.reset_state"]], "update_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.update_state"]], "multiclassaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy"]], "__add__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__add__"]], "__call__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__call__"]], "__init__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__init__"]], "__mul__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__mul__"]], "add_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.add_state"]], "clone() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.clone"]], "compute() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.compute"]], "reset_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.reset_state"]], "update_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.update_state"]], "multilabelaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy"]], "__add__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__add__"]], "__call__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__call__"]], "__init__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__init__"]], "__mul__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__mul__"]], "add_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.add_state"]], "clone() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.clone"]], "compute() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.compute"]], "reset_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.reset_state"]], "update_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.update_state"]], "cyclops.evaluate.metrics.auroc": [[28, "module-cyclops.evaluate.metrics.auroc"]], "auroc (class in cyclops.evaluate.metrics.auroc)": [[29, "cyclops.evaluate.metrics.auroc.AUROC"]], "__add__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__add__"]], "__call__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__call__"]], "__init__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__init__"]], "__mul__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__mul__"]], "add_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.add_state"]], "clone() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.clone"]], "compute() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.compute"]], "reset_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.reset_state"]], "update_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.update_state"]], "binaryauroc (class in cyclops.evaluate.metrics.auroc)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC"]], "__add__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__add__"]], "__call__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__call__"]], "__init__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__init__"]], "__mul__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__mul__"]], "add_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.add_state"]], "clone() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.clone"]], "compute() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.compute"]], "reset_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.reset_state"]], "update_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.update_state"]], "multiclassauroc (class in cyclops.evaluate.metrics.auroc)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC"]], "__add__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__add__"]], "__call__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__call__"]], "__init__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__init__"]], "__mul__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__mul__"]], "add_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.add_state"]], "clone() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.clone"]], "compute() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.compute"]], "reset_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.reset_state"]], "update_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.update_state"]], "multilabelauroc (class in cyclops.evaluate.metrics.auroc)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC"]], "__add__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__add__"]], "__call__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__call__"]], "__init__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__init__"]], "__mul__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__mul__"]], "add_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.add_state"]], "clone() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.clone"]], "compute() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.compute"]], "reset_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.reset_state"]], "update_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.update_state"]], "cyclops.evaluate.metrics.f_beta": [[33, "module-cyclops.evaluate.metrics.f_beta"]], "binaryf1score (class in cyclops.evaluate.metrics.f_beta)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score"]], "__add__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__add__"]], "__call__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__call__"]], "__init__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__init__"]], "__mul__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__mul__"]], "add_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.add_state"]], "clone() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.clone"]], "compute() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.compute"]], "reset_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.reset_state"]], "update_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.update_state"]], "binaryfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore"]], "__add__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__add__"]], "__call__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__call__"]], "__init__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__init__"]], "__mul__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__mul__"]], "add_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.add_state"]], "clone() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.clone"]], "compute() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.compute"]], "reset_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.reset_state"]], "update_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.update_state"]], "f1score (class in cyclops.evaluate.metrics.f_beta)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score"]], "__add__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__add__"]], "__call__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__call__"]], "__init__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__init__"]], "__mul__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__mul__"]], "add_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.add_state"]], "clone() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.clone"]], "compute() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.compute"]], "reset_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.reset_state"]], "update_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.update_state"]], "fbetascore (class in cyclops.evaluate.metrics.f_beta)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore"]], "__add__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__add__"]], "__call__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__call__"]], "__init__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__init__"]], "__mul__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__mul__"]], "add_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.add_state"]], "clone() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.clone"]], "compute() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.compute"]], "reset_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.reset_state"]], "update_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.update_state"]], "multiclassf1score (class in cyclops.evaluate.metrics.f_beta)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score"]], "__add__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__add__"]], "__call__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__call__"]], "__init__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__init__"]], "__mul__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__mul__"]], "add_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.add_state"]], "clone() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.clone"]], "compute() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.compute"]], "reset_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.reset_state"]], "update_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.update_state"]], "multiclassfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore"]], "__add__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__add__"]], "__call__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__call__"]], "__init__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__init__"]], "__mul__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__mul__"]], "add_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.add_state"]], "clone() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.clone"]], "compute() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.compute"]], "reset_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.reset_state"]], "update_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.update_state"]], "multilabelf1score (class in cyclops.evaluate.metrics.f_beta)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score"]], "__add__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__add__"]], "__call__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__call__"]], "__init__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__init__"]], "__mul__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__mul__"]], "add_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.add_state"]], "clone() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.clone"]], "compute() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.compute"]], "reset_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.reset_state"]], "update_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.update_state"]], "multilabelfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore"]], "__add__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__add__"]], "__call__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__call__"]], "__init__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__init__"]], "__mul__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__mul__"]], "add_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.add_state"]], "clone() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.clone"]], "compute() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.compute"]], "reset_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.reset_state"]], "update_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.update_state"]], "cyclops.evaluate.metrics.factory": [[42, "module-cyclops.evaluate.metrics.factory"]], "create_metric() (in module cyclops.evaluate.metrics.factory)": [[43, "cyclops.evaluate.metrics.factory.create_metric"]], "cyclops.evaluate.metrics.functional.accuracy": [[44, "module-cyclops.evaluate.metrics.functional.accuracy"]], "cyclops.evaluate.metrics.functional.auroc": [[45, "module-cyclops.evaluate.metrics.functional.auroc"]], "cyclops.evaluate.metrics.functional.f_beta": [[46, "module-cyclops.evaluate.metrics.functional.f_beta"]], "binary_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[47, "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score"]], "binary_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[48, "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score"]], "f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[49, "cyclops.evaluate.metrics.functional.f_beta.f1_score"]], "fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[50, "cyclops.evaluate.metrics.functional.f_beta.fbeta_score"]], "multiclass_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[51, "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score"]], "multiclass_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[52, "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score"]], "multilabel_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[53, "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score"]], "multilabel_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[54, "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[55, "module-cyclops.evaluate.metrics.functional.precision_recall"]], "binary_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[56, "cyclops.evaluate.metrics.functional.precision_recall.binary_precision"]], "binary_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[57, "cyclops.evaluate.metrics.functional.precision_recall.binary_recall"]], "multiclass_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[58, "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision"]], "multiclass_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[59, "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall"]], "multilabel_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[60, "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision"]], "multilabel_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[61, "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall"]], "precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[62, "cyclops.evaluate.metrics.functional.precision_recall.precision"]], "recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[63, "cyclops.evaluate.metrics.functional.precision_recall.recall"]], "cyclops.evaluate.metrics.functional.precision_recall_curve": [[64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"]], "cyclops.evaluate.metrics.functional.roc": [[65, "module-cyclops.evaluate.metrics.functional.roc"]], "binary_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[66, "cyclops.evaluate.metrics.functional.roc.binary_roc_curve"]], "multiclass_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[67, "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve"]], "multilabel_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[68, "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve"]], "roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[69, "cyclops.evaluate.metrics.functional.roc.roc_curve"]], "cyclops.evaluate.metrics.functional.sensitivity": [[70, "module-cyclops.evaluate.metrics.functional.sensitivity"]], "cyclops.evaluate.metrics.functional.specificity": [[71, "module-cyclops.evaluate.metrics.functional.specificity"]], "cyclops.evaluate.metrics.functional.stat_scores": [[72, "module-cyclops.evaluate.metrics.functional.stat_scores"]], "cyclops.evaluate.metrics.metric": [[73, "module-cyclops.evaluate.metrics.metric"]], "metric (class in cyclops.evaluate.metrics.metric)": [[74, "cyclops.evaluate.metrics.metric.Metric"]], "__add__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__add__"]], "__call__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__call__"]], "__init__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__init__"]], "__mul__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__mul__"]], "add_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.add_state"]], "clone() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.clone"]], "compute() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.compute"]], "name (metric property)": [[74, "cyclops.evaluate.metrics.metric.Metric.name"]], "reset_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.reset_state"]], "update_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.update_state"]], "metriccollection (class in cyclops.evaluate.metrics.metric)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection"]], "__call__() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.__call__"]], "__init__() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.__init__"]], "add_metrics() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.add_metrics"]], "clear() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.clear"]], "clone() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.clone"]], "compute() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.compute"]], "get() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.get"]], "items() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.items"]], "keys() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.keys"]], "pop() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.pop"]], "popitem() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.popitem"]], "reset_state() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.reset_state"]], "setdefault() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.setdefault"]], "update() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.update"]], "update_state() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.update_state"]], "values() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.values"]], "operatormetric (class in cyclops.evaluate.metrics.metric)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric"]], "__add__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__add__"]], "__call__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__call__"]], "__init__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__init__"]], "__mul__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__mul__"]], "add_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.add_state"]], "clone() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.clone"]], "compute() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.compute"]], "reset_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.reset_state"]], "update_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.update_state"]], "cyclops.evaluate.metrics.precision_recall": [[77, "module-cyclops.evaluate.metrics.precision_recall"]], "binaryprecision (class in cyclops.evaluate.metrics.precision_recall)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision"]], "__add__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__add__"]], "__call__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__call__"]], "__init__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__init__"]], "__mul__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__mul__"]], "add_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.add_state"]], "clone() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.clone"]], "compute() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.compute"]], "reset_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.reset_state"]], "update_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.update_state"]], "binaryrecall (class in cyclops.evaluate.metrics.precision_recall)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall"]], "__add__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__add__"]], "__call__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__call__"]], "__init__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__init__"]], "__mul__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__mul__"]], "add_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.add_state"]], "clone() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.clone"]], "compute() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.compute"]], "reset_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.reset_state"]], "update_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.update_state"]], "multiclassprecision (class in cyclops.evaluate.metrics.precision_recall)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision"]], "__add__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__add__"]], "__call__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__call__"]], "__init__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__init__"]], "__mul__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__mul__"]], "add_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.add_state"]], "clone() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.clone"]], "compute() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.compute"]], "reset_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.reset_state"]], "update_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.update_state"]], "multiclassrecall (class in cyclops.evaluate.metrics.precision_recall)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall"]], "__add__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__add__"]], "__call__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__call__"]], "__init__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__init__"]], "__mul__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__mul__"]], "add_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.add_state"]], "clone() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.clone"]], "compute() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.compute"]], "reset_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.reset_state"]], "update_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.update_state"]], "multilabelprecision (class in cyclops.evaluate.metrics.precision_recall)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision"]], "__add__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__add__"]], "__call__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__call__"]], "__init__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__init__"]], "__mul__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__mul__"]], "add_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.add_state"]], "clone() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.clone"]], "compute() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.compute"]], "reset_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.reset_state"]], "update_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.update_state"]], "multilabelrecall (class in cyclops.evaluate.metrics.precision_recall)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall"]], "__add__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__add__"]], "__call__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__call__"]], "__init__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__init__"]], "__mul__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__mul__"]], "add_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.add_state"]], "clone() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.clone"]], "compute() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.compute"]], "reset_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.reset_state"]], "update_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.update_state"]], "precision (class in cyclops.evaluate.metrics.precision_recall)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision"]], "__add__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__add__"]], "__call__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__call__"]], "__init__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__init__"]], "__mul__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__mul__"]], "add_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.add_state"]], "clone() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.clone"]], "compute() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.compute"]], "reset_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.reset_state"]], "update_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.update_state"]], "recall (class in cyclops.evaluate.metrics.precision_recall)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall"]], "__add__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__add__"]], "__call__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__call__"]], "__init__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__init__"]], "__mul__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__mul__"]], "add_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.add_state"]], "clone() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.clone"]], "compute() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.compute"]], "reset_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.reset_state"]], "update_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.update_state"]], "cyclops.evaluate.metrics.precision_recall_curve": [[86, "module-cyclops.evaluate.metrics.precision_recall_curve"]], "binaryprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve"]], "__add__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__add__"]], "__call__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__call__"]], "__init__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__init__"]], "__mul__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__mul__"]], "add_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.add_state"]], "clone() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.clone"]], "compute() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.compute"]], "reset_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.reset_state"]], "update_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.update_state"]], "multiclassprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve"]], "__add__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__add__"]], "__call__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__call__"]], "__init__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__init__"]], "__mul__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__mul__"]], "add_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.add_state"]], "clone() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.clone"]], "compute() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.compute"]], "reset_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.reset_state"]], "update_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.update_state"]], "multilabelprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve"]], "__add__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__add__"]], "__call__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__call__"]], "__init__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__init__"]], "__mul__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__mul__"]], "add_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.add_state"]], "clone() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.clone"]], "compute() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.compute"]], "reset_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.reset_state"]], "update_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.update_state"]], "precisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve"]], "__add__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__add__"]], "__call__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__call__"]], "__init__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__init__"]], "__mul__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__mul__"]], "add_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.add_state"]], "clone() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.clone"]], "compute() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.compute"]], "reset_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.reset_state"]], "update_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.update_state"]], "cyclops.evaluate.metrics.roc": [[91, "module-cyclops.evaluate.metrics.roc"]], "binaryroccurve (class in cyclops.evaluate.metrics.roc)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve"]], "__add__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__add__"]], "__call__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__call__"]], "__init__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__init__"]], "__mul__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__mul__"]], "add_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.add_state"]], "clone() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.clone"]], "compute() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.compute"]], "reset_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.reset_state"]], "update_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.update_state"]], "multiclassroccurve (class in cyclops.evaluate.metrics.roc)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve"]], "__add__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__add__"]], "__call__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__call__"]], "__init__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__init__"]], "__mul__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__mul__"]], "add_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.add_state"]], "clone() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.clone"]], "compute() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.compute"]], "reset_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.reset_state"]], "update_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.update_state"]], "multilabelroccurve (class in cyclops.evaluate.metrics.roc)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve"]], "__add__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__add__"]], "__call__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__call__"]], "__init__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__init__"]], "__mul__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__mul__"]], "add_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.add_state"]], "clone() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.clone"]], "compute() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.compute"]], "reset_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.reset_state"]], "update_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.update_state"]], "roccurve (class in cyclops.evaluate.metrics.roc)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve"]], "__add__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__add__"]], "__call__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__call__"]], "__init__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__init__"]], "__mul__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__mul__"]], "add_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.add_state"]], "clone() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.clone"]], "compute() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.compute"]], "reset_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.reset_state"]], "update_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.update_state"]], "cyclops.evaluate.metrics.sensitivity": [[96, "module-cyclops.evaluate.metrics.sensitivity"]], "binarysensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity"]], "__add__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__add__"]], "__call__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__call__"]], "__init__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__init__"]], "__mul__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__mul__"]], "add_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.add_state"]], "clone() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.clone"]], "compute() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.compute"]], "reset_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.reset_state"]], "update_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.update_state"]], "multiclasssensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity"]], "__add__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__add__"]], "__call__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__call__"]], "__init__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__init__"]], "__mul__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__mul__"]], "add_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.add_state"]], "clone() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.clone"]], "compute() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.compute"]], "reset_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.reset_state"]], "update_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.update_state"]], "multilabelsensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity"]], "__add__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__add__"]], "__call__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__call__"]], "__init__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__init__"]], "__mul__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__mul__"]], "add_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.add_state"]], "clone() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.clone"]], "compute() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.compute"]], "reset_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.reset_state"]], "update_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.update_state"]], "sensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity"]], "__add__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__add__"]], "__call__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__call__"]], "__init__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__init__"]], "__mul__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__mul__"]], "add_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.add_state"]], "clone() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.clone"]], "compute() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.compute"]], "reset_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.reset_state"]], "update_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.update_state"]], "cyclops.evaluate.metrics.specificity": [[101, "module-cyclops.evaluate.metrics.specificity"]], "binaryspecificity (class in cyclops.evaluate.metrics.specificity)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity"]], "__add__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__add__"]], "__call__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__call__"]], "__init__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__init__"]], "__mul__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__mul__"]], "add_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.add_state"]], "clone() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.clone"]], "compute() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.compute"]], "reset_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.reset_state"]], "update_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.update_state"]], "multiclassspecificity (class in cyclops.evaluate.metrics.specificity)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity"]], "__add__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__add__"]], "__call__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__call__"]], "__init__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__init__"]], "__mul__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__mul__"]], "add_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.add_state"]], "clone() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.clone"]], "compute() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.compute"]], "reset_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.reset_state"]], "update_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.update_state"]], "multilabelspecificity (class in cyclops.evaluate.metrics.specificity)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity"]], "__add__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__add__"]], "__call__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__call__"]], "__init__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__init__"]], "__mul__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__mul__"]], "add_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.add_state"]], "clone() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.clone"]], "compute() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.compute"]], "reset_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.reset_state"]], "update_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.update_state"]], "specificity (class in cyclops.evaluate.metrics.specificity)": [[105, "cyclops.evaluate.metrics.specificity.Specificity"]], "__add__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__add__"]], "__call__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__call__"]], "__init__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__init__"]], "__mul__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__mul__"]], "add_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.add_state"]], "clone() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.clone"]], "compute() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.compute"]], "reset_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.reset_state"]], "update_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.update_state"]], "cyclops.evaluate.metrics.stat_scores": [[106, "module-cyclops.evaluate.metrics.stat_scores"]], "binarystatscores (class in cyclops.evaluate.metrics.stat_scores)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores"]], "__add__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__add__"]], "__call__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__call__"]], "__init__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__init__"]], "__mul__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__mul__"]], "add_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.add_state"]], "clone() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.clone"]], "compute() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.compute"]], "reset_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.reset_state"]], "update_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.update_state"]], "multiclassstatscores (class in cyclops.evaluate.metrics.stat_scores)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores"]], "__add__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__add__"]], "__call__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__call__"]], "__init__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__init__"]], "__mul__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__mul__"]], "add_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.add_state"]], "clone() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.clone"]], "compute() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.compute"]], "reset_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.reset_state"]], "update_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.update_state"]], "multilabelstatscores (class in cyclops.evaluate.metrics.stat_scores)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores"]], "__add__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__add__"]], "__call__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__call__"]], "__init__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__init__"]], "__mul__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__mul__"]], "add_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.add_state"]], "clone() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.clone"]], "compute() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.compute"]], "reset_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.reset_state"]], "update_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.update_state"]], "statscores (class in cyclops.evaluate.metrics.stat_scores)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores"]], "__add__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__add__"]], "__call__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__call__"]], "__init__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__init__"]], "__mul__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__mul__"]], "add_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.add_state"]], "clone() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.clone"]], "compute() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.compute"]], "name (statscores property)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.name"]], "reset_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.reset_state"]], "update_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.update_state"]], "cyclops.monitor.clinical_applicator": [[111, "module-cyclops.monitor.clinical_applicator"]], "clinicalshiftapplicator (class in cyclops.monitor.clinical_applicator)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator"]], "age() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.age"]], "apply_shift() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.apply_shift"]], "custom() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.custom"]], "hospital_type() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.hospital_type"]], "month() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.month"]], "sex() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.sex"]], "time() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.time"]], "cyclops.monitor.synthetic_applicator": [[113, "module-cyclops.monitor.synthetic_applicator"]], "syntheticshiftapplicator (class in cyclops.monitor.synthetic_applicator)": [[114, "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator"]], "apply_shift() (syntheticshiftapplicator method)": [[114, "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator.apply_shift"]], "binary_noise_shift() (in module cyclops.monitor.synthetic_applicator)": [[115, "cyclops.monitor.synthetic_applicator.binary_noise_shift"]], "feature_association_shift() (in module cyclops.monitor.synthetic_applicator)": [[116, "cyclops.monitor.synthetic_applicator.feature_association_shift"]], "feature_swap_shift() (in module cyclops.monitor.synthetic_applicator)": [[117, "cyclops.monitor.synthetic_applicator.feature_swap_shift"]], "gaussian_noise_shift() (in module cyclops.monitor.synthetic_applicator)": [[118, "cyclops.monitor.synthetic_applicator.gaussian_noise_shift"]], "knockout_shift() (in module cyclops.monitor.synthetic_applicator)": [[119, "cyclops.monitor.synthetic_applicator.knockout_shift"]], "cyclops.report.report": [[120, "module-cyclops.report.report"]], "modelcardreport (class in cyclops.report.report)": [[121, "cyclops.report.report.ModelCardReport"]], "export() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.export"]], "from_json_file() (modelcardreport class method)": [[121, "cyclops.report.report.ModelCardReport.from_json_file"]], "log_citation() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_citation"]], "log_dataset() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_dataset"]], "log_descriptor() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_descriptor"]], "log_fairness_assessment() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_fairness_assessment"]], "log_from_dict() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_from_dict"]], "log_image() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_image"]], "log_license() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_license"]], "log_model_parameters() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_model_parameters"]], "log_owner() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_owner"]], "log_performance_metrics() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_performance_metrics"]], "log_plotly_figure() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_plotly_figure"]], "log_quantitative_analysis() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_quantitative_analysis"]], "log_reference() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_reference"]], "log_regulation() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_regulation"]], "log_risk() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_risk"]], "log_use_case() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_use_case"]], "log_user() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_user"]], "log_version() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_version"]], "cyclops.tasks.classification": [[122, "module-cyclops.tasks.classification"]], "binarytabularclassificationtask (class in cyclops.tasks.classification)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask"]], "__init__() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.__init__"]], "add_model() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.add_model"]], "data_type (binarytabularclassificationtask property)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.data_type"]], "evaluate() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.evaluate"]], "get_model() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.get_model"]], "list_models() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.list_models"]], "list_models_params() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.list_models_params"]], "load_model() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.load_model"]], "models_count (binarytabularclassificationtask property)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.models_count"]], "predict() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.predict"]], "save_model() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.save_model"]], "task_type (binarytabularclassificationtask property)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.task_type"]], "train() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.train"]], "multilabelimageclassificationtask (class in cyclops.tasks.classification)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask"]], "__init__() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.__init__"]], "add_model() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.add_model"]], "data_type (multilabelimageclassificationtask property)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.data_type"]], "evaluate() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.evaluate"]], "get_model() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.get_model"]], "list_models() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.list_models"]], "list_models_params() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.list_models_params"]], "load_model() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.load_model"]], "models_count (multilabelimageclassificationtask property)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.models_count"]], "predict() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.predict"]], "save_model() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.save_model"]], "task_type (multilabelimageclassificationtask property)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.task_type"]], "cyclops.data": [[125, "module-cyclops.data"]], "cyclops.data.features": [[125, "module-cyclops.data.features"]], "cyclops.evaluate": [[126, "module-cyclops.evaluate"]], "cyclops.evaluate.fairness": [[126, "module-cyclops.evaluate.fairness"]], "cyclops.evaluate.metrics": [[126, "module-cyclops.evaluate.metrics"]], "cyclops.evaluate.metrics.functional": [[126, "module-cyclops.evaluate.metrics.functional"]], "cyclops.monitor": [[127, "module-cyclops.monitor"]], "cyclops.report": [[128, "module-cyclops.report"]], "cyclops.tasks": [[129, "module-cyclops.tasks"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["api", "contributing", "index", "intro", "reference/api/_autosummary/cyclops.data.features.medical_image", "reference/api/_autosummary/cyclops.data.features.medical_image.MedicalImage", "reference/api/_autosummary/cyclops.data.slicer", "reference/api/_autosummary/cyclops.data.slicer.SliceSpec", "reference/api/_autosummary/cyclops.data.slicer.compound_filter", "reference/api/_autosummary/cyclops.data.slicer.filter_datetime", "reference/api/_autosummary/cyclops.data.slicer.filter_non_null", "reference/api/_autosummary/cyclops.data.slicer.filter_range", "reference/api/_autosummary/cyclops.data.slicer.filter_string_contains", "reference/api/_autosummary/cyclops.data.slicer.filter_value", "reference/api/_autosummary/cyclops.data.slicer.is_datetime", "reference/api/_autosummary/cyclops.data.slicer.overall", "reference/api/_autosummary/cyclops.evaluate.evaluator", "reference/api/_autosummary/cyclops.evaluate.evaluator.evaluate", "reference/api/_autosummary/cyclops.evaluate.fairness.config", "reference/api/_autosummary/cyclops.evaluate.fairness.config.FairnessConfig", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.evaluate_fairness", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.Accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.BinaryAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MulticlassAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MultilabelAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.AUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.BinaryAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MulticlassAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MultilabelAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.F1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.FbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.factory", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.create_metric", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.auroc", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.binary_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.stat_scores", "reference/api/_autosummary/cyclops.evaluate.metrics.metric", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.Metric", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.MetricCollection", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.OperatorMetric", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Precision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Recall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.BinaryROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MulticlassROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MultilabelROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.ROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.BinarySensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.Sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.BinarySpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MulticlassSpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MultilabelSpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.Specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.BinaryStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MulticlassStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MultilabelStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.StatScores", "reference/api/_autosummary/cyclops.monitor.clinical_applicator", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.ClinicalShiftApplicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.binary_noise_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_association_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_swap_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.gaussian_noise_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.knockout_shift", "reference/api/_autosummary/cyclops.report.report", "reference/api/_autosummary/cyclops.report.report.ModelCardReport", "reference/api/_autosummary/cyclops.tasks.classification", "reference/api/_autosummary/cyclops.tasks.classification.BinaryTabularClassificationTask", "reference/api/_autosummary/cyclops.tasks.classification.MultilabelImageClassificationTask", "reference/api/cyclops.data", "reference/api/cyclops.evaluate", "reference/api/cyclops.monitor", "reference/api/cyclops.report", "reference/api/cyclops.tasks", "tutorials", "tutorials/kaggle/heart_failure_prediction", "tutorials/mimiciv/mortality_prediction", "tutorials/nihcxr/cxr_classification", "tutorials/nihcxr/monitor_api", "tutorials/synthea/los_prediction", "tutorials_monitor", "tutorials_use_cases"], "filenames": ["api.rst", "contributing.rst", "index.rst", "intro.rst", "reference/api/_autosummary/cyclops.data.features.medical_image.rst", "reference/api/_autosummary/cyclops.data.features.medical_image.MedicalImage.rst", "reference/api/_autosummary/cyclops.data.slicer.rst", "reference/api/_autosummary/cyclops.data.slicer.SliceSpec.rst", "reference/api/_autosummary/cyclops.data.slicer.compound_filter.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_datetime.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_non_null.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_range.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_string_contains.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_value.rst", "reference/api/_autosummary/cyclops.data.slicer.is_datetime.rst", "reference/api/_autosummary/cyclops.data.slicer.overall.rst", "reference/api/_autosummary/cyclops.evaluate.evaluator.rst", "reference/api/_autosummary/cyclops.evaluate.evaluator.evaluate.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.config.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.config.FairnessConfig.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.evaluate_fairness.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.Accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.BinaryAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.AUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.BinaryAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MulticlassAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MultilabelAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.F1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.FbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.create_metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.auroc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.binary_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.stat_scores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.Metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.MetricCollection.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.OperatorMetric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.BinaryROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MulticlassROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MultilabelROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.ROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.BinarySensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.Sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.BinarySpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MulticlassSpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MultilabelSpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.Specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.BinaryStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.StatScores.rst", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.rst", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.binary_noise_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_association_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_swap_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.gaussian_noise_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.knockout_shift.rst", "reference/api/_autosummary/cyclops.report.report.rst", "reference/api/_autosummary/cyclops.report.report.ModelCardReport.rst", "reference/api/_autosummary/cyclops.tasks.classification.rst", "reference/api/_autosummary/cyclops.tasks.classification.BinaryTabularClassificationTask.rst", "reference/api/_autosummary/cyclops.tasks.classification.MultilabelImageClassificationTask.rst", "reference/api/cyclops.data.rst", "reference/api/cyclops.evaluate.rst", "reference/api/cyclops.monitor.rst", "reference/api/cyclops.report.rst", "reference/api/cyclops.tasks.rst", "tutorials.rst", "tutorials/kaggle/heart_failure_prediction.ipynb", "tutorials/mimiciv/mortality_prediction.ipynb", "tutorials/nihcxr/cxr_classification.ipynb", "tutorials/nihcxr/monitor_api.ipynb", "tutorials/synthea/los_prediction.ipynb", "tutorials_monitor.rst", "tutorials_use_cases.rst"], "titles": ["API Reference", "Contributing to cyclops", "Welcome to cyclops\u2019s documentation!", "\ud83d\udc23 Getting Started", "cyclops.data.features.medical_image", "cyclops.data.features.medical_image.MedicalImage", "cyclops.data.slicer", "cyclops.data.slicer.SliceSpec", "cyclops.data.slicer.compound_filter", "cyclops.data.slicer.filter_datetime", "cyclops.data.slicer.filter_non_null", "cyclops.data.slicer.filter_range", "cyclops.data.slicer.filter_string_contains", "cyclops.data.slicer.filter_value", "cyclops.data.slicer.is_datetime", "cyclops.data.slicer.overall", "cyclops.evaluate.evaluator", "cyclops.evaluate.evaluator.evaluate", "cyclops.evaluate.fairness.config", "cyclops.evaluate.fairness.config.FairnessConfig", "cyclops.evaluate.fairness.evaluator", "cyclops.evaluate.fairness.evaluator.evaluate_fairness", "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values", "cyclops.evaluate.metrics.accuracy", "cyclops.evaluate.metrics.accuracy.Accuracy", "cyclops.evaluate.metrics.accuracy.BinaryAccuracy", "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy", "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy", "cyclops.evaluate.metrics.auroc", "cyclops.evaluate.metrics.auroc.AUROC", "cyclops.evaluate.metrics.auroc.BinaryAUROC", "cyclops.evaluate.metrics.auroc.MulticlassAUROC", "cyclops.evaluate.metrics.auroc.MultilabelAUROC", "cyclops.evaluate.metrics.f_beta", "cyclops.evaluate.metrics.f_beta.BinaryF1Score", "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore", "cyclops.evaluate.metrics.f_beta.F1Score", "cyclops.evaluate.metrics.f_beta.FbetaScore", "cyclops.evaluate.metrics.f_beta.MulticlassF1Score", "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore", "cyclops.evaluate.metrics.f_beta.MultilabelF1Score", "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore", "cyclops.evaluate.metrics.factory", "cyclops.evaluate.metrics.factory.create_metric", "cyclops.evaluate.metrics.functional.accuracy", "cyclops.evaluate.metrics.functional.auroc", "cyclops.evaluate.metrics.functional.f_beta", "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score", "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.f1_score", "cyclops.evaluate.metrics.functional.f_beta.fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score", "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score", "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score", "cyclops.evaluate.metrics.functional.precision_recall", "cyclops.evaluate.metrics.functional.precision_recall.binary_precision", "cyclops.evaluate.metrics.functional.precision_recall.binary_recall", "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision", "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall", "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision", "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall", "cyclops.evaluate.metrics.functional.precision_recall.precision", "cyclops.evaluate.metrics.functional.precision_recall.recall", "cyclops.evaluate.metrics.functional.precision_recall_curve", "cyclops.evaluate.metrics.functional.roc", "cyclops.evaluate.metrics.functional.roc.binary_roc_curve", "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve", "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve", "cyclops.evaluate.metrics.functional.roc.roc_curve", "cyclops.evaluate.metrics.functional.sensitivity", "cyclops.evaluate.metrics.functional.specificity", "cyclops.evaluate.metrics.functional.stat_scores", "cyclops.evaluate.metrics.metric", "cyclops.evaluate.metrics.metric.Metric", "cyclops.evaluate.metrics.metric.MetricCollection", "cyclops.evaluate.metrics.metric.OperatorMetric", "cyclops.evaluate.metrics.precision_recall", "cyclops.evaluate.metrics.precision_recall.BinaryPrecision", "cyclops.evaluate.metrics.precision_recall.BinaryRecall", "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision", "cyclops.evaluate.metrics.precision_recall.MulticlassRecall", "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision", "cyclops.evaluate.metrics.precision_recall.MultilabelRecall", "cyclops.evaluate.metrics.precision_recall.Precision", "cyclops.evaluate.metrics.precision_recall.Recall", "cyclops.evaluate.metrics.precision_recall_curve", "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve", "cyclops.evaluate.metrics.roc", "cyclops.evaluate.metrics.roc.BinaryROCCurve", "cyclops.evaluate.metrics.roc.MulticlassROCCurve", "cyclops.evaluate.metrics.roc.MultilabelROCCurve", "cyclops.evaluate.metrics.roc.ROCCurve", "cyclops.evaluate.metrics.sensitivity", "cyclops.evaluate.metrics.sensitivity.BinarySensitivity", "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity", "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity", "cyclops.evaluate.metrics.sensitivity.Sensitivity", "cyclops.evaluate.metrics.specificity", "cyclops.evaluate.metrics.specificity.BinarySpecificity", "cyclops.evaluate.metrics.specificity.MulticlassSpecificity", "cyclops.evaluate.metrics.specificity.MultilabelSpecificity", "cyclops.evaluate.metrics.specificity.Specificity", "cyclops.evaluate.metrics.stat_scores", "cyclops.evaluate.metrics.stat_scores.BinaryStatScores", "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores", "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores", "cyclops.evaluate.metrics.stat_scores.StatScores", "cyclops.monitor.clinical_applicator", "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator", "cyclops.monitor.synthetic_applicator", "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator", "cyclops.monitor.synthetic_applicator.binary_noise_shift", "cyclops.monitor.synthetic_applicator.feature_association_shift", "cyclops.monitor.synthetic_applicator.feature_swap_shift", "cyclops.monitor.synthetic_applicator.gaussian_noise_shift", "cyclops.monitor.synthetic_applicator.knockout_shift", "cyclops.report.report", "cyclops.report.report.ModelCardReport", "cyclops.tasks.classification", "cyclops.tasks.classification.BinaryTabularClassificationTask", "cyclops.tasks.classification.MultilabelImageClassificationTask", "cyclops.data", "cyclops.evaluate", "cyclops.monitor", "cyclops.report", "cyclops.tasks", "Tutorials", "Heart Failure Prediction", "Mortality Prediction", "Chest X-Ray Disease Classification", "NIHCXR Clinical Drift Experiments Tutorial", "Prolonged Length of Stay Prediction", "monitor API", "Example use cases"], "terms": {"cyclop": [0, 131, 132, 133, 134, 135], "data": [0, 2, 3, 24, 26, 27, 49, 50, 52, 54, 69, 72, 89, 95, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 130, 133, 134, 136], "slicer": [0, 131, 132, 133, 134, 135], "compound_filt": 0, "filter_datetim": 0, "filter_non_nul": 0, "filter_rang": 0, "filter_string_contain": 0, "filter_valu": [0, 133], "is_datetim": 0, "overal": [0, 7, 21, 121, 131, 132, 133, 135], "slicespec": [0, 17, 112, 124, 131, 132, 133, 134, 135], "spec_list": [0, 7, 131, 132, 133, 134, 135], "include_overal": [0, 7, 131], "valid": [0, 7, 9, 17, 121, 123, 124, 131, 132, 133], "column_nam": [0, 7, 9, 10, 11, 12, 13, 133], "_registri": [0, 7], "add_slice_spec": [0, 7], "get_slic": [0, 7], "slice": [0, 3, 7, 8, 17, 21, 121, 123, 124, 131, 132, 133, 135], "featur": [0, 7, 9, 10, 11, 12, 13, 15, 112, 116, 117, 121, 123, 124, 130, 133, 137], "medical_imag": 0, "medicalimag": 0, "__call__": [0, 5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "cast_storag": [0, 5], "decode_exampl": [0, 5], "embed_storag": [0, 5], "encode_exampl": [0, 5], "flatten": [0, 5, 131, 132, 133, 135], "task": [0, 2, 3, 17, 24, 25, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 44, 47, 48, 49, 50, 51, 53, 54, 58, 60, 61, 62, 63, 66, 67, 68, 69, 78, 80, 81, 82, 83, 84, 85, 90, 92, 93, 94, 95, 98, 99, 100, 102, 103, 104, 105, 110, 130, 133, 137], "classif": [0, 3, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 44, 47, 48, 49, 50, 51, 53, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 78, 79, 80, 81, 82, 83, 84, 85, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 130, 131, 132, 135], "binarytabularclassificationtask": [0, 131, 132, 135], "__init__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 133], "add_model": [0, 123, 124], "data_typ": [0, 123, 124], "evalu": [0, 2, 3, 121, 123, 124, 130, 133, 137], "get_model": [0, 123, 124], "list_model": [0, 123, 124, 131, 132, 135], "list_models_param": [0, 123, 124, 131, 132, 135], "load_model": [0, 123, 124], "models_count": [0, 123, 124], "predict": [0, 3, 17, 19, 21, 24, 26, 27, 30, 31, 32, 34, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 67, 80, 81, 82, 84, 85, 87, 88, 89, 92, 93, 94, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 130, 133], "save_model": [0, 123, 124], "task_typ": [0, 123, 124, 131, 132, 135], "train": [0, 3, 17, 121, 123, 124, 130, 133, 136, 137], "multilabelimageclassificationtask": 0, "metric": [0, 17, 19, 21, 121, 123, 124, 130, 131, 132, 135, 137], "__add__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "__mul__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "add_stat": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "clone": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "comput": [0, 17, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 123, 124, 130, 133, 137], "name": [0, 3, 7, 8, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 124, 131, 132, 133, 134, 135], "reset_st": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "update_st": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "metriccollect": [0, 17, 21, 123, 124, 131, 132, 135], "add_metr": [0, 75], "clear": [0, 75], "get": [0, 2, 75, 123, 124, 131, 132, 135], "item": [0, 75, 131, 132, 133, 134, 135], "kei": [0, 7, 21, 75, 121, 131, 132, 133, 134, 135], "pop": [0, 75, 131, 132, 135], "popitem": [0, 75], "setdefault": [0, 75], "updat": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 133, 134, 135], "valu": [0, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 130, 132, 133, 134, 135, 137], "operatormetr": 0, "factori": [0, 7, 133], "create_metr": [0, 131, 132, 133, 135], "accuraci": [0, 131, 132, 135], "binaryaccuraci": [0, 131, 132, 135], "multiclassaccuraci": 0, "multilabelaccuraci": 0, "auroc": [0, 130, 131, 132, 135, 137], "binaryauroc": [0, 29, 131, 132, 135], "multiclassauroc": [0, 29], "multilabelauroc": [0, 29], "precision_recal": 0, "binaryprecis": [0, 131, 132, 135], "binaryrecal": [0, 97, 131, 132, 135], "multiclassprecis": 0, "multiclassrecal": [0, 98], "multilabelprecis": 0, "multilabelrecal": [0, 99], "precis": [0, 24, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 60, 64, 66, 77, 78, 80, 82, 85, 86, 87, 88, 89, 90, 92, 100, 105, 131, 132, 133, 135], "recal": [0, 24, 38, 51, 55, 57, 59, 61, 64, 66, 77, 79, 81, 83, 86, 87, 88, 89, 90, 92, 97, 98, 99, 105, 131, 132, 133, 135], "precision_recall_curv": [0, 131, 132, 135], "binaryprecisionrecallcurv": [0, 30, 92, 131, 132, 135], "multiclassprecisionrecallcurv": [0, 31, 93], "multilabelprecisionrecallcurv": [0, 32, 94], "precisionrecallcurv": 0, "roc": [0, 28, 29, 30, 31, 32, 45, 131, 132, 135], "binaryroccurv": [0, 131, 132, 135], "multiclassroccurv": 0, "multilabelroccurv": 0, "roccurv": 0, "sensit": [0, 121, 130, 131, 132, 133, 135, 136], "binarysensit": 0, "multiclasssensit": 0, "multilabelsensit": [0, 133], "specif": [0, 7, 17, 115, 118, 123, 124, 131, 132, 133, 135], "binaryspecif": 0, "multiclassspecif": 0, "multilabelspecif": [0, 133], "f_beta": 0, "binaryf1scor": [0, 131, 132, 135], "binaryfbetascor": [0, 34], "f1score": 0, "fbetascor": [0, 36], "multiclassf1scor": 0, "multiclassfbetascor": [0, 38], "multilabelf1scor": 0, "multilabelfbetascor": [0, 40], "stat_scor": [0, 133, 135], "binarystatscor": [0, 25, 35, 78, 79, 102, 135], "multiclassstatscor": [0, 26, 39, 80, 81, 103], "multilabelstatscor": [0, 27, 41, 82, 83, 104, 133], "statscor": 0, "function": [0, 5, 6, 7, 8, 16, 17, 20, 21, 25, 35, 41, 42, 76, 93, 102, 104, 107, 109, 110, 113, 121, 131, 132, 133, 135], "binary_precis": 0, "binary_recal": 0, "multiclass_precis": 0, "multiclass_recal": 0, "multilabel_precis": 0, "multilabel_recal": 0, "binary_roc_curv": 0, "multiclass_roc_curv": 0, "multilabel_roc_curv": 0, "roc_curv": [0, 131, 132, 135], "binary_f1_scor": 0, "binary_fbeta_scor": 0, "f1_score": [0, 131, 132, 135], "fbeta_scor": 0, "multiclass_f1_scor": 0, "multiclass_fbeta_scor": 0, "multilabel_f1_scor": 0, "multilabel_fbeta_scor": 0, "fair": [0, 17, 121, 123, 124, 131, 132, 133, 135], "evaluate_fair": 0, "warn_too_many_unique_valu": 0, "config": [0, 123], "fairnessconfig": [0, 17, 123, 124, 131, 132, 135], "monitor": [0, 2, 3, 130, 131, 132, 134, 135], "clinical_appl": 0, "clinicalshiftappl": [0, 134], "ag": [0, 112, 130, 134, 137], "apply_shift": [0, 112, 114, 134], "custom": [0, 112, 121, 134], "hospital_typ": [0, 112], "month": [0, 7, 9, 112], "sex": [0, 112, 130, 132, 134, 135, 137], "time": [0, 3, 7, 75, 112, 121, 130, 132, 133, 135, 136, 137], "synthetic_appl": 0, "binary_noise_shift": 0, "feature_association_shift": 0, "feature_swap_shift": 0, "gaussian_noise_shift": 0, "knockout_shift": 0, "syntheticshiftappl": [0, 113], "report": [0, 2, 3, 110, 130, 137], "modelcardreport": [0, 131, 132, 133, 135], "export": [0, 121, 131, 132, 133, 135], "from_json_fil": [0, 121], "log_cit": [0, 121, 133], "log_dataset": [0, 121, 131], "log_descriptor": [0, 121, 131, 132, 133, 135], "log_fairness_assess": [0, 121, 131, 132, 133, 135], "log_from_dict": [0, 121, 131, 132, 133, 135], "log_imag": [0, 121], "log_licens": [0, 121, 131, 132, 135], "log_model_paramet": [0, 121, 131, 132, 135], "log_own": [0, 121, 131, 132, 133, 135], "log_performance_metr": [0, 121, 131, 132, 135], "log_plotly_figur": [0, 121, 131, 132, 133, 135], "log_quantitative_analysi": [0, 121, 131, 132, 133, 135], "log_refer": [0, 121, 131, 132, 135], "log_regul": [0, 121], "log_risk": [0, 121, 131, 132, 133, 135], "log_use_cas": [0, 121, 131, 132, 133, 135], "log_us": [0, 121, 131, 132, 133, 135], "log_vers": [0, 121, 131, 132, 135], "thank": 1, "your": [1, 131], "interest": [1, 131, 132, 135], "To": [1, 3, 5, 131, 135], "submit": 1, "pr": 1, "pleas": [1, 131, 132, 133, 134, 135], "fill": 1, "out": [1, 121, 131, 132, 135], "templat": [1, 121], "along": [1, 112, 131, 132, 133, 135], "If": [1, 5, 7, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124, 131, 132, 135], "fix": 1, "an": [1, 3, 5, 7, 17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 51, 60, 61, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 131, 132, 133, 135, 137], "issu": [1, 21], "don": [1, 132], "t": [1, 3, 5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 132], "forget": 1, "link": [1, 121, 131, 132, 133, 135], "onc": [1, 75, 131, 132, 135], "python": [1, 3, 132, 135], "virtual": [1, 3], "environ": [1, 3, 131, 132, 135], "i": [1, 3, 5, 7, 9, 10, 11, 12, 13, 14, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 131, 132, 133, 135, 137], "setup": [1, 132, 135], "you": [1, 3, 5, 75, 131, 132, 133, 135, 136], "can": [1, 3, 5, 7, 21, 25, 38, 51, 69, 74, 75, 84, 85, 95, 100, 110, 121, 123, 124, 131, 132, 133, 135, 136], "run": [1, 3, 131, 132, 135], "us": [1, 2, 5, 7, 8, 17, 21, 24, 29, 30, 31, 32, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 62, 63, 66, 67, 68, 69, 75, 76, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 102, 105, 107, 110, 112, 114, 121, 123, 124, 130, 131, 132, 133, 135, 136], "all": [1, 7, 8, 9, 10, 11, 12, 13, 15, 63, 73, 75, 108, 109, 110, 123, 131, 132, 133, 134, 135], "file": [1, 5, 121, 131, 132, 133, 135], "For": [1, 21, 76, 121, 131, 132, 135], "style": 1, "we": [1, 3, 121, 131, 132, 133, 135], "recommend": [1, 76], "googl": 1, "guid": 1, "appli": [1, 8, 25, 29, 59, 62, 63, 66, 67, 68, 75, 76, 93, 104, 109, 110, 112, 123, 124, 131, 132, 135], "black": 1, "format": [1, 5, 7, 89, 121, 131, 132, 135], "docstr": 1, "numpi": [1, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 116, 117, 118, 119, 124, 131, 132, 133, 134, 135], "also": [1, 3, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 133, 135, 137], "flake8": 1, "pylint": 1, "further": 1, "static": 1, "analysi": [1, 121, 131, 132, 133, 135], "The": [1, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 60, 61, 63, 66, 68, 69, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 131, 132, 133, 135, 136, 137], "show": [1, 131, 132, 133, 135], "error": [1, 17, 21], "which": [1, 9, 10, 11, 12, 13, 21, 90, 121, 131, 132, 133, 135, 137], "need": [1, 17, 21, 74, 110, 131, 132, 135], "befor": [1, 17, 21, 22, 123, 131, 132, 135], "last": 1, "least": 1, "type": [1, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 130, 133, 137], "hint": 1, "our": [1, 131, 132, 135], "check": [1, 14, 89], "mypi": 1, "current": [1, 121, 131, 132, 135], "ar": [1, 5, 7, 11, 12, 17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 97, 98, 99, 100, 103, 104, 105, 108, 109, 110, 112, 116, 121, 131, 132, 133, 135], "strict": 1, "enforc": 1, "more": [1, 7, 16, 17, 123, 124, 131, 137], "api": [1, 2, 3, 130, 131, 137], "becom": 1, "stabl": [1, 131, 132, 133, 134, 135], "start": [2, 131, 132, 135], "instal": [2, 131], "pip": [2, 131], "develop": [2, 131, 132, 133, 135], "poetri": [2, 131, 132, 133, 134, 135], "contribut": 2, "notebook": [2, 131, 132, 133, 135], "citat": [2, 121, 131, 132, 133, 135], "pre": [2, 131, 132, 135], "commit": 2, "hook": 2, "code": [2, 131, 132, 135], "guidelin": [2, 3], "tutori": [2, 131, 136, 137], "exampl": [2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 15, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 130, 131, 132, 133, 135, 136], "case": [2, 3, 75, 115, 121, 130, 131, 132, 135, 136], "refer": [2, 3, 121, 131, 132, 133, 135], "toolkit": 3, "facilit": 3, "research": 3, "deploy": 3, "ml": [3, 131, 132, 135], "model": [3, 16, 17, 21, 121, 123, 124, 130, 136, 137], "healthcar": 3, "It": [3, 38, 51, 75, 84, 85, 100, 105, 136], "provid": [3, 7, 9, 12, 17, 21, 69, 110, 121, 131, 132, 133, 135], "few": 3, "high": [3, 131, 132, 133, 135], "level": [3, 21, 131, 132, 133, 135], "creat": [3, 6, 7, 21, 42, 43, 75, 84, 85, 100, 115, 118, 119, 121, 123, 124, 130, 133, 137], "dataset": [3, 6, 7, 16, 17, 19, 21, 26, 38, 39, 51, 52, 58, 61, 68, 69, 80, 81, 83, 88, 89, 90, 94, 95, 98, 99, 103, 104, 112, 114, 121, 123, 124, 125, 130, 136, 137], "infer": 3, "popular": [3, 131], "effici": 3, "load": [3, 17, 121, 123, 124, 130, 132, 135, 136, 137], "differ": [3, 24, 29, 36, 37, 46, 55, 62, 63, 64, 69, 70, 72, 74, 84, 85, 90, 95, 100, 105, 110, 130, 131, 132, 133, 135, 136], "modal": 3, "common": [3, 131, 132], "implement": [3, 137], "scikit": [3, 131], "learn": [3, 131, 133], "pytorch": 3, "formul": [3, 131, 132, 135], "binari": [3, 5, 24, 25, 29, 30, 34, 35, 36, 37, 47, 48, 49, 50, 56, 57, 60, 61, 62, 63, 66, 69, 72, 78, 79, 84, 85, 87, 90, 92, 95, 97, 100, 102, 104, 105, 107, 110, 115, 123, 124, 131, 132, 135, 137], "multi": [3, 17, 133], "label": [3, 17, 24, 25, 27, 29, 32, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 68, 69, 78, 79, 81, 82, 83, 84, 85, 87, 89, 90, 92, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 109, 110, 116, 117, 119, 123, 124, 130, 131, 133, 137], "tabular": [3, 123, 124, 130], "seri": [3, 123], "imag": [3, 4, 5, 17, 21, 118, 121, 124, 125, 130, 133, 134], "clinic": [3, 111, 112, 130, 136], "detect": [3, 133, 136], "shift": [3, 111, 112, 114, 116, 117, 130, 136], "relev": [3, 121, 131, 132, 135, 136], "card": [3, 121, 130, 131, 132, 135, 137], "end": [3, 131, 132, 133, 135], "nih": [3, 130, 133, 134], "chest": [3, 130], "x": [3, 114, 115, 116, 117, 118, 119, 123, 130, 131, 132, 134, 135], "rai": [3, 130], "mimic": 3, "iv": 3, "python3": [3, 131, 132, 133, 134, 135], "m": [3, 131, 132, 133, 134, 135], "pycyclop": [3, 131, 132, 133, 134, 135], "base": [3, 5, 7, 17, 19, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 130, 131, 137], "doesn": [3, 5], "includ": [3, 7, 11, 21, 72, 112, 114, 131, 132, 133, 135, 136, 137], "packag": [3, 125, 126, 127, 128, 129, 131, 132, 133, 134, 135], "addit": [3, 75, 121, 123, 124, 131, 132, 133, 135], "depend": 3, "set": [3, 7, 17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 131, 132, 133, 135], "up": [3, 131, 132, 133, 135], "henc": 3, "make": [3, 131, 132, 135], "sure": [3, 131], "sourc": [3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 130, 136], "env": 3, "info": [3, 131, 132, 135], "path": [3, 5, 112, 121, 123, 124, 131, 132, 135], "bin": [3, 21], "activ": [3, 135], "In": [3, 75, 131, 132, 135], "order": [3, 5, 17, 107, 108, 109], "test": [3, 17, 121, 123, 124, 130, 131, 132, 135, 136, 137], "codestyl": 3, "unit": 3, "integr": [3, 131], "built": 3, "sphinx": 3, "local": 3, "doc": 3, "cd": 3, "html": [3, 121, 131, 132, 133, 134, 135], "sphinxopt": 3, "d": [3, 75, 112, 133], "nbsphinx_allow_error": 3, "true": [3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 24, 26, 27, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 112, 114, 116, 121, 123, 124, 131, 132, 133, 134, 135], "welcom": 3, "see": [3, 7, 121, 131, 132, 133, 134, 135], "jupyt": [3, 131, 132, 133, 134, 135], "insid": 3, "ipython": 3, "kernel": 3, "after": [3, 131, 132, 135], "ipykernel": 3, "user": [3, 121, 131, 132, 135], "name_of_kernel": 3, "now": 3, "navig": 3, "": [3, 7, 10, 14, 17, 21, 75, 121, 123, 124, 131, 132, 133, 134, 135], "tab": [3, 131], "cite": 3, "when": [3, 5, 17, 21, 24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 75, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105, 123, 124, 131, 132, 135], "project": 3, "paper": 3, "articl": 3, "krishnan2022": 3, "12": [3, 7, 131, 132, 133, 134, 135], "02": [3, 69], "22283021": 3, "author": [3, 131, 133], "krishnan": 3, "amrit": 3, "subasri": 3, "vallijah": 3, "mckeen": 3, "kaden": 3, "kore": 3, "ali": 3, "ogidi": 3, "franklin": 3, "alinoori": 3, "mahshid": 3, "lalani": 3, "nadim": 3, "dhalla": 3, "azra": 3, "verma": 3, "amol": 3, "razak": 3, "fahad": 3, "pandya": 3, "deval": 3, "dolatabadi": 3, "elham": 3, "titl": [3, 131, 132, 133, 135], "cyclic": 3, "toward": 3, "operation": 3, "health": [3, 131, 132, 135], "eloc": 3, "id": [3, 5, 112, 131, 133, 135], "2022": [3, 7, 131, 132, 133, 135], "year": [3, 7, 9, 131, 132, 133, 135], "doi": 3, "10": [3, 131, 132, 133, 134, 135], "1101": 3, "publish": [3, 131], "cold": 3, "spring": 3, "harbor": 3, "laboratori": [3, 135], "press": 3, "url": [3, 133], "http": [3, 121, 131, 132, 133, 134, 135], "www": [3, 131], "medrxiv": 3, "org": [3, 121, 131, 132, 133, 135], "content": [3, 121], "earli": 3, "08": 3, "journal": 3, "medic": [4, 5, 125, 133, 135, 137], "class": [4, 5, 6, 7, 18, 19, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 69, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 116, 117, 119, 120, 121, 122, 123, 124, 131, 132, 133, 135], "decod": [5, 133], "none": [5, 7, 9, 17, 19, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 124, 131, 132, 133, 134, 135], "reader": 5, "itkread": 5, "suffix": 5, "jpg": 5, "read": 5, "paramet": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 131, 132, 133, 135], "union": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124], "str": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 131, 132, 135], "imageread": 5, "option": [5, 7, 9, 10, 11, 12, 13, 17, 21, 24, 27, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 69, 75, 80, 81, 82, 83, 84, 85, 90, 95, 98, 99, 100, 103, 104, 105, 108, 112, 114, 121, 123, 124, 133], "default": [5, 7, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 124, 131, 132, 135], "monai": 5, "byte": 5, "bool": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 75, 76, 108, 109, 110, 112, 116, 117, 121, 123, 124, 131, 132, 133, 135], "whether": [5, 7, 17, 21, 75, 108, 109, 110, 112, 121, 132, 135, 137], "fals": [5, 7, 9, 10, 11, 12, 13, 14, 17, 19, 21, 29, 30, 40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105, 107, 108, 109, 110, 117, 118, 123, 124, 131, 132, 133, 135], "return": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 132, 133, 135], "dictionari": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 75, 121, 123, 124, 131, 132, 135], "image_path": 5, "image_byt": 5, "method": [5, 7, 19, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 131, 132, 135], "attribut": [5, 7, 19, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 131, 132, 135], "call": [5, 121], "self": [5, 133], "storag": 5, "cast": [5, 131, 132, 135], "arrow": 5, "arrai": [5, 24, 26, 27, 29, 30, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 63, 66, 67, 68, 69, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 119, 124, 133, 135], "convert": [5, 25, 35, 41, 48, 61, 69, 95, 102, 104, 107, 131, 132, 135], "pyarrow": 5, "rtype": 5, "structarrai": 5, "pa": 5, "string": [5, 7, 9, 12, 17, 21, 75, 121, 133], "must": [5, 9, 17, 21, 121], "contain": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 27, 103, 104, 121, 131, 132, 133, 135, 137], "struct": 5, "matter": 5, "list": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 115, 116, 117, 118, 119, 121, 123, 124, 131, 132, 135], "arg": [5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "stringarrai": 5, "listarrai": 5, "token_per_repo_id": 5, "from": [5, 7, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 119, 121, 123, 124, 131, 132, 133, 134, 135, 137], "serial": 5, "version": [5, 121, 131, 132, 133, 135], "dict": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 75, 121, 123, 124], "access": 5, "privat": 5, "repositori": [5, 131], "hub": 5, "pass": [5, 17, 43, 75, 112, 121, 123, 124, 131, 132, 135], "repo_id": 5, "token": [5, 131], "deseri": 5, "np": [5, 11, 14, 21, 123, 124, 131, 132, 133, 134, 135], "ndarrai": [5, 14, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 116, 117, 118, 119, 123, 124], "metadata": [5, 131, 132, 133, 135], "emb": 5, "encod": 5, "input": [5, 24, 46, 55, 60, 61, 64, 69, 70, 72, 87, 89, 95, 115, 118, 123, 124], "state": [5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 133], "itself": 5, "otherwis": [5, 14, 24, 27, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110], "tupl": [5, 7, 66, 67, 68, 69, 75, 87, 88, 89, 92, 93, 94, 112, 123, 124], "classlabel": [5, 131, 132, 135], "translat": 5, "translationvariablelanguag": 5, "sequenc": [5, 17, 75, 123, 124, 133], "array2d": 5, "array3d": 5, "array4d": 5, "array5d": 5, "audio": 5, "subset": 6, "hug": [6, 123, 124, 130, 137], "face": [6, 123, 124, 130, 137], "object": [7, 19, 21, 112, 114, 121, 123, 124, 131, 132, 135], "ani": [7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124, 131, 132, 133, 135], "A": [7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 25, 75, 76, 104, 109, 121, 131, 132, 133, 135], "each": [7, 8, 21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 69, 75, 76, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110, 131, 132, 135], "map": [7, 8, 22, 75, 123, 124, 131, 132, 133, 135], "column": [7, 8, 9, 10, 11, 12, 13, 17, 21, 112, 123, 124, 131, 132, 133, 135], "one": [7, 16, 17, 21, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 69, 76, 80, 81, 82, 83, 84, 85, 95, 98, 99, 100, 105, 123, 124], "follow": [7, 17, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105, 121, 131, 132, 133, 135], "exact": [7, 13], "select": [7, 112, 116, 131, 132, 133, 135], "thi": [7, 17, 21, 24, 25, 26, 27, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105, 110, 121, 123, 131, 132, 133, 135, 137], "singl": [7, 17, 75, 121, 123, 124, 131, 132, 135, 137], "row": [7, 131, 133], "where": [7, 8, 9, 10, 11, 12, 13, 60, 61, 63, 75, 121, 123, 124, 131, 132, 135, 137], "support": [7, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 72, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 107, 108, 109, 136], "e": [7, 9, 10, 17, 21, 75, 116, 117, 118, 121, 131, 132, 135], "g": [7, 9, 17, 21, 116, 117, 118, 121, 131, 132, 135], "2021": [7, 131, 132, 135], "01": [7, 29, 31, 32, 131, 132, 135], "00": [7, 131, 132, 133, 134, 135], "min_valu": [7, 11, 131, 132, 133, 134, 135], "minimum": [7, 11], "specifi": [7, 17, 75, 112, 121, 123, 124, 131, 132, 135], "min_inclus": [7, 11, 131, 132, 135], "indic": [7, 17, 21, 27, 60, 61, 115, 118, 131, 132, 133, 135], "rang": [7, 11, 29, 30, 66, 67, 68, 93, 131, 132, 133, 135], "work": [7, 27, 103, 104, 121, 131, 132, 133, 135], "numer": [7, 11, 131, 132, 135], "datetim": [7, 9, 11, 14, 121, 131, 132, 135], "inf": [7, 11, 131, 132, 135], "max_valu": [7, 11, 131, 132, 133, 134, 135], "boolean": [7, 8, 9, 10, 11, 12, 13, 15], "greater": [7, 22, 135], "than": [7, 11, 22, 48, 52, 54, 123, 124, 131, 132, 135, 137], "equal": [7, 11, 21], "maximum": [7, 11, 22, 29, 30], "max_inclus": [7, 11, 131, 132, 135], "less": [7, 11, 48, 52, 54, 132, 135], "match": [7, 9, 12, 13, 17], "between": [7, 21, 38, 51, 69, 95], "1": [7, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 116, 117, 118, 119, 121, 130, 131, 132, 133, 135, 136, 137], "dai": [7, 9, 132, 135, 137], "31": [7, 131, 132, 135], "hour": [7, 9, 132], "0": [7, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 115, 116, 117, 118, 119, 121, 131, 132, 133, 134, 135], "23": [7, 131, 132, 135], "negat": [7, 9, 10, 11, 12, 13, 133], "flag": [7, 132], "doe": [7, 9, 11, 12, 13, 21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 74, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 110, 121], "keep_nul": [7, 9, 11, 12, 13], "keep": [7, 17, 21, 135], "null": [7, 9, 10, 11, 12, 13, 132, 135], "conjunct": [7, 133], "its": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 60, 61, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 133, 135], "own": [7, 131, 132, 135], "callabl": [7, 8, 21, 76, 121], "import": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 130, 136, 137], "slice_spec": [7, 17, 123, 124, 131, 132, 133, 135], "feature_1": 7, "feature_2": 7, "feature_3": 7, "value_1": 7, "value_2": 7, "2020": [7, 9, 133], "5": [7, 24, 25, 27, 29, 31, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 115, 118, 119, 130, 131, 132, 133, 135, 136], "60": [7, 134], "6": [7, 24, 26, 35, 36, 38, 39, 49, 56, 59, 62, 63, 78, 79, 80, 81, 83, 84, 85, 87, 88, 90, 92, 93, 95, 97, 98, 99, 100, 104, 107, 108, 110, 131, 132, 133, 134, 135], "7": [7, 29, 30, 31, 36, 39, 40, 69, 80, 81, 82, 84, 85, 87, 88, 89, 93, 98, 100, 105, 108, 109, 110, 131, 132, 133, 135, 137], "8": [7, 24, 26, 27, 29, 30, 31, 34, 35, 36, 37, 38, 40, 41, 47, 49, 50, 53, 54, 56, 59, 60, 62, 66, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 105, 107, 109, 110, 131, 132, 133, 135], "2000": 7, "2010": 7, "slice_nam": [7, 121, 131, 132, 135], "slice_func": 7, "print": [7, 131, 132, 133, 135], "do": [7, 131, 132, 133, 135], "someth": 7, "here": [7, 131, 132, 135], "filter": [7, 9, 10, 11, 12, 13, 17, 21, 131, 132, 133, 134, 135], "add": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124, 131, 132, 135], "detail": [7, 131, 132, 133, 135], "registri": [7, 131, 132, 135], "gener": [7, 69, 95, 112, 121, 130, 136, 137], "slice_funct": 8, "combin": [8, 131], "result": [8, 17, 38, 51, 123, 124, 131, 132, 134, 135], "multipl": [8, 17, 21, 75, 121], "bitwis": 8, "AND": 8, "signatur": 8, "should": [8, 17, 21, 69, 76, 95, 117, 121, 123, 124, 131, 132, 133, 135], "kwarg": [8, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 123, 124], "given": [9, 11, 12, 13, 14, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 75, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110, 121, 123, 124], "int": [9, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 116, 117, 118, 119, 121, 123, 124, 131, 132, 133, 135], "compon": 9, "have": [9, 12, 13, 114, 131, 132, 137], "nan": [9, 10, 17, 21, 130, 137], "nat": 9, "rais": [9, 11, 12, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124], "typeerror": [9, 11, 12, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121], "float": [11, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 109, 110, 115, 116, 117, 118, 119, 121, 133], "valueerror": [11, 17, 21, 48, 50, 52, 54, 58, 59, 60, 61, 62, 63, 69, 121, 123, 124], "either": [11, 30, 31, 32, 75, 87, 88, 89, 92, 93, 94, 110, 121, 131, 132, 135], "substr": 12, "ha": [13, 75, 121, 131, 132, 133, 135], "find": [13, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 123, 133], "perform": [13, 26, 27, 31, 32, 121, 130, 132, 135, 136, 137], "datetime64": 14, "target_column": [17, 19, 21, 131, 132, 133, 135], "prediction_column": [17, 19, 21, 133], "ignore_column": [17, 133], "split": [17, 112, 121, 123, 124, 131, 132, 133, 135], "batch_siz": [17, 19, 21, 112, 123, 124, 131, 132, 135], "1000": [17, 19, 21, 112, 123, 131, 133], "raise_on_empty_slic": [17, 21], "fairness_config": [17, 123, 124, 131, 132, 135], "override_fairness_metr": [17, 123, 124, 131, 132, 135], "load_dataset_kwarg": 17, "datasetdict": [17, 123, 124], "load_dataset": 17, "argument": [17, 21, 43, 75, 123, 124, 131, 132, 135], "target": [17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 116, 117, 123, 124, 130, 131, 132, 135, 136, 137], "allow": [17, 21, 22, 131, 132, 135, 136], "same": [17, 21, 75, 116], "ignor": [17, 131, 132, 133, 135], "while": 17, "mai": [17, 21, 131, 132, 133, 135], "expens": [17, 21], "memori": [17, 21], "entir": [17, 131, 132, 135], "note": [17, 121, 131, 132, 135], "chosen": 17, "avail": [17, 121, 131, 132, 135, 137], "first": [17, 21, 25, 76, 104, 131, 132, 135], "eval": 17, "val": 17, "dev": 17, "batch": [17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 123, 124, 132, 133], "size": [17, 21, 112, 123, 124, 131, 132, 133, 135], "neg": [17, 35, 48, 49, 50, 51, 52, 53, 54, 59, 61, 62, 63, 72, 81, 83, 85, 98, 99, 100, 105, 107, 108, 109, 133, 135], "integ": [17, 21, 121], "empti": [17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "warn": [17, 22, 24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 105], "log": [17, 121, 130, 131, 132, 135, 137], "configur": [17, 18, 19, 123, 124, 131, 132, 135], "overridden": [17, 123, 124], "remove_column": [17, 19, 21, 123, 124, 133], "keyword": [17, 21, 43, 75, 123, 124], "onli": [17, 21, 24, 27, 29, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 62, 63, 75, 80, 81, 82, 84, 85, 98, 100, 103, 104, 105, 108, 109, 110], "group": [19, 21, 22, 75, 121, 131, 132, 135], "group_valu": [19, 21], "group_bin": [19, 21, 131, 132, 135], "group_base_valu": [19, 21, 131, 132, 135], "threshold": [19, 21, 24, 25, 27, 29, 30, 31, 32, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 53, 54, 56, 57, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 102, 104, 105, 107, 109, 110, 121, 130, 131, 132, 135, 137], "compute_optimal_threshold": [19, 21], "metric_nam": [19, 21, 43, 121, 131, 132, 133, 135], "metric_kwarg": [19, 21], "take": [21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 112, 131], "intersect": 21, "treat": 21, "multilabel": [21, 24, 27, 29, 32, 36, 37, 40, 41, 49, 50, 53, 54, 60, 61, 62, 63, 68, 69, 72, 82, 83, 84, 85, 89, 90, 94, 95, 99, 100, 104, 105, 109, 110, 130, 137], "uniqu": [21, 22, 29, 30, 31, 32, 66, 67, 68, 69, 74, 87, 88, 89, 92, 93, 94, 95, 110, 133, 137], "limit": [21, 131, 132, 133, 135], "number": [21, 22, 24, 26, 27, 29, 30, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 103, 104, 105, 108, 110, 112, 116, 117, 121, 123, 124, 132, 135, 136], "continu": [21, 131, 132, 133, 135], "veri": 21, "slow": 21, "larg": 21, "denomin": 21, "pariti": 21, "across": [21, 116, 136], "linspac": 21, "monoton": [21, 69, 95], "optim": [21, 131], "oper": [21, 65, 76, 131, 132, 135], "necessari": 21, "remov": [21, 75, 119, 123, 124, 131, 132, 133, 135], "control": [21, 115], "usag": [21, 131, 132, 135], "rel": 21, "small": 21, "32": [21, 131, 132, 135], "avoid": 21, "encount": [21, 132, 135], "nest": 21, "second": [21, 76], "third": 21, "omit": 21, "requir": [21, 24, 29, 36, 37, 49, 50, 69, 84, 85, 90, 95, 100, 105, 110, 121, 123, 124, 131, 132, 135], "huggingfac": [21, 112, 123, 124], "runtimeerror": 21, "unique_valu": 22, "max_unique_valu": 22, "50": [22, 131, 132, 133, 134, 135], "score": [24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 66, 70, 72, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 133], "liter": [24, 25, 26, 27, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 69, 78, 79, 80, 81, 82, 83, 84, 85, 90, 95, 97, 98, 99, 100, 103, 104, 105, 110, 121], "multiclass": [24, 26, 29, 31, 36, 37, 38, 39, 49, 50, 51, 52, 58, 59, 62, 63, 67, 69, 72, 80, 81, 84, 85, 88, 90, 93, 95, 98, 100, 103, 105, 108, 110], "One": [24, 29, 31, 32, 35, 48, 59, 62, 63, 69, 95, 132, 133, 135], "pos_label": [24, 25, 30, 34, 35, 36, 37, 47, 48, 49, 50, 56, 57, 62, 63, 66, 69, 78, 79, 84, 85, 87, 90, 92, 95, 97, 100, 102, 105, 107, 110], "consid": [24, 26, 27, 36, 37, 49, 50, 62, 63, 84, 85, 90, 95, 100, 103, 104, 105, 132], "posit": [24, 25, 29, 30, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 90, 92, 95, 97, 98, 99, 100, 102, 105, 107, 108, 109, 110, 131, 132, 133, 135], "num_class": [24, 26, 29, 31, 36, 37, 38, 39, 49, 50, 51, 52, 58, 59, 61, 62, 63, 67, 69, 80, 81, 84, 85, 88, 90, 93, 95, 98, 100, 103, 105, 108, 110, 131, 132, 135], "decid": [24, 36, 37, 40, 41, 49, 50, 53, 54, 56, 57, 60, 61, 78, 79, 82, 83, 84, 85, 97, 99, 100, 105], "top_k": [24, 26, 27, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110, 133], "probabl": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 80, 81, 82, 84, 85, 93, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 131, 135], "logit": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 72, 80, 81, 82, 84, 85, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110], "top": [24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110], "k": [24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 75, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110, 134], "num_label": [24, 27, 29, 32, 36, 37, 40, 41, 49, 50, 53, 54, 60, 61, 62, 63, 68, 69, 82, 83, 84, 85, 89, 90, 94, 95, 99, 100, 104, 105, 109, 110, 133], "averag": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 131], "micro": [24, 26, 27, 29, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "macro": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "weight": [24, 26, 27, 29, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 133, 134, 135], "calcul": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "global": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "unweight": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "mean": [24, 26, 27, 29, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 131, 132, 133, 135], "imbal": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 119], "account": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 131, 133], "instanc": [24, 26, 27, 31, 32, 36, 37, 38, 39, 40, 41, 43, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 131, 132, 133, 135], "alter": [24, 26, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105], "zero_divis": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 105], "zero": [24, 25, 26, 27, 34, 36, 37, 38, 39, 40, 41, 47, 49, 50, 51, 52, 53, 54, 56, 57, 58, 60, 61, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "divis": [24, 25, 26, 27, 34, 36, 37, 38, 39, 40, 41, 47, 49, 50, 51, 52, 53, 54, 56, 57, 58, 60, 61, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "act": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "pred": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 135], "75": [24, 25, 29, 30, 66, 67, 68, 90, 92, 95, 103, 104, 105, 131, 133, 134], "05": [24, 26, 27, 29, 31, 32, 36, 38, 39, 40, 49, 53, 62, 67, 68, 69, 80, 81, 84, 85, 88, 90, 93, 94, 95, 98, 100, 103, 104, 105, 108, 110, 132], "95": [24, 26, 27, 36, 38, 49, 62, 69, 88, 90, 93, 94, 95, 131, 135], "p": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 133], "zip": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "2": [24, 26, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 56, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 75, 78, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 92, 93, 95, 97, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 121, 130, 131, 132, 133, 135, 136], "3": [24, 26, 27, 29, 31, 34, 35, 36, 37, 38, 39, 40, 47, 49, 50, 51, 52, 53, 56, 58, 59, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 130, 131, 132, 133, 135, 136], "66666667": [24, 26, 36, 38, 49, 51, 61, 63, 81, 85, 87, 88, 90, 93, 94, 95, 98, 100, 104], "initi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 130, 131, 132, 135, 137], "other": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131], "two": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "scalar": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "togeth": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "multipli": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "variabl": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 137], "attributeerror": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "alreadi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 135], "exist": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124], "copi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 133, 135], "abstract": [24, 29, 36, 37, 73, 74, 84, 85, 90, 95, 100, 105, 110], "final": [24, 29, 36, 37, 74, 84, 85, 90, 95, 100, 105, 110, 132, 133, 135], "reset": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "_update_count": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "_comput": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "sigmoid": [25, 35, 41, 66, 68, 69, 102, 104, 107, 109, 110], "them": [25, 104, 131, 132, 135, 136], "875": 25, "problem": [26, 88, 108, 109, 110, 137], "highest": [26, 27, 62, 63, 103, 104], "determin": [26, 27, 29, 30, 31, 32, 66, 67, 68, 87, 88, 89, 90, 92, 93, 94], "dtype": [26, 27, 31, 32, 38, 39, 40, 41, 66, 67, 68, 69, 80, 81, 82, 83, 87, 88, 89, 92, 93, 94, 98, 99, 103, 104, 115, 116, 117, 118, 119, 131, 133], "float64": [26, 27, 31, 32, 38, 39, 40, 41, 66, 67, 68, 69, 80, 81, 82, 83, 87, 88, 89, 92, 93, 94, 98, 99, 103, 104, 115, 116, 117, 118, 119, 133], "binar": [27, 29, 30, 31, 32, 34, 47, 67, 68, 93, 94, 109, 110], "output": [27, 69, 121, 131, 132, 135], "classifi": [27, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 102, 131, 132, 135], "correct": [27, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102, 103, 104], "per": [27, 75, 132, 135], "area": [28, 29, 30, 31, 32, 45, 131, 132, 135], "under": [28, 29, 30, 31, 32, 45, 131, 132, 135], "curv": [28, 29, 30, 31, 32, 45, 64, 65, 66, 67, 68, 69, 86, 87, 88, 89, 90, 92, 93, 94, 95, 131, 132, 135], "max_fpr": [29, 30], "rate": [29, 30, 66, 67, 68, 69, 131, 132, 133, 135], "partial": [29, 30, 133], "auc": 29, "automat": [29, 30, 31, 32, 66, 67, 68, 87, 88, 89, 90, 92, 93, 94], "applic": [29, 111, 112, 114], "4": [29, 30, 34, 35, 36, 37, 40, 47, 50, 59, 63, 69, 82, 83, 84, 85, 87, 88, 90, 92, 93, 94, 95, 99, 100, 105, 107, 108, 109, 110, 130, 131, 132, 133, 135, 136], "35": [29, 30, 69, 87, 92, 95, 103, 104, 105, 131, 132, 133, 134, 135], "9": [29, 30, 31, 32, 34, 36, 37, 38, 39, 40, 41, 49, 50, 53, 54, 56, 60, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 89, 90, 93, 94, 95, 97, 98, 99, 100, 103, 104, 105, 107, 109, 110, 131, 132, 133, 135], "6111111111111112": [29, 30], "89": [29, 31, 32, 69], "06": [29, 31, 69, 132, 133], "94": [29, 31, 132], "22222222": [29, 31], "625": [29, 32, 35, 103], "aucroc": 30, "confus": [30, 31, 32, 87, 88, 89, 92, 93, 94, 135], "matrix": [30, 31, 32, 87, 88, 89, 92, 93, 94, 115, 116, 117, 118, 119, 135], "f": [33, 35, 37, 38, 39, 41, 46, 48, 50, 51, 52, 54, 75, 131, 132, 133, 134, 135], "beta": [33, 35, 37, 39, 41, 46, 48, 50, 52, 54], "f1": [34, 36, 38, 40, 46, 47, 49, 51, 53], "form": [34, 47, 131, 132, 135], "6666666666666666": [34, 36, 47, 56, 78, 84], "harmon": [35, 37, 39, 41, 48, 50, 52, 54, 131, 132, 135], "8333333333333334": [35, 37, 50, 59, 62], "85714286": [36, 38], "9090909090909091": 37, "83333333": [37, 41, 50, 54], "55555556": [37, 50, 103], "90909091": [37, 39, 41], "85": [39, 80, 81, 84, 85, 98, 100, 131, 134, 135], "total": [40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 108, 132, 135], "count": [40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 131, 132, 133, 135], "predicit": 41, "constructor": 43, "arraylik": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 93, 102], "ground": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102], "truth": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102], "npt": [48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63], "7142857142857143": 48, "estim": [49, 50, 66, 67, 68, 69, 93, 102, 123], "shape": [49, 50, 51, 52, 53, 54, 60, 61, 108, 109, 133, 134], "expect": [60, 61, 131, 132, 135], "like": [60, 61, 75, 131], "n": [60, 61, 131, 132, 133], "l": [60, 61], "sampl": [60, 61, 63, 119], "presenc": [60, 61, 133], "absenc": [60, 61], "rest": 61, "ratio": [62, 63, 105, 135], "correctli": [62, 131, 132, 133, 135], "observ": [62, 131, 135, 137], "precision_scor": 62, "tp": [63, 107, 108, 109, 133, 135], "fn": [63, 107, 108, 109, 133, 135], "intuit": 63, "abil": [63, 131, 132, 135], "recall_scor": 63, "3333333333333333": 63, "receiv": [65, 131, 132, 135], "characterist": [65, 131, 132, 135], "decis": [66, 67, 68, 69, 93, 121, 131, 132, 135], "transform": [66, 67, 68, 93, 123, 124, 131, 132, 133, 134, 135], "fpr": [66, 67, 68, 69, 131, 132, 135], "tpr": [66, 67, 68, 69], "25": [66, 67, 68, 88, 90, 92, 93, 95, 105, 116, 117, 131, 132, 134, 135], "softmax": [67, 69, 93], "1d": [67, 68, 69, 95], "33333333": [67, 85, 88, 90, 93, 94, 95, 100], "non": 69, "thei": 69, "evenli": [69, 95], "space": [69, 95], "increas": [69, 95], "assertionerror": [69, 121], "03": [69, 133], "stat": [72, 106, 107, 108, 109, 110], "abc": 74, "properti": [74, 110, 123, 124], "other_metr": 75, "prefix": 75, "postfix": 75, "userdict": 75, "collect": [75, 131, 137], "want": 75, "behav": 75, "themselv": 75, "intern": 75, "similar": 75, "reduc": 75, "els": [75, 133, 134], "keep_bas": 75, "iter": 75, "underli": 75, "moduledict": 75, "hashabl": 75, "v": 75, "correspond": [75, 123, 124], "found": [75, 121, 131, 132, 133, 134, 135], "keyerror": [75, 121], "some": [75, 131, 132, 135], "pair": 75, "present": 75, "lack": 75, "metric_a": 76, "metric_b": 76, "metric1": 76, "metric2": 76, "unari": 76, "appropri": [84, 85, 100, 131, 132, 135], "375": [88, 90], "suniqu": 90, "45": [90, 105, 131, 132, 133, 135], "42857143": 90, "15": [103, 104, 105, 131, 132, 133, 135], "57142857": 103, "sum": [105, 108, 109, 110, 132, 133, 135], "_abstractscor": [107, 108, 109], "fp": [107, 108, 109, 133, 135], "tn": [107, 108, 109, 133, 135], "classwis": [108, 110], "over": [108, 109, 110, 130, 132, 133, 135, 137], "labelwis": [109, 110, 133], "prior": [110, 131], "modul": [111, 120, 121, 131, 132, 135], "shift_typ": [112, 114], "shift_id": [112, 134], "induc": [112, 114], "synthet": [112, 114, 121, 130, 135, 136, 137], "categor": [112, 131, 132, 135], "origin": 112, "util": [112, 131, 132, 133, 135], "load_nih": 112, "mnt": [112, 131, 132, 133, 134, 135], "nihcxr": [112, 130, 133, 136], "hospital_type_1": 112, "hospital_type_2": 112, "hospital_type_3": 112, "hospital_type_4": 112, "hospital_type_5": 112, "ds_sourc": [112, 134], "ds_target": [112, 134], "num_proc": [112, 134], "process": [112, 130, 131, 133, 135, 137], "build": 112, "hospit": [112, 131, 132, 135, 137], "drift_detect": 114, "experiment": 114, "sklearn": [114, 131, 132, 135], "load_diabet": 114, "y": [114, 116, 117, 119, 123, 131, 132, 133, 135], "return_x_i": 114, "x_tr": 114, "x_te": 114, "y_tr": 114, "y_te": 114, "train_test_split": [114, 131, 132, 135], "test_siz": 114, "random_st": [114, 131, 132, 135], "42": [114, 131, 132, 134, 135], "gn_shift": 114, "x_shift": 114, "x_train": [114, 123], "noise_amt": [114, 118], "delta": [114, 115, 118, 119], "ko_shift": 114, "cp_shift": 114, "mfa_shift": 114, "bn_shift": 114, "tolerance_shift": 114, "ds_shift": 114, "nois": [114, 115, 118], "ad": [114, 121, 123, 124, 131, 132, 135], "prob": 115, "covari": [115, 116, 117, 118, 119], "proport": [115, 131, 132, 133, 135], "fraction": [115, 118, 119, 135], "affect": [115, 118, 121, 131, 132, 135], "n_shuffl": [116, 117], "keep_rows_const": 116, "repermute_each_column": 116, "multiwai": 116, "associ": [116, 131, 132, 133, 135], "swap": [116, 117], "individu": [116, 131, 132, 135], "within": [116, 132], "cl": [116, 117], "etc": [116, 117, 131, 132, 133, 135], "floatnumpi": 116, "shuffl": [116, 117, 131], "permut": 116, "placehold": 116, "shift_class": [117, 119], "rank": 117, "changepoint": 117, "axi": [117, 132, 135], "x_ref": 117, "y_ref": 117, "normal": [118, 131, 132, 135], "clip": [118, 131, 132, 135], "gaussian": 118, "standard": [118, 131, 132, 135], "deviat": 118, "divid": 118, "255": [118, 133, 134], "placehol": 119, "output_dir": [121, 131, 132, 135], "serv": 121, "interfac": 121, "popul": [121, 130, 131, 132, 135, 137], "modelcard": 121, "directori": [121, 131, 132, 135], "save": [121, 123, 124, 131, 132, 135], "output_filenam": [121, 131, 132, 133, 135], "template_path": 121, "interact": [121, 132, 135], "save_json": 121, "synthetic_timestamp": [121, 131, 132, 133, 135], "date": [121, 131, 132, 135], "jinja2": 121, "json": [121, 131, 132, 135], "timestamp": [121, 130, 132, 133, 136], "back": 121, "classmethod": 121, "cyclops_report": [121, 131, 132, 135], "section_nam": [121, 131, 132, 133, 135], "model_detail": [121, 131, 132, 135], "extra": 121, "section": [121, 131, 132, 133, 135], "repres": [121, 133], "bibtex": 121, "entri": 121, "plain": 121, "text": [121, 133], "descript": [121, 131, 132, 133, 135], "license_id": [121, 131], "sensitive_featur": [121, 131], "sensitive_feature_justif": [121, 131], "inform": [121, 131], "about": [121, 131, 132, 133, 135], "resourc": [121, 131, 132, 135], "context": 121, "homepag": 121, "spdx": [121, 131], "identifi": [121, 130, 133, 137], "licens": [121, 131, 132, 133, 135], "apach": [121, 131, 132, 135], "unknown": 121, "unlicens": 121, "proprietari": 121, "justif": [121, 131], "field": [121, 130, 131, 132, 135, 137], "descriptor": 121, "new": [121, 131, 132, 135], "pydant": 121, "basemodel": 121, "subclass": 121, "As": 121, "long": 121, "conflict": 121, "defin": [121, 131, 132, 133, 135], "model_card": 121, "cylop": 121, "tradeoff": [121, 133], "trade": 121, "off": 121, "interpret": 121, "consider": [121, 131, 132, 133, 135], "affected_group": [121, 131, 132, 133, 135], "benefit": [121, 131, 132, 133, 135], "harm": [121, 131, 132, 133, 135], "mitigation_strategi": [121, 131, 132, 133, 135], "assess": 121, "mitig": [121, 131, 132, 133, 135], "strategi": [121, 131, 132, 133, 135], "relat": 121, "img_path": 121, "caption": [121, 131, 132, 133, 135], "full": 121, "whole": [121, 131, 132, 135], "left": [121, 135], "blank": 121, "instead": 121, "param": [121, 131, 132, 135], "contact": [121, 131, 132, 133, 135], "role": 121, "owner": [121, 131, 132, 133, 135], "quantit": [121, 131, 132, 133, 135], "slash": 121, "fig": [121, 131, 132, 133, 135], "plotli": [121, 131, 132, 133, 135], "figur": [121, 131, 132, 135], "plot": [121, 131, 132, 133, 135], "analysis_typ": 121, "metric_slic": [121, 131, 132, 133, 135], "decision_threshold": 121, "pass_fail_threshold": [121, 131, 132, 133, 135], "pass_fail_threshold_fn": [121, 131, 132, 133, 135], "explain": 121, "fail": 121, "regul": 121, "regulatori": [121, 131, 132, 135], "compli": 121, "risk": [121, 131, 132, 133, 135, 137], "kind": [121, 131, 132, 133, 135], "primari": [121, 131, 132, 133, 135], "scope": [121, 131, 132, 135], "usecas": 121, "version_str": [121, 131, 132, 135], "semant": 121, "v1": 121, "dt_date": 121, "dt_datetim": 121, "unix": 121, "yyyi": 121, "mm": 121, "dd": 121, "hh": 121, "ss": 121, "ffffff": 121, "z": 121, "summar": 121, "chang": [121, 131, 132, 133, 135], "made": [121, 131, 132, 135], "task_featur": [123, 124, 131, 132, 135], "task_target": [123, 124, 131, 132, 135], "basetask": [123, 124], "ptmodel": [123, 124, 133], "skmodel": [123, 124], "wrappedmodel": [123, 124], "model_nam": [123, 124, 131, 132, 133, 134, 135], "prediction_column_prefix": [123, 124, 131, 132, 135], "splits_map": [123, 124], "fit": [123, 131, 132, 135], "columntransform": [123, 131, 132, 135], "slicingconfig": 123, "default_max_batch_s": 123, "unnecessari": [123, 124], "filepath": [123, 124], "pretrain": [123, 124, 133], "proba": [123, 131, 132, 135], "mortal": [123, 130], "pd": [123, 132], "datafram": [123, 131, 132, 135], "notfittederror": 123, "destin": [123, 124], "parent": [123, 124], "dirctori": [123, 124], "best_model_param": [123, 131, 132, 135], "y_train": 123, "pipelin": [123, 131, 132, 135], "best": [123, 131, 132, 135], "64": [124, 132, 135], "compos": [124, 131, 132, 133, 134, 135], "pathologi": [124, 130, 131, 137], "represent": [124, 131, 132, 135], "kaggl": [130, 131], "heart": 130, "failur": 130, "librari": [130, 136, 137], "constant": [130, 137], "distribut": [130, 133, 137], "outcom": [130, 137], "preprocessor": [130, 137], "creation": [130, 137], "mimiciv": [130, 132], "queri": [130, 137], "inspect": [130, 131, 137], "preprocess": [130, 131, 137], "drop": [130, 131, 137], "nan_threshold": [130, 131, 137], "gender": [130, 131, 133, 134, 137], "synthea": [130, 135], "prolong": [130, 132], "length": [130, 132, 133], "stai": [130, 132], "diseas": [130, 131, 137], "histor": [130, 131, 137], "period": [130, 137], "w": [130, 137], "drift": [130, 136], "experi": [130, 136], "dimension": [130, 136], "reduct": [130, 136], "techniqu": [130, 136], "roll": [130, 136], "window": [130, 136], "biweekli": [130, 136], "showcas": [131, 132, 135, 137], "patient": [131, 132, 133, 134, 135, 137], "shutil": [131, 132, 133, 135], "express": [131, 132, 133, 135], "px": [131, 132, 133, 135], "kaggle_api_extend": 131, "kaggleapi": 131, "imput": [131, 132, 135], "simpleimput": [131, 132, 135], "minmaxscal": [131, 132, 135], "onehotencod": [131, 132, 135], "noqa": [131, 132, 133, 135], "e402": [131, 132, 133, 135], "catalog": [131, 132, 135], "create_model": [131, 132, 135], "tabularfeatur": [131, 132, 135], "classificationplott": [131, 132, 135], "flatten_results_dict": [131, 132, 135], "join": [131, 132, 135], "load_datafram": 131, "wizuawxh": [131, 132, 133, 134, 135], "py3": [131, 132, 133, 134, 135], "lib": [131, 132, 133, 134, 135], "site": [131, 132, 133, 134, 135, 137], "tqdm": [131, 132, 133, 134, 135], "auto": [131, 132, 133, 134, 135], "py": [131, 132, 133, 134, 135], "21": [131, 132, 133, 134, 135], "tqdmwarn": [131, 132, 133, 134, 135], "iprogress": [131, 132, 133, 134, 135], "ipywidget": [131, 132, 133, 134, 135], "readthedoc": [131, 132, 133, 134, 135], "io": [131, 132, 133, 134, 135], "en": [131, 132, 133, 134, 135], "user_instal": [131, 132, 133, 134, 135], "autonotebook": [131, 132, 133, 134, 135], "notebook_tqdm": [131, 132, 133, 134, 135], "offer": [131, 132, 133, 135], "document": [131, 132, 133, 135], "through": [131, 132, 133, 135], "overview": [131, 132, 133, 135], "how": [131, 132, 133, 135], "quick": [131, 132, 133, 135], "glanc": [131, 132, 133, 135], "sever": [131, 132, 133, 135], "subgroup": [131, 132, 133, 135], "statist": [131, 132, 133, 135, 136], "subpopul": [131, 132, 133, 135], "technic": [131, 132, 133, 135], "architectur": [131, 132, 133, 135], "involv": [131, 132, 133, 135], "intend": [131, 132, 133, 135], "go": [131, 132, 133, 135], "tool": [131, 132, 133, 135], "progress": [131, 132, 133, 135], "subject": [131, 132, 133, 135], "data_dir": [131, 133], "random_se": [131, 132, 135], "train_siz": [131, 132, 135], "sign": [131, 135], "com": [131, 133], "Then": 131, "profil": [131, 132, 135], "usernam": 131, "trigger": 131, "download": 131, "credenti": 131, "place": 131, "locat": 131, "machin": [131, 133], "authent": 131, "dataset_download_fil": 131, "fedesoriano": 131, "unzip": 131, "df": 131, "csv": [131, 135], "file_format": 131, "reset_index": [131, 132, 135], "index": [131, 132, 133, 135], "2023": [131, 132, 133, 135], "11": [131, 132, 133, 135, 137], "27": [131, 132, 133, 135], "844": 131, "chestpaintyp": 131, "restingbp": 131, "cholesterol": 131, "fastingb": 131, "restingecg": 131, "40": [131, 132, 135], "ata": 131, "140": 131, "289": 131, "49": [131, 135], "nap": 131, "160": 131, "180": 131, "37": [131, 132, 133, 135], "130": 131, "283": 131, "st": 131, "48": [131, 133, 135], "asi": 131, "138": 131, "214": 131, "54": [131, 133], "150": 131, "195": 131, "913": 131, "ta": 131, "110": 131, "264": 131, "914": 131, "68": [131, 133, 134], "144": 131, "193": 131, "915": 131, "57": 131, "131": 131, "916": 131, "236": 131, "lvh": 131, "917": 131, "38": [131, 132, 133, 135], "175": 131, "maxhr": 131, "exerciseangina": 131, "oldpeak": 131, "st_slope": 131, "heartdiseas": 131, "172": 131, "156": 131, "flat": 131, "98": [131, 133], "108": 131, "122": 131, "132": 131, "141": 131, "115": 131, "174": 131, "173": 131, "918": 131, "13": [131, 132, 133, 135], "pie": [131, 132, 133, 135], "update_layout": [131, 132, 133, 135], "histogram": [131, 132, 133, 135], "xaxis_titl": [131, 132, 133, 135], "yaxis_titl": [131, 132, 133, 135], "bargap": [131, 132, 133, 135], "astyp": [131, 132, 135], "update_trac": [131, 132, 133, 135], "textinfo": [131, 132, 135], "percent": [131, 132, 135], "title_text": [131, 132, 135], "hovertempl": [131, 132, 135], "br": [131, 132, 135], "class_count": [131, 132, 135], "value_count": [131, 132, 135], "class_ratio": [131, 132, 135], "8070866141732284": 131, "14": [131, 132, 133, 135, 137], "39": [131, 132, 133, 135], "20": [131, 132, 133, 135], "wa": [131, 132, 133, 135], "li": 131, "et": 131, "al": 131, "most": 131, "features_list": [131, 132, 135], "sort": [131, 132, 135], "help": [131, 132, 133, 135], "essenti": [131, 132, 135], "step": [131, 132, 135], "understand": [131, 132, 135], "u": [131, 132, 135], "16": [131, 132, 133, 135], "tab_featur": [131, 132, 135], "ordin": [131, 132, 135], "might": [131, 132, 135], "17": [131, 132, 133, 135], "numeric_transform": [131, 132, 135], "scaler": [131, 132, 135], "binary_transform": [131, 132, 135], "most_frequ": [131, 132, 135], "18": [131, 132, 133, 134, 135], "numeric_featur": [131, 132, 135], "features_by_typ": [131, 132, 135], "numeric_indic": [131, 132, 135], "get_loc": [131, 132, 135], "19": [131, 132, 133, 135], "binary_featur": [131, 132, 135], "ordinal_featur": [131, 132], "binary_indic": [131, 132, 135], "ordinal_indic": [131, 132], "num": [131, 132, 135], "onehot": [131, 132, 135], "handle_unknown": [131, 132, 135], "remaind": [131, 132, 135], "passthrough": [131, 132, 135], "let": [131, 132, 135], "done": [131, 132, 135], "independ": 131, "everi": 131, "uci": 131, "archiv": 131, "ic": 131, "edu": 131, "databas": [131, 132, 135], "cleandoc": 131, "misc": 131, "cc0": 131, "demograph": [131, 133], "often": 131, "strong": 131, "correl": 131, "older": [131, 132, 135], "higher": 131, "panda": [131, 132, 135], "power": [131, 132, 135], "easi": [131, 132, 135], "compat": [131, 132, 135], "22": [131, 132, 133, 135], "from_panda": [131, 132, 135], "cleanup_cache_fil": [131, 132, 135], "num_row": 131, "cast_column": [131, 132, 135], "stratify_by_column": [131, 132, 135], "seed": [131, 132, 133, 134, 135], "100": [131, 132, 133, 134, 135], "lt": [131, 132, 133, 134, 135], "203928": 131, "34": [131, 132, 133, 135], "straightforward": [131, 132, 135], "maintain": [131, 132, 135], "instanti": [131, 132, 135], "line": [131, 132, 135], "sgd": 131, "logisit": [131, 132, 135], "regress": [131, 132, 135], "sgdclassif": 131, "24": [131, 132, 133, 135], "sgd_classifi": 131, "123": [131, 132, 135], "verbos": [131, 132, 135], "class_weight": 131, "balanc": 131, "encapsul": [131, 132, 135], "cohes": [131, 132, 135], "structur": [131, 132, 135], "smooth": [131, 132, 135], "manag": [131, 132, 135], "heart_failure_prediction_task": 131, "26": [131, 132, 133, 135], "hyperparamet": [131, 132, 135], "search": [131, 132, 135], "grid": [131, 132, 135], "alpha": 131, "0001": 131, "001": 131, "learning_r": [131, 132, 135], "invscal": 131, "adapt": 131, "eta0": 131, "roc_auc": 131, "52": [131, 133], "898": 131, "wrapper": [131, 132, 133, 135], "sk_model": [131, 132, 135], "899": 131, "900": 131, "sgdclassifi": 131, "x27": [131, 132, 135], "early_stop": 131, "loss": 131, "log_loss": 131, "rerun": [131, 132, 135], "cell": [131, 132, 135], "trust": [131, 132, 135], "On": [131, 132, 133, 135], "github": [131, 132, 133, 135], "unabl": [131, 132, 135], "render": [131, 132, 135], "try": [131, 132, 135], "page": [131, 132, 135], "nbviewer": [131, 132, 135], "sgdclassifiersgdclassifi": 131, "28": [131, 132, 135], "model_param": [131, 132, 135], "epsilon": 131, "fit_intercept": 131, "l1_ratio": 131, "max_it": 131, "n_iter_no_chang": 131, "n_job": [131, 132, 135], "penalti": 131, "l2": 131, "power_t": 131, "tol": 131, "validation_fract": 131, "warm_start": 131, "29": [131, 132, 135], "30": [131, 132, 133, 135, 137], "y_pred": [131, 132, 135], "only_predict": [131, 132, 135], "len": [131, 132, 133, 135], "184": 131, "8184": 131, "variou": [131, 132, 135], "perspect": [131, 132, 135], "metric_collect": [131, 132, 135], "certain": [131, 132, 135], "70": [131, 132, 133], "33": [131, 132, 133, 135], "fnr": [131, 132, 135], "ber": [131, 132, 135], "fairness_metric_collect": [131, 132, 135], "dataset_with_pr": [131, 132, 135], "8078": 131, "63": [131, 132, 135], "11600": 131, "53393": 131, "66": [131, 134], "gt": [131, 132, 133, 134, 135], "14078": 131, "14690": 131, "20765": 131, "14411": 131, "14653": 131, "14484": 131, "83": [131, 133], "36": [131, 132, 133, 135], "results_femal": 131, "_": [131, 135], "8476": 131, "97": [131, 133], "11644": 131, "53705": 131, "77": [131, 132, 135], "17370": 131, "right": [131, 132, 135], "model_for_pr": [131, 132, 135], "results_flat": [131, 132, 133, 135], "remove_metr": [131, 132, 135], "results_female_flat": 131, "plw2901": [131, 132, 133, 135], "actual": [131, 132, 133, 135], "known": [131, 132, 133, 135], "measur": [131, 132, 135], "lambda": [131, 132, 133, 134, 135], "plotter": [131, 132, 134, 135], "class_nam": [131, 132, 135], "set_templ": [131, 132, 135], "plotly_whit": [131, 132, 135], "extract": [131, 132, 135], "slice_result": [131, 132, 135], "dict_kei": [131, 132, 135], "roc_plot": [131, 132, 135], "roc_curve_comparison": [131, 132, 135], "femal": [131, 132, 133, 134, 135], "41": [131, 132, 135], "overall_perform": [131, 132, 135], "metric_valu": [131, 132, 135], "overall_performance_plot": [131, 132, 135], "metrics_valu": [131, 132, 135], "43": [131, 132, 133, 135], "slice_metr": [131, 132, 135], "44": [131, 132, 133, 135], "slice_metrics_plot": [131, 132, 135], "metrics_comparison_bar": [131, 132, 135], "comparison": [131, 132, 133, 135], "reform": [131, 132, 135], "fairness_result": [131, 132, 135], "deepcopi": [131, 132, 135], "fairness_metr": [131, 132, 135], "group_siz": [131, 132, 135], "46": [131, 132, 133, 135], "fairness_plot": [131, 132, 135], "metrics_comparison_scatt": [131, 132, 135], "leverag": 131, "get_metrics_trend": 131, "gather": 131, "merg": [131, 132, 135], "recent": 131, "wish": 131, "metrics_trend": 131, "purpos": 131, "three": 131, "dummi": 131, "demonstr": [131, 137], "trend": 131, "audienc": [131, 132, 135], "organ": [131, 132, 135], "store": [131, 132, 135], "regulatory_requir": [131, 132, 135], "47": [131, 135], "todai": [131, 132, 135], "releas": [131, 132, 135], "team": [131, 132, 135], "vectorinstitut": [131, 132, 135], "email": [131, 132, 133, 135], "ai": [131, 132, 135], "linear_model": 131, "e501": [131, 132, 135], "next": [131, 132, 135], "use_cas": [131, 132, 135], "These": [131, 132, 135], "could": [131, 132, 135], "downstream": [131, 132, 135], "fairness_assess": [131, 132, 135], "well": [131, 132, 133, 135], "taken": [131, 132, 135], "ethical_consider": [131, 132, 135], "clinician": [131, 132, 135], "engin": [131, 132, 135], "condit": 131, "improv": [131, 132, 135], "bias": [131, 132, 133, 135], "lead": [131, 132, 135], "wors": [131, 132, 135], "retrain": [131, 132, 135], "below": [131, 132, 135], "By": [131, 132, 135], "folder": [131, 132, 135], "09": [131, 132, 135], "_model_card": [131, 132, 135], "report_path": [131, 132, 133, 135], "heart_failure_report_period": 131, "quantitative_analysi": [131, 132, 135], "performance_metr": [131, 132, 135], "random": [131, 132, 134, 135], "rmtree": [131, 132, 135], "view": [131, 132, 133, 135, 137], "die": 132, "admiss": 132, "cycqueri": [132, 135], "op": [132, 135], "qo": [132, 135], "graph_object": [132, 135], "mimicivqueri": 132, "aggreg": 132, "restrict_timestamp": 132, "clean": 132, "normalize_nam": 132, "add_years_approxim": 132, "deathtim": 132, "lab": [132, 133], "event": 132, "querier": [132, 135], "dbm": [132, 135], "postgresql": [132, 135], "port": [132, 135], "5432": [132, 135], "host": [132, 135], "localhost": [132, 135], "postgr": [132, 135], "password": [132, 135], "pwd": [132, 135], "def": [132, 133, 135], "get_encount": [132, 135], "mimiciv_hosp": 132, "drop_op": 132, "insur": 132, "languag": 132, "marital_statu": 132, "edregtim": 132, "edouttim": 132, "patient_encount": [132, 135], "subject_id": 132, "admittim": 132, "dt": 132, "anchor_year": 132, "anchor_ag": 132, "col": 132, "dischtim": 132, "anchor_year_differ": 132, "hadm_id": 132, "admission_loc": 132, "hospital_expire_flag": 132, "compute_mortality_outcom": 132, "death": 132, "invalid": 132, "isna": 132, "shorter": 132, "di": 132, "mortality_outcom": 132, "get_labev": 132, "labev": 132, "index_col": 132, "batch_mod": 132, "process_labev": 132, "revers": 132, "deidentifi": 132, "charttim": 132, "categori": [132, 135], "start_timestamp": 132, "set_index": 132, "renam": [132, 135], "mean_aggreg": 132, "aggfunc": [132, 135], "valuenum": 132, "window_dur": 132, "timestamp_col": 132, "time_bi": 132, "agg_bi": 132, "means_df": 132, "batch_num": 132, "labevents_batch": 132, "enumer": [132, 133], "aggregate_valu": 132, "window_start_tim": 132, "pivot": 132, "add_prefix": [132, 135], "lab_": 132, "concat": 132, "break": 132, "run_queri": [132, 135], "cohort": [132, 135], "334": 132, "orm": [132, 135], "readi": [132, 135], "296": 132, "successfulli": [132, 135], "297": 132, "finish": [132, 135], "execut": [132, 135], "960876": 132, "105518": 132, "5925": 132, "065": 132, "066": 132, "037258": 132, "null_count": [132, 135], "isnul": [132, 135], "bar": [132, 133, 135], "height": [132, 133], "600": [132, 133], "respect": [132, 135], "larger": [132, 135], "thresh_nan": [132, 135], "dropna": [132, 135], "thresh": [132, 135], "heavili": 132, "unbalanc": 132, "55": 132, "36758893280632": 132, "tolist": 132, "lab_inr": 132, "pt": 132, "lab_l": 132, "lab_rdw": 132, "lab_alanin": 132, "aminotransferas": [132, 135], "alt": 132, "lab_bicarbon": 132, "lab_hematocrit": 132, "lab_creatinin": 132, "lab_anion": 132, "gap": 132, "lab_aspar": 132, "ast": 132, "lab_hemoglobin": 132, "lab_mchc": 132, "lab_h": 132, "lab_mcv": 132, "lab_ptt": 132, "lab_calcium": 132, "lab_r": 132, "blood": [132, 135], "lab_sodium": 132, "sd": 132, "lab_chlorid": 132, "lab_bilirubin": 132, "lab_i": 132, "lab_platelet": 132, "lab_phosph": 132, "lab_urea": 132, "nitrogen": [132, 135], "lab_pt": 132, "lab_whit": 132, "lab_alkalin": 132, "phosphatas": [132, 135], "lab_mch": 132, "lab_ph": 132, "lab_glucos": 132, "lab_potassium": 132, "lab_magnesium": 132, "14261": 132, "855783": 132, "xgboost": [132, 135], "xgbclassif": [132, 135], "xgb_classifi": [132, 135], "mortality_task": 132, "n_estim": [132, 135], "250": [132, 135], "500": [132, 135], "max_depth": [132, 135], "reg_lambda": [132, 135], "colsample_bytre": [132, 135], "gamma": [132, 135], "968": 132, "969": 132, "970": 132, "xgbclassifi": [132, 135], "base_scor": [132, 135], "booster": [132, 135], "callback": [132, 135], "colsample_bylevel": [132, 135], "colsample_bynod": [132, 135], "early_stopping_round": [132, 135], "enable_categor": [132, 135], "eval_metr": [132, 135], "logloss": [132, 135], "feature_typ": [132, 135], "gpu_id": [132, 135], "grow_polici": [132, 135], "importance_typ": [132, 135], "interaction_constraint": [132, 135], "max_bin": [132, 135], "max_cat_threshold": [132, 135], "max_cat_to_onehot": [132, 135], "max_delta_step": [132, 135], "max_leav": [132, 135], "min_child_weight": [132, 135], "miss": [132, 135], "monotone_constraint": [132, 135], "num_parallel_tre": [132, 135], "predictor": [132, 135], "xgbclassifierxgbclassifi": [132, 135], "logist": [132, 135], "use_label_encod": [132, 135], "reg_alpha": [132, 135], "sampling_method": [132, 135], "scale_pos_weight": [132, 135], "subsampl": [132, 135], "tree_method": [132, 135], "validate_paramet": [132, 135], "2853": 132, "4403": 132, "80": [132, 133, 135], "4385": 132, "4380": 132, "99": 132, "397976": 132, "8045": 132, "8116": 132, "8582": 132, "8622": 132, "8922": 132, "amp": [132, 133, 135], "8107": 132, "7946": 132, "7923": 132, "8110": 132, "7933": 132, "78": [132, 133], "7940": 132, "python_api": [132, 135], "mortality_report_period": 132, "torchxrayvis": [133, 134], "functool": 133, "torchvis": [133, 134], "densenet": [133, 134], "loader": [133, 134], "load_nihcxr": [133, 134], "lambdad": [133, 134], "resiz": [133, 134], "apply_transform": 133, "generate_nihcxr_report": 133, "221780": 133, "136903": 133, "400": 133, "1147": 133, "93": 133, "43015": 133, "43700": 133, "91": 133, "45745": 133, "65": [133, 134], "41513": 133, "42320": 133, "42055": 133, "46741": 133, "51": 133, "56": 133, "567872": 133, "242683": 133, "79": 133, "396": 133, "1150": 133, "43286": 133, "43913": 133, "61": 133, "45805": 133, "41569": 133, "43008": 133, "42367": 133, "48601": 133, "73": [133, 135], "300258": 133, "126281": 133, "383": 133, "768": 133, "53": 133, "43070": 133, "42860": 133, "45216": 133, "40842": 133, "41961": 133, "67": 133, "41460": 133, "46573": 133, "556716": 133, "240526": 133, "411": 133, "1164": 133, "44328": 133, "81": 133, "44277": 133, "58": 133, "46382": 133, "69": 133, "41921": 133, "62": 133, "43253": 133, "42642": 133, "47510": 133, "clinical_dataset": [133, 134], "nih_d": [133, 134], "spatial_s": [133, 134], "224": [133, 134], "allow_missing_kei": [133, 134], "func": [133, 134], "1024": [133, 134], "newaxi": [133, 134], "densenet121": [133, 134], "res224": [133, 134], "feature_column": [133, 134], "No": 133, "adjust": 133, "119014": 133, "661": 133, "3501": 133, "int64": 133, "originalimag": 133, "width": [133, 135], "originalimagepixelspac": 133, "unnam": 133, "atelectasi": 133, "float32": 133, "cardiomegali": 133, "consolid": 133, "edema": 133, "effus": 133, "emphysema": 133, "fibrosi": 133, "hernia": 133, "infiltr": 133, "mass": [133, 135], "nodul": 133, "pleural_thicken": 133, "pneumonia": 133, "pneumothorax": 133, "__index_level_0__": 133, "multilabelpositivepredictivevalu": 133, "registry_kei": 133, "positive_predictive_valu": 133, "super": 133, "overrid": 133, "_final_st": 133, "multilabelnegativepredictivevalu": 133, "negative_predictive_valu": 133, "ppv": 133, "npv": 133, "nih_eval_results_gend": 133, "46195": 133, "46198": 133, "47727": 133, "nih_eval_results_ag": 133, "44943": 133, "59": 133, "46006": 133, "44317": 133, "45493": 133, "76": [133, 135], "44271": 133, "41095": 133, "45549": 133, "44374": 133, "44286": 133, "48460": 133, "male": [133, 134], "1200": 133, "showlegend": 133, "slice_": 133, "model_for_predict": 133, "itr": 133, "among": 133, "112": [133, 137], "120": [133, 137], "frontal": [133, 137], "805": [133, 137], "fourteen": 133, "mine": 133, "radiolog": 133, "pleural": 133, "thicken": 133, "remain": 133, "arxiv": 133, "ab": 133, "2111": 133, "00595": 133, "inproceed": 133, "cohen2022xrv": 133, "cohen": 133, "joseph": 133, "paul": 133, "viviano": 133, "bertin": 133, "morrison": 133, "torabian": 133, "parsa": 133, "guarrera": 133, "matteo": 133, "lungren": 133, "matthew": 133, "chaudhari": 133, "akshai": 133, "brook": 133, "rupert": 133, "hashir": 133, "mohammad": 133, "bertrand": 133, "hadrien": 133, "booktitl": 133, "deep": 133, "mlmed": 133, "arxivid": 133, "cohen2020limit": 133, "cross": 133, "domain": 133, "autom": [133, 135], "2002": 133, "02497": 133, "medicin": 133, "josephpcohen": 133, "radiologist": 133, "scientist": 133, "inabl": 133, "addition": 133, "poor": 133, "qualiti": 133, "artifact": 133, "geograph": 133, "region": 133, "ethic": 133, "ensur": 133, "divers": 133, "regularli": 133, "human": 133, "expertis": 133, "address": 133, "rare": 133, "nihcxr_report_period": 133, "torch": 134, "detector": 134, "reductor": 134, "tstester": 134, "plot_drift_experi": 134, "plot_drift_timeseri": 134, "manual_se": 134, "_c": 134, "0x7ff5000caf50": 134, "shifter": 134, "source_d": 134, "target_d": 134, "25596": 134, "60185": 134, "dr_method": 134, "bbse": 134, "soft": 134, "txrv": 134, "ae": 134, "sensitivity_test": 134, "tester": 134, "tester_method": 134, "source_sample_s": 134, "target_sample_s": 134, "num_run": 134, "detect_shift": 134, "chexpert": 134, "chex": 134, "padchest": 134, "pc": 134, "source_slic": 134, "target_slic": 134, "50504": 134, "50589": 134, "84": 134, "45920": 134, "44229": 134, "45218": 134, "45834": 134, "45385": 134, "46612": 134, "rolling_window_drift": 134, "timestamp_column": 134, "window_s": 134, "4w": 134, "longer": 135, "v3": 135, "instruct": 135, "etl": 135, "datasetqueri": 135, "num_dai": 135, "synthea_demo": 135, "nativ": 135, "sequenti": 135, "patient_id": 135, "birthdat": 135, "race": 135, "ethnic": 135, "isout": 135, "encounter_id": 135, "extracttimestampcompon": 135, "start_year": 135, "birthdate_year": 135, "addcolumn": 135, "new_col_label": 135, "stop": 135, "lo": 135, "conditiongreaterthan": 135, "conditionlessthan": 135, "get_observ": 135, "conditionin": 135, "vital": 135, "conditionequ": 135, "groupby_op": 135, "groupbyaggreg": 135, "n_ob": 135, "observations_count": 135, "observations_stat": 135, "pivot_t": 135, "max": 135, "obs_": 135, "get_med": 135, "n_med": 135, "get_procedur": 135, "procedur": [135, 137], "n_procedur": 135, "cohort_queri": 135, "to_merg": 135, "extend": 135, "append": 135, "to_merge_df": 135, "870": 135, "615": 135, "617": 135, "939373": 135, "425": 135, "807781": 135, "059": 135, "060": 135, "359256": 135, "510": 135, "511": 135, "446829": 135, "594": 135, "595": 135, "082727": 135, "length_of_stai": 135, "length_of_stay_count": 135, "length_of_stay_kei": 135, "5573997233748271": 135, "obs_alanin": 135, "enzymat": 135, "volum": 135, "serum": 135, "plasma": 135, "obs_albumin": 135, "obs_alkalin": 135, "obs_aspart": 135, "obs_bilirubin": 135, "obs_bodi": 135, "obs_calcium": 135, "obs_carbon": 135, "dioxid": 135, "mole": 135, "obs_chlorid": 135, "obs_creatinin": 135, "obs_diastol": 135, "pressur": 135, "obs_erythrocyt": 135, "obs_ferritin": 135, "obs_glomerular": 135, "filtrat": 135, "sq": 135, "obs_glucos": 135, "obs_hematocrit": 135, "obs_hemoglobin": 135, "obs_leukocyt": 135, "obs_mch": 135, "entit": 135, "obs_mchc": 135, "obs_mcv": 135, "obs_oxygen": 135, "satur": 135, "arteri": 135, "obs_platelet": 135, "obs_potassium": 135, "obs_protein": 135, "obs_sodium": 135, "obs_systol": 135, "obs_troponin": 135, "cardiac": 135, "obs_urea": 135, "1126": 135, "159418": 135, "los_task": 135, "477": 135, "478": 135, "479": 135, "226": 135, "4593": 135, "82": 135, "4536": 135, "4134": 135, "66222": 135, "8149": 135, "8436": 135, "9278": 135, "9237": 135, "9531": 135, "74": 135, "8099": 135, "6666": 135, "8185": 135, "8215": 135, "07": 135, "8225": 135, "8365": 135, "88": 135, "confusion_matrix": 135, "conf_plot": 135, "plot_confusion_matrix": 135, "length_of_stay_report_period": 135, "goal": 137, "ehr": 137, "icu": 137}, "objects": {"cyclops": [[125, 0, 0, "-", "data"], [126, 0, 0, "-", "evaluate"], [127, 0, 0, "-", "monitor"], [128, 0, 0, "-", "report"], [129, 0, 0, "-", "tasks"]], "cyclops.data": [[125, 0, 0, "-", "features"], [6, 0, 0, "-", "slicer"]], "cyclops.data.features": [[4, 0, 0, "-", "medical_image"]], "cyclops.data.features.medical_image": [[5, 1, 1, "", "MedicalImage"]], "cyclops.data.features.medical_image.MedicalImage": [[5, 2, 1, "", "__call__"], [5, 2, 1, "", "cast_storage"], [5, 2, 1, "", "decode_example"], [5, 2, 1, "", "embed_storage"], [5, 2, 1, "", "encode_example"], [5, 2, 1, "", "flatten"]], "cyclops.data.slicer": [[7, 1, 1, "", "SliceSpec"], [8, 4, 1, "", "compound_filter"], [9, 4, 1, "", "filter_datetime"], [10, 4, 1, "", "filter_non_null"], [11, 4, 1, "", "filter_range"], [12, 4, 1, "", "filter_string_contains"], [13, 4, 1, "", "filter_value"], [14, 4, 1, "", "is_datetime"], [15, 4, 1, "", "overall"]], "cyclops.data.slicer.SliceSpec": [[7, 3, 1, "", "_registry"], [7, 2, 1, "", "add_slice_spec"], [7, 3, 1, "", "column_names"], [7, 2, 1, "", "get_slices"], [7, 3, 1, "", "include_overall"], [7, 2, 1, "", "slices"], [7, 3, 1, "", "spec_list"], [7, 3, 1, "", "validate"]], "cyclops.evaluate": [[16, 0, 0, "-", "evaluator"], [126, 0, 0, "-", "fairness"], [126, 0, 0, "-", "metrics"]], "cyclops.evaluate.evaluator": [[17, 4, 1, "", "evaluate"]], "cyclops.evaluate.fairness": [[18, 0, 0, "-", "config"], [20, 0, 0, "-", "evaluator"]], "cyclops.evaluate.fairness.config": [[19, 1, 1, "", "FairnessConfig"]], "cyclops.evaluate.fairness.evaluator": [[21, 4, 1, "", "evaluate_fairness"], [22, 4, 1, "", "warn_too_many_unique_values"]], "cyclops.evaluate.metrics": [[23, 0, 0, "-", "accuracy"], [28, 0, 0, "-", "auroc"], [33, 0, 0, "-", "f_beta"], [42, 0, 0, "-", "factory"], [126, 0, 0, "-", "functional"], [73, 0, 0, "-", "metric"], [77, 0, 0, "-", "precision_recall"], [86, 0, 0, "-", "precision_recall_curve"], [91, 0, 0, "-", "roc"], [96, 0, 0, "-", "sensitivity"], [101, 0, 0, "-", "specificity"], [106, 0, 0, "-", "stat_scores"]], "cyclops.evaluate.metrics.accuracy": [[24, 1, 1, "", "Accuracy"], [25, 1, 1, "", "BinaryAccuracy"], [26, 1, 1, "", "MulticlassAccuracy"], [27, 1, 1, "", "MultilabelAccuracy"]], "cyclops.evaluate.metrics.accuracy.Accuracy": [[24, 2, 1, "", "__add__"], [24, 2, 1, "", "__call__"], [24, 2, 1, "", "__init__"], [24, 2, 1, "", "__mul__"], [24, 2, 1, "", "add_state"], [24, 2, 1, "", "clone"], [24, 2, 1, "", "compute"], [24, 2, 1, "", "reset_state"], [24, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.BinaryAccuracy": [[25, 2, 1, "", "__add__"], [25, 2, 1, "", "__call__"], [25, 2, 1, "", "__init__"], [25, 2, 1, "", "__mul__"], [25, 2, 1, "", "add_state"], [25, 2, 1, "", "clone"], [25, 2, 1, "", "compute"], [25, 2, 1, "", "reset_state"], [25, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy": [[26, 2, 1, "", "__add__"], [26, 2, 1, "", "__call__"], [26, 2, 1, "", "__init__"], [26, 2, 1, "", "__mul__"], [26, 2, 1, "", "add_state"], [26, 2, 1, "", "clone"], [26, 2, 1, "", "compute"], [26, 2, 1, "", "reset_state"], [26, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy": [[27, 2, 1, "", "__add__"], [27, 2, 1, "", "__call__"], [27, 2, 1, "", "__init__"], [27, 2, 1, "", "__mul__"], [27, 2, 1, "", "add_state"], [27, 2, 1, "", "clone"], [27, 2, 1, "", "compute"], [27, 2, 1, "", "reset_state"], [27, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc": [[29, 1, 1, "", "AUROC"], [30, 1, 1, "", "BinaryAUROC"], [31, 1, 1, "", "MulticlassAUROC"], [32, 1, 1, "", "MultilabelAUROC"]], "cyclops.evaluate.metrics.auroc.AUROC": [[29, 2, 1, "", "__add__"], [29, 2, 1, "", "__call__"], [29, 2, 1, "", "__init__"], [29, 2, 1, "", "__mul__"], [29, 2, 1, "", "add_state"], [29, 2, 1, "", "clone"], [29, 2, 1, "", "compute"], [29, 2, 1, "", "reset_state"], [29, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.BinaryAUROC": [[30, 2, 1, "", "__add__"], [30, 2, 1, "", "__call__"], [30, 2, 1, "", "__init__"], [30, 2, 1, "", "__mul__"], [30, 2, 1, "", "add_state"], [30, 2, 1, "", "clone"], [30, 2, 1, "", "compute"], [30, 2, 1, "", "reset_state"], [30, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.MulticlassAUROC": [[31, 2, 1, "", "__add__"], [31, 2, 1, "", "__call__"], [31, 2, 1, "", "__init__"], [31, 2, 1, "", "__mul__"], [31, 2, 1, "", "add_state"], [31, 2, 1, "", "clone"], [31, 2, 1, "", "compute"], [31, 2, 1, "", "reset_state"], [31, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.MultilabelAUROC": [[32, 2, 1, "", "__add__"], [32, 2, 1, "", "__call__"], [32, 2, 1, "", "__init__"], [32, 2, 1, "", "__mul__"], [32, 2, 1, "", "add_state"], [32, 2, 1, "", "clone"], [32, 2, 1, "", "compute"], [32, 2, 1, "", "reset_state"], [32, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta": [[34, 1, 1, "", "BinaryF1Score"], [35, 1, 1, "", "BinaryFbetaScore"], [36, 1, 1, "", "F1Score"], [37, 1, 1, "", "FbetaScore"], [38, 1, 1, "", "MulticlassF1Score"], [39, 1, 1, "", "MulticlassFbetaScore"], [40, 1, 1, "", "MultilabelF1Score"], [41, 1, 1, "", "MultilabelFbetaScore"]], "cyclops.evaluate.metrics.f_beta.BinaryF1Score": [[34, 2, 1, "", "__add__"], [34, 2, 1, "", "__call__"], [34, 2, 1, "", "__init__"], [34, 2, 1, "", "__mul__"], [34, 2, 1, "", "add_state"], [34, 2, 1, "", "clone"], [34, 2, 1, "", "compute"], [34, 2, 1, "", "reset_state"], [34, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore": [[35, 2, 1, "", "__add__"], [35, 2, 1, "", "__call__"], [35, 2, 1, "", "__init__"], [35, 2, 1, "", "__mul__"], [35, 2, 1, "", "add_state"], [35, 2, 1, "", "clone"], [35, 2, 1, "", "compute"], [35, 2, 1, "", "reset_state"], [35, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.F1Score": [[36, 2, 1, "", "__add__"], [36, 2, 1, "", "__call__"], [36, 2, 1, "", "__init__"], [36, 2, 1, "", "__mul__"], [36, 2, 1, "", "add_state"], [36, 2, 1, "", "clone"], [36, 2, 1, "", "compute"], [36, 2, 1, "", "reset_state"], [36, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.FbetaScore": [[37, 2, 1, "", "__add__"], [37, 2, 1, "", "__call__"], [37, 2, 1, "", "__init__"], [37, 2, 1, "", "__mul__"], [37, 2, 1, "", "add_state"], [37, 2, 1, "", "clone"], [37, 2, 1, "", "compute"], [37, 2, 1, "", "reset_state"], [37, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MulticlassF1Score": [[38, 2, 1, "", "__add__"], [38, 2, 1, "", "__call__"], [38, 2, 1, "", "__init__"], [38, 2, 1, "", "__mul__"], [38, 2, 1, "", "add_state"], [38, 2, 1, "", "clone"], [38, 2, 1, "", "compute"], [38, 2, 1, "", "reset_state"], [38, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore": [[39, 2, 1, "", "__add__"], [39, 2, 1, "", "__call__"], [39, 2, 1, "", "__init__"], [39, 2, 1, "", "__mul__"], [39, 2, 1, "", "add_state"], [39, 2, 1, "", "clone"], [39, 2, 1, "", "compute"], [39, 2, 1, "", "reset_state"], [39, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MultilabelF1Score": [[40, 2, 1, "", "__add__"], [40, 2, 1, "", "__call__"], [40, 2, 1, "", "__init__"], [40, 2, 1, "", "__mul__"], [40, 2, 1, "", "add_state"], [40, 2, 1, "", "clone"], [40, 2, 1, "", "compute"], [40, 2, 1, "", "reset_state"], [40, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore": [[41, 2, 1, "", "__add__"], [41, 2, 1, "", "__call__"], [41, 2, 1, "", "__init__"], [41, 2, 1, "", "__mul__"], [41, 2, 1, "", "add_state"], [41, 2, 1, "", "clone"], [41, 2, 1, "", "compute"], [41, 2, 1, "", "reset_state"], [41, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.factory": [[43, 4, 1, "", "create_metric"]], "cyclops.evaluate.metrics.functional": [[44, 0, 0, "-", "accuracy"], [45, 0, 0, "-", "auroc"], [46, 0, 0, "-", "f_beta"], [55, 0, 0, "-", "precision_recall"], [64, 0, 0, "-", "precision_recall_curve"], [65, 0, 0, "-", "roc"], [70, 0, 0, "-", "sensitivity"], [71, 0, 0, "-", "specificity"], [72, 0, 0, "-", "stat_scores"]], "cyclops.evaluate.metrics.functional.f_beta": [[47, 4, 1, "", "binary_f1_score"], [48, 4, 1, "", "binary_fbeta_score"], [49, 4, 1, "", "f1_score"], [50, 4, 1, "", "fbeta_score"], [51, 4, 1, "", "multiclass_f1_score"], [52, 4, 1, "", "multiclass_fbeta_score"], [53, 4, 1, "", "multilabel_f1_score"], [54, 4, 1, "", "multilabel_fbeta_score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[56, 4, 1, "", "binary_precision"], [57, 4, 1, "", "binary_recall"], [58, 4, 1, "", "multiclass_precision"], [59, 4, 1, "", "multiclass_recall"], [60, 4, 1, "", "multilabel_precision"], [61, 4, 1, "", "multilabel_recall"], [62, 4, 1, "", "precision"], [63, 4, 1, "", "recall"]], "cyclops.evaluate.metrics.functional.roc": [[66, 4, 1, "", "binary_roc_curve"], [67, 4, 1, "", "multiclass_roc_curve"], [68, 4, 1, "", "multilabel_roc_curve"], [69, 4, 1, "", "roc_curve"]], "cyclops.evaluate.metrics.metric": [[74, 1, 1, "", "Metric"], [75, 1, 1, "", "MetricCollection"], [76, 1, 1, "", "OperatorMetric"]], "cyclops.evaluate.metrics.metric.Metric": [[74, 2, 1, "", "__add__"], [74, 2, 1, "", "__call__"], [74, 2, 1, "", "__init__"], [74, 2, 1, "", "__mul__"], [74, 2, 1, "", "add_state"], [74, 2, 1, "", "clone"], [74, 2, 1, "", "compute"], [74, 5, 1, "", "name"], [74, 2, 1, "", "reset_state"], [74, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.metric.MetricCollection": [[75, 2, 1, "", "__call__"], [75, 2, 1, "", "__init__"], [75, 2, 1, "", "add_metrics"], [75, 2, 1, "", "clear"], [75, 2, 1, "", "clone"], [75, 2, 1, "", "compute"], [75, 2, 1, "", "get"], [75, 2, 1, "", "items"], [75, 2, 1, "", "keys"], [75, 2, 1, "", "pop"], [75, 2, 1, "", "popitem"], [75, 2, 1, "", "reset_state"], [75, 2, 1, "", "setdefault"], [75, 2, 1, "", "update"], [75, 2, 1, "", "update_state"], [75, 2, 1, "", "values"]], "cyclops.evaluate.metrics.metric.OperatorMetric": [[76, 2, 1, "", "__add__"], [76, 2, 1, "", "__call__"], [76, 2, 1, "", "__init__"], [76, 2, 1, "", "__mul__"], [76, 2, 1, "", "add_state"], [76, 2, 1, "", "clone"], [76, 2, 1, "", "compute"], [76, 2, 1, "", "reset_state"], [76, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall": [[78, 1, 1, "", "BinaryPrecision"], [79, 1, 1, "", "BinaryRecall"], [80, 1, 1, "", "MulticlassPrecision"], [81, 1, 1, "", "MulticlassRecall"], [82, 1, 1, "", "MultilabelPrecision"], [83, 1, 1, "", "MultilabelRecall"], [84, 1, 1, "", "Precision"], [85, 1, 1, "", "Recall"]], "cyclops.evaluate.metrics.precision_recall.BinaryPrecision": [[78, 2, 1, "", "__add__"], [78, 2, 1, "", "__call__"], [78, 2, 1, "", "__init__"], [78, 2, 1, "", "__mul__"], [78, 2, 1, "", "add_state"], [78, 2, 1, "", "clone"], [78, 2, 1, "", "compute"], [78, 2, 1, "", "reset_state"], [78, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.BinaryRecall": [[79, 2, 1, "", "__add__"], [79, 2, 1, "", "__call__"], [79, 2, 1, "", "__init__"], [79, 2, 1, "", "__mul__"], [79, 2, 1, "", "add_state"], [79, 2, 1, "", "clone"], [79, 2, 1, "", "compute"], [79, 2, 1, "", "reset_state"], [79, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision": [[80, 2, 1, "", "__add__"], [80, 2, 1, "", "__call__"], [80, 2, 1, "", "__init__"], [80, 2, 1, "", "__mul__"], [80, 2, 1, "", "add_state"], [80, 2, 1, "", "clone"], [80, 2, 1, "", "compute"], [80, 2, 1, "", "reset_state"], [80, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MulticlassRecall": [[81, 2, 1, "", "__add__"], [81, 2, 1, "", "__call__"], [81, 2, 1, "", "__init__"], [81, 2, 1, "", "__mul__"], [81, 2, 1, "", "add_state"], [81, 2, 1, "", "clone"], [81, 2, 1, "", "compute"], [81, 2, 1, "", "reset_state"], [81, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision": [[82, 2, 1, "", "__add__"], [82, 2, 1, "", "__call__"], [82, 2, 1, "", "__init__"], [82, 2, 1, "", "__mul__"], [82, 2, 1, "", "add_state"], [82, 2, 1, "", "clone"], [82, 2, 1, "", "compute"], [82, 2, 1, "", "reset_state"], [82, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MultilabelRecall": [[83, 2, 1, "", "__add__"], [83, 2, 1, "", "__call__"], [83, 2, 1, "", "__init__"], [83, 2, 1, "", "__mul__"], [83, 2, 1, "", "add_state"], [83, 2, 1, "", "clone"], [83, 2, 1, "", "compute"], [83, 2, 1, "", "reset_state"], [83, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.Precision": [[84, 2, 1, "", "__add__"], [84, 2, 1, "", "__call__"], [84, 2, 1, "", "__init__"], [84, 2, 1, "", "__mul__"], [84, 2, 1, "", "add_state"], [84, 2, 1, "", "clone"], [84, 2, 1, "", "compute"], [84, 2, 1, "", "reset_state"], [84, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.Recall": [[85, 2, 1, "", "__add__"], [85, 2, 1, "", "__call__"], [85, 2, 1, "", "__init__"], [85, 2, 1, "", "__mul__"], [85, 2, 1, "", "add_state"], [85, 2, 1, "", "clone"], [85, 2, 1, "", "compute"], [85, 2, 1, "", "reset_state"], [85, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve": [[87, 1, 1, "", "BinaryPrecisionRecallCurve"], [88, 1, 1, "", "MulticlassPrecisionRecallCurve"], [89, 1, 1, "", "MultilabelPrecisionRecallCurve"], [90, 1, 1, "", "PrecisionRecallCurve"]], "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve": [[87, 2, 1, "", "__add__"], [87, 2, 1, "", "__call__"], [87, 2, 1, "", "__init__"], [87, 2, 1, "", "__mul__"], [87, 2, 1, "", "add_state"], [87, 2, 1, "", "clone"], [87, 2, 1, "", "compute"], [87, 2, 1, "", "reset_state"], [87, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve": [[88, 2, 1, "", "__add__"], [88, 2, 1, "", "__call__"], [88, 2, 1, "", "__init__"], [88, 2, 1, "", "__mul__"], [88, 2, 1, "", "add_state"], [88, 2, 1, "", "clone"], [88, 2, 1, "", "compute"], [88, 2, 1, "", "reset_state"], [88, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve": [[89, 2, 1, "", "__add__"], [89, 2, 1, "", "__call__"], [89, 2, 1, "", "__init__"], [89, 2, 1, "", "__mul__"], [89, 2, 1, "", "add_state"], [89, 2, 1, "", "clone"], [89, 2, 1, "", "compute"], [89, 2, 1, "", "reset_state"], [89, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve": [[90, 2, 1, "", "__add__"], [90, 2, 1, "", "__call__"], [90, 2, 1, "", "__init__"], [90, 2, 1, "", "__mul__"], [90, 2, 1, "", "add_state"], [90, 2, 1, "", "clone"], [90, 2, 1, "", "compute"], [90, 2, 1, "", "reset_state"], [90, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc": [[92, 1, 1, "", "BinaryROCCurve"], [93, 1, 1, "", "MulticlassROCCurve"], [94, 1, 1, "", "MultilabelROCCurve"], [95, 1, 1, "", "ROCCurve"]], "cyclops.evaluate.metrics.roc.BinaryROCCurve": [[92, 2, 1, "", "__add__"], [92, 2, 1, "", "__call__"], [92, 2, 1, "", "__init__"], [92, 2, 1, "", "__mul__"], [92, 2, 1, "", "add_state"], [92, 2, 1, "", "clone"], [92, 2, 1, "", "compute"], [92, 2, 1, "", "reset_state"], [92, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.MulticlassROCCurve": [[93, 2, 1, "", "__add__"], [93, 2, 1, "", "__call__"], [93, 2, 1, "", "__init__"], [93, 2, 1, "", "__mul__"], [93, 2, 1, "", "add_state"], [93, 2, 1, "", "clone"], [93, 2, 1, "", "compute"], [93, 2, 1, "", "reset_state"], [93, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.MultilabelROCCurve": [[94, 2, 1, "", "__add__"], [94, 2, 1, "", "__call__"], [94, 2, 1, "", "__init__"], [94, 2, 1, "", "__mul__"], [94, 2, 1, "", "add_state"], [94, 2, 1, "", "clone"], [94, 2, 1, "", "compute"], [94, 2, 1, "", "reset_state"], [94, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.ROCCurve": [[95, 2, 1, "", "__add__"], [95, 2, 1, "", "__call__"], [95, 2, 1, "", "__init__"], [95, 2, 1, "", "__mul__"], [95, 2, 1, "", "add_state"], [95, 2, 1, "", "clone"], [95, 2, 1, "", "compute"], [95, 2, 1, "", "reset_state"], [95, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity": [[97, 1, 1, "", "BinarySensitivity"], [98, 1, 1, "", "MulticlassSensitivity"], [99, 1, 1, "", "MultilabelSensitivity"], [100, 1, 1, "", "Sensitivity"]], "cyclops.evaluate.metrics.sensitivity.BinarySensitivity": [[97, 2, 1, "", "__add__"], [97, 2, 1, "", "__call__"], [97, 2, 1, "", "__init__"], [97, 2, 1, "", "__mul__"], [97, 2, 1, "", "add_state"], [97, 2, 1, "", "clone"], [97, 2, 1, "", "compute"], [97, 2, 1, "", "reset_state"], [97, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity": [[98, 2, 1, "", "__add__"], [98, 2, 1, "", "__call__"], [98, 2, 1, "", "__init__"], [98, 2, 1, "", "__mul__"], [98, 2, 1, "", "add_state"], [98, 2, 1, "", "clone"], [98, 2, 1, "", "compute"], [98, 2, 1, "", "reset_state"], [98, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity": [[99, 2, 1, "", "__add__"], [99, 2, 1, "", "__call__"], [99, 2, 1, "", "__init__"], [99, 2, 1, "", "__mul__"], [99, 2, 1, "", "add_state"], [99, 2, 1, "", "clone"], [99, 2, 1, "", "compute"], [99, 2, 1, "", "reset_state"], [99, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.Sensitivity": [[100, 2, 1, "", "__add__"], [100, 2, 1, "", "__call__"], [100, 2, 1, "", "__init__"], [100, 2, 1, "", "__mul__"], [100, 2, 1, "", "add_state"], [100, 2, 1, "", "clone"], [100, 2, 1, "", "compute"], [100, 2, 1, "", "reset_state"], [100, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity": [[102, 1, 1, "", "BinarySpecificity"], [103, 1, 1, "", "MulticlassSpecificity"], [104, 1, 1, "", "MultilabelSpecificity"], [105, 1, 1, "", "Specificity"]], "cyclops.evaluate.metrics.specificity.BinarySpecificity": [[102, 2, 1, "", "__add__"], [102, 2, 1, "", "__call__"], [102, 2, 1, "", "__init__"], [102, 2, 1, "", "__mul__"], [102, 2, 1, "", "add_state"], [102, 2, 1, "", "clone"], [102, 2, 1, "", "compute"], [102, 2, 1, "", "reset_state"], [102, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.MulticlassSpecificity": [[103, 2, 1, "", "__add__"], [103, 2, 1, "", "__call__"], [103, 2, 1, "", "__init__"], [103, 2, 1, "", "__mul__"], [103, 2, 1, "", "add_state"], [103, 2, 1, "", "clone"], [103, 2, 1, "", "compute"], [103, 2, 1, "", "reset_state"], [103, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.MultilabelSpecificity": [[104, 2, 1, "", "__add__"], [104, 2, 1, "", "__call__"], [104, 2, 1, "", "__init__"], [104, 2, 1, "", "__mul__"], [104, 2, 1, "", "add_state"], [104, 2, 1, "", "clone"], [104, 2, 1, "", "compute"], [104, 2, 1, "", "reset_state"], [104, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.Specificity": [[105, 2, 1, "", "__add__"], [105, 2, 1, "", "__call__"], [105, 2, 1, "", "__init__"], [105, 2, 1, "", "__mul__"], [105, 2, 1, "", "add_state"], [105, 2, 1, "", "clone"], [105, 2, 1, "", "compute"], [105, 2, 1, "", "reset_state"], [105, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores": [[107, 1, 1, "", "BinaryStatScores"], [108, 1, 1, "", "MulticlassStatScores"], [109, 1, 1, "", "MultilabelStatScores"], [110, 1, 1, "", "StatScores"]], "cyclops.evaluate.metrics.stat_scores.BinaryStatScores": [[107, 2, 1, "", "__add__"], [107, 2, 1, "", "__call__"], [107, 2, 1, "", "__init__"], [107, 2, 1, "", "__mul__"], [107, 2, 1, "", "add_state"], [107, 2, 1, "", "clone"], [107, 2, 1, "", "compute"], [107, 2, 1, "", "reset_state"], [107, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores": [[108, 2, 1, "", "__add__"], [108, 2, 1, "", "__call__"], [108, 2, 1, "", "__init__"], [108, 2, 1, "", "__mul__"], [108, 2, 1, "", "add_state"], [108, 2, 1, "", "clone"], [108, 2, 1, "", "compute"], [108, 2, 1, "", "reset_state"], [108, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores": [[109, 2, 1, "", "__add__"], [109, 2, 1, "", "__call__"], [109, 2, 1, "", "__init__"], [109, 2, 1, "", "__mul__"], [109, 2, 1, "", "add_state"], [109, 2, 1, "", "clone"], [109, 2, 1, "", "compute"], [109, 2, 1, "", "reset_state"], [109, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.StatScores": [[110, 2, 1, "", "__add__"], [110, 2, 1, "", "__call__"], [110, 2, 1, "", "__init__"], [110, 2, 1, "", "__mul__"], [110, 2, 1, "", "add_state"], [110, 2, 1, "", "clone"], [110, 2, 1, "", "compute"], [110, 5, 1, "", "name"], [110, 2, 1, "", "reset_state"], [110, 2, 1, "", "update_state"]], "cyclops.monitor": [[111, 0, 0, "-", "clinical_applicator"], [113, 0, 0, "-", "synthetic_applicator"]], "cyclops.monitor.clinical_applicator": [[112, 1, 1, "", "ClinicalShiftApplicator"]], "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator": [[112, 2, 1, "", "age"], [112, 2, 1, "", "apply_shift"], [112, 2, 1, "", "custom"], [112, 2, 1, "", "hospital_type"], [112, 2, 1, "", "month"], [112, 2, 1, "", "sex"], [112, 2, 1, "", "time"]], "cyclops.monitor.synthetic_applicator": [[114, 1, 1, "", "SyntheticShiftApplicator"], [115, 4, 1, "", "binary_noise_shift"], [116, 4, 1, "", "feature_association_shift"], [117, 4, 1, "", "feature_swap_shift"], [118, 4, 1, "", "gaussian_noise_shift"], [119, 4, 1, "", "knockout_shift"]], "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator": [[114, 2, 1, "", "apply_shift"]], "cyclops.report": [[120, 0, 0, "-", "report"]], "cyclops.report.report": [[121, 1, 1, "", "ModelCardReport"]], "cyclops.report.report.ModelCardReport": [[121, 2, 1, "", "export"], [121, 2, 1, "", "from_json_file"], [121, 2, 1, "", "log_citation"], [121, 2, 1, "", "log_dataset"], [121, 2, 1, "", "log_descriptor"], [121, 2, 1, "", "log_fairness_assessment"], [121, 2, 1, "", "log_from_dict"], [121, 2, 1, "", "log_image"], [121, 2, 1, "", "log_license"], [121, 2, 1, "", "log_model_parameters"], [121, 2, 1, "", "log_owner"], [121, 2, 1, "", "log_performance_metrics"], [121, 2, 1, "", "log_plotly_figure"], [121, 2, 1, "", "log_quantitative_analysis"], [121, 2, 1, "", "log_reference"], [121, 2, 1, "", "log_regulation"], [121, 2, 1, "", "log_risk"], [121, 2, 1, "", "log_use_case"], [121, 2, 1, "", "log_user"], [121, 2, 1, "", "log_version"]], "cyclops.tasks": [[122, 0, 0, "-", "classification"]], "cyclops.tasks.classification": [[123, 1, 1, "", "BinaryTabularClassificationTask"], [124, 1, 1, "", "MultilabelImageClassificationTask"]], "cyclops.tasks.classification.BinaryTabularClassificationTask": [[123, 2, 1, "", "__init__"], [123, 2, 1, "", "add_model"], [123, 5, 1, "", "data_type"], [123, 2, 1, "", "evaluate"], [123, 2, 1, "", "get_model"], [123, 2, 1, "", "list_models"], [123, 2, 1, "", "list_models_params"], [123, 2, 1, "", "load_model"], [123, 5, 1, "", "models_count"], [123, 2, 1, "", "predict"], [123, 2, 1, "", "save_model"], [123, 5, 1, "", "task_type"], [123, 2, 1, "", "train"]], "cyclops.tasks.classification.MultilabelImageClassificationTask": [[124, 2, 1, "", "__init__"], [124, 2, 1, "", "add_model"], [124, 5, 1, "", "data_type"], [124, 2, 1, "", "evaluate"], [124, 2, 1, "", "get_model"], [124, 2, 1, "", "list_models"], [124, 2, 1, "", "list_models_params"], [124, 2, 1, "", "load_model"], [124, 5, 1, "", "models_count"], [124, 2, 1, "", "predict"], [124, 2, 1, "", "save_model"], [124, 5, 1, "", "task_type"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:attribute", "4": "py:function", "5": "py:property"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "attribute", "Python attribute"], "4": ["py", "function", "Python function"], "5": ["py", "property", "Python property"]}, "titleterms": {"api": [0, 136], "refer": 0, "contribut": [1, 3], "cyclop": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129], "pre": 1, "commit": 1, "hook": 1, "code": 1, "guidelin": 1, "welcom": 2, "": 2, "document": [2, 3], "content": 2, "get": 3, "start": 3, "instal": 3, "us": [3, 134, 137], "pip": 3, "develop": 3, "poetri": 3, "notebook": 3, "citat": 3, "data": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 125, 131, 132, 135, 137], "featur": [4, 5, 125, 131, 132, 135], "medical_imag": [4, 5], "medicalimag": 5, "slicer": [6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "slicespec": 7, "compound_filt": 8, "filter_datetim": 9, "filter_non_nul": 10, "filter_rang": 11, "filter_string_contain": 12, "filter_valu": 13, "is_datetim": 14, "overal": 15, "evalu": [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 126, 131, 132, 135], "fair": [18, 19, 20, 21, 22, 126], "config": [18, 19], "fairnessconfig": 19, "evaluate_fair": 21, "warn_too_many_unique_valu": 22, "metric": [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 126, 133], "accuraci": [23, 24, 25, 26, 27, 44], "binaryaccuraci": 25, "multiclassaccuraci": 26, "multilabelaccuraci": 27, "auroc": [28, 29, 30, 31, 32, 45, 133], "binaryauroc": 30, "multiclassauroc": 31, "multilabelauroc": 32, "f_beta": [33, 34, 35, 36, 37, 38, 39, 40, 41, 46, 47, 48, 49, 50, 51, 52, 53, 54], "binaryf1scor": 34, "binaryfbetascor": 35, "f1score": 36, "fbetascor": 37, "multiclassf1scor": 38, "multiclassfbetascor": 39, "multilabelf1scor": 40, "multilabelfbetascor": 41, "factori": [42, 43], "create_metr": 43, "function": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 126], "binary_f1_scor": 47, "binary_fbeta_scor": 48, "f1_score": 49, "fbeta_scor": 50, "multiclass_f1_scor": 51, "multiclass_fbeta_scor": 52, "multilabel_f1_scor": 53, "multilabel_fbeta_scor": 54, "precision_recal": [55, 56, 57, 58, 59, 60, 61, 62, 63, 77, 78, 79, 80, 81, 82, 83, 84, 85], "binary_precis": 56, "binary_recal": 57, "multiclass_precis": 58, "multiclass_recal": 59, "multilabel_precis": 60, "multilabel_recal": 61, "precis": [62, 84], "recal": [63, 85], "precision_recall_curv": [64, 86, 87, 88, 89, 90], "roc": [65, 66, 67, 68, 69, 91, 92, 93, 94, 95], "binary_roc_curv": 66, "multiclass_roc_curv": 67, "multilabel_roc_curv": 68, "roc_curv": 69, "sensit": [70, 96, 97, 98, 99, 100, 134], "specif": [71, 101, 102, 103, 104, 105], "stat_scor": [72, 106, 107, 108, 109, 110], "metriccollect": 75, "operatormetr": 76, "binaryprecis": 78, "binaryrecal": 79, "multiclassprecis": 80, "multiclassrecal": 81, "multilabelprecis": 82, "multilabelrecal": 83, "binaryprecisionrecallcurv": 87, "multiclassprecisionrecallcurv": 88, "multilabelprecisionrecallcurv": 89, "precisionrecallcurv": 90, "binaryroccurv": 92, "multiclassroccurv": 93, "multilabelroccurv": 94, "roccurv": 95, "binarysensit": 97, "multiclasssensit": 98, "multilabelsensit": 99, "binaryspecif": 102, "multiclassspecif": 103, "multilabelspecif": 104, "binarystatscor": 107, "multiclassstatscor": 108, "multilabelstatscor": 109, "statscor": 110, "monitor": [111, 112, 113, 114, 115, 116, 117, 118, 119, 127, 136], "clinical_appl": [111, 112], "clinicalshiftappl": 112, "synthetic_appl": [113, 114, 115, 116, 117, 118, 119], "syntheticshiftappl": 114, "binary_noise_shift": 115, "feature_association_shift": 116, "feature_swap_shift": 117, "gaussian_noise_shift": 118, "knockout_shift": 119, "report": [120, 121, 128, 131, 132, 133, 135], "modelcardreport": 121, "task": [122, 123, 124, 129, 131, 132, 135], "classif": [122, 123, 124, 133, 137], "binarytabularclassificationtask": 123, "multilabelimageclassificationtask": 124, "tutori": [130, 134], "heart": [131, 137], "failur": [131, 137], "predict": [131, 132, 135, 137], "import": [131, 132, 133, 134, 135], "librari": [131, 132, 133, 134, 135], "constant": [131, 132, 135], "load": [131, 133, 134], "sex": [131, 133], "valu": 131, "ag": [131, 132, 133, 135], "distribut": [131, 132, 135], "outcom": [131, 132, 135], "identifi": [131, 132, 135], "type": [131, 132, 135], "creat": [131, 132, 135], "preprocessor": [131, 132, 135], "hug": [131, 132, 135], "face": [131, 132, 135], "dataset": [131, 132, 133, 134, 135], "model": [131, 132, 133, 134, 135], "creation": [131, 132, 133, 135], "train": [131, 132, 134, 135], "perform": [131, 133], "over": 131, "time": 131, "gener": [131, 132, 133, 134, 135], "mortal": [132, 137], "queri": [132, 135], "process": 132, "comput": [132, 135], "label": [132, 135], "inspect": [132, 135], "preprocess": [132, 135], "drop": [132, 135], "nan": [132, 135], "base": [132, 135], "nan_threshold": [132, 135], "gender": [132, 135], "chest": [133, 137], "x": [133, 137], "rai": [133, 137], "diseas": 133, "histor": 133, "initi": 133, "period": 133, "multilabel": 133, "pathologi": 133, "log": 133, "test": [133, 134], "w": 133, "threshold": 133, "popul": 133, "card": 133, "field": 133, "nihcxr": 134, "clinic": 134, "drift": 134, "experi": 134, "exampl": [134, 137], "1": 134, "sourc": 134, "target": 134, "2": 134, "3": 134, "dimension": 134, "reduct": 134, "techniqu": 134, "differ": 134, "4": 134, "shift": 134, "5": 134, "roll": 134, "window": 134, "synthet": 134, "timestamp": 134, "biweekli": 134, "prolong": [135, 137], "length": [135, 137], "stai": [135, 137], "case": 137, "tabular": 137, "kaggl": 137, "mimiciv": 137, "synthea": 137, "imag": 137, "nih": 137}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1, "sphinx.ext.intersphinx": 1, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"API Reference": [[0, "api-reference"]], "Contributing to cyclops": [[1, "contributing-to-cyclops"]], "Pre-commit hooks": [[1, "pre-commit-hooks"]], "Coding guidelines": [[1, "coding-guidelines"]], "Welcome to cyclops\u2019s documentation!": [[2, "welcome-to-cyclops-s-documentation"]], "Contents:": [[2, null]], "\ud83d\udc23 Getting Started": [[3, "getting-started"]], "Installing cyclops using pip": [[3, "installing-cyclops-using-pip"]], "\ud83e\uddd1\ud83c\udfff\u200d\ud83d\udcbb Developing": [[3, "developing"]], "Using poetry": [[3, "using-poetry"]], "Contributing": [[3, "contributing"]], "\ud83d\udcda Documentation": [[3, "documentation"]], "\ud83d\udcd3 Notebooks": [[3, "notebooks"]], "\ud83c\udf93 Citation": [[3, "citation"]], "cyclops.data.features.medical_image": [[4, "module-cyclops.data.features.medical_image"]], "cyclops.data.features.medical_image.MedicalImage": [[5, "cyclops-data-features-medical-image-medicalimage"]], "cyclops.data.slicer": [[6, "module-cyclops.data.slicer"]], "cyclops.data.slicer.SliceSpec": [[7, "cyclops-data-slicer-slicespec"]], "cyclops.data.slicer.compound_filter": [[8, "cyclops-data-slicer-compound-filter"]], "cyclops.data.slicer.filter_datetime": [[9, "cyclops-data-slicer-filter-datetime"]], "cyclops.data.slicer.filter_non_null": [[10, "cyclops-data-slicer-filter-non-null"]], "cyclops.data.slicer.filter_range": [[11, "cyclops-data-slicer-filter-range"]], "cyclops.data.slicer.filter_string_contains": [[12, "cyclops-data-slicer-filter-string-contains"]], "cyclops.data.slicer.filter_value": [[13, "cyclops-data-slicer-filter-value"]], "cyclops.data.slicer.is_datetime": [[14, "cyclops-data-slicer-is-datetime"]], "cyclops.data.slicer.overall": [[15, "cyclops-data-slicer-overall"]], "cyclops.evaluate.evaluator": [[16, "module-cyclops.evaluate.evaluator"]], "cyclops.evaluate.evaluator.evaluate": [[17, "cyclops-evaluate-evaluator-evaluate"]], "cyclops.evaluate.fairness.config": [[18, "module-cyclops.evaluate.fairness.config"]], "cyclops.evaluate.fairness.config.FairnessConfig": [[19, "cyclops-evaluate-fairness-config-fairnessconfig"]], "cyclops.evaluate.fairness.evaluator": [[20, "module-cyclops.evaluate.fairness.evaluator"]], "cyclops.evaluate.fairness.evaluator.evaluate_fairness": [[21, "cyclops-evaluate-fairness-evaluator-evaluate-fairness"]], "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values": [[22, "cyclops-evaluate-fairness-evaluator-warn-too-many-unique-values"]], "cyclops.evaluate.metrics.accuracy": [[23, "module-cyclops.evaluate.metrics.accuracy"]], "cyclops.evaluate.metrics.accuracy.Accuracy": [[24, "cyclops-evaluate-metrics-accuracy-accuracy"]], "cyclops.evaluate.metrics.accuracy.BinaryAccuracy": [[25, "cyclops-evaluate-metrics-accuracy-binaryaccuracy"]], "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy": [[26, "cyclops-evaluate-metrics-accuracy-multiclassaccuracy"]], "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy": [[27, "cyclops-evaluate-metrics-accuracy-multilabelaccuracy"]], "cyclops.evaluate.metrics.auroc": [[28, "module-cyclops.evaluate.metrics.auroc"]], "cyclops.evaluate.metrics.auroc.AUROC": [[29, "cyclops-evaluate-metrics-auroc-auroc"]], "cyclops.evaluate.metrics.auroc.BinaryAUROC": [[30, "cyclops-evaluate-metrics-auroc-binaryauroc"]], "cyclops.evaluate.metrics.auroc.MulticlassAUROC": [[31, "cyclops-evaluate-metrics-auroc-multiclassauroc"]], "cyclops.evaluate.metrics.auroc.MultilabelAUROC": [[32, "cyclops-evaluate-metrics-auroc-multilabelauroc"]], "cyclops.evaluate.metrics.f_beta": [[33, "module-cyclops.evaluate.metrics.f_beta"]], "cyclops.evaluate.metrics.f_beta.BinaryF1Score": [[34, "cyclops-evaluate-metrics-f-beta-binaryf1score"]], "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore": [[35, "cyclops-evaluate-metrics-f-beta-binaryfbetascore"]], "cyclops.evaluate.metrics.f_beta.F1Score": [[36, "cyclops-evaluate-metrics-f-beta-f1score"]], "cyclops.evaluate.metrics.f_beta.FbetaScore": [[37, "cyclops-evaluate-metrics-f-beta-fbetascore"]], "cyclops.evaluate.metrics.f_beta.MulticlassF1Score": [[38, "cyclops-evaluate-metrics-f-beta-multiclassf1score"]], "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore": [[39, "cyclops-evaluate-metrics-f-beta-multiclassfbetascore"]], "cyclops.evaluate.metrics.f_beta.MultilabelF1Score": [[40, "cyclops-evaluate-metrics-f-beta-multilabelf1score"]], "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore": [[41, "cyclops-evaluate-metrics-f-beta-multilabelfbetascore"]], "cyclops.evaluate.metrics.factory": [[42, "module-cyclops.evaluate.metrics.factory"]], "cyclops.evaluate.metrics.factory.create_metric": [[43, "cyclops-evaluate-metrics-factory-create-metric"]], "cyclops.evaluate.metrics.functional.accuracy": [[44, "module-cyclops.evaluate.metrics.functional.accuracy"]], "cyclops.evaluate.metrics.functional.auroc": [[45, "module-cyclops.evaluate.metrics.functional.auroc"]], "cyclops.evaluate.metrics.functional.f_beta": [[46, "module-cyclops.evaluate.metrics.functional.f_beta"]], "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score": [[47, "cyclops-evaluate-metrics-functional-f-beta-binary-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score": [[48, "cyclops-evaluate-metrics-functional-f-beta-binary-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.f1_score": [[49, "cyclops-evaluate-metrics-functional-f-beta-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.fbeta_score": [[50, "cyclops-evaluate-metrics-functional-f-beta-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score": [[51, "cyclops-evaluate-metrics-functional-f-beta-multiclass-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score": [[52, "cyclops-evaluate-metrics-functional-f-beta-multiclass-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score": [[53, "cyclops-evaluate-metrics-functional-f-beta-multilabel-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score": [[54, "cyclops-evaluate-metrics-functional-f-beta-multilabel-fbeta-score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[55, "module-cyclops.evaluate.metrics.functional.precision_recall"]], "cyclops.evaluate.metrics.functional.precision_recall.binary_precision": [[56, "cyclops-evaluate-metrics-functional-precision-recall-binary-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.binary_recall": [[57, "cyclops-evaluate-metrics-functional-precision-recall-binary-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision": [[58, "cyclops-evaluate-metrics-functional-precision-recall-multiclass-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall": [[59, "cyclops-evaluate-metrics-functional-precision-recall-multiclass-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision": [[60, "cyclops-evaluate-metrics-functional-precision-recall-multilabel-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall": [[61, "cyclops-evaluate-metrics-functional-precision-recall-multilabel-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.precision": [[62, "cyclops-evaluate-metrics-functional-precision-recall-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.recall": [[63, "cyclops-evaluate-metrics-functional-precision-recall-recall"]], "cyclops.evaluate.metrics.functional.precision_recall_curve": [[64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"]], "cyclops.evaluate.metrics.functional.roc": [[65, "module-cyclops.evaluate.metrics.functional.roc"]], "cyclops.evaluate.metrics.functional.roc.binary_roc_curve": [[66, "cyclops-evaluate-metrics-functional-roc-binary-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve": [[67, "cyclops-evaluate-metrics-functional-roc-multiclass-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve": [[68, "cyclops-evaluate-metrics-functional-roc-multilabel-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.roc_curve": [[69, "cyclops-evaluate-metrics-functional-roc-roc-curve"]], "cyclops.evaluate.metrics.functional.sensitivity": [[70, "module-cyclops.evaluate.metrics.functional.sensitivity"]], "cyclops.evaluate.metrics.functional.specificity": [[71, "module-cyclops.evaluate.metrics.functional.specificity"]], "cyclops.evaluate.metrics.functional.stat_scores": [[72, "module-cyclops.evaluate.metrics.functional.stat_scores"]], "cyclops.evaluate.metrics.metric": [[73, "module-cyclops.evaluate.metrics.metric"]], "cyclops.evaluate.metrics.metric.Metric": [[74, "cyclops-evaluate-metrics-metric-metric"]], "cyclops.evaluate.metrics.metric.MetricCollection": [[75, "cyclops-evaluate-metrics-metric-metriccollection"]], "cyclops.evaluate.metrics.metric.OperatorMetric": [[76, "cyclops-evaluate-metrics-metric-operatormetric"]], "cyclops.evaluate.metrics.precision_recall": [[77, "module-cyclops.evaluate.metrics.precision_recall"]], "cyclops.evaluate.metrics.precision_recall.BinaryPrecision": [[78, "cyclops-evaluate-metrics-precision-recall-binaryprecision"]], "cyclops.evaluate.metrics.precision_recall.BinaryRecall": [[79, "cyclops-evaluate-metrics-precision-recall-binaryrecall"]], "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision": [[80, "cyclops-evaluate-metrics-precision-recall-multiclassprecision"]], "cyclops.evaluate.metrics.precision_recall.MulticlassRecall": [[81, "cyclops-evaluate-metrics-precision-recall-multiclassrecall"]], "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision": [[82, "cyclops-evaluate-metrics-precision-recall-multilabelprecision"]], "cyclops.evaluate.metrics.precision_recall.MultilabelRecall": [[83, "cyclops-evaluate-metrics-precision-recall-multilabelrecall"]], "cyclops.evaluate.metrics.precision_recall.Precision": [[84, "cyclops-evaluate-metrics-precision-recall-precision"]], "cyclops.evaluate.metrics.precision_recall.Recall": [[85, "cyclops-evaluate-metrics-precision-recall-recall"]], "cyclops.evaluate.metrics.precision_recall_curve": [[86, "module-cyclops.evaluate.metrics.precision_recall_curve"]], "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve": [[87, "cyclops-evaluate-metrics-precision-recall-curve-binaryprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve": [[88, "cyclops-evaluate-metrics-precision-recall-curve-multiclassprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve": [[89, "cyclops-evaluate-metrics-precision-recall-curve-multilabelprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve": [[90, "cyclops-evaluate-metrics-precision-recall-curve-precisionrecallcurve"]], "cyclops.evaluate.metrics.roc": [[91, "module-cyclops.evaluate.metrics.roc"]], "cyclops.evaluate.metrics.roc.BinaryROCCurve": [[92, "cyclops-evaluate-metrics-roc-binaryroccurve"]], "cyclops.evaluate.metrics.roc.MulticlassROCCurve": [[93, "cyclops-evaluate-metrics-roc-multiclassroccurve"]], "cyclops.evaluate.metrics.roc.MultilabelROCCurve": [[94, "cyclops-evaluate-metrics-roc-multilabelroccurve"]], "cyclops.evaluate.metrics.roc.ROCCurve": [[95, "cyclops-evaluate-metrics-roc-roccurve"]], "cyclops.evaluate.metrics.sensitivity": [[96, "module-cyclops.evaluate.metrics.sensitivity"]], "cyclops.evaluate.metrics.sensitivity.BinarySensitivity": [[97, "cyclops-evaluate-metrics-sensitivity-binarysensitivity"]], "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity": [[98, "cyclops-evaluate-metrics-sensitivity-multiclasssensitivity"]], "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity": [[99, "cyclops-evaluate-metrics-sensitivity-multilabelsensitivity"]], "cyclops.evaluate.metrics.sensitivity.Sensitivity": [[100, "cyclops-evaluate-metrics-sensitivity-sensitivity"]], "cyclops.evaluate.metrics.specificity": [[101, "module-cyclops.evaluate.metrics.specificity"]], "cyclops.evaluate.metrics.specificity.BinarySpecificity": [[102, "cyclops-evaluate-metrics-specificity-binaryspecificity"]], "cyclops.evaluate.metrics.specificity.MulticlassSpecificity": [[103, "cyclops-evaluate-metrics-specificity-multiclassspecificity"]], "cyclops.evaluate.metrics.specificity.MultilabelSpecificity": [[104, "cyclops-evaluate-metrics-specificity-multilabelspecificity"]], "cyclops.evaluate.metrics.specificity.Specificity": [[105, "cyclops-evaluate-metrics-specificity-specificity"]], "cyclops.evaluate.metrics.stat_scores": [[106, "module-cyclops.evaluate.metrics.stat_scores"]], "cyclops.evaluate.metrics.stat_scores.BinaryStatScores": [[107, "cyclops-evaluate-metrics-stat-scores-binarystatscores"]], "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores": [[108, "cyclops-evaluate-metrics-stat-scores-multiclassstatscores"]], "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores": [[109, "cyclops-evaluate-metrics-stat-scores-multilabelstatscores"]], "cyclops.evaluate.metrics.stat_scores.StatScores": [[110, "cyclops-evaluate-metrics-stat-scores-statscores"]], "cyclops.monitor.clinical_applicator": [[111, "module-cyclops.monitor.clinical_applicator"]], "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator": [[112, "cyclops-monitor-clinical-applicator-clinicalshiftapplicator"]], "cyclops.monitor.synthetic_applicator": [[113, "module-cyclops.monitor.synthetic_applicator"]], "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator": [[114, "cyclops-monitor-synthetic-applicator-syntheticshiftapplicator"]], "cyclops.monitor.synthetic_applicator.binary_noise_shift": [[115, "cyclops-monitor-synthetic-applicator-binary-noise-shift"]], "cyclops.monitor.synthetic_applicator.feature_association_shift": [[116, "cyclops-monitor-synthetic-applicator-feature-association-shift"]], "cyclops.monitor.synthetic_applicator.feature_swap_shift": [[117, "cyclops-monitor-synthetic-applicator-feature-swap-shift"]], "cyclops.monitor.synthetic_applicator.gaussian_noise_shift": [[118, "cyclops-monitor-synthetic-applicator-gaussian-noise-shift"]], "cyclops.monitor.synthetic_applicator.knockout_shift": [[119, "cyclops-monitor-synthetic-applicator-knockout-shift"]], "cyclops.report.report": [[120, "module-cyclops.report.report"]], "cyclops.report.report.ModelCardReport": [[121, "cyclops-report-report-modelcardreport"]], "cyclops.tasks.classification": [[122, "module-cyclops.tasks.classification"]], "cyclops.tasks.classification.BinaryTabularClassificationTask": [[123, "cyclops-tasks-classification-binarytabularclassificationtask"]], "cyclops.tasks.classification.MultilabelImageClassificationTask": [[124, "cyclops-tasks-classification-multilabelimageclassificationtask"]], "cyclops.data": [[125, "module-cyclops.data"]], "cyclops.data.features": [[125, "module-cyclops.data.features"]], "cyclops.evaluate": [[126, "module-cyclops.evaluate"]], "cyclops.evaluate.metrics": [[126, "module-cyclops.evaluate.metrics"]], "cyclops.evaluate.metrics.functional": [[126, "module-cyclops.evaluate.metrics.functional"]], "cyclops.evaluate.fairness": [[126, "module-cyclops.evaluate.fairness"]], "cyclops.monitor": [[127, "module-cyclops.monitor"]], "cyclops.report": [[128, "module-cyclops.report"]], "cyclops.tasks": [[129, "module-cyclops.tasks"]], "Tutorials": [[130, "tutorials"]], "Heart Failure Prediction": [[131, "Heart-Failure-Prediction"]], "Import Libraries": [[131, "Import-Libraries"], [132, "Import-Libraries"], [133, "Import-Libraries"], [135, "Import-Libraries"]], "Constants": [[131, "Constants"], [132, "Constants"], [135, "Constants"]], "Data Loading": [[131, "Data-Loading"]], "Sex values": [[131, "Sex-values"]], "Age distribution": [[131, "Age-distribution"], [132, "Age-distribution"], [135, "Age-distribution"]], "Outcome distribution": [[131, "Outcome-distribution"], [132, "Outcome-distribution"], [135, "Outcome-distribution"]], "Identifying feature types": [[131, "Identifying-feature-types"], [132, "Identifying-feature-types"], [135, "Identifying-feature-types"]], "Creating data preprocessors": [[131, "Creating-data-preprocessors"], [132, "Creating-data-preprocessors"], [135, "Creating-data-preprocessors"]], "Creating Hugging Face Dataset": [[131, "Creating-Hugging-Face-Dataset"], [132, "Creating-Hugging-Face-Dataset"], [135, "Creating-Hugging-Face-Dataset"]], "Model Creation": [[131, "Model-Creation"], [132, "Model-Creation"], [133, "Model-Creation"], [135, "Model-Creation"]], "Task Creation": [[131, "Task-Creation"], [132, "Task-Creation"], [135, "Task-Creation"]], "Training": [[131, "Training"], [132, "Training"], [135, "Training"]], "Prediction": [[131, "Prediction"], [132, "Prediction"], [135, "Prediction"]], "Evaluation": [[131, "Evaluation"], [132, "Evaluation"], [135, "Evaluation"]], "Performance over time": [[131, "Performance-over-time"]], "Report Generation": [[131, "Report-Generation"], [132, "Report-Generation"], [135, "Report-Generation"]], "Mortality Prediction": [[132, "Mortality-Prediction"]], "Data Querying & Processing": [[132, "Data-Querying-&-Processing"]], "Compute mortality (labels)": [[132, "Compute-mortality-(labels)"]], "Data Inspection and Preprocessing": [[132, "Data-Inspection-and-Preprocessing"], [135, "Data-Inspection-and-Preprocessing"]], "Drop NaNs based on the NAN_THRESHOLD": [[132, "Drop-NaNs-based-on-the-NAN_THRESHOLD"], [135, "Drop-NaNs-based-on-the-NAN_THRESHOLD"]], "Gender distribution": [[132, "Gender-distribution"], [135, "Gender-distribution"]], "Chest X-Ray Disease Classification": [[133, "Chest-X-Ray-Disease-Classification"]], "Generate Historical Reports": [[133, "Generate-Historical-Reports"]], "Initialize Periodic Report": [[133, "Initialize-Periodic-Report"]], "Load Dataset": [[133, "Load-Dataset"]], "Multilabel AUROC by Pathology and Sex": [[133, "Multilabel-AUROC-by-Pathology-and-Sex"]], "Multilabel AUROC by Pathology and Age": [[133, "Multilabel-AUROC-by-Pathology-and-Age"]], "Log Performance Metrics as Tests w/ Thresholds": [[133, "Log-Performance-Metrics-as-Tests-w/-Thresholds"]], "Populate Model Card Fields": [[133, "Populate-Model-Card-Fields"]], "NIHCXR Clinical Drift Experiments Tutorial": [[134, "NIHCXR-Clinical-Drift-Experiments-Tutorial"]], "Import Libraries and Load NIHCXR Dataset": [[134, "Import-Libraries-and-Load-NIHCXR-Dataset"]], "Example 1. Generate Source/Target Dataset for Experiments (1-2)": [[134, "Example-1.-Generate-Source/Target-Dataset-for-Experiments-(1-2)"]], "Example 2. Sensitivity test experiment with 3 dimensionality reduction techniques": [[134, "Example-2.-Sensitivity-test-experiment-with-3-dimensionality-reduction-techniques"]], "Example 3. Sensitivity test experiment with models trained on different datasets": [[134, "Example-3.-Sensitivity-test-experiment-with-models-trained-on-different-datasets"]], "Example 4. Sensitivity test experiment with different clinical shifts": [[134, "Example-4.-Sensitivity-test-experiment-with-different-clinical-shifts"]], "Example 5. Rolling window experiment with synthetic timestamps using biweekly window": [[134, "Example-5.-Rolling-window-experiment-with-synthetic-timestamps-using-biweekly-window"]], "Prolonged Length of Stay Prediction": [[135, "Prolonged-Length-of-Stay-Prediction"]], "Data Querying": [[135, "Data-Querying"]], "Compute length of stay (labels)": [[135, "Compute-length-of-stay-(labels)"]], "Length of stay distribution": [[135, "Length-of-stay-distribution"]], "monitor API": [[136, "monitor-api"]], "Example use cases": [[137, "example-use-cases"]], "Tabular data": [[137, "tabular-data"]], "Kaggle Heart Failure Prediction": [[137, "kaggle-heart-failure-prediction"]], "MIMICIV Mortality Prediction": [[137, "mimiciv-mortality-prediction"]], "Synthea Prolonged Length of Stay Prediction": [[137, "synthea-prolonged-length-of-stay-prediction"]], "Image data": [[137, "image-data"]], "NIH Chest X-ray classification": [[137, "nih-chest-x-ray-classification"]]}, "indexentries": {"cyclops.data.features.medical_image": [[4, "module-cyclops.data.features.medical_image"]], "module": [[4, "module-cyclops.data.features.medical_image"], [6, "module-cyclops.data.slicer"], [16, "module-cyclops.evaluate.evaluator"], [18, "module-cyclops.evaluate.fairness.config"], [20, "module-cyclops.evaluate.fairness.evaluator"], [23, "module-cyclops.evaluate.metrics.accuracy"], [28, "module-cyclops.evaluate.metrics.auroc"], [33, "module-cyclops.evaluate.metrics.f_beta"], [42, "module-cyclops.evaluate.metrics.factory"], [44, "module-cyclops.evaluate.metrics.functional.accuracy"], [45, "module-cyclops.evaluate.metrics.functional.auroc"], [46, "module-cyclops.evaluate.metrics.functional.f_beta"], [55, "module-cyclops.evaluate.metrics.functional.precision_recall"], [64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"], [65, "module-cyclops.evaluate.metrics.functional.roc"], [70, "module-cyclops.evaluate.metrics.functional.sensitivity"], [71, "module-cyclops.evaluate.metrics.functional.specificity"], [72, "module-cyclops.evaluate.metrics.functional.stat_scores"], [73, "module-cyclops.evaluate.metrics.metric"], [77, "module-cyclops.evaluate.metrics.precision_recall"], [86, "module-cyclops.evaluate.metrics.precision_recall_curve"], [91, "module-cyclops.evaluate.metrics.roc"], [96, "module-cyclops.evaluate.metrics.sensitivity"], [101, "module-cyclops.evaluate.metrics.specificity"], [106, "module-cyclops.evaluate.metrics.stat_scores"], [111, "module-cyclops.monitor.clinical_applicator"], [113, "module-cyclops.monitor.synthetic_applicator"], [120, "module-cyclops.report.report"], [122, "module-cyclops.tasks.classification"], [125, "module-cyclops.data"], [125, "module-cyclops.data.features"], [126, "module-cyclops.evaluate"], [126, "module-cyclops.evaluate.fairness"], [126, "module-cyclops.evaluate.metrics"], [126, "module-cyclops.evaluate.metrics.functional"], [127, "module-cyclops.monitor"], [128, "module-cyclops.report"], [129, "module-cyclops.tasks"]], "medicalimage (class in cyclops.data.features.medical_image)": [[5, "cyclops.data.features.medical_image.MedicalImage"]], "__call__() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.__call__"]], "cast_storage() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.cast_storage"]], "decode_example() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.decode_example"]], "embed_storage() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.embed_storage"]], "encode_example() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.encode_example"]], "flatten() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.flatten"]], "cyclops.data.slicer": [[6, "module-cyclops.data.slicer"]], "slicespec (class in cyclops.data.slicer)": [[7, "cyclops.data.slicer.SliceSpec"]], "_registry (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec._registry"]], "add_slice_spec() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.add_slice_spec"]], "column_names (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.column_names"]], "get_slices() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.get_slices"]], "include_overall (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.include_overall"]], "slices() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.slices"]], "spec_list (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.spec_list"]], "validate (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.validate"]], "compound_filter() (in module cyclops.data.slicer)": [[8, "cyclops.data.slicer.compound_filter"]], "filter_datetime() (in module cyclops.data.slicer)": [[9, "cyclops.data.slicer.filter_datetime"]], "filter_non_null() (in module cyclops.data.slicer)": [[10, "cyclops.data.slicer.filter_non_null"]], "filter_range() (in module cyclops.data.slicer)": [[11, "cyclops.data.slicer.filter_range"]], "filter_string_contains() (in module cyclops.data.slicer)": [[12, "cyclops.data.slicer.filter_string_contains"]], "filter_value() (in module cyclops.data.slicer)": [[13, "cyclops.data.slicer.filter_value"]], "is_datetime() (in module cyclops.data.slicer)": [[14, "cyclops.data.slicer.is_datetime"]], "overall() (in module cyclops.data.slicer)": [[15, "cyclops.data.slicer.overall"]], "cyclops.evaluate.evaluator": [[16, "module-cyclops.evaluate.evaluator"]], "evaluate() (in module cyclops.evaluate.evaluator)": [[17, "cyclops.evaluate.evaluator.evaluate"]], "cyclops.evaluate.fairness.config": [[18, "module-cyclops.evaluate.fairness.config"]], "fairnessconfig (class in cyclops.evaluate.fairness.config)": [[19, "cyclops.evaluate.fairness.config.FairnessConfig"]], "cyclops.evaluate.fairness.evaluator": [[20, "module-cyclops.evaluate.fairness.evaluator"]], "evaluate_fairness() (in module cyclops.evaluate.fairness.evaluator)": [[21, "cyclops.evaluate.fairness.evaluator.evaluate_fairness"]], "warn_too_many_unique_values() (in module cyclops.evaluate.fairness.evaluator)": [[22, "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values"]], "cyclops.evaluate.metrics.accuracy": [[23, "module-cyclops.evaluate.metrics.accuracy"]], "accuracy (class in cyclops.evaluate.metrics.accuracy)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy"]], "__add__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__add__"]], "__call__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__call__"]], "__init__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__init__"]], "__mul__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__mul__"]], "add_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.add_state"]], "clone() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.clone"]], "compute() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.compute"]], "reset_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.reset_state"]], "update_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.update_state"]], "binaryaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy"]], "__add__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__add__"]], "__call__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__call__"]], "__init__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__init__"]], "__mul__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__mul__"]], "add_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.add_state"]], "clone() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.clone"]], "compute() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.compute"]], "reset_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.reset_state"]], "update_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.update_state"]], "multiclassaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy"]], "__add__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__add__"]], "__call__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__call__"]], "__init__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__init__"]], "__mul__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__mul__"]], "add_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.add_state"]], "clone() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.clone"]], "compute() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.compute"]], "reset_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.reset_state"]], "update_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.update_state"]], "multilabelaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy"]], "__add__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__add__"]], "__call__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__call__"]], "__init__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__init__"]], "__mul__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__mul__"]], "add_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.add_state"]], "clone() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.clone"]], "compute() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.compute"]], "reset_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.reset_state"]], "update_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.update_state"]], "cyclops.evaluate.metrics.auroc": [[28, "module-cyclops.evaluate.metrics.auroc"]], "auroc (class in cyclops.evaluate.metrics.auroc)": [[29, "cyclops.evaluate.metrics.auroc.AUROC"]], "__add__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__add__"]], "__call__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__call__"]], "__init__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__init__"]], "__mul__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__mul__"]], "add_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.add_state"]], "clone() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.clone"]], "compute() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.compute"]], "reset_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.reset_state"]], "update_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.update_state"]], "binaryauroc (class in cyclops.evaluate.metrics.auroc)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC"]], "__add__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__add__"]], "__call__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__call__"]], "__init__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__init__"]], "__mul__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__mul__"]], "add_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.add_state"]], "clone() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.clone"]], "compute() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.compute"]], "reset_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.reset_state"]], "update_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.update_state"]], "multiclassauroc (class in cyclops.evaluate.metrics.auroc)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC"]], "__add__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__add__"]], "__call__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__call__"]], "__init__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__init__"]], "__mul__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__mul__"]], "add_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.add_state"]], "clone() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.clone"]], "compute() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.compute"]], "reset_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.reset_state"]], "update_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.update_state"]], "multilabelauroc (class in cyclops.evaluate.metrics.auroc)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC"]], "__add__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__add__"]], "__call__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__call__"]], "__init__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__init__"]], "__mul__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__mul__"]], "add_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.add_state"]], "clone() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.clone"]], "compute() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.compute"]], "reset_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.reset_state"]], "update_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.update_state"]], "cyclops.evaluate.metrics.f_beta": [[33, "module-cyclops.evaluate.metrics.f_beta"]], "binaryf1score (class in cyclops.evaluate.metrics.f_beta)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score"]], "__add__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__add__"]], "__call__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__call__"]], "__init__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__init__"]], "__mul__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__mul__"]], "add_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.add_state"]], "clone() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.clone"]], "compute() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.compute"]], "reset_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.reset_state"]], "update_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.update_state"]], "binaryfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore"]], "__add__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__add__"]], "__call__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__call__"]], "__init__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__init__"]], "__mul__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__mul__"]], "add_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.add_state"]], "clone() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.clone"]], "compute() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.compute"]], "reset_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.reset_state"]], "update_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.update_state"]], "f1score (class in cyclops.evaluate.metrics.f_beta)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score"]], "__add__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__add__"]], "__call__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__call__"]], "__init__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__init__"]], "__mul__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__mul__"]], "add_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.add_state"]], "clone() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.clone"]], "compute() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.compute"]], "reset_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.reset_state"]], "update_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.update_state"]], "fbetascore (class in cyclops.evaluate.metrics.f_beta)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore"]], "__add__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__add__"]], "__call__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__call__"]], "__init__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__init__"]], "__mul__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__mul__"]], "add_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.add_state"]], "clone() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.clone"]], "compute() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.compute"]], "reset_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.reset_state"]], "update_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.update_state"]], "multiclassf1score (class in cyclops.evaluate.metrics.f_beta)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score"]], "__add__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__add__"]], "__call__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__call__"]], "__init__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__init__"]], "__mul__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__mul__"]], "add_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.add_state"]], "clone() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.clone"]], "compute() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.compute"]], "reset_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.reset_state"]], "update_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.update_state"]], "multiclassfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore"]], "__add__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__add__"]], "__call__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__call__"]], "__init__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__init__"]], "__mul__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__mul__"]], "add_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.add_state"]], "clone() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.clone"]], "compute() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.compute"]], "reset_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.reset_state"]], "update_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.update_state"]], "multilabelf1score (class in cyclops.evaluate.metrics.f_beta)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score"]], "__add__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__add__"]], "__call__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__call__"]], "__init__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__init__"]], "__mul__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__mul__"]], "add_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.add_state"]], "clone() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.clone"]], "compute() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.compute"]], "reset_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.reset_state"]], "update_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.update_state"]], "multilabelfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore"]], "__add__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__add__"]], "__call__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__call__"]], "__init__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__init__"]], "__mul__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__mul__"]], "add_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.add_state"]], "clone() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.clone"]], "compute() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.compute"]], "reset_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.reset_state"]], "update_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.update_state"]], "cyclops.evaluate.metrics.factory": [[42, "module-cyclops.evaluate.metrics.factory"]], "create_metric() (in module cyclops.evaluate.metrics.factory)": [[43, "cyclops.evaluate.metrics.factory.create_metric"]], "cyclops.evaluate.metrics.functional.accuracy": [[44, "module-cyclops.evaluate.metrics.functional.accuracy"]], "cyclops.evaluate.metrics.functional.auroc": [[45, "module-cyclops.evaluate.metrics.functional.auroc"]], "cyclops.evaluate.metrics.functional.f_beta": [[46, "module-cyclops.evaluate.metrics.functional.f_beta"]], "binary_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[47, "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score"]], "binary_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[48, "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score"]], "f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[49, "cyclops.evaluate.metrics.functional.f_beta.f1_score"]], "fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[50, "cyclops.evaluate.metrics.functional.f_beta.fbeta_score"]], "multiclass_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[51, "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score"]], "multiclass_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[52, "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score"]], "multilabel_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[53, "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score"]], "multilabel_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[54, "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[55, "module-cyclops.evaluate.metrics.functional.precision_recall"]], "binary_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[56, "cyclops.evaluate.metrics.functional.precision_recall.binary_precision"]], "binary_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[57, "cyclops.evaluate.metrics.functional.precision_recall.binary_recall"]], "multiclass_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[58, "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision"]], "multiclass_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[59, "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall"]], "multilabel_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[60, "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision"]], "multilabel_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[61, "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall"]], "precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[62, "cyclops.evaluate.metrics.functional.precision_recall.precision"]], "recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[63, "cyclops.evaluate.metrics.functional.precision_recall.recall"]], "cyclops.evaluate.metrics.functional.precision_recall_curve": [[64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"]], "cyclops.evaluate.metrics.functional.roc": [[65, "module-cyclops.evaluate.metrics.functional.roc"]], "binary_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[66, "cyclops.evaluate.metrics.functional.roc.binary_roc_curve"]], "multiclass_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[67, "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve"]], "multilabel_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[68, "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve"]], "roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[69, "cyclops.evaluate.metrics.functional.roc.roc_curve"]], "cyclops.evaluate.metrics.functional.sensitivity": [[70, "module-cyclops.evaluate.metrics.functional.sensitivity"]], "cyclops.evaluate.metrics.functional.specificity": [[71, "module-cyclops.evaluate.metrics.functional.specificity"]], "cyclops.evaluate.metrics.functional.stat_scores": [[72, "module-cyclops.evaluate.metrics.functional.stat_scores"]], "cyclops.evaluate.metrics.metric": [[73, "module-cyclops.evaluate.metrics.metric"]], "metric (class in cyclops.evaluate.metrics.metric)": [[74, "cyclops.evaluate.metrics.metric.Metric"]], "__add__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__add__"]], "__call__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__call__"]], "__init__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__init__"]], "__mul__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__mul__"]], "add_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.add_state"]], "clone() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.clone"]], "compute() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.compute"]], "name (metric property)": [[74, "cyclops.evaluate.metrics.metric.Metric.name"]], "reset_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.reset_state"]], "update_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.update_state"]], "metriccollection (class in cyclops.evaluate.metrics.metric)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection"]], "__call__() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.__call__"]], "__init__() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.__init__"]], "add_metrics() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.add_metrics"]], "clear() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.clear"]], "clone() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.clone"]], "compute() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.compute"]], "get() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.get"]], "items() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.items"]], "keys() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.keys"]], "pop() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.pop"]], "popitem() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.popitem"]], "reset_state() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.reset_state"]], "setdefault() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.setdefault"]], "update() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.update"]], "update_state() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.update_state"]], "values() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.values"]], "operatormetric (class in cyclops.evaluate.metrics.metric)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric"]], "__add__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__add__"]], "__call__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__call__"]], "__init__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__init__"]], "__mul__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__mul__"]], "add_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.add_state"]], "clone() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.clone"]], "compute() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.compute"]], "reset_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.reset_state"]], "update_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.update_state"]], "cyclops.evaluate.metrics.precision_recall": [[77, "module-cyclops.evaluate.metrics.precision_recall"]], "binaryprecision (class in cyclops.evaluate.metrics.precision_recall)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision"]], "__add__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__add__"]], "__call__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__call__"]], "__init__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__init__"]], "__mul__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__mul__"]], "add_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.add_state"]], "clone() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.clone"]], "compute() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.compute"]], "reset_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.reset_state"]], "update_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.update_state"]], "binaryrecall (class in cyclops.evaluate.metrics.precision_recall)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall"]], "__add__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__add__"]], "__call__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__call__"]], "__init__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__init__"]], "__mul__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__mul__"]], "add_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.add_state"]], "clone() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.clone"]], "compute() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.compute"]], "reset_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.reset_state"]], "update_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.update_state"]], "multiclassprecision (class in cyclops.evaluate.metrics.precision_recall)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision"]], "__add__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__add__"]], "__call__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__call__"]], "__init__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__init__"]], "__mul__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__mul__"]], "add_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.add_state"]], "clone() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.clone"]], "compute() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.compute"]], "reset_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.reset_state"]], "update_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.update_state"]], "multiclassrecall (class in cyclops.evaluate.metrics.precision_recall)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall"]], "__add__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__add__"]], "__call__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__call__"]], "__init__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__init__"]], "__mul__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__mul__"]], "add_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.add_state"]], "clone() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.clone"]], "compute() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.compute"]], "reset_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.reset_state"]], "update_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.update_state"]], "multilabelprecision (class in cyclops.evaluate.metrics.precision_recall)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision"]], "__add__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__add__"]], "__call__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__call__"]], "__init__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__init__"]], "__mul__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__mul__"]], "add_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.add_state"]], "clone() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.clone"]], "compute() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.compute"]], "reset_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.reset_state"]], "update_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.update_state"]], "multilabelrecall (class in cyclops.evaluate.metrics.precision_recall)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall"]], "__add__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__add__"]], "__call__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__call__"]], "__init__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__init__"]], "__mul__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__mul__"]], "add_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.add_state"]], "clone() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.clone"]], "compute() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.compute"]], "reset_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.reset_state"]], "update_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.update_state"]], "precision (class in cyclops.evaluate.metrics.precision_recall)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision"]], "__add__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__add__"]], "__call__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__call__"]], "__init__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__init__"]], "__mul__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__mul__"]], "add_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.add_state"]], "clone() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.clone"]], "compute() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.compute"]], "reset_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.reset_state"]], "update_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.update_state"]], "recall (class in cyclops.evaluate.metrics.precision_recall)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall"]], "__add__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__add__"]], "__call__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__call__"]], "__init__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__init__"]], "__mul__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__mul__"]], "add_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.add_state"]], "clone() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.clone"]], "compute() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.compute"]], "reset_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.reset_state"]], "update_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.update_state"]], "cyclops.evaluate.metrics.precision_recall_curve": [[86, "module-cyclops.evaluate.metrics.precision_recall_curve"]], "binaryprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve"]], "__add__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__add__"]], "__call__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__call__"]], "__init__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__init__"]], "__mul__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__mul__"]], "add_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.add_state"]], "clone() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.clone"]], "compute() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.compute"]], "reset_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.reset_state"]], "update_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.update_state"]], "multiclassprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve"]], "__add__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__add__"]], "__call__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__call__"]], "__init__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__init__"]], "__mul__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__mul__"]], "add_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.add_state"]], "clone() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.clone"]], "compute() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.compute"]], "reset_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.reset_state"]], "update_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.update_state"]], "multilabelprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve"]], "__add__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__add__"]], "__call__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__call__"]], "__init__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__init__"]], "__mul__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__mul__"]], "add_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.add_state"]], "clone() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.clone"]], "compute() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.compute"]], "reset_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.reset_state"]], "update_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.update_state"]], "precisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve"]], "__add__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__add__"]], "__call__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__call__"]], "__init__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__init__"]], "__mul__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__mul__"]], "add_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.add_state"]], "clone() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.clone"]], "compute() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.compute"]], "reset_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.reset_state"]], "update_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.update_state"]], "cyclops.evaluate.metrics.roc": [[91, "module-cyclops.evaluate.metrics.roc"]], "binaryroccurve (class in cyclops.evaluate.metrics.roc)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve"]], "__add__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__add__"]], "__call__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__call__"]], "__init__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__init__"]], "__mul__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__mul__"]], "add_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.add_state"]], "clone() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.clone"]], "compute() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.compute"]], "reset_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.reset_state"]], "update_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.update_state"]], "multiclassroccurve (class in cyclops.evaluate.metrics.roc)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve"]], "__add__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__add__"]], "__call__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__call__"]], "__init__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__init__"]], "__mul__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__mul__"]], "add_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.add_state"]], "clone() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.clone"]], "compute() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.compute"]], "reset_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.reset_state"]], "update_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.update_state"]], "multilabelroccurve (class in cyclops.evaluate.metrics.roc)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve"]], "__add__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__add__"]], "__call__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__call__"]], "__init__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__init__"]], "__mul__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__mul__"]], "add_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.add_state"]], "clone() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.clone"]], "compute() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.compute"]], "reset_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.reset_state"]], "update_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.update_state"]], "roccurve (class in cyclops.evaluate.metrics.roc)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve"]], "__add__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__add__"]], "__call__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__call__"]], "__init__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__init__"]], "__mul__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__mul__"]], "add_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.add_state"]], "clone() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.clone"]], "compute() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.compute"]], "reset_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.reset_state"]], "update_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.update_state"]], "cyclops.evaluate.metrics.sensitivity": [[96, "module-cyclops.evaluate.metrics.sensitivity"]], "binarysensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity"]], "__add__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__add__"]], "__call__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__call__"]], "__init__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__init__"]], "__mul__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__mul__"]], "add_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.add_state"]], "clone() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.clone"]], "compute() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.compute"]], "reset_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.reset_state"]], "update_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.update_state"]], "multiclasssensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity"]], "__add__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__add__"]], "__call__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__call__"]], "__init__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__init__"]], "__mul__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__mul__"]], "add_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.add_state"]], "clone() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.clone"]], "compute() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.compute"]], "reset_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.reset_state"]], "update_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.update_state"]], "multilabelsensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity"]], "__add__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__add__"]], "__call__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__call__"]], "__init__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__init__"]], "__mul__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__mul__"]], "add_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.add_state"]], "clone() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.clone"]], "compute() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.compute"]], "reset_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.reset_state"]], "update_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.update_state"]], "sensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity"]], "__add__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__add__"]], "__call__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__call__"]], "__init__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__init__"]], "__mul__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__mul__"]], "add_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.add_state"]], "clone() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.clone"]], "compute() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.compute"]], "reset_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.reset_state"]], "update_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.update_state"]], "cyclops.evaluate.metrics.specificity": [[101, "module-cyclops.evaluate.metrics.specificity"]], "binaryspecificity (class in cyclops.evaluate.metrics.specificity)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity"]], "__add__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__add__"]], "__call__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__call__"]], "__init__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__init__"]], "__mul__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__mul__"]], "add_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.add_state"]], "clone() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.clone"]], "compute() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.compute"]], "reset_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.reset_state"]], "update_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.update_state"]], "multiclassspecificity (class in cyclops.evaluate.metrics.specificity)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity"]], "__add__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__add__"]], "__call__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__call__"]], "__init__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__init__"]], "__mul__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__mul__"]], "add_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.add_state"]], "clone() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.clone"]], "compute() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.compute"]], "reset_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.reset_state"]], "update_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.update_state"]], "multilabelspecificity (class in cyclops.evaluate.metrics.specificity)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity"]], "__add__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__add__"]], "__call__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__call__"]], "__init__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__init__"]], "__mul__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__mul__"]], "add_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.add_state"]], "clone() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.clone"]], "compute() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.compute"]], "reset_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.reset_state"]], "update_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.update_state"]], "specificity (class in cyclops.evaluate.metrics.specificity)": [[105, "cyclops.evaluate.metrics.specificity.Specificity"]], "__add__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__add__"]], "__call__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__call__"]], "__init__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__init__"]], "__mul__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__mul__"]], "add_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.add_state"]], "clone() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.clone"]], "compute() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.compute"]], "reset_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.reset_state"]], "update_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.update_state"]], "cyclops.evaluate.metrics.stat_scores": [[106, "module-cyclops.evaluate.metrics.stat_scores"]], "binarystatscores (class in cyclops.evaluate.metrics.stat_scores)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores"]], "__add__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__add__"]], "__call__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__call__"]], "__init__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__init__"]], "__mul__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__mul__"]], "add_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.add_state"]], "clone() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.clone"]], "compute() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.compute"]], "reset_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.reset_state"]], "update_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.update_state"]], "multiclassstatscores (class in cyclops.evaluate.metrics.stat_scores)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores"]], "__add__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__add__"]], "__call__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__call__"]], "__init__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__init__"]], "__mul__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__mul__"]], "add_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.add_state"]], "clone() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.clone"]], "compute() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.compute"]], "reset_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.reset_state"]], "update_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.update_state"]], "multilabelstatscores (class in cyclops.evaluate.metrics.stat_scores)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores"]], "__add__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__add__"]], "__call__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__call__"]], "__init__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__init__"]], "__mul__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__mul__"]], "add_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.add_state"]], "clone() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.clone"]], "compute() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.compute"]], "reset_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.reset_state"]], "update_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.update_state"]], "statscores (class in cyclops.evaluate.metrics.stat_scores)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores"]], "__add__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__add__"]], "__call__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__call__"]], "__init__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__init__"]], "__mul__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__mul__"]], "add_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.add_state"]], "clone() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.clone"]], "compute() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.compute"]], "name (statscores property)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.name"]], "reset_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.reset_state"]], "update_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.update_state"]], "cyclops.monitor.clinical_applicator": [[111, "module-cyclops.monitor.clinical_applicator"]], "clinicalshiftapplicator (class in cyclops.monitor.clinical_applicator)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator"]], "age() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.age"]], "apply_shift() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.apply_shift"]], "custom() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.custom"]], "hospital_type() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.hospital_type"]], "month() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.month"]], "sex() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.sex"]], "time() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.time"]], "cyclops.monitor.synthetic_applicator": [[113, "module-cyclops.monitor.synthetic_applicator"]], "syntheticshiftapplicator (class in cyclops.monitor.synthetic_applicator)": [[114, "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator"]], "apply_shift() (syntheticshiftapplicator method)": [[114, "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator.apply_shift"]], "binary_noise_shift() (in module cyclops.monitor.synthetic_applicator)": [[115, "cyclops.monitor.synthetic_applicator.binary_noise_shift"]], "feature_association_shift() (in module cyclops.monitor.synthetic_applicator)": [[116, "cyclops.monitor.synthetic_applicator.feature_association_shift"]], "feature_swap_shift() (in module cyclops.monitor.synthetic_applicator)": [[117, "cyclops.monitor.synthetic_applicator.feature_swap_shift"]], "gaussian_noise_shift() (in module cyclops.monitor.synthetic_applicator)": [[118, "cyclops.monitor.synthetic_applicator.gaussian_noise_shift"]], "knockout_shift() (in module cyclops.monitor.synthetic_applicator)": [[119, "cyclops.monitor.synthetic_applicator.knockout_shift"]], "cyclops.report.report": [[120, "module-cyclops.report.report"]], "modelcardreport (class in cyclops.report.report)": [[121, "cyclops.report.report.ModelCardReport"]], "export() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.export"]], "from_json_file() (modelcardreport class method)": [[121, "cyclops.report.report.ModelCardReport.from_json_file"]], "log_citation() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_citation"]], "log_dataset() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_dataset"]], "log_descriptor() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_descriptor"]], "log_fairness_assessment() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_fairness_assessment"]], "log_from_dict() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_from_dict"]], "log_image() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_image"]], "log_license() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_license"]], "log_model_parameters() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_model_parameters"]], "log_owner() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_owner"]], "log_performance_metrics() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_performance_metrics"]], "log_plotly_figure() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_plotly_figure"]], "log_quantitative_analysis() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_quantitative_analysis"]], "log_reference() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_reference"]], "log_regulation() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_regulation"]], "log_risk() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_risk"]], "log_use_case() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_use_case"]], "log_user() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_user"]], "log_version() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_version"]], "cyclops.tasks.classification": [[122, "module-cyclops.tasks.classification"]], "binarytabularclassificationtask (class in cyclops.tasks.classification)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask"]], "__init__() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.__init__"]], "add_model() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.add_model"]], "data_type (binarytabularclassificationtask property)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.data_type"]], "evaluate() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.evaluate"]], "get_model() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.get_model"]], "list_models() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.list_models"]], "list_models_params() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.list_models_params"]], "load_model() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.load_model"]], "models_count (binarytabularclassificationtask property)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.models_count"]], "predict() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.predict"]], "save_model() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.save_model"]], "task_type (binarytabularclassificationtask property)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.task_type"]], "train() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.train"]], "multilabelimageclassificationtask (class in cyclops.tasks.classification)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask"]], "__init__() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.__init__"]], "add_model() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.add_model"]], "data_type (multilabelimageclassificationtask property)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.data_type"]], "evaluate() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.evaluate"]], "get_model() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.get_model"]], "list_models() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.list_models"]], "list_models_params() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.list_models_params"]], "load_model() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.load_model"]], "models_count (multilabelimageclassificationtask property)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.models_count"]], "predict() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.predict"]], "save_model() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.save_model"]], "task_type (multilabelimageclassificationtask property)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.task_type"]], "cyclops.data": [[125, "module-cyclops.data"]], "cyclops.data.features": [[125, "module-cyclops.data.features"]], "cyclops.evaluate": [[126, "module-cyclops.evaluate"]], "cyclops.evaluate.fairness": [[126, "module-cyclops.evaluate.fairness"]], "cyclops.evaluate.metrics": [[126, "module-cyclops.evaluate.metrics"]], "cyclops.evaluate.metrics.functional": [[126, "module-cyclops.evaluate.metrics.functional"]], "cyclops.monitor": [[127, "module-cyclops.monitor"]], "cyclops.report": [[128, "module-cyclops.report"]], "cyclops.tasks": [[129, "module-cyclops.tasks"]]}}) \ No newline at end of file diff --git a/api/tutorials/kaggle/heart_failure_prediction.html b/api/tutorials/kaggle/heart_failure_prediction.html index 24d2d3dc8..60286c981 100644 --- a/api/tutorials/kaggle/heart_failure_prediction.html +++ b/api/tutorials/kaggle/heart_failure_prediction.html @@ -557,7 +557,7 @@

    Data Loading
    -2023-11-27 15:05:05,242 INFO cyclops.utils.file - Loading DataFrame from ./data/heart.csv
    +2023-11-27 21:25:45,844 INFO cyclops.utils.file - Loading DataFrame from ./data/heart.csv
     

    -
    +
    @@ -1353,7 +1353,7 @@

    Graphics

    -
    +
    @@ -1361,7 +1361,7 @@

    Graphics

    -
    +
    @@ -1424,7 +1424,7 @@

    Quantitative Analysis

    - 1.0 + 0.95 @@ -1457,7 +1457,7 @@

    Quantitative Analysis

    - 0.89 + 0.56 @@ -1490,7 +1490,7 @@

    Quantitative Analysis

    - 0.89 + 0.57 @@ -1523,7 +1523,7 @@

    Quantitative Analysis

    - 0.83 + 0.8 @@ -1556,7 +1556,7 @@

    Quantitative Analysis

    - 1.0 + 0.54 @@ -1588,7 +1588,7 @@

    Graphics

    -
    +
    @@ -1596,7 +1596,7 @@

    Graphics

    -
    +
    @@ -1604,7 +1604,7 @@

    Graphics

    -
    +
    @@ -1657,7 +1657,7 @@

    Graphics

    -
    +
    @@ -1930,8 +1930,8 @@

    Model Parameters

    -

    Shuffle

    - True +

    Penalty

    + l2
    @@ -1939,8 +1939,8 @@

    Shuffle

    -

    L1_ratio

    - 0.15 +

    Verbose

    + 0
    @@ -1948,8 +1948,8 @@

    L1_ratio

    -

    Max_iter

    - 1000 +

    Eta0

    + 0.01
    @@ -1966,8 +1966,8 @@

    N_iter_no_change

    -

    Tol

    - 0.001 +

    Fit_intercept

    + True
    @@ -1975,7 +1975,7 @@

    Tol

    -

    Epsilon

    +

    Validation_fraction

    0.1
    @@ -1984,8 +1984,8 @@

    Epsilon

    -

    Verbose

    - 0 +

    Tol

    + 0.001
    @@ -1993,8 +1993,8 @@

    Verbose

    -

    Class_weight

    - balanced +

    Loss

    + log_loss
    @@ -2002,8 +2002,8 @@

    Class_weight

    -

    Alpha

    - 0.001 +

    Max_iter

    + 1000
    @@ -2011,22 +2011,26 @@

    Alpha

    -

    Fit_intercept

    - True +

    Alpha

    + 0.001
    +
    +

    Power_t

    + 0.5 +
    -

    Loss

    - log_loss +

    Random_state

    + 123
    @@ -2034,8 +2038,8 @@

    Loss

    -

    Random_state

    - 123 +

    Class_weight

    + balanced
    @@ -2052,26 +2056,22 @@

    Early_stopping

    -

    Average

    - False +

    L1_ratio

    + 0.15
    -
    -

    Learning_rate

    - adaptive -
    -

    Penalty

    - l2 +

    Shuffle

    + True
    @@ -2079,8 +2079,8 @@

    Penalty

    -

    Power_t

    - 0.5 +

    Learning_rate

    + adaptive
    @@ -2088,8 +2088,8 @@

    Power_t

    -

    Validation_fraction

    - 0.1 +

    Warm_start

    + False
    @@ -2097,8 +2097,8 @@

    Validation_fraction

    -

    Eta0

    - 0.01 +

    Average

    + False
    @@ -2106,8 +2106,8 @@

    Eta0

    -

    Warm_start

    - False +

    Epsilon

    + 0.1
    @@ -2409,7 +2409,7 @@

    Ethical Considerations

    function generate_model_card_plot() { var model_card_plots = [] var overall_indices = [11, 12, 13, 14, 15] - var histories = JSON.parse("{\"0\": [\"0.8421052631578947\", \"0.8599295531435974\", \"0.8743556923105937\", \"1.0\", \"1.0\"], \"1\": [\"0.796875\", \"0.7452972655503003\", \"0.8100437979383417\", \"0.9567413040229017\", \"0.9791972659279498\"], \"2\": [\"0.8260869565217391\", \"0.710807703727726\", \"0.6302922057200199\", \"0.5105935853038549\", \"0.5242048980662645\"], \"3\": [\"0.6785714285714286\", \"0.5813403753197157\", \"0.46040900879753677\", \"0.2907742596668287\", \"0.10593973638852061\"], \"4\": [\"0.7450980392156863\", \"0.6454185012514664\", \"0.44704801572543995\", \"0.45348093041138887\", \"0.4278179100561411\"], \"5\": [\"0.8819444444444444\", \"0.8960674994614873\", \"0.9052147172151933\", \"0.9476037683963476\", \"0.9967724009056905\"], \"6\": [\"0.8623853211009175\", \"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"7\": [\"0.8676470588235294\", \"0.8313592315974797\", \"1.0\", \"0.8851948120576105\", \"0.9635843662296566\"], \"8\": [\"0.9076923076923077\", \"0.8273682060598722\", \"0.8859887097616485\", \"0.7762754540105692\", \"0.8356108955342884\"], \"9\": [\"0.8872180451127819\", \"0.8740684867448608\", \"0.7860893785257995\", \"0.7115098592940149\", \"0.6246821821007127\"], \"10\": [\"0.927972027972028\", \"0.8816020282017657\", \"0.7571451406719181\", \"0.9096101695506389\", \"1.0\"], \"11\": [\"0.842391304347826\", \"1.0\", \"1.0\", \"0.9082864560389727\", \"1.0\"], \"12\": [\"0.8686868686868687\", \"0.9697456797963158\", \"0.8328469768771936\", \"0.7556496414399212\", \"0.8921013620193099\"], \"13\": [\"0.8431372549019608\", \"0.9629701192039404\", \"1.0\", \"1.0\", \"0.8878464399707588\"], \"14\": [\"0.8557213930348259\", \"0.6891914985116139\", \"0.7332597316328251\", \"0.8386632504869617\", \"0.8345898783491332\"], \"15\": [\"0.9152319464371114\", \"0.9327809613168279\", \"0.9532958465260944\", \"0.8893136467753834\", \"1.0\"]}"); + var histories = JSON.parse("{\"0\": [\"0.8421052631578947\", \"0.7060408145501588\", \"0.8638071857712474\", \"0.8414151407475001\", \"0.891252901558953\"], \"1\": [\"0.796875\", \"0.7315650401072841\", \"0.6859140538679289\", \"0.6742335038980826\", \"0.5666047629967271\"], \"2\": [\"0.8260869565217391\", \"0.7923439353251733\", \"0.7041071864428252\", \"0.6338502546967777\", \"0.711462691198528\"], \"3\": [\"0.6785714285714286\", \"0.4401830314310702\", \"0.41989197300517594\", \"0.4377085604515158\", \"0.7323243399353481\"], \"4\": [\"0.7450980392156863\", \"0.5725765636712422\", \"0.5251512278871754\", \"0.36824059607342274\", \"0.5483714783045526\"], \"5\": [\"0.8819444444444444\", \"0.934517961364451\", \"0.9732057198226989\", \"0.9083297359372854\", \"0.9104344943630669\"], \"6\": [\"0.8623853211009175\", \"1.0\", \"1.0\", \"0.9275280854237214\", \"0.9024088441301951\"], \"7\": [\"0.8676470588235294\", \"0.9560064574456584\", \"0.8650526865753256\", \"0.9450905277732021\", \"0.9483228290394246\"], \"8\": [\"0.9076923076923077\", \"0.9382728307654931\", \"0.8453266046589205\", \"0.9213893688603425\", \"0.9371771844350184\"], \"9\": [\"0.8872180451127819\", \"0.9018023660418806\", \"0.9306565239251938\", \"0.8895917787939817\", \"0.81797436851719\"], \"10\": [\"0.927972027972028\", \"0.91690230509804\", \"0.7769647250154791\", \"0.6934412503454002\", \"0.7611875474664198\"], \"11\": [\"0.842391304347826\", \"0.8697475843349362\", \"1.0\", \"0.8913948148968026\", \"0.9482884832406678\"], \"12\": [\"0.8686868686868687\", \"0.7543296661890938\", \"0.5714291749141898\", \"0.5694317913945552\", \"0.560126593179871\"], \"13\": [\"0.8431372549019608\", \"0.8279452634267033\", \"0.7712100078931869\", \"0.7118352817513972\", \"0.567254429734088\"], \"14\": [\"0.8557213930348259\", \"0.8256455428227429\", \"0.8940883939832679\", \"0.8220754761601221\", \"0.7968626590015472\"], \"15\": [\"0.9152319464371114\", \"0.6775364643798298\", \"0.48119608789773305\", \"0.4409306697604034\", \"0.5371162072514168\"]}"); var thresholds = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\"}"); var timestamps = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"1\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"2\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"3\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"4\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"5\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"6\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"7\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"8\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"9\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"10\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"11\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"12\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"13\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"14\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"15\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"]}"); @@ -2690,9 +2690,9 @@

    Ethical Considerations

    } } var slices_all = JSON.parse("{\"0\": [\"metric:Accuracy\", \"Sex:F\", \"Age:overall_Age\"], \"1\": [\"metric:Accuracy\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"2\": [\"metric:Precision\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"3\": [\"metric:Recall\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"4\": [\"metric:F1 Score\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"5\": [\"metric:AUROC\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"6\": [\"metric:Accuracy\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"7\": [\"metric:Precision\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"8\": [\"metric:Recall\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"9\": [\"metric:F1 Score\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"10\": [\"metric:AUROC\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"11\": [\"metric:Accuracy\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"12\": [\"metric:Precision\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"13\": [\"metric:Recall\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"14\": [\"metric:F1 Score\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"15\": [\"metric:AUROC\", \"Sex:overall_Sex\", \"Age:overall_Age\"]}"); - var histories_all = JSON.parse("{\"0\": [\"0.8421052631578947\", \"0.8599295531435974\", \"0.8743556923105937\", \"1.0\", \"1.0\"], \"1\": [\"0.796875\", \"0.7452972655503003\", \"0.8100437979383417\", \"0.9567413040229017\", \"0.9791972659279498\"], \"2\": [\"0.8260869565217391\", \"0.710807703727726\", \"0.6302922057200199\", \"0.5105935853038549\", \"0.5242048980662645\"], \"3\": [\"0.6785714285714286\", \"0.5813403753197157\", \"0.46040900879753677\", \"0.2907742596668287\", \"0.10593973638852061\"], \"4\": [\"0.7450980392156863\", \"0.6454185012514664\", \"0.44704801572543995\", \"0.45348093041138887\", \"0.4278179100561411\"], \"5\": [\"0.8819444444444444\", \"0.8960674994614873\", \"0.9052147172151933\", \"0.9476037683963476\", \"0.9967724009056905\"], \"6\": [\"0.8623853211009175\", \"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"7\": [\"0.8676470588235294\", \"0.8313592315974797\", \"1.0\", \"0.8851948120576105\", \"0.9635843662296566\"], \"8\": [\"0.9076923076923077\", \"0.8273682060598722\", \"0.8859887097616485\", \"0.7762754540105692\", \"0.8356108955342884\"], \"9\": [\"0.8872180451127819\", \"0.8740684867448608\", \"0.7860893785257995\", \"0.7115098592940149\", \"0.6246821821007127\"], \"10\": [\"0.927972027972028\", \"0.8816020282017657\", \"0.7571451406719181\", \"0.9096101695506389\", \"1.0\"], \"11\": [\"0.842391304347826\", \"1.0\", \"1.0\", \"0.9082864560389727\", \"1.0\"], \"12\": [\"0.8686868686868687\", \"0.9697456797963158\", \"0.8328469768771936\", \"0.7556496414399212\", \"0.8921013620193099\"], \"13\": [\"0.8431372549019608\", \"0.9629701192039404\", \"1.0\", \"1.0\", \"0.8878464399707588\"], \"14\": [\"0.8557213930348259\", \"0.6891914985116139\", \"0.7332597316328251\", \"0.8386632504869617\", \"0.8345898783491332\"], \"15\": [\"0.9152319464371114\", \"0.9327809613168279\", \"0.9532958465260944\", \"0.8893136467753834\", \"1.0\"]}"); + var histories_all = JSON.parse("{\"0\": [\"0.8421052631578947\", \"0.7060408145501588\", \"0.8638071857712474\", \"0.8414151407475001\", \"0.891252901558953\"], \"1\": [\"0.796875\", \"0.7315650401072841\", \"0.6859140538679289\", \"0.6742335038980826\", \"0.5666047629967271\"], \"2\": [\"0.8260869565217391\", \"0.7923439353251733\", \"0.7041071864428252\", \"0.6338502546967777\", \"0.711462691198528\"], \"3\": [\"0.6785714285714286\", \"0.4401830314310702\", \"0.41989197300517594\", \"0.4377085604515158\", \"0.7323243399353481\"], \"4\": [\"0.7450980392156863\", \"0.5725765636712422\", \"0.5251512278871754\", \"0.36824059607342274\", \"0.5483714783045526\"], \"5\": [\"0.8819444444444444\", \"0.934517961364451\", \"0.9732057198226989\", \"0.9083297359372854\", \"0.9104344943630669\"], \"6\": [\"0.8623853211009175\", \"1.0\", \"1.0\", \"0.9275280854237214\", \"0.9024088441301951\"], \"7\": [\"0.8676470588235294\", \"0.9560064574456584\", \"0.8650526865753256\", \"0.9450905277732021\", \"0.9483228290394246\"], \"8\": [\"0.9076923076923077\", \"0.9382728307654931\", \"0.8453266046589205\", \"0.9213893688603425\", \"0.9371771844350184\"], \"9\": [\"0.8872180451127819\", \"0.9018023660418806\", \"0.9306565239251938\", \"0.8895917787939817\", \"0.81797436851719\"], \"10\": [\"0.927972027972028\", \"0.91690230509804\", \"0.7769647250154791\", \"0.6934412503454002\", \"0.7611875474664198\"], \"11\": [\"0.842391304347826\", \"0.8697475843349362\", \"1.0\", \"0.8913948148968026\", \"0.9482884832406678\"], \"12\": [\"0.8686868686868687\", \"0.7543296661890938\", \"0.5714291749141898\", \"0.5694317913945552\", \"0.560126593179871\"], \"13\": [\"0.8431372549019608\", \"0.8279452634267033\", \"0.7712100078931869\", \"0.7118352817513972\", \"0.567254429734088\"], \"14\": [\"0.8557213930348259\", \"0.8256455428227429\", \"0.8940883939832679\", \"0.8220754761601221\", \"0.7968626590015472\"], \"15\": [\"0.9152319464371114\", \"0.6775364643798298\", \"0.48119608789773305\", \"0.4409306697604034\", \"0.5371162072514168\"]}"); var thresholds_all = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\"}"); - var trends_all = JSON.parse("{\"0\": \"positive\", \"1\": \"positive\", \"2\": \"negative\", \"3\": \"negative\", \"4\": \"negative\", \"5\": \"positive\", \"6\": \"positive\", \"7\": \"positive\", \"8\": \"negative\", \"9\": \"negative\", \"10\": \"positive\", \"11\": \"positive\", \"12\": \"negative\", \"13\": \"positive\", \"14\": \"positive\", \"15\": \"positive\"}"); + var trends_all = JSON.parse("{\"0\": \"positive\", \"1\": \"negative\", \"2\": \"negative\", \"3\": \"positive\", \"4\": \"negative\", \"5\": \"neutral\", \"6\": \"neutral\", \"7\": \"positive\", \"8\": \"neutral\", \"9\": \"negative\", \"10\": \"negative\", \"11\": \"positive\", \"12\": \"negative\", \"13\": \"negative\", \"14\": \"negative\", \"15\": \"negative\"}"); var passed_all = JSON.parse("{\"0\": true, \"1\": true, \"2\": true, \"3\": false, \"4\": true, \"5\": true, \"6\": true, \"7\": true, \"8\": true, \"9\": true, \"10\": true, \"11\": true, \"12\": true, \"13\": true, \"14\": true, \"15\": true}"); var names_all = JSON.parse("{\"0\": \"Accuracy\", \"1\": \"Accuracy\", \"2\": \"Precision\", \"3\": \"Recall\", \"4\": \"F1 Score\", \"5\": \"AUROC\", \"6\": \"Accuracy\", \"7\": \"Precision\", \"8\": \"Recall\", \"9\": \"F1 Score\", \"10\": \"AUROC\", \"11\": \"Accuracy\", \"12\": \"Precision\", \"13\": \"Recall\", \"14\": \"F1 Score\", \"15\": \"AUROC\"}"); var timestamps_all = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"1\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"2\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"3\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"4\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"5\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"6\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"7\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"8\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"9\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"10\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"11\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"12\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"13\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"14\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"15\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"]}"); @@ -2966,9 +2966,9 @@

    Ethical Considerations

    } } var slices_all = JSON.parse("{\"0\": [\"metric:Accuracy\", \"Sex:F\", \"Age:overall_Age\"], \"1\": [\"metric:Accuracy\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"2\": [\"metric:Precision\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"3\": [\"metric:Recall\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"4\": [\"metric:F1 Score\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"5\": [\"metric:AUROC\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"6\": [\"metric:Accuracy\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"7\": [\"metric:Precision\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"8\": [\"metric:Recall\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"9\": [\"metric:F1 Score\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"10\": [\"metric:AUROC\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"11\": [\"metric:Accuracy\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"12\": [\"metric:Precision\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"13\": [\"metric:Recall\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"14\": [\"metric:F1 Score\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"15\": [\"metric:AUROC\", \"Sex:overall_Sex\", \"Age:overall_Age\"]}"); - var histories_all = JSON.parse("{\"0\": [\"0.8421052631578947\", \"0.8599295531435974\", \"0.8743556923105937\", \"1.0\", \"1.0\"], \"1\": [\"0.796875\", \"0.7452972655503003\", \"0.8100437979383417\", \"0.9567413040229017\", \"0.9791972659279498\"], \"2\": [\"0.8260869565217391\", \"0.710807703727726\", \"0.6302922057200199\", \"0.5105935853038549\", \"0.5242048980662645\"], \"3\": [\"0.6785714285714286\", \"0.5813403753197157\", \"0.46040900879753677\", \"0.2907742596668287\", \"0.10593973638852061\"], \"4\": [\"0.7450980392156863\", \"0.6454185012514664\", \"0.44704801572543995\", \"0.45348093041138887\", \"0.4278179100561411\"], \"5\": [\"0.8819444444444444\", \"0.8960674994614873\", \"0.9052147172151933\", \"0.9476037683963476\", \"0.9967724009056905\"], \"6\": [\"0.8623853211009175\", \"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"7\": [\"0.8676470588235294\", \"0.8313592315974797\", \"1.0\", \"0.8851948120576105\", \"0.9635843662296566\"], \"8\": [\"0.9076923076923077\", \"0.8273682060598722\", \"0.8859887097616485\", \"0.7762754540105692\", \"0.8356108955342884\"], \"9\": [\"0.8872180451127819\", \"0.8740684867448608\", \"0.7860893785257995\", \"0.7115098592940149\", \"0.6246821821007127\"], \"10\": [\"0.927972027972028\", \"0.8816020282017657\", \"0.7571451406719181\", \"0.9096101695506389\", \"1.0\"], \"11\": [\"0.842391304347826\", \"1.0\", \"1.0\", \"0.9082864560389727\", \"1.0\"], \"12\": [\"0.8686868686868687\", \"0.9697456797963158\", \"0.8328469768771936\", \"0.7556496414399212\", \"0.8921013620193099\"], \"13\": [\"0.8431372549019608\", \"0.9629701192039404\", \"1.0\", \"1.0\", \"0.8878464399707588\"], \"14\": [\"0.8557213930348259\", \"0.6891914985116139\", \"0.7332597316328251\", \"0.8386632504869617\", \"0.8345898783491332\"], \"15\": [\"0.9152319464371114\", \"0.9327809613168279\", \"0.9532958465260944\", \"0.8893136467753834\", \"1.0\"]}"); + var histories_all = JSON.parse("{\"0\": [\"0.8421052631578947\", \"0.7060408145501588\", \"0.8638071857712474\", \"0.8414151407475001\", \"0.891252901558953\"], \"1\": [\"0.796875\", \"0.7315650401072841\", \"0.6859140538679289\", \"0.6742335038980826\", \"0.5666047629967271\"], \"2\": [\"0.8260869565217391\", \"0.7923439353251733\", \"0.7041071864428252\", \"0.6338502546967777\", \"0.711462691198528\"], \"3\": [\"0.6785714285714286\", \"0.4401830314310702\", \"0.41989197300517594\", \"0.4377085604515158\", \"0.7323243399353481\"], \"4\": [\"0.7450980392156863\", \"0.5725765636712422\", \"0.5251512278871754\", \"0.36824059607342274\", \"0.5483714783045526\"], \"5\": [\"0.8819444444444444\", \"0.934517961364451\", \"0.9732057198226989\", \"0.9083297359372854\", \"0.9104344943630669\"], \"6\": [\"0.8623853211009175\", \"1.0\", \"1.0\", \"0.9275280854237214\", \"0.9024088441301951\"], \"7\": [\"0.8676470588235294\", \"0.9560064574456584\", \"0.8650526865753256\", \"0.9450905277732021\", \"0.9483228290394246\"], \"8\": [\"0.9076923076923077\", \"0.9382728307654931\", \"0.8453266046589205\", \"0.9213893688603425\", \"0.9371771844350184\"], \"9\": [\"0.8872180451127819\", \"0.9018023660418806\", \"0.9306565239251938\", \"0.8895917787939817\", \"0.81797436851719\"], \"10\": [\"0.927972027972028\", \"0.91690230509804\", \"0.7769647250154791\", \"0.6934412503454002\", \"0.7611875474664198\"], \"11\": [\"0.842391304347826\", \"0.8697475843349362\", \"1.0\", \"0.8913948148968026\", \"0.9482884832406678\"], \"12\": [\"0.8686868686868687\", \"0.7543296661890938\", \"0.5714291749141898\", \"0.5694317913945552\", \"0.560126593179871\"], \"13\": [\"0.8431372549019608\", \"0.8279452634267033\", \"0.7712100078931869\", \"0.7118352817513972\", \"0.567254429734088\"], \"14\": [\"0.8557213930348259\", \"0.8256455428227429\", \"0.8940883939832679\", \"0.8220754761601221\", \"0.7968626590015472\"], \"15\": [\"0.9152319464371114\", \"0.6775364643798298\", \"0.48119608789773305\", \"0.4409306697604034\", \"0.5371162072514168\"]}"); var thresholds_all = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\"}"); - var trends_all = JSON.parse("{\"0\": \"positive\", \"1\": \"positive\", \"2\": \"negative\", \"3\": \"negative\", \"4\": \"negative\", \"5\": \"positive\", \"6\": \"positive\", \"7\": \"positive\", \"8\": \"negative\", \"9\": \"negative\", \"10\": \"positive\", \"11\": \"positive\", \"12\": \"negative\", \"13\": \"positive\", \"14\": \"positive\", \"15\": \"positive\"}"); + var trends_all = JSON.parse("{\"0\": \"positive\", \"1\": \"negative\", \"2\": \"negative\", \"3\": \"positive\", \"4\": \"negative\", \"5\": \"neutral\", \"6\": \"neutral\", \"7\": \"positive\", \"8\": \"neutral\", \"9\": \"negative\", \"10\": \"negative\", \"11\": \"positive\", \"12\": \"negative\", \"13\": \"negative\", \"14\": \"negative\", \"15\": \"negative\"}"); var passed_all = JSON.parse("{\"0\": true, \"1\": true, \"2\": true, \"3\": false, \"4\": true, \"5\": true, \"6\": true, \"7\": true, \"8\": true, \"9\": true, \"10\": true, \"11\": true, \"12\": true, \"13\": true, \"14\": true, \"15\": true}"); var names_all = JSON.parse("{\"0\": \"Accuracy\", \"1\": \"Accuracy\", \"2\": \"Precision\", \"3\": \"Recall\", \"4\": \"F1 Score\", \"5\": \"AUROC\", \"6\": \"Accuracy\", \"7\": \"Precision\", \"8\": \"Recall\", \"9\": \"F1 Score\", \"10\": \"AUROC\", \"11\": \"Accuracy\", \"12\": \"Precision\", \"13\": \"Recall\", \"14\": \"F1 Score\", \"15\": \"AUROC\"}"); var timestamps_all = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"1\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"2\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"3\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"4\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"5\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"6\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"7\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"8\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"9\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"10\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"11\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"12\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"13\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"14\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"15\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"]}"); diff --git a/api/tutorials/mimiciv/mortality_prediction.html b/api/tutorials/mimiciv/mortality_prediction.html index 96f28aaa8..fdf46fca8 100644 --- a/api/tutorials/mimiciv/mortality_prediction.html +++ b/api/tutorials/mimiciv/mortality_prediction.html @@ -713,9 +713,9 @@

    Compute mortality (labels)
    -2023-11-27 15:05:26,852 INFO cycquery.orm    - Database setup, ready to run queries!
    -2023-11-27 15:05:34,061 INFO cycquery.orm    - Query returned successfully!
    -2023-11-27 15:05:34,062 INFO cycquery.utils.profile - Finished executing function run_query in 5.079080 s
    +2023-11-27 21:26:05,334 INFO cycquery.orm    - Database setup, ready to run queries!
    +2023-11-27 21:26:12,296 INFO cycquery.orm    - Query returned successfully!
    +2023-11-27 21:26:12,297 INFO cycquery.utils.profile - Finished executing function run_query in 4.960876 s
     

    @@ -800,9 +800,9 @@

    Drop NaNs based on the

    -
    +
    @@ -1052,7 +1052,7 @@

    Graphics

    -
    +
    @@ -1060,7 +1060,7 @@

    Graphics

    -
    +
    @@ -1068,7 +1068,7 @@

    Graphics

    -
    +
    @@ -1182,7 +1182,7 @@

    Quantitative Analysis

    - 0.0 + 0.77 @@ -1215,7 +1215,7 @@

    Quantitative Analysis

    - 0.2 + 0.0 @@ -1248,7 +1248,7 @@

    Quantitative Analysis

    - 0.0 + 0.25 @@ -1281,7 +1281,7 @@

    Quantitative Analysis

    - 1.0 + 0.77 @@ -1313,7 +1313,7 @@

    Graphics

    -
    +
    @@ -1321,7 +1321,7 @@

    Graphics

    -
    +
    @@ -1329,7 +1329,7 @@

    Graphics

    -
    +
    @@ -1382,7 +1382,7 @@

    Graphics

    -
    +
    @@ -1654,6 +1654,10 @@

    Model Parameters

    +
    +

    Max_depth

    + 5 +
    @@ -1664,33 +1668,29 @@

    Model Parameters

    -
    -

    N_estimators

    - 500 -
    -

    Eval_metric

    - logloss +

    Colsample_bytree

    + 1
    -
    -

    Min_child_weight

    - 3 -
    +
    +

    Learning_rate

    + 0.01 +
    @@ -1706,6 +1706,10 @@

    Min_child_weight

    +
    +

    N_estimators

    + 500 +
    @@ -1716,6 +1720,10 @@

    Min_child_weight

    +
    +

    Min_child_weight

    + 3 +
    @@ -1726,10 +1734,6 @@

    Min_child_weight

    -
    -

    Colsample_bytree

    - 0.8 -
    @@ -1750,14 +1754,18 @@

    Colsample_bytree

    +
    +

    Reg_lambda

    + 0 +
    -

    Random_state

    - 123 +

    Enable_categorical

    + False
    @@ -1779,29 +1787,29 @@

    Random_state

    -
    -

    Reg_lambda

    - 1 -
    -
    -

    Learning_rate

    - 0.01 -
    +
    +

    Random_state

    + 123 +
    +
    +

    Missing

    + nan +
    @@ -1817,25 +1825,33 @@

    Learning_rate

    +
    +

    Seed

    + 123 +
    +
    +

    Objective

    + binary:logistic +
    +
    +

    Gamma

    + 10 +
    -
    -

    Objective

    - binary:logistic -
    @@ -1857,8 +1873,8 @@

    Objective

    -

    Missing

    - nan +

    Eval_metric

    + logloss
    @@ -1875,37 +1891,21 @@

    Missing

    -
    -

    Seed

    - 123 -
    -
    -

    Enable_categorical

    - False -
    -
    -

    Max_depth

    - 5 -
    -
    -

    Gamma

    - 10 -
    @@ -2176,7 +2176,7 @@

    Ethical Considerations

    function generate_model_card_plot() { var model_card_plots = [] var overall_indices = [20, 21, 22, 23, 24] - var histories = JSON.parse("{\"0\": [\"0.9942279942279942\", \"1.0\", \"0.8021606116347475\", \"0.91483841672335\", \"1.0\"], \"1\": [\"0.0\", \"0.0\", \"0.1054589377479996\", \"0.06446839097661214\", \"0.0834196181191203\"], \"2\": [\"0.0\", \"0.0\", \"0.01284458874174532\", \"0.1330984703400093\", \"0.03722961601573457\"], \"3\": [\"0.0\", \"0.2819621395795328\", \"0.37014888253003336\", \"0.5969546258961874\", \"0.5939194401325512\"], \"4\": [\"0.7688679245283019\", \"0.7719239132483345\", \"0.7125435741443202\", \"0.6949896269200626\", \"0.7019828347883943\"], \"5\": [\"0.9848771266540642\", \"1.0\", \"1.0\", \"1.0\", \"0.9598740097797964\"], \"6\": [\"0.0\", \"0.0\", \"0.0\", \"0.15347997711141814\", \"0.17172264997260875\"], \"7\": [\"0.0\", \"0.0\", \"0.0\", \"0.0\", \"0.10613833912469997\"], \"8\": [\"0.0\", \"0.013027109918884124\", \"0.0\", \"0.14015805410912\", \"0.07351443732433577\"], \"9\": [\"0.9124596908706772\", \"0.841566744649705\", \"0.9190764041739317\", \"0.9415547048073998\", \"0.8777109441484907\"], \"10\": [\"0.9763663220088626\", \"0.989912582760708\", \"1.0\", \"0.9355676469364977\", \"0.9869858868968788\"], \"11\": [\"0.0\", \"0.03430122977182886\", \"0.2216711491565862\", \"0.24360659936216117\", \"0.3452521175564264\"], \"12\": [\"0.0\", \"0.0\", \"0.0\", \"0.0\", \"0.0068967232218273295\"], \"13\": [\"0.0\", \"0.0028339286181728383\", \"0.0\", \"0.0\", \"0.12756489808356938\"], \"14\": [\"0.8732743948562784\", \"0.9901082803891144\", \"0.9749283548341042\", \"1.0\", \"1.0\"], \"15\": [\"0.9866577718478986\", \"0.9987861013155545\", \"1.0\", \"1.0\", \"1.0\"], \"16\": [\"0.0\", \"0.0\", \"0.0\", \"0.03851185514041444\", \"0.027908811968215368\"], \"17\": [\"0.0\", \"0.06846161161707012\", \"0.0\", \"0.16823362423670318\", \"0.12216062575434482\"], \"18\": [\"0.0\", \"0.0\", \"0.0\", \"0.0\", \"0.06729634456708374\"], \"19\": [\"0.856987908961593\", \"0.9226407410160536\", \"1.0\", \"0.9343322658547919\", \"0.8785251669509954\"], \"20\": [\"0.9817735716789344\", \"0.916493952176769\", \"0.9442974994805379\", \"1.0\", \"0.9707540750350074\"], \"21\": [\"0.0\", \"0.0\", \"0.03225594094967265\", \"0.0\", \"0.0\"], \"22\": [\"0.0\", \"0.10264127921613297\", \"0.1234690286363817\", \"0.1632794391103451\", \"0.196281778054396\"], \"23\": [\"0.0\", \"0.08419609021940222\", \"0.0042690359717813126\", \"0.0\", \"0.0\"], \"24\": [\"0.867867489608263\", \"0.9167894375837232\", \"1.0\", \"1.0\", \"1.0\"]}"); + var histories = JSON.parse("{\"0\": [\"0.9942279942279942\", \"0.8782049823430107\", \"0.8855124189717378\", \"1.0\", \"0.7738737874551314\"], \"1\": [\"0.0\", \"0.036000144088568074\", \"0.09853050735249438\", \"0.055011350068792195\", \"0.1619894499482346\"], \"2\": [\"0.0\", \"0.0\", \"0.15066152276631192\", \"0.18359546675003308\", \"0.0\"], \"3\": [\"0.0\", \"0.0071863364384208706\", \"0.08142250805582295\", \"0.12105588947862309\", \"0.057379525535859\"], \"4\": [\"0.7862844702467343\", \"0.8447744173849981\", \"1.0\", \"0.8550442648950125\", \"0.9875989767985858\"], \"5\": [\"0.9848771266540642\", \"1.0\", \"0.8619729248098779\", \"0.8206862006829606\", \"0.8911746595234663\"], \"6\": [\"0.3333333333333333\", \"0.42828143595965845\", \"0.37299515019258644\", \"0.23930233334429898\", \"0.3146447991258896\"], \"7\": [\"0.043478260869565216\", \"0.06477596070399107\", \"0.1530728723912005\", \"0.20419016514975202\", \"0.26374933651832944\"], \"8\": [\"0.07692307692307693\", \"0.15609026472811377\", \"0.0\", \"0.03374768696285382\", \"0.0783527821064881\"], \"9\": [\"0.9072890025575449\", \"0.9726703268510903\", \"0.7641081146023275\", \"0.8025555118079636\", \"0.7121148405267389\"], \"10\": [\"0.9771048744460856\", \"0.8354893334540037\", \"0.6679118462690455\", \"0.7579534041278262\", \"0.6834291438705408\"], \"11\": [\"1.0\", \"1.0\", \"0.9174517277851223\", \"1.0\", \"0.8976729177215944\"], \"12\": [\"0.03125\", \"0.10039797517512597\", \"0.16893019424555925\", \"0.21017123685947187\", \"0.2842883492370025\"], \"13\": [\"0.06060606060606061\", \"0.1334114439992532\", \"0.13353394646121972\", \"0.18372919137674398\", \"0.22368915661029218\"], \"14\": [\"0.8735816944024206\", \"0.9836828660200002\", \"0.932215258596031\", \"0.8480789793356489\", \"0.6800928276482259\"], \"15\": [\"0.9859906604402935\", \"0.9444299700643859\", \"0.8044314476954962\", \"0.8509907570422153\", \"0.8192431799747109\"], \"16\": [\"0.0\", \"0.0\", \"0.04048633092606849\", \"0.18976336285323178\", \"0.10291466057123591\"], \"17\": [\"0.0\", \"0.06645940675666698\", \"0.10300036870259255\", \"0.2092439270146798\", \"0.26906453307242356\"], \"18\": [\"0.0\", \"0.024479461823030416\", \"0.0\", \"0.01002005637411237\", \"0.0\"], \"19\": [\"0.8555120910384068\", \"1.0\", \"0.9804570633407543\", \"1.0\", \"0.9960020018728102\"], \"20\": [\"0.9817735716789344\", \"1.0\", \"1.0\", \"1.0\", \"0.9748802592613818\"], \"21\": [\"0.3333333333333333\", \"0.4471676796762688\", \"0.5958269860326022\", \"0.6685703484133385\", \"0.7665769773505952\"], \"22\": [\"0.0196078431372549\", \"0.0\", \"0.0\", \"0.0\", \"0.004721174344962717\"], \"23\": [\"0.037037037037037035\", \"0.10009832439653214\", \"0.358461550273736\", \"0.3298621252048033\", \"0.24906173062260095\"], \"24\": [\"0.8671677093392675\", \"0.828637000275013\", \"0.7681927254815382\", \"0.721214483012441\", \"0.7706882816474631\"]}"); var thresholds = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\", \"19\": \"0.7\", \"20\": \"0.7\", \"21\": \"0.7\", \"22\": \"0.7\", \"23\": \"0.7\", \"24\": \"0.7\"}"); var timestamps = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"1\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"2\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"3\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"4\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"5\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"6\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"7\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"8\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"9\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"10\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"11\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"12\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"13\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"14\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"15\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"16\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"17\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"18\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"19\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"20\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"21\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"22\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"23\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"24\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"]}"); @@ -2457,10 +2457,10 @@

    Ethical Considerations

    } } var slices_all = JSON.parse("{\"0\": [\"metric:Accuracy\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"1\": [\"metric:Precision\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"2\": [\"metric:Recall\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"3\": [\"metric:F1 Score\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"4\": [\"metric:AUROC\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"5\": [\"metric:Accuracy\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"6\": [\"metric:Precision\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"7\": [\"metric:Recall\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"8\": [\"metric:F1 Score\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"9\": [\"metric:AUROC\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"10\": [\"metric:Accuracy\", \"gender:M\", \"age:overall_age\"], \"11\": [\"metric:Precision\", \"gender:M\", \"age:overall_age\"], \"12\": [\"metric:Recall\", \"gender:M\", \"age:overall_age\"], \"13\": [\"metric:F1 Score\", \"gender:M\", \"age:overall_age\"], \"14\": [\"metric:AUROC\", \"gender:M\", \"age:overall_age\"], \"15\": [\"metric:Accuracy\", \"gender:F\", \"age:overall_age\"], \"16\": [\"metric:Precision\", \"gender:F\", \"age:overall_age\"], \"17\": [\"metric:Recall\", \"gender:F\", \"age:overall_age\"], \"18\": [\"metric:F1 Score\", \"gender:F\", \"age:overall_age\"], \"19\": [\"metric:AUROC\", \"gender:F\", \"age:overall_age\"], \"20\": [\"metric:Accuracy\", \"age:overall_age\", \"gender:overall_gender\"], \"21\": [\"metric:Precision\", \"age:overall_age\", \"gender:overall_gender\"], \"22\": [\"metric:Recall\", \"age:overall_age\", \"gender:overall_gender\"], \"23\": [\"metric:F1 Score\", \"age:overall_age\", \"gender:overall_gender\"], \"24\": [\"metric:AUROC\", \"age:overall_age\", \"gender:overall_gender\"]}"); - var histories_all = JSON.parse("{\"0\": [\"0.9942279942279942\", \"1.0\", \"0.8021606116347475\", \"0.91483841672335\", \"1.0\"], \"1\": [\"0.0\", \"0.0\", \"0.1054589377479996\", \"0.06446839097661214\", \"0.0834196181191203\"], \"2\": [\"0.0\", \"0.0\", \"0.01284458874174532\", \"0.1330984703400093\", \"0.03722961601573457\"], \"3\": [\"0.0\", \"0.2819621395795328\", \"0.37014888253003336\", \"0.5969546258961874\", \"0.5939194401325512\"], \"4\": [\"0.7688679245283019\", \"0.7719239132483345\", \"0.7125435741443202\", \"0.6949896269200626\", \"0.7019828347883943\"], \"5\": [\"0.9848771266540642\", \"1.0\", \"1.0\", \"1.0\", \"0.9598740097797964\"], \"6\": [\"0.0\", \"0.0\", \"0.0\", \"0.15347997711141814\", \"0.17172264997260875\"], \"7\": [\"0.0\", \"0.0\", \"0.0\", \"0.0\", \"0.10613833912469997\"], \"8\": [\"0.0\", \"0.013027109918884124\", \"0.0\", \"0.14015805410912\", \"0.07351443732433577\"], \"9\": [\"0.9124596908706772\", \"0.841566744649705\", \"0.9190764041739317\", \"0.9415547048073998\", \"0.8777109441484907\"], \"10\": [\"0.9763663220088626\", \"0.989912582760708\", \"1.0\", \"0.9355676469364977\", \"0.9869858868968788\"], \"11\": [\"0.0\", \"0.03430122977182886\", \"0.2216711491565862\", \"0.24360659936216117\", \"0.3452521175564264\"], \"12\": [\"0.0\", \"0.0\", \"0.0\", \"0.0\", \"0.0068967232218273295\"], \"13\": [\"0.0\", \"0.0028339286181728383\", \"0.0\", \"0.0\", \"0.12756489808356938\"], \"14\": [\"0.8732743948562784\", \"0.9901082803891144\", \"0.9749283548341042\", \"1.0\", \"1.0\"], \"15\": [\"0.9866577718478986\", \"0.9987861013155545\", \"1.0\", \"1.0\", \"1.0\"], \"16\": [\"0.0\", \"0.0\", \"0.0\", \"0.03851185514041444\", \"0.027908811968215368\"], \"17\": [\"0.0\", \"0.06846161161707012\", \"0.0\", \"0.16823362423670318\", \"0.12216062575434482\"], \"18\": [\"0.0\", \"0.0\", \"0.0\", \"0.0\", \"0.06729634456708374\"], \"19\": [\"0.856987908961593\", \"0.9226407410160536\", \"1.0\", \"0.9343322658547919\", \"0.8785251669509954\"], \"20\": [\"0.9817735716789344\", \"0.916493952176769\", \"0.9442974994805379\", \"1.0\", \"0.9707540750350074\"], \"21\": [\"0.0\", \"0.0\", \"0.03225594094967265\", \"0.0\", \"0.0\"], \"22\": [\"0.0\", \"0.10264127921613297\", \"0.1234690286363817\", \"0.1632794391103451\", \"0.196281778054396\"], \"23\": [\"0.0\", \"0.08419609021940222\", \"0.0042690359717813126\", \"0.0\", \"0.0\"], \"24\": [\"0.867867489608263\", \"0.9167894375837232\", \"1.0\", \"1.0\", \"1.0\"]}"); + var histories_all = JSON.parse("{\"0\": [\"0.9942279942279942\", \"0.8782049823430107\", \"0.8855124189717378\", \"1.0\", \"0.7738737874551314\"], \"1\": [\"0.0\", \"0.036000144088568074\", \"0.09853050735249438\", \"0.055011350068792195\", \"0.1619894499482346\"], \"2\": [\"0.0\", \"0.0\", \"0.15066152276631192\", \"0.18359546675003308\", \"0.0\"], \"3\": [\"0.0\", \"0.0071863364384208706\", \"0.08142250805582295\", \"0.12105588947862309\", \"0.057379525535859\"], \"4\": [\"0.7862844702467343\", \"0.8447744173849981\", \"1.0\", \"0.8550442648950125\", \"0.9875989767985858\"], \"5\": [\"0.9848771266540642\", \"1.0\", \"0.8619729248098779\", \"0.8206862006829606\", \"0.8911746595234663\"], \"6\": [\"0.3333333333333333\", \"0.42828143595965845\", \"0.37299515019258644\", \"0.23930233334429898\", \"0.3146447991258896\"], \"7\": [\"0.043478260869565216\", \"0.06477596070399107\", \"0.1530728723912005\", \"0.20419016514975202\", \"0.26374933651832944\"], \"8\": [\"0.07692307692307693\", \"0.15609026472811377\", \"0.0\", \"0.03374768696285382\", \"0.0783527821064881\"], \"9\": [\"0.9072890025575449\", \"0.9726703268510903\", \"0.7641081146023275\", \"0.8025555118079636\", \"0.7121148405267389\"], \"10\": [\"0.9771048744460856\", \"0.8354893334540037\", \"0.6679118462690455\", \"0.7579534041278262\", \"0.6834291438705408\"], \"11\": [\"1.0\", \"1.0\", \"0.9174517277851223\", \"1.0\", \"0.8976729177215944\"], \"12\": [\"0.03125\", \"0.10039797517512597\", \"0.16893019424555925\", \"0.21017123685947187\", \"0.2842883492370025\"], \"13\": [\"0.06060606060606061\", \"0.1334114439992532\", \"0.13353394646121972\", \"0.18372919137674398\", \"0.22368915661029218\"], \"14\": [\"0.8735816944024206\", \"0.9836828660200002\", \"0.932215258596031\", \"0.8480789793356489\", \"0.6800928276482259\"], \"15\": [\"0.9859906604402935\", \"0.9444299700643859\", \"0.8044314476954962\", \"0.8509907570422153\", \"0.8192431799747109\"], \"16\": [\"0.0\", \"0.0\", \"0.04048633092606849\", \"0.18976336285323178\", \"0.10291466057123591\"], \"17\": [\"0.0\", \"0.06645940675666698\", \"0.10300036870259255\", \"0.2092439270146798\", \"0.26906453307242356\"], \"18\": [\"0.0\", \"0.024479461823030416\", \"0.0\", \"0.01002005637411237\", \"0.0\"], \"19\": [\"0.8555120910384068\", \"1.0\", \"0.9804570633407543\", \"1.0\", \"0.9960020018728102\"], \"20\": [\"0.9817735716789344\", \"1.0\", \"1.0\", \"1.0\", \"0.9748802592613818\"], \"21\": [\"0.3333333333333333\", \"0.4471676796762688\", \"0.5958269860326022\", \"0.6685703484133385\", \"0.7665769773505952\"], \"22\": [\"0.0196078431372549\", \"0.0\", \"0.0\", \"0.0\", \"0.004721174344962717\"], \"23\": [\"0.037037037037037035\", \"0.10009832439653214\", \"0.358461550273736\", \"0.3298621252048033\", \"0.24906173062260095\"], \"24\": [\"0.8671677093392675\", \"0.828637000275013\", \"0.7681927254815382\", \"0.721214483012441\", \"0.7706882816474631\"]}"); var thresholds_all = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\", \"19\": \"0.7\", \"20\": \"0.7\", \"21\": \"0.7\", \"22\": \"0.7\", \"23\": \"0.7\", \"24\": \"0.7\"}"); - var trends_all = JSON.parse("{\"0\": \"neutral\", \"1\": \"positive\", \"2\": \"positive\", \"3\": \"positive\", \"4\": \"negative\", \"5\": \"neutral\", \"6\": \"positive\", \"7\": \"positive\", \"8\": \"positive\", \"9\": \"neutral\", \"10\": \"neutral\", \"11\": \"positive\", \"12\": \"neutral\", \"13\": \"positive\", \"14\": \"positive\", \"15\": \"neutral\", \"16\": \"neutral\", \"17\": \"positive\", \"18\": \"positive\", \"19\": \"neutral\", \"20\": \"neutral\", \"21\": \"neutral\", \"22\": \"positive\", \"23\": \"neutral\", \"24\": \"positive\"}"); - var passed_all = JSON.parse("{\"0\": true, \"1\": false, \"2\": false, \"3\": false, \"4\": true, \"5\": true, \"6\": false, \"7\": false, \"8\": false, \"9\": true, \"10\": true, \"11\": false, \"12\": false, \"13\": false, \"14\": true, \"15\": true, \"16\": false, \"17\": false, \"18\": false, \"19\": true, \"20\": true, \"21\": false, \"22\": false, \"23\": false, \"24\": true}"); + var trends_all = JSON.parse("{\"0\": \"negative\", \"1\": \"positive\", \"2\": \"positive\", \"3\": \"positive\", \"4\": \"positive\", \"5\": \"negative\", \"6\": \"negative\", \"7\": \"positive\", \"8\": \"negative\", \"9\": \"negative\", \"10\": \"negative\", \"11\": \"negative\", \"12\": \"positive\", \"13\": \"positive\", \"14\": \"negative\", \"15\": \"negative\", \"16\": \"positive\", \"17\": \"positive\", \"18\": \"neutral\", \"19\": \"positive\", \"20\": \"neutral\", \"21\": \"positive\", \"22\": \"neutral\", \"23\": \"positive\", \"24\": \"negative\"}"); + var passed_all = JSON.parse("{\"0\": true, \"1\": false, \"2\": false, \"3\": false, \"4\": true, \"5\": true, \"6\": false, \"7\": false, \"8\": false, \"9\": true, \"10\": true, \"11\": true, \"12\": false, \"13\": false, \"14\": true, \"15\": true, \"16\": false, \"17\": false, \"18\": false, \"19\": true, \"20\": true, \"21\": false, \"22\": false, \"23\": false, \"24\": true}"); var names_all = JSON.parse("{\"0\": \"Accuracy\", \"1\": \"Precision\", \"2\": \"Recall\", \"3\": \"F1 Score\", \"4\": \"AUROC\", \"5\": \"Accuracy\", \"6\": \"Precision\", \"7\": \"Recall\", \"8\": \"F1 Score\", \"9\": \"AUROC\", \"10\": \"Accuracy\", \"11\": \"Precision\", \"12\": \"Recall\", \"13\": \"F1 Score\", \"14\": \"AUROC\", \"15\": \"Accuracy\", \"16\": \"Precision\", \"17\": \"Recall\", \"18\": \"F1 Score\", \"19\": \"AUROC\", \"20\": \"Accuracy\", \"21\": \"Precision\", \"22\": \"Recall\", \"23\": \"F1 Score\", \"24\": \"AUROC\"}"); var timestamps_all = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"1\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"2\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"3\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"4\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"5\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"6\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"7\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"8\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"9\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"10\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"11\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"12\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"13\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"14\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"15\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"16\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"17\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"18\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"19\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"20\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"21\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"22\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"23\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"24\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"]}"); @@ -2733,10 +2733,10 @@

    Ethical Considerations

    } } var slices_all = JSON.parse("{\"0\": [\"metric:Accuracy\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"1\": [\"metric:Precision\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"2\": [\"metric:Recall\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"3\": [\"metric:F1 Score\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"4\": [\"metric:AUROC\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"5\": [\"metric:Accuracy\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"6\": [\"metric:Precision\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"7\": [\"metric:Recall\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"8\": [\"metric:F1 Score\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"9\": [\"metric:AUROC\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"10\": [\"metric:Accuracy\", \"gender:M\", \"age:overall_age\"], \"11\": [\"metric:Precision\", \"gender:M\", \"age:overall_age\"], \"12\": [\"metric:Recall\", \"gender:M\", \"age:overall_age\"], \"13\": [\"metric:F1 Score\", \"gender:M\", \"age:overall_age\"], \"14\": [\"metric:AUROC\", \"gender:M\", \"age:overall_age\"], \"15\": [\"metric:Accuracy\", \"gender:F\", \"age:overall_age\"], \"16\": [\"metric:Precision\", \"gender:F\", \"age:overall_age\"], \"17\": [\"metric:Recall\", \"gender:F\", \"age:overall_age\"], \"18\": [\"metric:F1 Score\", \"gender:F\", \"age:overall_age\"], \"19\": [\"metric:AUROC\", \"gender:F\", \"age:overall_age\"], \"20\": [\"metric:Accuracy\", \"age:overall_age\", \"gender:overall_gender\"], \"21\": [\"metric:Precision\", \"age:overall_age\", \"gender:overall_gender\"], \"22\": [\"metric:Recall\", \"age:overall_age\", \"gender:overall_gender\"], \"23\": [\"metric:F1 Score\", \"age:overall_age\", \"gender:overall_gender\"], \"24\": [\"metric:AUROC\", \"age:overall_age\", \"gender:overall_gender\"]}"); - var histories_all = JSON.parse("{\"0\": [\"0.9942279942279942\", \"1.0\", \"0.8021606116347475\", \"0.91483841672335\", \"1.0\"], \"1\": [\"0.0\", \"0.0\", \"0.1054589377479996\", \"0.06446839097661214\", \"0.0834196181191203\"], \"2\": [\"0.0\", \"0.0\", \"0.01284458874174532\", \"0.1330984703400093\", \"0.03722961601573457\"], \"3\": [\"0.0\", \"0.2819621395795328\", \"0.37014888253003336\", \"0.5969546258961874\", \"0.5939194401325512\"], \"4\": [\"0.7688679245283019\", \"0.7719239132483345\", \"0.7125435741443202\", \"0.6949896269200626\", \"0.7019828347883943\"], \"5\": [\"0.9848771266540642\", \"1.0\", \"1.0\", \"1.0\", \"0.9598740097797964\"], \"6\": [\"0.0\", \"0.0\", \"0.0\", \"0.15347997711141814\", \"0.17172264997260875\"], \"7\": [\"0.0\", \"0.0\", \"0.0\", \"0.0\", \"0.10613833912469997\"], \"8\": [\"0.0\", \"0.013027109918884124\", \"0.0\", \"0.14015805410912\", \"0.07351443732433577\"], \"9\": [\"0.9124596908706772\", \"0.841566744649705\", \"0.9190764041739317\", \"0.9415547048073998\", \"0.8777109441484907\"], \"10\": [\"0.9763663220088626\", \"0.989912582760708\", \"1.0\", \"0.9355676469364977\", \"0.9869858868968788\"], \"11\": [\"0.0\", \"0.03430122977182886\", \"0.2216711491565862\", \"0.24360659936216117\", \"0.3452521175564264\"], \"12\": [\"0.0\", \"0.0\", \"0.0\", \"0.0\", \"0.0068967232218273295\"], \"13\": [\"0.0\", \"0.0028339286181728383\", \"0.0\", \"0.0\", \"0.12756489808356938\"], \"14\": [\"0.8732743948562784\", \"0.9901082803891144\", \"0.9749283548341042\", \"1.0\", \"1.0\"], \"15\": [\"0.9866577718478986\", \"0.9987861013155545\", \"1.0\", \"1.0\", \"1.0\"], \"16\": [\"0.0\", \"0.0\", \"0.0\", \"0.03851185514041444\", \"0.027908811968215368\"], \"17\": [\"0.0\", \"0.06846161161707012\", \"0.0\", \"0.16823362423670318\", \"0.12216062575434482\"], \"18\": [\"0.0\", \"0.0\", \"0.0\", \"0.0\", \"0.06729634456708374\"], \"19\": [\"0.856987908961593\", \"0.9226407410160536\", \"1.0\", \"0.9343322658547919\", \"0.8785251669509954\"], \"20\": [\"0.9817735716789344\", \"0.916493952176769\", \"0.9442974994805379\", \"1.0\", \"0.9707540750350074\"], \"21\": [\"0.0\", \"0.0\", \"0.03225594094967265\", \"0.0\", \"0.0\"], \"22\": [\"0.0\", \"0.10264127921613297\", \"0.1234690286363817\", \"0.1632794391103451\", \"0.196281778054396\"], \"23\": [\"0.0\", \"0.08419609021940222\", \"0.0042690359717813126\", \"0.0\", \"0.0\"], \"24\": [\"0.867867489608263\", \"0.9167894375837232\", \"1.0\", \"1.0\", \"1.0\"]}"); + var histories_all = JSON.parse("{\"0\": [\"0.9942279942279942\", \"0.8782049823430107\", \"0.8855124189717378\", \"1.0\", \"0.7738737874551314\"], \"1\": [\"0.0\", \"0.036000144088568074\", \"0.09853050735249438\", \"0.055011350068792195\", \"0.1619894499482346\"], \"2\": [\"0.0\", \"0.0\", \"0.15066152276631192\", \"0.18359546675003308\", \"0.0\"], \"3\": [\"0.0\", \"0.0071863364384208706\", \"0.08142250805582295\", \"0.12105588947862309\", \"0.057379525535859\"], \"4\": [\"0.7862844702467343\", \"0.8447744173849981\", \"1.0\", \"0.8550442648950125\", \"0.9875989767985858\"], \"5\": [\"0.9848771266540642\", \"1.0\", \"0.8619729248098779\", \"0.8206862006829606\", \"0.8911746595234663\"], \"6\": [\"0.3333333333333333\", \"0.42828143595965845\", \"0.37299515019258644\", \"0.23930233334429898\", \"0.3146447991258896\"], \"7\": [\"0.043478260869565216\", \"0.06477596070399107\", \"0.1530728723912005\", \"0.20419016514975202\", \"0.26374933651832944\"], \"8\": [\"0.07692307692307693\", \"0.15609026472811377\", \"0.0\", \"0.03374768696285382\", \"0.0783527821064881\"], \"9\": [\"0.9072890025575449\", \"0.9726703268510903\", \"0.7641081146023275\", \"0.8025555118079636\", \"0.7121148405267389\"], \"10\": [\"0.9771048744460856\", \"0.8354893334540037\", \"0.6679118462690455\", \"0.7579534041278262\", \"0.6834291438705408\"], \"11\": [\"1.0\", \"1.0\", \"0.9174517277851223\", \"1.0\", \"0.8976729177215944\"], \"12\": [\"0.03125\", \"0.10039797517512597\", \"0.16893019424555925\", \"0.21017123685947187\", \"0.2842883492370025\"], \"13\": [\"0.06060606060606061\", \"0.1334114439992532\", \"0.13353394646121972\", \"0.18372919137674398\", \"0.22368915661029218\"], \"14\": [\"0.8735816944024206\", \"0.9836828660200002\", \"0.932215258596031\", \"0.8480789793356489\", \"0.6800928276482259\"], \"15\": [\"0.9859906604402935\", \"0.9444299700643859\", \"0.8044314476954962\", \"0.8509907570422153\", \"0.8192431799747109\"], \"16\": [\"0.0\", \"0.0\", \"0.04048633092606849\", \"0.18976336285323178\", \"0.10291466057123591\"], \"17\": [\"0.0\", \"0.06645940675666698\", \"0.10300036870259255\", \"0.2092439270146798\", \"0.26906453307242356\"], \"18\": [\"0.0\", \"0.024479461823030416\", \"0.0\", \"0.01002005637411237\", \"0.0\"], \"19\": [\"0.8555120910384068\", \"1.0\", \"0.9804570633407543\", \"1.0\", \"0.9960020018728102\"], \"20\": [\"0.9817735716789344\", \"1.0\", \"1.0\", \"1.0\", \"0.9748802592613818\"], \"21\": [\"0.3333333333333333\", \"0.4471676796762688\", \"0.5958269860326022\", \"0.6685703484133385\", \"0.7665769773505952\"], \"22\": [\"0.0196078431372549\", \"0.0\", \"0.0\", \"0.0\", \"0.004721174344962717\"], \"23\": [\"0.037037037037037035\", \"0.10009832439653214\", \"0.358461550273736\", \"0.3298621252048033\", \"0.24906173062260095\"], \"24\": [\"0.8671677093392675\", \"0.828637000275013\", \"0.7681927254815382\", \"0.721214483012441\", \"0.7706882816474631\"]}"); var thresholds_all = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\", \"19\": \"0.7\", \"20\": \"0.7\", \"21\": \"0.7\", \"22\": \"0.7\", \"23\": \"0.7\", \"24\": \"0.7\"}"); - var trends_all = JSON.parse("{\"0\": \"neutral\", \"1\": \"positive\", \"2\": \"positive\", \"3\": \"positive\", \"4\": \"negative\", \"5\": \"neutral\", \"6\": \"positive\", \"7\": \"positive\", \"8\": \"positive\", \"9\": \"neutral\", \"10\": \"neutral\", \"11\": \"positive\", \"12\": \"neutral\", \"13\": \"positive\", \"14\": \"positive\", \"15\": \"neutral\", \"16\": \"neutral\", \"17\": \"positive\", \"18\": \"positive\", \"19\": \"neutral\", \"20\": \"neutral\", \"21\": \"neutral\", \"22\": \"positive\", \"23\": \"neutral\", \"24\": \"positive\"}"); - var passed_all = JSON.parse("{\"0\": true, \"1\": false, \"2\": false, \"3\": false, \"4\": true, \"5\": true, \"6\": false, \"7\": false, \"8\": false, \"9\": true, \"10\": true, \"11\": false, \"12\": false, \"13\": false, \"14\": true, \"15\": true, \"16\": false, \"17\": false, \"18\": false, \"19\": true, \"20\": true, \"21\": false, \"22\": false, \"23\": false, \"24\": true}"); + var trends_all = JSON.parse("{\"0\": \"negative\", \"1\": \"positive\", \"2\": \"positive\", \"3\": \"positive\", \"4\": \"positive\", \"5\": \"negative\", \"6\": \"negative\", \"7\": \"positive\", \"8\": \"negative\", \"9\": \"negative\", \"10\": \"negative\", \"11\": \"negative\", \"12\": \"positive\", \"13\": \"positive\", \"14\": \"negative\", \"15\": \"negative\", \"16\": \"positive\", \"17\": \"positive\", \"18\": \"neutral\", \"19\": \"positive\", \"20\": \"neutral\", \"21\": \"positive\", \"22\": \"neutral\", \"23\": \"positive\", \"24\": \"negative\"}"); + var passed_all = JSON.parse("{\"0\": true, \"1\": false, \"2\": false, \"3\": false, \"4\": true, \"5\": true, \"6\": false, \"7\": false, \"8\": false, \"9\": true, \"10\": true, \"11\": true, \"12\": false, \"13\": false, \"14\": true, \"15\": true, \"16\": false, \"17\": false, \"18\": false, \"19\": true, \"20\": true, \"21\": false, \"22\": false, \"23\": false, \"24\": true}"); var names_all = JSON.parse("{\"0\": \"Accuracy\", \"1\": \"Precision\", \"2\": \"Recall\", \"3\": \"F1 Score\", \"4\": \"AUROC\", \"5\": \"Accuracy\", \"6\": \"Precision\", \"7\": \"Recall\", \"8\": \"F1 Score\", \"9\": \"AUROC\", \"10\": \"Accuracy\", \"11\": \"Precision\", \"12\": \"Recall\", \"13\": \"F1 Score\", \"14\": \"AUROC\", \"15\": \"Accuracy\", \"16\": \"Precision\", \"17\": \"Recall\", \"18\": \"F1 Score\", \"19\": \"AUROC\", \"20\": \"Accuracy\", \"21\": \"Precision\", \"22\": \"Recall\", \"23\": \"F1 Score\", \"24\": \"AUROC\"}"); var timestamps_all = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"1\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"2\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"3\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"4\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"5\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"6\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"7\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"8\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"9\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"10\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"11\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"12\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"13\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"14\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"15\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"16\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"17\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"18\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"19\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"20\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"21\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"22\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"23\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"24\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"]}"); diff --git a/api/tutorials/nihcxr/cxr_classification.html b/api/tutorials/nihcxr/cxr_classification.html index a083a9b1f..aed4ee7f5 100644 --- a/api/tutorials/nihcxr/cxr_classification.html +++ b/api/tutorials/nihcxr/cxr_classification.html @@ -504,74 +504,74 @@

    Generate Historical Reports
    -Flattening the indices: 100%|████████| 1000/1000 [00:53<00:00, 18.66 examples/s]
    -Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 490906.37 examples/s]
    -Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 214773.11 examples/s]
    -Map: 100%|███████████████████████████| 400/400 [00:00<00:00, 1643.65 examples/s]
    -Filter -> Patient Gender:M: 100%|███| 400/400 [00:00<00:00, 42922.75 examples/s]
    -Filter -> Patient Gender:F: 100%|███| 400/400 [00:00<00:00, 35339.05 examples/s]
    -Filter -> overall: 100%|████████████| 400/400 [00:00<00:00, 43264.78 examples/s]
    -Filter -> Patient Age:[19 - 35]: 100%|█| 400/400 [00:00<00:00, 40339.54 examples
    -Filter -> Patient Age:[35 - 65]: 100%|█| 400/400 [00:00<00:00, 40435.80 examples
    -Filter -> Patient Age:[65 - 100]: 100%|█| 400/400 [00:00<00:00, 39774.34 example
    +Flattening the indices: 100%|████████| 1000/1000 [00:50<00:00, 19.97 examples/s]
    +Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 221780.03 examples/s]
    +Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 136903.22 examples/s]
    +Map: 100%|███████████████████████████| 400/400 [00:00<00:00, 1147.93 examples/s]
    +Filter -> Patient Gender:M: 100%|███| 400/400 [00:00<00:00, 43015.19 examples/s]
    +Filter -> Patient Gender:F: 100%|███| 400/400 [00:00<00:00, 43700.91 examples/s]
    +Filter -> overall: 100%|████████████| 400/400 [00:00<00:00, 45745.65 examples/s]
    +Filter -> Patient Age:[19 - 35]: 100%|█| 400/400 [00:00<00:00, 41513.38 examples
    +Filter -> Patient Age:[35 - 65]: 100%|█| 400/400 [00:00<00:00, 42320.75 examples
    +Filter -> Patient Age:[65 - 100]: 100%|█| 400/400 [00:00<00:00, 42055.54 example
     Filter -> Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 400/400 [00:00<00:00,
     Filter -> Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 400/400 [00:00<00:00,
     Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 400/400 [00:00<00:00,
     Filter -> Patient Age:[35 - 65]&Patient Gender:F: 100%|█| 400/400 [00:00<00:00,
     Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|█| 400/400 [00:00<00:00,
     Filter -> Patient Age:[65 - 100]&Patient Gender:F: 100%|█| 400/400 [00:00<00:00,
    -Filter -> overall: 100%|████████████| 400/400 [00:00<00:00, 44234.38 examples/s]
    -Flattening the indices: 100%|████████| 1000/1000 [00:53<00:00, 18.67 examples/s]
    -Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 547702.27 examples/s]
    -Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 230620.99 examples/s]
    -Map: 100%|███████████████████████████| 396/396 [00:00<00:00, 1845.53 examples/s]
    -Filter -> Patient Gender:M: 100%|███| 396/396 [00:00<00:00, 42850.92 examples/s]
    -Filter -> Patient Gender:F: 100%|███| 396/396 [00:00<00:00, 43490.47 examples/s]
    -Filter -> overall: 100%|████████████| 396/396 [00:00<00:00, 45366.12 examples/s]
    -Filter -> Patient Age:[19 - 35]: 100%|█| 396/396 [00:00<00:00, 40392.62 examples
    -Filter -> Patient Age:[35 - 65]: 100%|█| 396/396 [00:00<00:00, 42426.23 examples
    -Filter -> Patient Age:[65 - 100]: 100%|█| 396/396 [00:00<00:00, 40831.52 example
    +Filter -> overall: 100%|████████████| 400/400 [00:00<00:00, 46741.00 examples/s]
    +Flattening the indices: 100%|████████| 1000/1000 [00:51<00:00, 19.56 examples/s]
    +Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 567872.19 examples/s]
    +Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 242683.79 examples/s]
    +Map: 100%|███████████████████████████| 396/396 [00:00<00:00, 1150.22 examples/s]
    +Filter -> Patient Gender:M: 100%|███| 396/396 [00:00<00:00, 43286.45 examples/s]
    +Filter -> Patient Gender:F: 100%|███| 396/396 [00:00<00:00, 43913.61 examples/s]
    +Filter -> overall: 100%|████████████| 396/396 [00:00<00:00, 45805.26 examples/s]
    +Filter -> Patient Age:[19 - 35]: 100%|█| 396/396 [00:00<00:00, 41569.34 examples
    +Filter -> Patient Age:[35 - 65]: 100%|█| 396/396 [00:00<00:00, 43008.48 examples
    +Filter -> Patient Age:[65 - 100]: 100%|█| 396/396 [00:00<00:00, 42367.79 example
     Filter -> Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 396/396 [00:00<00:00,
     Filter -> Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 396/396 [00:00<00:00,
     Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 396/396 [00:00<00:00,
     Filter -> Patient Age:[35 - 65]&Patient Gender:F: 100%|█| 396/396 [00:00<00:00,
     Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|█| 396/396 [00:00<00:00,
     Filter -> Patient Age:[65 - 100]&Patient Gender:F: 100%|█| 396/396 [00:00<00:00,
    -Filter -> overall: 100%|████████████| 396/396 [00:00<00:00, 46050.36 examples/s]
    -Flattening the indices: 100%|████████| 1000/1000 [00:51<00:00, 19.49 examples/s]
    -Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 540991.10 examples/s]
    -Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 211353.19 examples/s]
    -Map: 100%|███████████████████████████| 383/383 [00:00<00:00, 1757.34 examples/s]
    -Filter -> Patient Gender:M: 100%|███| 383/383 [00:00<00:00, 41916.77 examples/s]
    -Filter -> Patient Gender:F: 100%|███| 383/383 [00:00<00:00, 38010.04 examples/s]
    -Filter -> overall: 100%|████████████| 383/383 [00:00<00:00, 42929.41 examples/s]
    -Filter -> Patient Age:[19 - 35]: 100%|█| 383/383 [00:00<00:00, 38396.16 examples
    -Filter -> Patient Age:[35 - 65]: 100%|█| 383/383 [00:00<00:00, 40972.75 examples
    -Filter -> Patient Age:[65 - 100]: 100%|█| 383/383 [00:00<00:00, 22248.64 example
    +Filter -> overall: 100%|████████████| 396/396 [00:00<00:00, 48601.15 examples/s]
    +Flattening the indices: 100%|████████| 1000/1000 [00:50<00:00, 19.73 examples/s]
    +Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 300258.00 examples/s]
    +Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 126281.21 examples/s]
    +Map: 100%|████████████████████████████| 383/383 [00:00<00:00, 768.53 examples/s]
    +Filter -> Patient Gender:M: 100%|███| 383/383 [00:00<00:00, 43070.98 examples/s]
    +Filter -> Patient Gender:F: 100%|███| 383/383 [00:00<00:00, 42860.68 examples/s]
    +Filter -> overall: 100%|████████████| 383/383 [00:00<00:00, 45216.83 examples/s]
    +Filter -> Patient Age:[19 - 35]: 100%|█| 383/383 [00:00<00:00, 40842.53 examples
    +Filter -> Patient Age:[35 - 65]: 100%|█| 383/383 [00:00<00:00, 41961.67 examples
    +Filter -> Patient Age:[65 - 100]: 100%|█| 383/383 [00:00<00:00, 41460.24 example
     Filter -> Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 383/383 [00:00<00:00,
     Filter -> Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 383/383 [00:00<00:00,
     Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 383/383 [00:00<00:00,
     Filter -> Patient Age:[35 - 65]&Patient Gender:F: 100%|█| 383/383 [00:00<00:00,
     Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|█| 383/383 [00:00<00:00,
     Filter -> Patient Age:[65 - 100]&Patient Gender:F: 100%|█| 383/383 [00:00<00:00,
    -Filter -> overall: 100%|████████████| 383/383 [00:00<00:00, 46180.03 examples/s]
    -Flattening the indices: 100%|████████| 1000/1000 [00:50<00:00, 19.68 examples/s]
    -Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 300516.16 examples/s]
    -Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 125266.67 examples/s]
    -Map: 100%|███████████████████████████| 411/411 [00:00<00:00, 1583.10 examples/s]
    -Filter -> Patient Gender:M: 100%|███| 411/411 [00:00<00:00, 43730.57 examples/s]
    -Filter -> Patient Gender:F: 100%|███| 411/411 [00:00<00:00, 43618.81 examples/s]
    -Filter -> overall: 100%|████████████| 411/411 [00:00<00:00, 47375.68 examples/s]
    -Filter -> Patient Age:[19 - 35]: 100%|█| 411/411 [00:00<00:00, 40968.18 examples
    -Filter -> Patient Age:[35 - 65]: 100%|█| 411/411 [00:00<00:00, 43210.98 examples
    -Filter -> Patient Age:[65 - 100]: 100%|█| 411/411 [00:00<00:00, 41431.95 example
    +Filter -> overall: 100%|████████████| 383/383 [00:00<00:00, 46573.65 examples/s]
    +Flattening the indices: 100%|████████| 1000/1000 [00:52<00:00, 18.97 examples/s]
    +Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 556716.75 examples/s]
    +Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 240526.67 examples/s]
    +Map: 100%|███████████████████████████| 411/411 [00:00<00:00, 1164.24 examples/s]
    +Filter -> Patient Gender:M: 100%|███| 411/411 [00:00<00:00, 44328.81 examples/s]
    +Filter -> Patient Gender:F: 100%|███| 411/411 [00:00<00:00, 44277.58 examples/s]
    +Filter -> overall: 100%|████████████| 411/411 [00:00<00:00, 46382.69 examples/s]
    +Filter -> Patient Age:[19 - 35]: 100%|█| 411/411 [00:00<00:00, 41921.62 examples
    +Filter -> Patient Age:[35 - 65]: 100%|█| 411/411 [00:00<00:00, 43253.27 examples
    +Filter -> Patient Age:[65 - 100]: 100%|█| 411/411 [00:00<00:00, 42642.33 example
     Filter -> Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 411/411 [00:00<00:00,
     Filter -> Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 411/411 [00:00<00:00,
     Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 411/411 [00:00<00:00,
     Filter -> Patient Age:[35 - 65]&Patient Gender:F: 100%|█| 411/411 [00:00<00:00,
     Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|█| 411/411 [00:00<00:00,
     Filter -> Patient Age:[65 - 100]&Patient Gender:F: 100%|█| 411/411 [00:00<00:00,
    -Filter -> overall: 100%|████████████| 411/411 [00:00<00:00, 46774.09 examples/s]
    +Filter -> overall: 100%|████████████| 411/411 [00:00<00:00, 47510.17 examples/s]
     

    CyclOps offers a package for documentation of the model through a model report. The ModelCardReport class is used to populate and generate the model report as an HTML file. The model report has the following sections:

    @@ -669,8 +669,8 @@

    Model Creation
    -Filter: 100%|██████████| 1000/1000 [00:00<00:00, 101969.32 examples/s]
    -Map: 100%|██████████| 661/661 [00:00<00:00, 1783.15 examples/s]
    +Filter: 100%|██████████| 1000/1000 [00:00<00:00, 119014.36 examples/s]
    +Map: 100%|██████████| 661/661 [00:00<00:00, 3501.48 examples/s]
     

    @@ -797,9 +796,9 @@

    Multilabel AUROC by Pathology and Sex
    -Filter -> Patient Gender:M: 100%|██████████| 661/661 [00:00<00:00, 46857.00 examples/s]
    -Filter -> Patient Gender:F: 100%|██████████| 661/661 [00:00<00:00, 45079.51 examples/s]
    -Filter -> overall: 100%|██████████| 661/661 [00:00<00:00, 45122.80 examples/s]
    +Filter -> Patient Gender:M: 100%|██████████| 661/661 [00:00<00:00, 46195.70 examples/s]
    +Filter -> Patient Gender:F: 100%|██████████| 661/661 [00:00<00:00, 46198.78 examples/s]
    +Filter -> overall: 100%|██████████| 661/661 [00:00<00:00, 47727.37 examples/s]
     

    @@ -846,10 +845,9 @@

    Multilabel AUROC by Pathology and Agenih_eval_results_age = evaluator.evaluate( dataset=nih_ds, metrics=[ppv, npv, sensitivity, specificity], - feature_columns="image", target_columns=pathologies, - prediction_column_prefix="predictions", - remove_columns="image", + prediction_columns="predictions.densenet", + ignore_columns="image", slice_spec=slice_spec, )

    @@ -860,16 +858,16 @@

    Multilabel AUROC by Pathology and Age
    -Filter -> Patient Age:[19 - 35]: 100%|██████████| 661/661 [00:00<00:00, 44839.64 examples/s]
    -Filter -> Patient Age:[35 - 65]: 100%|██████████| 661/661 [00:00<00:00, 43468.04 examples/s]
    -Filter -> Patient Age:[65 - 100]: 100%|██████████| 661/661 [00:00<00:00, 44189.27 examples/s]
    -Filter -> Patient Age:[19 - 35]&Patient Gender:M: 100%|██████████| 661/661 [00:00<00:00, 43112.49 examples/s]
    -Filter -> Patient Age:[19 - 35]&Patient Gender:F: 100%|██████████| 661/661 [00:00<00:00, 48012.52 examples/s]
    -Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|██████████| 661/661 [00:00<00:00, 45367.94 examples/s]
    -Filter -> Patient Age:[35 - 65]&Patient Gender:F: 100%|██████████| 661/661 [00:00<00:00, 43131.94 examples/s]
    -Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|██████████| 661/661 [00:00<00:00, 43892.64 examples/s]
    -Filter -> Patient Age:[65 - 100]&Patient Gender:F: 100%|██████████| 661/661 [00:00<00:00, 41827.24 examples/s]
    -Filter -> overall: 100%|██████████| 661/661 [00:00<00:00, 47371.00 examples/s]
    +Filter -> Patient Age:[19 - 35]: 100%|██████████| 661/661 [00:00<00:00, 44943.59 examples/s]
    +Filter -> Patient Age:[35 - 65]: 100%|██████████| 661/661 [00:00<00:00, 46006.35 examples/s]
    +Filter -> Patient Age:[65 - 100]: 100%|██████████| 661/661 [00:00<00:00, 44317.12 examples/s]
    +Filter -> Patient Age:[19 - 35]&Patient Gender:M: 100%|██████████| 661/661 [00:00<00:00, 45493.76 examples/s]
    +Filter -> Patient Age:[19 - 35]&Patient Gender:F: 100%|██████████| 661/661 [00:00<00:00, 44271.13 examples/s]
    +Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|██████████| 661/661 [00:00<00:00, 41095.03 examples/s]
    +Filter -> Patient Age:[35 - 65]&Patient Gender:F: 100%|██████████| 661/661 [00:00<00:00, 45549.81 examples/s]
    +Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|██████████| 661/661 [00:00<00:00, 44374.58 examples/s]
    +Filter -> Patient Age:[65 - 100]&Patient Gender:F: 100%|██████████| 661/661 [00:00<00:00, 44286.68 examples/s]
    +Filter -> overall: 100%|██████████| 661/661 [00:00<00:00, 48460.67 examples/s]
     

    -
    +
    @@ -6615,7 +6615,7 @@

    Graphics

    -
    +
    @@ -6623,7 +6623,7 @@

    Graphics

    -
    +
    diff --git a/api/tutorials/synthea/length_of_stay_report_periodic.html b/api/tutorials/synthea/length_of_stay_report_periodic.html index e2432edb9..2006f5667 100644 --- a/api/tutorials/synthea/length_of_stay_report_periodic.html +++ b/api/tutorials/synthea/length_of_stay_report_periodic.html @@ -647,7 +647,7 @@

    A quick glance of your most import
    - 0.72 + 0.85 @@ -680,7 +680,7 @@

    A quick glance of your most import
    - 0.61 + 0.83 @@ -713,7 +713,7 @@

    A quick glance of your most import
    - 1.0 + 0.8 @@ -746,7 +746,7 @@

    A quick glance of your most import
    - 1.0 + 0.9 @@ -779,7 +779,7 @@

    A quick glance of your most import
    - 0.91 + 0.8 @@ -1044,7 +1044,7 @@

    Graphics

    -
    +
    @@ -1052,7 +1052,7 @@

    Graphics

    -
    +
    @@ -1060,7 +1060,7 @@

    Graphics

    -
    +
    @@ -1068,7 +1068,7 @@

    Graphics

    -
    +
    @@ -1076,7 +1076,7 @@

    Graphics

    -
    +
    @@ -1157,7 +1157,7 @@

    Quantitative Analysis

    - 0.72 + 0.85 @@ -1190,7 +1190,7 @@

    Quantitative Analysis

    - 0.61 + 0.83 @@ -1223,7 +1223,7 @@

    Quantitative Analysis

    - 1.0 + 0.8 @@ -1256,7 +1256,7 @@

    Quantitative Analysis

    - 1.0 + 0.9 @@ -1289,7 +1289,7 @@

    Quantitative Analysis

    - 0.91 + 0.8 @@ -1321,7 +1321,7 @@

    Graphics

    -
    +
    @@ -1329,7 +1329,7 @@

    Graphics

    -
    +
    @@ -1337,7 +1337,7 @@

    Graphics

    -
    +
    @@ -1345,7 +1345,7 @@

    Graphics

    -
    +
    @@ -1398,7 +1398,7 @@

    Graphics

    -
    +
    @@ -1670,6 +1670,15 @@

    Model Parameters

    + + + + + +
    +

    Eval_metric

    + logloss +
    @@ -1686,22 +1695,26 @@

    Model Parameters

    -

    Random_state

    - 123 +

    Reg_lambda

    + 1
    +
    +

    Gamma

    + 1 +
    -

    Seed

    - 123 +

    Colsample_bytree

    + 0.8
    @@ -1724,8 +1737,8 @@

    Seed

    -

    Max_depth

    - 2 +

    Random_state

    + 123
    @@ -1737,14 +1750,18 @@

    Max_depth

    +
    +

    Enable_categorical

    + False +
    -

    Eval_metric

    - logloss +

    N_estimators

    + 250
    @@ -1771,6 +1788,10 @@

    Eval_metric

    +
    +

    Min_child_weight

    + 3 +
    @@ -1786,19 +1807,11 @@

    Eval_metric

    -
    -

    Enable_categorical

    - False -
    -
    -

    Reg_lambda

    - 1 -
    @@ -1809,6 +1822,10 @@

    Reg_lambda

    +
    +

    Seed

    + 123 +
    @@ -1819,32 +1836,28 @@

    Reg_lambda

    -
    -

    N_estimators

    - 500 -
    +
    +

    Max_depth

    + 5 +
    -
    -

    Learning_rate

    - 0.1 -
    -

    Gamma

    - 0 +

    Missing

    + nan
    @@ -1856,10 +1869,6 @@

    Gamma

    -
    -

    Min_child_weight

    - 3 -
    @@ -1890,10 +1899,6 @@

    Min_child_weight

    -
    -

    Objective

    - binary:logistic -
    @@ -1905,22 +1910,17 @@

    Objective

    -

    Colsample_bytree

    - 0.8 +

    Objective

    + binary:logistic
    - - - - -
    -

    Missing

    - nan +

    Learning_rate

    + 0.1
    @@ -2192,7 +2192,7 @@

    Ethical Considerations

    function generate_model_card_plot() { var model_card_plots = [] var overall_indices = [20, 21, 22, 23, 24] - var histories = JSON.parse("{\"0\": [\"0.8016528925619835\", \"0.6936076628105141\", \"0.6871314730971221\", \"0.7926497184811672\", \"0.7201177840517814\"], \"1\": [\"0.8823529411764706\", \"0.8339808949419706\", \"0.8042143949288626\", \"0.8854569942989211\", \"0.8910349652620954\"], \"2\": [\"0.7894736842105263\", \"0.8497857047884345\", \"0.9180487667877562\", \"0.9073890687519838\", \"0.8552361719628085\"], \"3\": [\"0.8333333333333334\", \"0.8203350141150871\", \"0.5858710517835515\", \"0.5092051191371252\", \"0.5362486278970567\"], \"4\": [\"0.926608187134503\", \"1.0\", \"0.9143093673249056\", \"0.8605851358656552\", \"0.7901468807602272\"], \"5\": [\"0.9056603773584906\", \"0.8238259039252782\", \"0.8074809018915355\", \"0.8526276043002695\", \"0.8352624674534691\"], \"6\": [\"0.9523809523809523\", \"1.0\", \"1.0\", \"1.0\", \"0.9227045140882221\"], \"7\": [\"0.8333333333333334\", \"0.6386602332326536\", \"0.5955417188874538\", \"0.5413595931197926\", \"0.4814721433971116\"], \"8\": [\"0.8888888888888888\", \"0.9215992453848099\", \"0.899752486661807\", \"0.8645449986258291\", \"0.9046888602094814\"], \"9\": [\"0.9698275862068966\", \"0.9666504976180167\", \"1.0\", \"0.8353544975986249\", \"0.7899943713247332\"], \"10\": [\"0.8650793650793651\", \"0.7261154219780679\", \"0.6361974719898206\", \"0.6275130235158937\", \"0.4306534214195932\"], \"11\": [\"0.8961038961038961\", \"0.7714865957933226\", \"0.876354380113162\", \"0.8442572223999412\", \"0.8486374375081782\"], \"12\": [\"0.8846153846153846\", \"0.858103552926385\", \"0.8012276812960967\", \"0.7834322795983695\", \"0.9266855599956503\"], \"13\": [\"0.8903225806451613\", \"0.9643863406696443\", \"0.8157641548296728\", \"0.8176830538956785\", \"0.7415177617307707\"], \"14\": [\"0.9552617521367521\", \"1.0\", \"0.9797737161515213\", \"1.0\", \"0.8175695048575996\"], \"15\": [\"0.86\", \"0.7448714123011388\", \"0.5447307233058087\", \"0.42013358558061104\", \"0.39409052124812166\"], \"16\": [\"0.9818181818181818\", \"0.9960446256571348\", \"1.0\", \"1.0\", \"1.0\"], \"17\": [\"0.8059701492537313\", \"0.7521150994055207\", \"0.8644304380235543\", \"0.7418327487651996\", \"0.7565124393157227\"], \"18\": [\"0.8852459016393442\", \"0.84143896462059\", \"0.7275641526621126\", \"0.7248208829392547\", \"0.6900141192119377\"], \"19\": [\"0.9739936680235187\", \"0.9819497224849731\", \"1.0\", \"0.6945202702464877\", \"0.6355461379802541\"], \"20\": [\"0.8628318584070797\", \"0.9207345753209007\", \"0.9340228593688318\", \"0.7832610679826659\", \"0.7205573701359043\"], \"21\": [\"0.9318181818181818\", \"0.7191095633817272\", \"0.6346136972402535\", \"0.5877278662426885\", \"0.6113507607836166\"], \"22\": [\"0.8482758620689655\", \"0.897422857946215\", \"1.0\", \"1.0\", \"1.0\"], \"23\": [\"0.8880866425992779\", \"0.8057073452801526\", \"0.8750326692067953\", \"0.9609805211952467\", \"1.0\"], \"24\": [\"0.9593018305661984\", \"1.0\", \"1.0\", \"1.0\", \"0.911481983922187\"]}"); + var histories = JSON.parse("{\"0\": [\"0.8717948717948718\", \"1.0\", \"0.9260294388954282\", \"1.0\", \"1.0\"], \"1\": [\"0.8805970149253731\", \"0.8864518186300872\", \"0.797081946779185\", \"0.8368927766555394\", \"0.8688002183880602\"], \"2\": [\"0.8939393939393939\", \"0.9513427326904658\", \"0.9437718965065215\", \"1.0\", \"0.978789025614006\"], \"3\": [\"0.8872180451127819\", \"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"4\": [\"0.9631610219845513\", \"0.9518349043515505\", \"1.0\", \"1.0\", \"1.0\"], \"5\": [\"0.88\", \"1.0\", \"0.8183257226653501\", \"0.8764460848764506\", \"0.8673841678057298\"], \"6\": [\"0.9565217391304348\", \"0.9825044222506764\", \"0.9170264812503323\", \"0.9416114372114078\", \"0.8268460623101885\"], \"7\": [\"0.8148148148148148\", \"0.8167367973115197\", \"0.9333272608973396\", \"0.9643578216343616\", \"0.7990934832388008\"], \"8\": [\"0.88\", \"0.999651165393864\", \"1.0\", \"1.0\", \"0.9808767862920497\"], \"9\": [\"0.9500805152979065\", \"0.8951220073421391\", \"0.936433467560014\", \"1.0\", \"1.0\"], \"10\": [\"0.9193548387096774\", \"0.9648001377992477\", \"0.8330877691073038\", \"0.8684515555514056\", \"0.7208002153978317\"], \"11\": [\"0.9375\", \"1.0\", \"0.8122905559916681\", \"0.7167668811457667\", \"0.6956096239226329\"], \"12\": [\"0.9375\", \"1.0\", \"0.9615581089379361\", \"1.0\", \"0.868681031365583\"], \"13\": [\"0.9375\", \"1.0\", \"1.0\", \"0.9621506691382669\", \"1.0\"], \"14\": [\"0.9755681818181818\", \"0.9083777863454842\", \"0.8331557576642691\", \"0.8190703314509756\", \"0.7941282841512916\"], \"15\": [\"0.8725490196078431\", \"0.8740834672358618\", \"1.0\", \"1.0\", \"0.7391431668169599\"], \"16\": [\"0.9333333333333333\", \"0.9869589152121052\", \"1.0\", \"0.9824768087099318\", \"0.9433515215061776\"], \"17\": [\"0.8615384615384616\", \"0.9597553387744371\", \"0.7328185993460558\", \"0.8444742817504761\", \"0.8644642749352557\"], \"18\": [\"0.896\", \"0.8927289503847454\", \"0.9105348869670588\", \"0.8372212095735406\", \"0.8229679841498414\"], \"19\": [\"0.9496881496881497\", \"0.8968054758243895\", \"1.0\", \"1.0\", \"1.0\"], \"20\": [\"0.8982300884955752\", \"0.9897957786449971\", \"1.0\", \"1.0\", \"0.8542438083210027\"], \"21\": [\"0.9357142857142857\", \"1.0\", \"0.891890217163751\", \"0.9486304681961161\", \"0.8256976895577073\"], \"22\": [\"0.903448275862069\", \"0.9448221268303703\", \"0.8120326963250271\", \"0.7730876829564877\", \"0.7989880475568345\"], \"23\": [\"0.9192982456140351\", \"1.0\", \"0.9963830406784279\", \"0.9881621055393863\", \"0.9025301076085205\"], \"24\": [\"0.9655172413793103\", \"0.7815534224253337\", \"0.7871225167765127\", \"0.7384355239835124\", \"0.8040328837936527\"]}"); var thresholds = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\", \"19\": \"0.7\", \"20\": \"0.7\", \"21\": \"0.7\", \"22\": \"0.7\", \"23\": \"0.7\", \"24\": \"0.7\"}"); var timestamps = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"1\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"2\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"3\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"4\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"5\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"6\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"7\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"8\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"9\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"10\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"11\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"12\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"13\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"14\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"15\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"16\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"17\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"18\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"19\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"20\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"21\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"22\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"23\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"24\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"]}"); @@ -2473,9 +2473,9 @@

    Ethical Considerations

    } } var slices_all = JSON.parse("{\"0\": [\"metric:Accuracy\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"1\": [\"metric:Precision\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"2\": [\"metric:Recall\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"3\": [\"metric:F1 Score\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"4\": [\"metric:AUROC\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"5\": [\"metric:Accuracy\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"6\": [\"metric:Precision\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"7\": [\"metric:Recall\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"8\": [\"metric:F1 Score\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"9\": [\"metric:AUROC\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"10\": [\"metric:Accuracy\", \"gender:M\", \"age:overall_age\"], \"11\": [\"metric:Precision\", \"gender:M\", \"age:overall_age\"], \"12\": [\"metric:Recall\", \"gender:M\", \"age:overall_age\"], \"13\": [\"metric:F1 Score\", \"gender:M\", \"age:overall_age\"], \"14\": [\"metric:AUROC\", \"gender:M\", \"age:overall_age\"], \"15\": [\"metric:Accuracy\", \"gender:F\", \"age:overall_age\"], \"16\": [\"metric:Precision\", \"gender:F\", \"age:overall_age\"], \"17\": [\"metric:Recall\", \"gender:F\", \"age:overall_age\"], \"18\": [\"metric:F1 Score\", \"gender:F\", \"age:overall_age\"], \"19\": [\"metric:AUROC\", \"gender:F\", \"age:overall_age\"], \"20\": [\"metric:Accuracy\", \"age:overall_age\", \"gender:overall_gender\"], \"21\": [\"metric:Precision\", \"age:overall_age\", \"gender:overall_gender\"], \"22\": [\"metric:Recall\", \"age:overall_age\", \"gender:overall_gender\"], \"23\": [\"metric:F1 Score\", \"age:overall_age\", \"gender:overall_gender\"], \"24\": [\"metric:AUROC\", \"age:overall_age\", \"gender:overall_gender\"]}"); - var histories_all = JSON.parse("{\"0\": [\"0.8016528925619835\", \"0.6936076628105141\", \"0.6871314730971221\", \"0.7926497184811672\", \"0.7201177840517814\"], \"1\": [\"0.8823529411764706\", \"0.8339808949419706\", \"0.8042143949288626\", \"0.8854569942989211\", \"0.8910349652620954\"], \"2\": [\"0.7894736842105263\", \"0.8497857047884345\", \"0.9180487667877562\", \"0.9073890687519838\", \"0.8552361719628085\"], \"3\": [\"0.8333333333333334\", \"0.8203350141150871\", \"0.5858710517835515\", \"0.5092051191371252\", \"0.5362486278970567\"], \"4\": [\"0.926608187134503\", \"1.0\", \"0.9143093673249056\", \"0.8605851358656552\", \"0.7901468807602272\"], \"5\": [\"0.9056603773584906\", \"0.8238259039252782\", \"0.8074809018915355\", \"0.8526276043002695\", \"0.8352624674534691\"], \"6\": [\"0.9523809523809523\", \"1.0\", \"1.0\", \"1.0\", \"0.9227045140882221\"], \"7\": [\"0.8333333333333334\", \"0.6386602332326536\", \"0.5955417188874538\", \"0.5413595931197926\", \"0.4814721433971116\"], \"8\": [\"0.8888888888888888\", \"0.9215992453848099\", \"0.899752486661807\", \"0.8645449986258291\", \"0.9046888602094814\"], \"9\": [\"0.9698275862068966\", \"0.9666504976180167\", \"1.0\", \"0.8353544975986249\", \"0.7899943713247332\"], \"10\": [\"0.8650793650793651\", \"0.7261154219780679\", \"0.6361974719898206\", \"0.6275130235158937\", \"0.4306534214195932\"], \"11\": [\"0.8961038961038961\", \"0.7714865957933226\", \"0.876354380113162\", \"0.8442572223999412\", \"0.8486374375081782\"], \"12\": [\"0.8846153846153846\", \"0.858103552926385\", \"0.8012276812960967\", \"0.7834322795983695\", \"0.9266855599956503\"], \"13\": [\"0.8903225806451613\", \"0.9643863406696443\", \"0.8157641548296728\", \"0.8176830538956785\", \"0.7415177617307707\"], \"14\": [\"0.9552617521367521\", \"1.0\", \"0.9797737161515213\", \"1.0\", \"0.8175695048575996\"], \"15\": [\"0.86\", \"0.7448714123011388\", \"0.5447307233058087\", \"0.42013358558061104\", \"0.39409052124812166\"], \"16\": [\"0.9818181818181818\", \"0.9960446256571348\", \"1.0\", \"1.0\", \"1.0\"], \"17\": [\"0.8059701492537313\", \"0.7521150994055207\", \"0.8644304380235543\", \"0.7418327487651996\", \"0.7565124393157227\"], \"18\": [\"0.8852459016393442\", \"0.84143896462059\", \"0.7275641526621126\", \"0.7248208829392547\", \"0.6900141192119377\"], \"19\": [\"0.9739936680235187\", \"0.9819497224849731\", \"1.0\", \"0.6945202702464877\", \"0.6355461379802541\"], \"20\": [\"0.8628318584070797\", \"0.9207345753209007\", \"0.9340228593688318\", \"0.7832610679826659\", \"0.7205573701359043\"], \"21\": [\"0.9318181818181818\", \"0.7191095633817272\", \"0.6346136972402535\", \"0.5877278662426885\", \"0.6113507607836166\"], \"22\": [\"0.8482758620689655\", \"0.897422857946215\", \"1.0\", \"1.0\", \"1.0\"], \"23\": [\"0.8880866425992779\", \"0.8057073452801526\", \"0.8750326692067953\", \"0.9609805211952467\", \"1.0\"], \"24\": [\"0.9593018305661984\", \"1.0\", \"1.0\", \"1.0\", \"0.911481983922187\"]}"); + var histories_all = JSON.parse("{\"0\": [\"0.8717948717948718\", \"1.0\", \"0.9260294388954282\", \"1.0\", \"1.0\"], \"1\": [\"0.8805970149253731\", \"0.8864518186300872\", \"0.797081946779185\", \"0.8368927766555394\", \"0.8688002183880602\"], \"2\": [\"0.8939393939393939\", \"0.9513427326904658\", \"0.9437718965065215\", \"1.0\", \"0.978789025614006\"], \"3\": [\"0.8872180451127819\", \"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"4\": [\"0.9631610219845513\", \"0.9518349043515505\", \"1.0\", \"1.0\", \"1.0\"], \"5\": [\"0.88\", \"1.0\", \"0.8183257226653501\", \"0.8764460848764506\", \"0.8673841678057298\"], \"6\": [\"0.9565217391304348\", \"0.9825044222506764\", \"0.9170264812503323\", \"0.9416114372114078\", \"0.8268460623101885\"], \"7\": [\"0.8148148148148148\", \"0.8167367973115197\", \"0.9333272608973396\", \"0.9643578216343616\", \"0.7990934832388008\"], \"8\": [\"0.88\", \"0.999651165393864\", \"1.0\", \"1.0\", \"0.9808767862920497\"], \"9\": [\"0.9500805152979065\", \"0.8951220073421391\", \"0.936433467560014\", \"1.0\", \"1.0\"], \"10\": [\"0.9193548387096774\", \"0.9648001377992477\", \"0.8330877691073038\", \"0.8684515555514056\", \"0.7208002153978317\"], \"11\": [\"0.9375\", \"1.0\", \"0.8122905559916681\", \"0.7167668811457667\", \"0.6956096239226329\"], \"12\": [\"0.9375\", \"1.0\", \"0.9615581089379361\", \"1.0\", \"0.868681031365583\"], \"13\": [\"0.9375\", \"1.0\", \"1.0\", \"0.9621506691382669\", \"1.0\"], \"14\": [\"0.9755681818181818\", \"0.9083777863454842\", \"0.8331557576642691\", \"0.8190703314509756\", \"0.7941282841512916\"], \"15\": [\"0.8725490196078431\", \"0.8740834672358618\", \"1.0\", \"1.0\", \"0.7391431668169599\"], \"16\": [\"0.9333333333333333\", \"0.9869589152121052\", \"1.0\", \"0.9824768087099318\", \"0.9433515215061776\"], \"17\": [\"0.8615384615384616\", \"0.9597553387744371\", \"0.7328185993460558\", \"0.8444742817504761\", \"0.8644642749352557\"], \"18\": [\"0.896\", \"0.8927289503847454\", \"0.9105348869670588\", \"0.8372212095735406\", \"0.8229679841498414\"], \"19\": [\"0.9496881496881497\", \"0.8968054758243895\", \"1.0\", \"1.0\", \"1.0\"], \"20\": [\"0.8982300884955752\", \"0.9897957786449971\", \"1.0\", \"1.0\", \"0.8542438083210027\"], \"21\": [\"0.9357142857142857\", \"1.0\", \"0.891890217163751\", \"0.9486304681961161\", \"0.8256976895577073\"], \"22\": [\"0.903448275862069\", \"0.9448221268303703\", \"0.8120326963250271\", \"0.7730876829564877\", \"0.7989880475568345\"], \"23\": [\"0.9192982456140351\", \"1.0\", \"0.9963830406784279\", \"0.9881621055393863\", \"0.9025301076085205\"], \"24\": [\"0.9655172413793103\", \"0.7815534224253337\", \"0.7871225167765127\", \"0.7384355239835124\", \"0.8040328837936527\"]}"); var thresholds_all = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\", \"19\": \"0.7\", \"20\": \"0.7\", \"21\": \"0.7\", \"22\": \"0.7\", \"23\": \"0.7\", \"24\": \"0.7\"}"); - var trends_all = JSON.parse("{\"0\": \"neutral\", \"1\": \"neutral\", \"2\": \"positive\", \"3\": \"negative\", \"4\": \"negative\", \"5\": \"negative\", \"6\": \"neutral\", \"7\": \"negative\", \"8\": \"neutral\", \"9\": \"negative\", \"10\": \"negative\", \"11\": \"neutral\", \"12\": \"neutral\", \"13\": \"negative\", \"14\": \"negative\", \"15\": \"negative\", \"16\": \"neutral\", \"17\": \"negative\", \"18\": \"negative\", \"19\": \"negative\", \"20\": \"negative\", \"21\": \"negative\", \"22\": \"positive\", \"23\": \"positive\", \"24\": \"neutral\"}"); + var trends_all = JSON.parse("{\"0\": \"positive\", \"1\": \"neutral\", \"2\": \"positive\", \"3\": \"positive\", \"4\": \"positive\", \"5\": \"negative\", \"6\": \"negative\", \"7\": \"positive\", \"8\": \"positive\", \"9\": \"positive\", \"10\": \"negative\", \"11\": \"negative\", \"12\": \"negative\", \"13\": \"neutral\", \"14\": \"negative\", \"15\": \"negative\", \"16\": \"neutral\", \"17\": \"negative\", \"18\": \"negative\", \"19\": \"positive\", \"20\": \"neutral\", \"21\": \"negative\", \"22\": \"negative\", \"23\": \"neutral\", \"24\": \"negative\"}"); var passed_all = JSON.parse("{\"0\": true, \"1\": true, \"2\": true, \"3\": true, \"4\": true, \"5\": true, \"6\": true, \"7\": true, \"8\": true, \"9\": true, \"10\": true, \"11\": true, \"12\": true, \"13\": true, \"14\": true, \"15\": true, \"16\": true, \"17\": true, \"18\": true, \"19\": true, \"20\": true, \"21\": true, \"22\": true, \"23\": true, \"24\": true}"); var names_all = JSON.parse("{\"0\": \"Accuracy\", \"1\": \"Precision\", \"2\": \"Recall\", \"3\": \"F1 Score\", \"4\": \"AUROC\", \"5\": \"Accuracy\", \"6\": \"Precision\", \"7\": \"Recall\", \"8\": \"F1 Score\", \"9\": \"AUROC\", \"10\": \"Accuracy\", \"11\": \"Precision\", \"12\": \"Recall\", \"13\": \"F1 Score\", \"14\": \"AUROC\", \"15\": \"Accuracy\", \"16\": \"Precision\", \"17\": \"Recall\", \"18\": \"F1 Score\", \"19\": \"AUROC\", \"20\": \"Accuracy\", \"21\": \"Precision\", \"22\": \"Recall\", \"23\": \"F1 Score\", \"24\": \"AUROC\"}"); var timestamps_all = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"1\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"2\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"3\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"4\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"5\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"6\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"7\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"8\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"9\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"10\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"11\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"12\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"13\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"14\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"15\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"16\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"17\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"18\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"19\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"20\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"21\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"22\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"23\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"24\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"]}"); @@ -2749,9 +2749,9 @@

    Ethical Considerations

    } } var slices_all = JSON.parse("{\"0\": [\"metric:Accuracy\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"1\": [\"metric:Precision\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"2\": [\"metric:Recall\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"3\": [\"metric:F1 Score\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"4\": [\"metric:AUROC\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"5\": [\"metric:Accuracy\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"6\": [\"metric:Precision\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"7\": [\"metric:Recall\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"8\": [\"metric:F1 Score\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"9\": [\"metric:AUROC\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"10\": [\"metric:Accuracy\", \"gender:M\", \"age:overall_age\"], \"11\": [\"metric:Precision\", \"gender:M\", \"age:overall_age\"], \"12\": [\"metric:Recall\", \"gender:M\", \"age:overall_age\"], \"13\": [\"metric:F1 Score\", \"gender:M\", \"age:overall_age\"], \"14\": [\"metric:AUROC\", \"gender:M\", \"age:overall_age\"], \"15\": [\"metric:Accuracy\", \"gender:F\", \"age:overall_age\"], \"16\": [\"metric:Precision\", \"gender:F\", \"age:overall_age\"], \"17\": [\"metric:Recall\", \"gender:F\", \"age:overall_age\"], \"18\": [\"metric:F1 Score\", \"gender:F\", \"age:overall_age\"], \"19\": [\"metric:AUROC\", \"gender:F\", \"age:overall_age\"], \"20\": [\"metric:Accuracy\", \"age:overall_age\", \"gender:overall_gender\"], \"21\": [\"metric:Precision\", \"age:overall_age\", \"gender:overall_gender\"], \"22\": [\"metric:Recall\", \"age:overall_age\", \"gender:overall_gender\"], \"23\": [\"metric:F1 Score\", \"age:overall_age\", \"gender:overall_gender\"], \"24\": [\"metric:AUROC\", \"age:overall_age\", \"gender:overall_gender\"]}"); - var histories_all = JSON.parse("{\"0\": [\"0.8016528925619835\", \"0.6936076628105141\", \"0.6871314730971221\", \"0.7926497184811672\", \"0.7201177840517814\"], \"1\": [\"0.8823529411764706\", \"0.8339808949419706\", \"0.8042143949288626\", \"0.8854569942989211\", \"0.8910349652620954\"], \"2\": [\"0.7894736842105263\", \"0.8497857047884345\", \"0.9180487667877562\", \"0.9073890687519838\", \"0.8552361719628085\"], \"3\": [\"0.8333333333333334\", \"0.8203350141150871\", \"0.5858710517835515\", \"0.5092051191371252\", \"0.5362486278970567\"], \"4\": [\"0.926608187134503\", \"1.0\", \"0.9143093673249056\", \"0.8605851358656552\", \"0.7901468807602272\"], \"5\": [\"0.9056603773584906\", \"0.8238259039252782\", \"0.8074809018915355\", \"0.8526276043002695\", \"0.8352624674534691\"], \"6\": [\"0.9523809523809523\", \"1.0\", \"1.0\", \"1.0\", \"0.9227045140882221\"], \"7\": [\"0.8333333333333334\", \"0.6386602332326536\", \"0.5955417188874538\", \"0.5413595931197926\", \"0.4814721433971116\"], \"8\": [\"0.8888888888888888\", \"0.9215992453848099\", \"0.899752486661807\", \"0.8645449986258291\", \"0.9046888602094814\"], \"9\": [\"0.9698275862068966\", \"0.9666504976180167\", \"1.0\", \"0.8353544975986249\", \"0.7899943713247332\"], \"10\": [\"0.8650793650793651\", \"0.7261154219780679\", \"0.6361974719898206\", \"0.6275130235158937\", \"0.4306534214195932\"], \"11\": [\"0.8961038961038961\", \"0.7714865957933226\", \"0.876354380113162\", \"0.8442572223999412\", \"0.8486374375081782\"], \"12\": [\"0.8846153846153846\", \"0.858103552926385\", \"0.8012276812960967\", \"0.7834322795983695\", \"0.9266855599956503\"], \"13\": [\"0.8903225806451613\", \"0.9643863406696443\", \"0.8157641548296728\", \"0.8176830538956785\", \"0.7415177617307707\"], \"14\": [\"0.9552617521367521\", \"1.0\", \"0.9797737161515213\", \"1.0\", \"0.8175695048575996\"], \"15\": [\"0.86\", \"0.7448714123011388\", \"0.5447307233058087\", \"0.42013358558061104\", \"0.39409052124812166\"], \"16\": [\"0.9818181818181818\", \"0.9960446256571348\", \"1.0\", \"1.0\", \"1.0\"], \"17\": [\"0.8059701492537313\", \"0.7521150994055207\", \"0.8644304380235543\", \"0.7418327487651996\", \"0.7565124393157227\"], \"18\": [\"0.8852459016393442\", \"0.84143896462059\", \"0.7275641526621126\", \"0.7248208829392547\", \"0.6900141192119377\"], \"19\": [\"0.9739936680235187\", \"0.9819497224849731\", \"1.0\", \"0.6945202702464877\", \"0.6355461379802541\"], \"20\": [\"0.8628318584070797\", \"0.9207345753209007\", \"0.9340228593688318\", \"0.7832610679826659\", \"0.7205573701359043\"], \"21\": [\"0.9318181818181818\", \"0.7191095633817272\", \"0.6346136972402535\", \"0.5877278662426885\", \"0.6113507607836166\"], \"22\": [\"0.8482758620689655\", \"0.897422857946215\", \"1.0\", \"1.0\", \"1.0\"], \"23\": [\"0.8880866425992779\", \"0.8057073452801526\", \"0.8750326692067953\", \"0.9609805211952467\", \"1.0\"], \"24\": [\"0.9593018305661984\", \"1.0\", \"1.0\", \"1.0\", \"0.911481983922187\"]}"); + var histories_all = JSON.parse("{\"0\": [\"0.8717948717948718\", \"1.0\", \"0.9260294388954282\", \"1.0\", \"1.0\"], \"1\": [\"0.8805970149253731\", \"0.8864518186300872\", \"0.797081946779185\", \"0.8368927766555394\", \"0.8688002183880602\"], \"2\": [\"0.8939393939393939\", \"0.9513427326904658\", \"0.9437718965065215\", \"1.0\", \"0.978789025614006\"], \"3\": [\"0.8872180451127819\", \"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"4\": [\"0.9631610219845513\", \"0.9518349043515505\", \"1.0\", \"1.0\", \"1.0\"], \"5\": [\"0.88\", \"1.0\", \"0.8183257226653501\", \"0.8764460848764506\", \"0.8673841678057298\"], \"6\": [\"0.9565217391304348\", \"0.9825044222506764\", \"0.9170264812503323\", \"0.9416114372114078\", \"0.8268460623101885\"], \"7\": [\"0.8148148148148148\", \"0.8167367973115197\", \"0.9333272608973396\", \"0.9643578216343616\", \"0.7990934832388008\"], \"8\": [\"0.88\", \"0.999651165393864\", \"1.0\", \"1.0\", \"0.9808767862920497\"], \"9\": [\"0.9500805152979065\", \"0.8951220073421391\", \"0.936433467560014\", \"1.0\", \"1.0\"], \"10\": [\"0.9193548387096774\", \"0.9648001377992477\", \"0.8330877691073038\", \"0.8684515555514056\", \"0.7208002153978317\"], \"11\": [\"0.9375\", \"1.0\", \"0.8122905559916681\", \"0.7167668811457667\", \"0.6956096239226329\"], \"12\": [\"0.9375\", \"1.0\", \"0.9615581089379361\", \"1.0\", \"0.868681031365583\"], \"13\": [\"0.9375\", \"1.0\", \"1.0\", \"0.9621506691382669\", \"1.0\"], \"14\": [\"0.9755681818181818\", \"0.9083777863454842\", \"0.8331557576642691\", \"0.8190703314509756\", \"0.7941282841512916\"], \"15\": [\"0.8725490196078431\", \"0.8740834672358618\", \"1.0\", \"1.0\", \"0.7391431668169599\"], \"16\": [\"0.9333333333333333\", \"0.9869589152121052\", \"1.0\", \"0.9824768087099318\", \"0.9433515215061776\"], \"17\": [\"0.8615384615384616\", \"0.9597553387744371\", \"0.7328185993460558\", \"0.8444742817504761\", \"0.8644642749352557\"], \"18\": [\"0.896\", \"0.8927289503847454\", \"0.9105348869670588\", \"0.8372212095735406\", \"0.8229679841498414\"], \"19\": [\"0.9496881496881497\", \"0.8968054758243895\", \"1.0\", \"1.0\", \"1.0\"], \"20\": [\"0.8982300884955752\", \"0.9897957786449971\", \"1.0\", \"1.0\", \"0.8542438083210027\"], \"21\": [\"0.9357142857142857\", \"1.0\", \"0.891890217163751\", \"0.9486304681961161\", \"0.8256976895577073\"], \"22\": [\"0.903448275862069\", \"0.9448221268303703\", \"0.8120326963250271\", \"0.7730876829564877\", \"0.7989880475568345\"], \"23\": [\"0.9192982456140351\", \"1.0\", \"0.9963830406784279\", \"0.9881621055393863\", \"0.9025301076085205\"], \"24\": [\"0.9655172413793103\", \"0.7815534224253337\", \"0.7871225167765127\", \"0.7384355239835124\", \"0.8040328837936527\"]}"); var thresholds_all = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\", \"19\": \"0.7\", \"20\": \"0.7\", \"21\": \"0.7\", \"22\": \"0.7\", \"23\": \"0.7\", \"24\": \"0.7\"}"); - var trends_all = JSON.parse("{\"0\": \"neutral\", \"1\": \"neutral\", \"2\": \"positive\", \"3\": \"negative\", \"4\": \"negative\", \"5\": \"negative\", \"6\": \"neutral\", \"7\": \"negative\", \"8\": \"neutral\", \"9\": \"negative\", \"10\": \"negative\", \"11\": \"neutral\", \"12\": \"neutral\", \"13\": \"negative\", \"14\": \"negative\", \"15\": \"negative\", \"16\": \"neutral\", \"17\": \"negative\", \"18\": \"negative\", \"19\": \"negative\", \"20\": \"negative\", \"21\": \"negative\", \"22\": \"positive\", \"23\": \"positive\", \"24\": \"neutral\"}"); + var trends_all = JSON.parse("{\"0\": \"positive\", \"1\": \"neutral\", \"2\": \"positive\", \"3\": \"positive\", \"4\": \"positive\", \"5\": \"negative\", \"6\": \"negative\", \"7\": \"positive\", \"8\": \"positive\", \"9\": \"positive\", \"10\": \"negative\", \"11\": \"negative\", \"12\": \"negative\", \"13\": \"neutral\", \"14\": \"negative\", \"15\": \"negative\", \"16\": \"neutral\", \"17\": \"negative\", \"18\": \"negative\", \"19\": \"positive\", \"20\": \"neutral\", \"21\": \"negative\", \"22\": \"negative\", \"23\": \"neutral\", \"24\": \"negative\"}"); var passed_all = JSON.parse("{\"0\": true, \"1\": true, \"2\": true, \"3\": true, \"4\": true, \"5\": true, \"6\": true, \"7\": true, \"8\": true, \"9\": true, \"10\": true, \"11\": true, \"12\": true, \"13\": true, \"14\": true, \"15\": true, \"16\": true, \"17\": true, \"18\": true, \"19\": true, \"20\": true, \"21\": true, \"22\": true, \"23\": true, \"24\": true}"); var names_all = JSON.parse("{\"0\": \"Accuracy\", \"1\": \"Precision\", \"2\": \"Recall\", \"3\": \"F1 Score\", \"4\": \"AUROC\", \"5\": \"Accuracy\", \"6\": \"Precision\", \"7\": \"Recall\", \"8\": \"F1 Score\", \"9\": \"AUROC\", \"10\": \"Accuracy\", \"11\": \"Precision\", \"12\": \"Recall\", \"13\": \"F1 Score\", \"14\": \"AUROC\", \"15\": \"Accuracy\", \"16\": \"Precision\", \"17\": \"Recall\", \"18\": \"F1 Score\", \"19\": \"AUROC\", \"20\": \"Accuracy\", \"21\": \"Precision\", \"22\": \"Recall\", \"23\": \"F1 Score\", \"24\": \"AUROC\"}"); var timestamps_all = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"1\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"2\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"3\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"4\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"5\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"6\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"7\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"8\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"9\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"10\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"11\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"12\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"13\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"14\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"15\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"16\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"17\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"18\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"19\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"20\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"21\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"22\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"23\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"24\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"]}"); diff --git a/api/tutorials/synthea/los_prediction.html b/api/tutorials/synthea/los_prediction.html index 1db4e555f..3763d9f2a 100644 --- a/api/tutorials/synthea/los_prediction.html +++ b/api/tutorials/synthea/los_prediction.html @@ -685,17 +685,17 @@

    Compute length of stay (labels)
    -2023-11-27 15:14:27,819 INFO cycquery.orm    - Database setup, ready to run queries!
    -2023-11-27 15:14:33,079 INFO cycquery.orm    - Query returned successfully!
    -2023-11-27 15:14:33,080 INFO cycquery.utils.profile - Finished executing function run_query in 3.934621 s
    -2023-11-27 15:14:34,873 INFO cycquery.orm    - Query returned successfully!
    -2023-11-27 15:14:34,875 INFO cycquery.utils.profile - Finished executing function run_query in 1.793854 s
    -2023-11-27 15:14:36,431 INFO cycquery.orm    - Query returned successfully!
    -2023-11-27 15:14:36,432 INFO cycquery.utils.profile - Finished executing function run_query in 0.391219 s
    -2023-11-27 15:14:36,933 INFO cycquery.orm    - Query returned successfully!
    -2023-11-27 15:14:36,935 INFO cycquery.utils.profile - Finished executing function run_query in 0.498290 s
    -2023-11-27 15:14:37,040 INFO cycquery.orm    - Query returned successfully!
    -2023-11-27 15:14:37,041 INFO cycquery.utils.profile - Finished executing function run_query in 0.105283 s
    +2023-11-27 21:35:13,870 INFO cycquery.orm    - Database setup, ready to run queries!
    +2023-11-27 21:35:18,615 INFO cycquery.orm    - Query returned successfully!
    +2023-11-27 21:35:18,617 INFO cycquery.utils.profile - Finished executing function run_query in 3.939373 s
    +2023-11-27 21:35:20,425 INFO cycquery.orm    - Query returned successfully!
    +2023-11-27 21:35:20,425 INFO cycquery.utils.profile - Finished executing function run_query in 1.807781 s
    +2023-11-27 21:35:22,059 INFO cycquery.orm    - Query returned successfully!
    +2023-11-27 21:35:22,060 INFO cycquery.utils.profile - Finished executing function run_query in 0.359256 s
    +2023-11-27 21:35:22,510 INFO cycquery.orm    - Query returned successfully!
    +2023-11-27 21:35:22,511 INFO cycquery.utils.profile - Finished executing function run_query in 0.446829 s
    +2023-11-27 21:35:22,594 INFO cycquery.orm    - Query returned successfully!
    +2023-11-27 21:35:22,595 INFO cycquery.utils.profile - Finished executing function run_query in 0.082727 s
     

    @@ -748,9 +748,9 @@

    Drop NaNs based on the

    -