From b2fa0d62412e77f1ee55e4f01b7375ad047eaa4b Mon Sep 17 00:00:00 2001 From: amrit110 Date: Tue, 21 Nov 2023 10:35:03 -0500 Subject: [PATCH] deploy: 4bab2d44e9047762b47c902ec7f3f04c410c5218 --- 404.html | 4 +- .../tutorials_nihcxr_monitor_api_10_1.png | Bin 70459 -> 54188 bytes .../tutorials_nihcxr_monitor_api_12_0.png | Bin 54707 -> 50496 bytes .../tutorials_nihcxr_monitor_api_6_0.png | Bin 38406 -> 37438 bytes .../tutorials_nihcxr_monitor_api_8_0.png | Bin 54484 -> 52711 bytes api/_modules/cyclops/report/report.html | 9 +- .../kaggle/heart_failure_prediction.ipynb.txt | 103 +- api/searchindex.js | 2 +- .../kaggle/heart_failure_prediction.html | 201 +- .../kaggle/heart_failure_prediction.ipynb | 677 ++-- .../kaggle/heart_failure_report_periodic.html | 1269 +++++-- api/tutorials/nihcxr/cxr_classification.html | 132 +- api/tutorials/nihcxr/cxr_classification.ipynb | 405 +- api/tutorials/nihcxr/monitor_api.html | 20 +- api/tutorials/nihcxr/monitor_api.ipynb | 160 +- .../nihcxr/nihcxr_report_periodic.html | 2497 +++++++++++-- .../length_of_stay_report_periodic.html | 1233 ++++-- api/tutorials/synthea/los_prediction.html | 150 +- api/tutorials/synthea/los_prediction.ipynb | 3301 ++++++++++------- ...d99ed.37214bf2.js => 3e9d370c.29f4916b.js} | 2 +- ...79204.8d399381.js => 72bee0c1.b6c646b2.js} | 2 +- ...7c442.f735fc16.js => d098a0ec.101bc726.js} | 2 +- assets/js/main.8bc6fff8.js | 2 - assets/js/main.de3a9079.js | 2 + ...CENSE.txt => main.de3a9079.js.LICENSE.txt} | 0 assets/js/runtime~main.49642ce9.js | 1 - assets/js/runtime~main.f74ffbd7.js | 1 + blog/archive/index.html | 4 +- blog/cyclops-alpha-release/index.html | 4 +- blog/index.html | 4 +- blog/tags/alpha/index.html | 4 +- blog/tags/index.html | 4 +- docs/intro/index.html | 4 +- index.html | 4 +- markdown-page/index.html | 4 +- 35 files changed, 7346 insertions(+), 2861 deletions(-) rename assets/js/{b91d99ed.37214bf2.js => 3e9d370c.29f4916b.js} (65%) rename assets/js/{9f179204.8d399381.js => 72bee0c1.b6c646b2.js} (64%) rename assets/js/{1cd7c442.f735fc16.js => d098a0ec.101bc726.js} (64%) delete mode 100644 assets/js/main.8bc6fff8.js create mode 100644 assets/js/main.de3a9079.js rename assets/js/{main.8bc6fff8.js.LICENSE.txt => main.de3a9079.js.LICENSE.txt} (100%) delete mode 100644 assets/js/runtime~main.49642ce9.js create mode 100644 assets/js/runtime~main.f74ffbd7.js diff --git a/404.html b/404.html index 99bec5211..950cff7fd 100644 --- a/404.html +++ b/404.html @@ -5,8 +5,8 @@ Page Not Found | CyclOps - - + +
Skip to main content

Page Not Found

We could not find what you were looking for.

Please contact the owner of the site that linked you to the original URL and let them know their link is broken.

diff --git a/api/_images/tutorials_nihcxr_monitor_api_10_1.png b/api/_images/tutorials_nihcxr_monitor_api_10_1.png index 7f662fe7e750de107a14a130a687d5968e7625ab..4aef7b2cbebdd29ddeba4d806310a589aec7c9a0 100644 GIT binary patch literal 54188 zcmcG$byStx8aGOJigep_cZ&!Dg3{96z36UG6hyi~xLB>0ESoesh8QjI+=E z#vSASaT$Xx8`oOzJLi1j7tibaH*%8L7-Sf5aB$eKq+Te%!6D|t!66i&p@839eobQs zfABd-s5vOw7&|!Y*&D&V)^o76v~jRB)2DGVvWJ-2SaUG*GP5z#m^wJvLikx&tp4)? zW*d7Gmcc>-LGU5ywo>mPaB#SKuy6QWksLEPxFOP4FT|8wk~XKEU6hQ@JN9;ZGM`2o zDxl->4@NOdyl_)|*N)MO;Wv(7#%QE$DIzf(U0FgVsw#269jEx~Gx`t*B{v(|hN`Zf zvn#vjG=m6_;$PW&7c;2#B|%nt67h7m1$SJjL-j~d9^8FV86O?Oy}0`lg;&1&p*{d1 zKjiky1sPch|MqJS10(nDEenMA-$>lP@CU=Qv=4VLRNdV>gv&>)n(S@yM=hJ&Qez~N z$CbQ&Ri-){mjC9a<@#t*=!n}se;$H4ABCXH=hIUcd0g?oFPW^ep+4Fe6IruE9=0!? z-10f=#lpru+BLnqqx{&yLdJ!~MVa!Eu4id6Z4qV->FMeJ+>yzeLzS#~#H0VWJ6)w3 z##pkivE@%rp$c+g)6vnf9KPn zA|g_#!dz;an?>QieEAac{{3$U9oYRv7??(6LL8P-hSJh#aKm5ZhdvZxsMUD~yG$k{ z@-W6%vjzq2^LMvv;bZ&1Z+}BTw~sP%Deu_jCOiGf(U-``nyceUvw<}D>+9>`JjGx! zf0Vt0ev#Oeq1?9*8Hu{>s5y*#;N}WS8e9AO!?`R*qiT*J{X&vTO84Ktf4@xCAID}; zs>V3wG-=gIS$EJUP^QNCk(6Vl+Mqj@rPH|FZo(**(%JH4dm0?sXS2^EP@@ zqmPe|eYghf?qAS{sq7sg$n4L>J4o46P7@pWqf!i%d>PfQJzp=Nqo-des+#%wD)I@1 zut(funV8QB3F<5LomB20_ZB;2Crqj);j0e^Woq_1$YI~_8r-Kkm8d_Rke^gwBD(h(u zx88w)H{UHM6pT~1@d;tOx`&0Vgsbrd^+w9KiAXk5YvnrrEg`i62RpmkcS};4SmrF% z5^Xq6%kj_5TD26;#naXzMgtz;YBh6ym~q0M{PKc(NEwph#;XJAn%-AOCW6Iblmg!j zI&p-rPYqs%QJ^<>QhUq#qhOm(RqxqBp-W4w-q#)~Md}jz`VSz`KBGSsW+sOTM4`(c z{VQ(MM+xWkUJ+6d{Mq)9_foa4@%i5T{T@#gV4Cd-tA8Nui~B?4t(; z20{-j|7~1udaX%~&>ey3 z>ERJ4;LN<(84j%+)6OvH3_DyO37u~X9{O%I$qtoE5sXKr_9*RX1fTmGTy3z^^Wu0p z!J>Hn>SWdgoZgFFab0oGo?crJo8@?^{U-)~{)BGkx{oyws6Giwtd<46n)OvU$GQN zB)1K+xIjWeV%2SiL%||x7RMF((aSU2bGSCtjWn2>`z(RW!s*w>M{1E2P;mD8y{{wT z5m9V=xyGVqCf&F@!YI47oTrhSyIGn%S|RuD-FwE&%v}ELiyq18#l^v(3=2LHxWTb+ z>P0zM=eKE?X%1?gv~HPb+R-8PG(zu)n|urdlW1YDV2R+Ez*xJ9MwRtzYwK-NAt< z_A1nAN~v|+V7Hm6FZZ&#-Ge;}Rll<9VX=y;}vF#YsWgCd+o%TIXN8GQ`L*~S*kjo zTp(tQ&hxG-KVgX`a$CWbue*KqDq>?}Q!6^Z`UFcmDP;xGqf#$1V}^KwBe902FXw4N z0RaP*7OE-U*REhAe23N^2@9uy@v-C+A^iCpfg#*`^!xoIPz2tUXD5k=W$iQQ8Kl zyYnExY-WYwzJ2=^5*jM7eVQ&FJnZ!nc8vMhvG5z;LQ9L^`PLcm{F%I>uOCn*WDGjD zPf}4)A=1;+Gc-1)B2L1% ze|tdiYF{jN4{${w-JL9oPanpM&$HFrjZhx0j`(}E%;3|@MdyWOVdTe_zDq0rcGuUF ze06ws9(f$g2-ZUoi@!*i>9a?=x*R_&JWpq0=$MhHB6=+-_-lXYwbN}Oc`)+1+hT;d=2a{y-clD#T(fm?xtf_n3>1=%n67KIM#jJ5WPIaocP)@D! zt#GZ|O4V%N$x&=*5;3S0MB`j53-&?M{$6;Y_Zx@aj3q~0pEss`x!zfLz3Hcw)Q36W zzIUC$Wfh!Koz;V%9!>LQsaKXLC6eB58@^3c1Wu|qTBwMBD*{9(xpu&r^?-%!SDl1Y z?#5ikMe1U=a+7VhBnv@o#0v#AP8&_nr$Wp%KP}GFVq*URQarC-`}Pa_*fa)w{qopl zqeHxjcEAEo=8B?6md#m*7~v#9W0!Ku-%*J9kzFswRC4WJKVFl$GM~`%zo6^~`6KEe z`I+Fyq3Pph+o3i}WU^(!`|h-|uMrSe3DBGa#6-J3B_=<=N;`R+LgpDbAe1|knTr;4 zW9n6G*wxiF<#n;eX*vMs?d`ojoY$5n=6?!0t4zPya4tURMAhM>9L8|FAgbq~&`wa3 zeraCRKvN#l(|`E!N1%3eAMzNFu;&N`q(gs07H(U{d5LGW5o z(~E0dd_o6{AToWx$H{9K7d1d7gV3#8oKVR|m!x#xB<_km^NF|;)|3OP!y0_due@#@ zkVf|j3HLxA{?2?wfI}_Z^X0LO)a%zwkQsw;p^nqN#qQ1W$t^fdx3#P(m&H%8??UYc zGO+mT%L92Tk6p2qzGN8y@cK+;LBjzZgU{$#LQ*nyzq-kL;&B(i81Wn?IBmhWEYnr` z?HKn62+(nGgy%Qwt5Vrbg>NnoG;LduWmAQdpQgC@{mzi&a9Dj) z+;n};K{Xa3y*)vNO2TLVs9)qp@Zxyup|CI&E8;4^2d<#BhYQ>UQ+v^fh@`?W7p$7= zc%21?GS}ul?_`1q3vQJgA{Vs>RFE3t=U)H%c>P21EuQ|sZJ-Sbna$Rde^XO5)=g)Y;XG;VaH*Q-T zhE*Y-z~|022%$BG9m~gr6NiVV#H| zCH3>?<`DdcyGKVxKSJ<9?^WvJg^`a;qQo2S%WwB*l06-CCc_4tckSkft(qU^m43%V zV6tsOtc@1RdihqgNH!xV<=SA@+O|&q(xYlp@Y-9kd%MYCcyEjkQCL_Q1}m#(+(LJE zZQTx6TPn|nsAhI4@G3_!wn@sRW5t!}O{%{BmanlV}GMGXxN;}<~*t}y+* zP_cNv5X$naz7OCd_g{;&w6ua}OOc&gCY$4B;M0lQSk+2(;a?|mX8~l?nH(D(-R_5s zc?)$iUVd8e#}%e|`V?AWAe49;M^a3cNAeK(%vOZ)GQ!#uPDHa*-#1OPoI<#lh;paH zu^jUof~D{TZF;(IqQmNcnSHQfay%MQg#dtFW;wyGQmEGQRU$Nw5AwvO@$88~$45G$ z9bZ(cX9px{+6`_-RMfn-KJB5z1o!X%_-52yyGyP(?wQnT?my9zgp|Ks(H# z+=&m9f%Px*c#+XIKWE)V^;LT|O;7)tCTl@iPXv!ExwAv$3D&3GQ&hw#ZO`eg-jkI8 z92Y-xc6kVutsywx5jxvD$DT`-kDfmHB>?3vz6TEvk43`j17OkafHph6yyuwasw*wstu8w~J;fs=beyUwQm=gQ_;Fxb8iD+vyp&WLU|E{>U3;HCvefTB z2lz<(;%luYGa#0#D-@tet5=#kcHA8US;tn;te0>2Oknb4kEd|sz>z-0Xoh>MS>@U| zEBJ$+{=Fsgfezd!!QyJz8;)-D7`Z8fD9bw{Hbt{|yMd8{d>>ztu68rF0| zL?C0PY9MRi7i&thJw393RND6~Y6C`LXJ==0TnTDHX3I%QC>P~hC8Zw%JN0c#U6JxG zm+J*3E1;D!Xsteb`ZO4al0S+s$80Fua<=iRu;aEfa`|*4Gk9_Ougy%a2#a`w?DvX& z9?ETUUl#t`w5>CHW_5Zat}H}!dZ-_z_$_0QU1rYvB-#IMLquV(@iNTVL%K zJCKl)T$YRM8R-4E7}6B0hGtlqMpOf@dthBE#N=`Vy<8b9j$!wB)e2>3g{fELsPFTT zPu-Wfs^_+9^JP-2Z~gytCDAKV%76~M07ab+OSQklZB#1`2}7<|SF}Rd3CXAys;%vw z={I<$Q?oXRf z*0|U~W$Bd}V{3W;2v$og&8n%*vD9L6+yQ)Z)ZqyYG7mHKPUA2gV z*rV#_rWpp_EZRA?ugtl)sajTJy41I7!MmQ74rS~W}IoC8{nFmj$|I)1H}U0>;;_iR}1jx{KssNVe6E$337 zn;T-1;u-`bk9!mpvTAB1TYoASTTrQ&04mIaej?>S32nEZ>IDDSZz>3CEq{ai$rDb_ z`=Ra6U%u?HgIZ44Ml%#w`vL0vTwJ{7bRqQY`eH}kbsDG>13B{4`UVE*XlQ9bCxXd7 zyy2I}SU`c;wp+wSL*vcZ3xx%7EN>~UlQl;{mOxcJlYzPxT-6j}xG<`Cap5=H+GoVt z%&v(y&H`9fW81LJ1(e2ig|Pgx4BPU;kh(Xx9rC-)Y7f2eQY0lH0O^TroG54nsJK*_ z*3-3Fofw#yq`bB?)VsS6$%)95~YCCn;f}h0^!cF zu~>4O`Uu!IQc?AtA8n9|cnMlpC4y%0?Xdo@W_3PpANDC0hIf7-dTAoC^!c1)&-bA= z>-#p-#2r6ELQz?Jqe2W&&&qL@n5|5lTXM<=gnVMD*_8Gw=b}gMB{hXd$MPo;70k(A zEZQL%?@Y5AtmWizVBLBoUm56~?9SVo*{>5-++aEz6mV^Q@OuZKY&m!XJhnPgKpdnO zRg==xbn^;P-*pi)|CZJPML1Fy66*(Z;6;_i(K7c*!{$eQE1*9PL@F_&}%yD9#TCho`1AKZJ&!0SQK2Ru&781Nsxk?>4i23+Wl zd_beH+%hy+m3yyYdapZ@s$iBOMvg#ze{s0-si1W=7FKLaKW>T1!9`uo{^Cqlr|{|t zHu9Q;Q6F{H*#{0P9T27fG9vV>)x^igU+%WyX3^Sjj23kw{{k}B9uRZj2EJQqc%3cB z4jSlq>>&dzYSfp?ZKZCe%+1VxXrfL8Uqnfc5qk+IcB* zbnab#4Q1BvP2jpuL}cI1RJA*95FSls@%t+>koK~zCcgvC;TEL)mLT2(BIlbXuPX>y z)$JCPitw}oyw_%aP}Yu+*M&!FRou4$g_fl+*XilAQ`n0YVrRb;eR#yrL=5!T50(Tk zhtK9Sf%d8{B!r(zqY>D29K)ocR%8DdlbD%Pr>!%1qofHWXn>*$pN{J?p*;lRIv+@U z3a;Btu`!f`d#iVP0vMDv**R0<_8qHju1{bG#B>lqNcbcqKY<3=HIOcTwpBF?)RhbX z!8a$$QGHT`+`pOr{yGTlPZdc8zQkyWPCp{9U~_rDaJR_y9xhz1^Nt))x@GzsR=GfS7Q(-0SRj-Gp@l`!Fm-?qV+gwN&yRPZb7-O$<*I@nGh;jfqFA?7HUkmh^sj zn1XXY$Lo&j)<73r?cjQN&_5j zdwaVPkpw#yB7i{JZflQQTU$+M>RscJ{hJH@o=?oVzOc1r1*anbEld98JnPv>tm7f( z=Ek3%zH(JlQooNe>v4c>({Mzjm@PXGw0?T6WS(6Xo|ewePQ-y)M+;46;;Jco%#&$n zYVOIsCM3YBvc!XN01|0XXnF!elziB2K9vl5Ep?@UgrxSO@;h@(wpVN!&Op}ng5WuZ z<~u!h+czEmI{fkR!n_8c_f01OY%)&3qWrd}>j0)F5pv_i6}e;u z{h%Hg9GibCH!>SE;b%Ngv^+dLVeZ22$qB43%O>+jgW#u{{bEKFE_6&XUF(?fuG|=~ z&fOl4{!){ED(l9xm3?o>Efdzayr$H?;n|!v5qaaIY42>98!u)e3b7<~8iXc=f-ZP|vg57Ei_DP*ln|Ia2`eNq zjPF_t-<8J!Aq0@C_ARHOYCD4Yr|knJFOk*g@Dtv|_!wSbHZ zUL6hrctF_3Y6>W&^R%OCdByYc)rNVmpJj&oU1f=I266S|R z;F#BuuUG3qQXO}3i3;BU3*tX;%#M2*V*;!*8|{0^z`%$UQmTU zd-hCstXPZFdMeJxCts&gJ)ipO79(E<4xx*9VVdQ!&ap$dw0$a@#De<2Sj7xcDuR)GY;_%76&X*@bS;zISvdW5(W@YBN?CY}DO-8= zO_m^2a#=@Fg8oYFBDTM_Yo_@UwCzUNzh9WM>Zu3{t<%A{RU{4nX!#<;(^z=i?ADG4 zXv}Mlf8K2w(*I-RDiu#rs9n-|?BN@l#9vTEd`>Y}0f1Lfppk=<0kN^0r)~HV>Y*ZU z5$iwbmG4{mTtVROa_8q*i|x=4zQX=#J9FlWY(k?K6T8;mYdmF0E?+muF+}}UIF$-} z9Lm*eR~4WA zZsxkpZv<2V5>d;9#(PCxjm6Br)KZkG{~ zRD9dD07who0p(!~Zt}uw!Y}vqx~W$hYmd^ka>xkercngHU|3+%4j`Neq$U38QsM{3 z%`-Y@kt#1QS~=(WSN(gH=Lf0jP51LkJ=W; zn-iH?S$hEY&uwgIxLq~v@9ptHOT<8>$m|&ZPD)gdSfCmg-u5uv(*)u^_lCDk|Ak{2 z4f%>;{N!S*u3Cs&vI-$EhF>7J*WAAkjX}4UQ^f~A^J?YbWOtr#)JPU@a8E%w8$lQK z0oZBqs|4oDPh{-?<#c~^1i%4oVVW$jP|PycO-vXmM-a?Uy|@H0ccmv@e6i!x`|xlU z$R-Rl0VNG)cJpi#oB<7Lb*4eUdB*i=Sy@?<_w^Y}&#cxgW`_a*_z9SPgFtf!Hg^~J zxNaeBSRW=c7<%dA!7kg-jg>=$SWPua^Y%1BAU zkh~9{5YL@4oPKx;`mx#XuM+W4EOPFTKx%&e{CPD%YriNifEX(sPI>0C-}O``ytBRi zH?TT}!ZrZ#p!2*2(&*_*qRsBX0fW#r0JnR9xb6brYzvc6J1L!a!MjuT69C^dZ1F>` z)?{uxUuU3lTcw2|m=u?V_k)mHr>$QgQr-dG2Ov;-nC1d}X+sl}RHq&oIvh#SYwoCI zy%KgYy;rDX#q2elM?NJ&`9uU|nuSeut0o>*dS7hh`c%d(y_VASpcNhxN67$5&_t>@-d zeh$0+k`&Ba2C?dLJYiA;L|vG<186kdTzW7Sy-*cEc}puR`v5)I0`ynzyrT_-Ni8=I zAbiOta${Fbz6Oj3M%K9#KLH!sZmtVpJ~OVQ^x=v04tXU8Gi-{7735F zW=#h(Sgyhr2}d?&kaC@=xQM3+kRQwvb zOy$H?w@r3MtZCX>r5sVMOlT%#vS~Bk)01CWi4>~*h)*o|W@T@aVHAGOMBpOvH<$|e zzZl*x4_107zGYcP!)VPja=~yk9Gq-`kW7TK9|F)Ut+vE(@biG)5EW#9o1%{y5L0eMIFioK#rnN==dj{o*u&|Pcg?H1QZ|w zTLfVi(7t3?%>|YJ9wlY(_0>f@n*j=d#4xW84mM^38xI0!gpY^U%rooJ7AY^>1!hUS zf0dj8$s7vMzy89H_p))UzMvfKEk(-PgNTkzfq;=9m=^{dv!7rDEgsD2a3^kMMr*(p zZ{EJ_H#-*JAkD!+^O%%*+kk3A1Sz44dxx(`0t=B!-hUQ@HZ60^EIeV1El2&W=uz66 z8!3;X>zplrvUTcr=_QGuKa1X6Uxj1l=%Ne*-RGNL8_J*WR^7mMjN`H(0!>a2@BrW; zknvdefP?`gLLnZ?tX+RvZEg@s#57(%k@U+0$SR7(AIQPNfb{}mZ>9L$YX6Ey@zRX z)9S>s;Vw)BjX$|^qUF$n#nv6y?T8i~uJ{7Lv>nK!pFKT~I5{hN%KZEgK!1|}EklNQ zkB{J0%|&#(3pOL>^s`_jdQ_tmRca7f6=dU?wQU%TFu28n5FQ-R+F z1P2=keA}#peXgq-BS5$uNuxG!SImJj=VEbfLk|zk%gc53nALm)TIbjU6-%;x)ZsyF zBfcS1kdS*UC|G}J0vk|S%EY1e>lY5Ncqyh5^iGV@BapAC%0#3zwLUg8j%c~HJAUQ( zlM{(GYJvGH?bq;?2w-qTKI>QiGO~^&=x`KQcr;wDR0cI^6%`&!mGOPZIU~!AB>E%D*9<4-igPow$G4E zY5O=L7W~j(eYO&X=)~QFkB}A`3A)aOh4TwRy$fTtUFJe{F9#j}HW>j>Y_r z{b|58aB65qQ4}AhMUXvJV)#p&l+6xyO6Mrms(yJ`mWkHM8RHINvLJ|v^oNxs*pmWI z!%Zj_f=p#A>VCvu2y?Rh} zdbD#qIXP<874B$I9%B&vh8IW9zV%t#lu5Z*jx`ucso213Oz?LrzD~rZUWsdvv%wAS z_U~=2P!jojchN>G4yRkhkjYL|=1o16q3@KvY4p&|M8UXdJ?rq&Hf*O-x+E2izpo~2 z-{Kb0DEgd?TxPd2JZ&wMK8t7S=<8>OtgecNn-w>S=r=d|W*3mg(SH`wS|ZX?&u4o! zGEf~~Q(_^%>c*BdrruKFx8>NHY4{9*|Ge#LUU#gj`j29rIw;IwhOcy4e!K~l$lF{P z2g{GBNSUh$X^pv>ffR7;AH>;wH0oJZWMbYQVW-wfhtrRBn% z-%MZ8mr__WHfnZ0GY*Mg z^6|pR;R?H>zdyT{mJ?2*ysiPiPPm}JA8@BRth>KHe6)FL9&u7WKWz!Qh+#cVbW0wU z(yoyj1l3*^NV#ah=m7Fpp=Ql~CbSV~LU(GDFHkzXZ>~F&ZAegHf)Vf+kx)Ju--6Ldp@e?nZ(M8_-)(!?6iqkcc~YEY*RBTK}Ch?MrNd!6D^YS z6)*Q|efYr;>UP74Hp~MDjm31Vm=Z|*59sLD0-!8fwNdyFU+#iNTkdgY55`|$9tbK9 z#WNujKo;tETQTd8|5#j}Z@^u;x#F^Ku{%gTEfm0MAVSyWx zi7gJNBq4c=Yi~#Cn}}P7l~{d*eQhO4kX*DrM10U^!)n_-qzM}Vqjt=|0ETIua8uSi zdwYAZzD}o@opgN09E%BbHyM_OAD?(;Li9)g@r=FLt_uea1GNvZUx7~q8y^89IwIR- zU?vtw)-l3;K;Z#h68tsrmKatUZaHGf!8)YWFrr2)r?}>UO{(u)$l+$Sc^(i9`0)p) z2l{Z0Ux*c2D-_0nF+4O(OaZIx{rp)WFkn>Xc4Q8OF`e3e^Gew6$FS&V7h8b2?|BD) zU{%7wGtJFGU%^U7)xKfh*WtatIo$d%fHNWm^{0hK9}K9UN0RGSl?UE0FBVC__t^@VOjw8WAJd#u_ za2dI;BO)RK?6w~OhDo2)Oj`rR@;OlM<?goViUQ*141B*ZN~Cp=k<46OyD=syD?_%B8$*&?#D9&c0P^yEFCT-x8H}2D zul~+ho2uc^s&&vCEqn)fmHp6b9(dcuPdo}G+CnKH0^m}-&dsR2PW5KocZA5e%$3}9 z%)s0KE-H2}0AEx9GYMdXNpXdLC`TR&gd+Gk>YG#4nwpv^;Pe1#*%rt)u=hb~JY zsUKJo>Cvs-=7IS+Rsv$PEw=L#b5MY;y3noY{krJpP~1>j16a`x^J`KRlTKz!MnIg; z79f-@h#zC057jJ(E(h3>WXg#s{GHOQSG3#vO>bt*|KdergN#O!P0&zBZ%_N@O!c$> znqELqsf>)ccejKEtt2_Ma}hOO+z-jNvknI-3W?ZHL~!hmdXCu?wqU?FGk#LsU(Yhv zEm`{A-}g{{_@LXRy4&R;^_u%6aGaJ8KcOlhju&~z+)^W==Ghm_RVuiX+_AhQpSwl4 zsE7%JnF1iT8b(EpZR&x^Q>^Oy>m3YnDv($0#scx0i0bF9_fdJHUMwLU8r(h;lM)e& zspE~3%H*>t3xE;gIaYv|I8AY*N#|3-2RT5{(IXzNY^gvCQ7uvA`#bEBr_MLAJM#S0 zo_5JN@#4YPw0;_nxQ^ky&C|?QUhKFe1dU`obFRs*q!R5M`@hc zP-23aiqsZ7!mWw2SApzUaSBKLnWE^hQ`eR_|0gs9y8k##e2%^c)+Pw1=Sn0${y%0rtFUZ? zT-N2^OXySZ!xhA|eP+YgC|>H84+$rFEq)dk$hR$8eBxn-=o zRs5`(XhIcELG5ltY{Nc&6JldXRcHJNX?>;b4^2BV!55lIpOr?|#|RIixtFlkByVTJ z`}(%QfTlpHetZqyJ<)D%V4*uM(y|VeFGkWw?gYK>vi*r%#vMln|7mzbsqb$DC&g20 z=(Pv{^+NKb(hSBOszO^tnjr>}^w9rtE9p&M-4UfjhcR#nA#RMKo!s7NhE>2o=@^n{`}wJ@L* zLdVlt7_&WzjVp*Tj{~`RT_t`Mq+9Ol;Icq@%&(`wejlFlYW~``bVE{{KIHB~aZ}6( zD9;Oelm3uvpf0R4#7XBl5Kl#8#ao*$U=C5>6}_M(loFAHb&$%4ZshJ5*fh~}WP0hq zl=lesTu1 z_BJymtV2pml%ZTx`Ec3%h<}?nwb-u+|1Q0ceQ-XJW$wcU4Ietj{`{cc8%-=vRKJJ6 zh8{+lKN&)HekxW=PIlgWAN2=4mlWae@C0!1QjW_`Z6Z6|lkNA3#bc>fu7&++ID5(s zBF*#uHPL+P?xv)Wc$b$-Pw8IGg>Y8kZU*)dw*-ygks`A>HdC!n?7ga7<_45hO#{uB zsCpKDdRXpde%x)iNI8CX!6WMP&${u)U!3zhUb&`fnE&$@Pyb|TH50{!kD##+k(`x{ z0tLm@?S%q4-R(n@F6D^s^BE^|IXgXc4R8Y7iSS&-R7l9~4lW8Dj6Z|;-mM&0vyu>f z)y`QUz1!#+(|)=Cexkh%Q6Kgcg?nJbamr{Pzx$W8=DGZh zW1fk!5v*(mZ{gY!M-7fRrw#OL_!RQQVcx_KV4kenH^rBg77JlyLrGBTHe!B|Tb>aJ zyP=L2a#CwB+Ipd`@{llZ!e6UPE7Omr>&L|*ouO3h`FG9Z0ZzW4cXwYYh9tX(ZKdWl zXXE<5$HWOm`pla+jb15~sl!qe*3|-}3R7=pQM38dic4}NAK%ToDI8%fu3~T^pUpv0 z??xz4VIvd;6*SRp|J}cp(ui5^c$`A?Xkh^IP2fC_m~BW+$qwGC5Z)gr1nLH%$X`I5 zbs@V{L4$wXAm?t{z_juvCCIxk5^97vNjie^$MRgB z-Ua`M1&0Jh7vetuw%{I5UokulR0PCyIU!`lJp0KHJrWU`%@Xjo;cm$vi0@oaK2-^c z-RTEl$S?Cz{Dq%*nn}}_y!zK+#eWzS0{=69$fdgJ_zXUTcqlvv#Qx6-dPdmeCh{Ua zhf0uCq5I6Fa96>=T*k;=VB-V(gj<(ZjGZkZT3<{2KKAc*6mKUfch7=9$LnolV)AIT zA5tP5EeP@P<0qlW%J~+_p;abq8TNrrnTK-M`}&5PQvH;>d#xlN9g-TN4Ds8gP{yKx zT2E?LS`T;0WSffUR*?KriQq0)aw3z_RmhQ$#TUdN$}`gf(tc~YAz?>{XcE%B|LWdk zcaw^I(Iq1OH;wSIQH(A~1BJ+fX9zD|xH?%r@Gb*$etn!(HWh8QbpRV3eMQcO$!>BT z%YF;`&wd7PY4p@Y{w^~XRpupRDX)d2qI*}c@mEb!xXSf|$&U6f_Vvn@Wi2Tjss}8o zA=(xsJn(LZK?AISZY%}-TS~hBc;xe4wl9bQxEAAuSgcCG(BcJ zI`ZFhPCSW2L2hZ|0GJOXBmRHQV4w#-sr6Jhe|Ed5Jvj-9Qa5CWbrmPJhq0Jm=Qse! zp&ln(Tq4p45rSZ-J_qV-1X;6DvwvP`8JeGrTe6di0BK&!?dpEi0n6-?)VK)?jL8uq z@=U{1);528Txv`8h>Eix8!LdyQ?EG-44nAo4fB?>&((PxyuP>{&xj_IyA6%{&h2E@ zi^r#sw%^%dd0o3b59by!+vOlSwrGc&m{-jHFJBMCDVS&eOL>xJx|2d@7TZZnZK`Ul zNQ^{?1$r^oJ~IGiFT^I(c|*Z~sn_3RuyT}5x zmMdz@v!TL}+Ub?ft{)xoL!J`mrT=R5obFoYcbtIFotfA$Tih5tazMKFS$Y3#{3@Pw zj-I<9rT=N%WP5w*rhr-##^qId?(T32bWvkMCn7|0iv?iWH>RQjBB#NK&nrnPhacQl z4+Rx3VZ$tO6(UX>SBIOg^7H*i13L<)vlCc34BkOdDuMEi3sh0{53ba7&1YM*{3v9c zzO!C=r7Yr^wOtM^)2}{n2L%bUw!@dXRWVn7^jZR8V-6nbladw`Q$Ao(?(cDUCYb%< zY|~{D!0R0l>$<3@y$+;fSBp95ID*EFJ6krWqs!!{r{^bQhI~uA3X}|I@}TA}_LT`1>nxsQ z1XXnY?1tgy$kVe|H$K|2VsK*qx#<8J84qG2?&*bCqSJ1N2O1iZP7?(8v$MQ!fPu;$ z*T;-hjbvPd9sa6~P#4-N`0&iuKhM!Bny+wHvz^!#WNvfTC31>lyu9F%2bJP-&rjBz zY2zrtzJ7*_`lmWb8eN~vy{&z)Ez-QiZC@l@XfmT=2unl{;e?@ugam|`qG2P7h;TSi z*;!_lf8(@72p2YyJ4yzRE&dL>b#OUA1wFtrl+ibb_qXG z%T8>u-zAjnkH5&TQQzY74lWkzxeysE@ryN1xjrY7nLrLml8{7PmuN`SdV0_(=bl?* z`$kh}b@X5r;rRoFhyRjLhRJkqBU}NI@|_xLkJFP4)zo?(6P1qlsvoU}4_7M&#Zh|* zZJn(HgFf|odR>Dl|L4!cnqoPI^@`QW@r}H2(D?Tdo^xdl(mgO)dc!6w>*s;^=d@+X z7VTg^{^Wu3tpQe_swb*#JwXqRpsN`B$nQ4eof4cH+ZvMCvu^k{q9$RBp+EVW%g?V@ zI!9*sE6N)Kkl zVZklfw#?2DE16yQXMHhU0w=ZUd3cY_krilG)j`s&#&RV-wFP-Mwxzyf)gm_?H|Yg*h=9t z{S{=@&F-;h%Yz5Y|ALD^C;4dytIJDE;AneMs725iU7tFdiZEWSoDy1a45pXPEsd=Y zwqeD=1qQCvRf3~{A_NGec|yNnKqI70;%dyTUQ~epgiK>4tBXp#$iGvEN)ZTJ^*#d> zm-P8Mm>56LDoNsV^tlQ~;ra>=R-R=Eq?pbRW*HDroPrFBBr-q>&c=hF)9vod= zwREaZuSjH$UR1)RNO4pJqqL2`0sGEJ2n%|fCHwdjE8|S@QMOQI$~w2LrOqBmvRvE| z5*RKkrnZ`~S#xOZv)Vl}dD_@Gavqyk(aA_>J_b zkMPv&2_nNwNNFID@M0%&@B~gU#nuohk@h!zt0>nd6VbF9^P>Eu2M-9D|6}Ju+O>mc zTtky$t^pxTVruhA+WdB6d+o??rSb$ke0-lc@x-R_oJH+`LDRAAceIhSRd8yf2uR@2 ziA0VcUJLI0R@@v>=VvYBbu={19-Hp6;te>&D%U4qitE=;IzYL`ksYmAnGhBLiOST3 z#gW|7oENVL-Z~enMhx8MIL3i7HFm~3QX`F|q#j`NrJ=7tS%Yi%xAA|M0jJD(6$_hZ zXZhntb`ew*znxcZ5b)&vm>n4_AM$s8+F|qWk$gH0auUB@g9J0@Zu7aU|B`Rq@m?dt z&?qjt&qUi_Kj+{c~<;;a@qu|F_@NeB5=$&+()!lqLc>+Ojb z->v;7SSX7e_(Oj=7riF$r9sD|g10+rIf>J8?;Q5su;vsuc@Z`7;PHd}M;_+|zvvz) zbpH#?OZ35bvPbjHEEv~xlLx~-7{cL~*ro-h*W~ldCcSgHNnF}KzsLt1PD{BX$=4GCd?0%l+dXA{T-X)L*b7$O|)6|XdY4Vx_Kt{zsgTaU%4Kz<**%n@87IjKIl3` z`7}k{-K$Re+8EHY=6^ls0?RZD0C6hg^+d&dYkv0QTX+RhPNs>Qn2rukom}v{9KS8k z`V~Lk&{n94z-em8EP5Z`_0YwVV(KXTi?T&VuW<4;d?yPH_-BX~0u}!C#K}&vMBn>s zjQ7Kw);xwL$+bMtGUfiS&s~nRZ0mY1M4Qfk6gsRJ`erSuHq*V5Y|9%lpUH963_OV2 z3IPZpD2@aTjXh_STWIIUqSf^GZ%q$jJH$MTO%OT%8B^bil?#Dvjrm>#B-@8xf$~0K zye~Wb%4(xdOhUnkQw<3iZr;|Y!nn2}BiSaI9|n2>N4{-zu1LM<~D*(;fA)t(++GC6-g`M1jzi9_b{6+Q!9^vU3s{r=G{ecdSs zp6*u26GYg9vXl4h|1frzVO4HjzXz0V>4t@ZbayM=lF|**-6=>2(jr|_(%oIsASDvg z-AMPD%e|lLdY|{459j;dtlN3dd*pxo2D9b>+^ggt-v-9-r!V#q5BQTGt4pS%nP21Eth;HDL0;ILRA~s``wM^53*r81OJ8+wt7p#5W!*8~zyo`BIAh>jNw( z&3*GUC=kL8JTRX#zi<^L=z;8d ziWy{*zs6#fJ^gNT`r5RSNPdbw4rMv>aHN$zOzXDRwJ_pyyfx1aY|WkU6ho|Lv54Q? zbQBTcEl+47?y(A)0LGJ$vE^ucgN9+}jrNMy)KTFF1oS9AJA{4hafXQ(U?m4$siw?qg2(W~XI z+|d*^dm$~ymtVl`eTc%aU%H>)rW6Q)HxV}>;%$C-*XqDdN^`{=1~$i0O`MID{%qp&hO)ez<4463^a*fQT%Uo&yQE8P0l{X# z+4y%2wtF$^JM8s{X*i&S>Ula-e)k@CJ@LcPr#Qo8WM4!Iy+ON0o441fx{hQn2bLQA zJSFe_MYP)XD6~Xh_Sn^_^F32;J`2FN9iFxh3LLp-a~<~PzrU;boB<3(8pr>VCWzCg zgC~dwPoN{xj#bcHvH#voipRI~;m%^)ehXg(4Ch?BnjJ0O?fIq$!}p1>lw}Yx!d@JP z_%<62WnwLTGj(WFE;uysawcyq=a_0qoWzEYeY1Ij!$g@Y3#}NbRcR3&>$P2*d&WJv zp-T%_Lx!KSqA6xQzjC-CP;{r#3NADkb;VCk7%?G09UKg3*K@C#;N8NzGNaQKdggV; zU7X-w5=4+8d>;_SNa>QxCF{uc8JEBDTfL`&MQaEazFo)&&~3n<_5Zc95dF=28xNlO zg|-)H51^U|fhvPj97#3=#*+BRFpQYtTp%ObuS5sR;o>o0dlB!?!jI@AgA_a4vD&04 zt#4s|2P9&-jdP_!!@8pVeV14Mjp{p~ju&fX4%83vU_ze&E@yu^$AMnOtc5wN4GfMz z$t0j*KT)P90A&d^x$HP~IX_;lVM2Sg8s+*UU^dJHO8NqvqrtS(e(LDs?Hse)w{>7b z5J>PfeFl2}l(k-H(G-vO>g40Ny;u)Wrfj{LivJJ51ncc{{{uSl-6Mibr_4N^`uY_Dj#U9jC*>}+N;QC(V(ibx(Adu0 ze4T9$5P5Q1PJD=^mZ}2OB-IRqw{N8Z+b9{+e!MEJwZ5dxW}@oB)Ho%b0i(%-1(jWI zgRvca^kGxa{!7cSy6%dJU1+M0qYP$J9U66kqVmfu1qq3qvGJ;wK|RpdKp`K1d2tHb z;LvFUuZw*dfSi)aJe^Wig5tAouqi0~f&O;9WP>qKfBM91m;09151;2&k2^zwr{N)@ z?bG#&o!^LT(SjKC0o0z@Jt3C~t_{X|_x_gbhr)rWxZt2QoRt|7yD1W&fG`1-gV~QP zF(05RhYoE4k$Kt~A5b5>;NYk}GXc|2>b$F}sOQl=GhVv}d)M0cje>2o&dgUN5qsK% zL@}~97wkSxJTafIklk~ivae=EC^=IaNT@?ERNnv2v^_@lZ@?_I4L3;e80Ylx?6u`Y{bMgbWU<2*!vrAK|EnG!4TP;yVUJ!3_EwkC!9tZG@C-WW*o><(prHP%;BFw=6QX_KL- zq6kXOvHPl*5rLh}&5Zoi;Qk2|Tf;T=KPC*yE`=eBUDj~_ze0@;-M2dcmc#g4*kKt4 zjM7pAa1B6;z&iZD)WnfMA?2|daR%q;CoCTwk^hn=Q1jDMKY9HifeJe7aK;ju_uKc6 zUu%`H>+6ZTJukwG^`X=19&`B+(EGN_vY?bl3hE&CpG=iLUr~oW2VyE(KE7lCk?%rGW$PLEnpLe?F*B1@TKe0ewvTc)45Nmh45XT- zB8?h;%O(c=Vfg{YR<1^3;C1&r@8`*iq>#r5Wd*_L2|a!{E1D8!*SwjT8TdjZ&CO{5 zZ!?2jF>lZj|72nFQp@)p@~zG=Ld12s+wZApOMAYagRS49t(2jmQgq;tI+<7fX1!qD zcX;JX;lck*+jA?98p5UG$pPFb-&B5pR|!|6=kwgHs_z?=F18dtrw^0`Cpfwbcid(5 zI($n?5y;@=!Y-YO9W8XlVN9nZrFCD{QC;Q{>}>Yqb2QQT|VLDNJ9Wc9ncau(J#vS^4hjE z>mk9Y1Cy`uj;A^%^3Y*F)egdX?u@c(XC&HO(D2hP`y*&t{rwkB6%!px;=g@=OX}bo z_H!ERsMIgmwrp_3vFclrn_F)iHnA2OtXWv>?vq+p zAxfA~n5b2wlJl?wiUY{qfooblR}*7GR999S-Qd20Fr;ESqj5LBMxMQYdT~FdN_x%{ z;+8z5PK8zQaUGnhO0ORi>ydyfEKr1mzlNF}89cSZXWYfX3|+513;YOCjnmV%C<5kr zLQ1|B%k&2hVG=KRvL@EM`^y0+>)(TrW~wMfI#lBB-ubu5q(%ZxB8dK*1njYT zC&zhrY9?=ri@JI+964B!92+)|FYD%Epx+-LhPWUv<8)%Ss=Z)$?+1=RoL(}D z0_^SYJA2=;1E>lycTn8uIfF7{0`MWL{CwF;7IK&HyRav1+&S# zQh|Z^6UL$<@J&q-(=ijKBZcbzXaRLPYEXwdu`0@vjdYYzV_^PhC6O_-+`eP!lUzmO z{*OeIf*Gw0y+$cR0k zp2Huy0-1tRv@H0u^xrnJP>L>{o6$E9wYt9EFI6|MtTnKzTK04%S{^Ez`s}6d5H9}c z&Vh!T)#q;bAVu;{2O|{i^W%dLkZI|E>>L0?u^@)0wPd6WRDGqq^KZt|8K;`iX%S1k z(PUq+TZI_IWa2xT=SFSA+e5-_La=qzOEZ z4zy3fVa^qHpx4uMeusqBbv{anT9p1`P$>oG#fdmQFlZZ>RNTBW^--=lK*UKq7KbN< z2OX(=v@(`S?@2_Hnj8C+)nWx zS){JuE<@GdU4_!6IVe_q-vYJ0@tS}8#AS?jfeujf>l3BxxUdnPRSdiCjl{ctbvIO3 z&NuqN(4~QX+^tFnOd0BX?=C9QJlt4fz(tHjSvIM4QZRjf^b>QfI|;(PjAgg<&WY@a zC&zr386r9jP2=@(hdpld@4weVy7mmpiR9|GgvxN_SJZOrRN!k#)x;7^Ht+~e?5rRW z5s+VIAC}{9Y1ynV^dfOZfD`ESXe4SEPvt58BAjhapqEIzm7n$*!dA>KJ2rlqs>CKpe5&O zK_O7a#*TI-IhHOWQhWjcfv;E8#O41n_)gqz8~HH~4mb=?n4k9|!E{Ru7mYrBI<*mk zYOpf69dc#4;{y&MSbsQxPs{KLxkE=Sl@%?u$|MLyEWfl%zpx}F?Zp}KUgcgM8fIJ+ zsL3ely2ou~_vGhE(L~YHB{N5w{3r+s=wxMS@TUfY+5p69&(GCn#E4-RX2p>|V5+s=WR+YB}Xf%T_efiWX&A zTBrm*u2M4kknxW(|5L>aq&9R}8kF#Ag(#lPLG=?8*Yq=ydoxjQ_4snr+G85}BZ&T5 zeWdZGdGHrTOq-4Njef0sxDf_@rH!MVHy@?dRYglhQNF263oo_@V!HVbmLVuD*Cd^0 zzQWo1k!wh8qP^7h;ti9KAk4BdUw(RoNW zr>gw>c~7yo<9Fb^SaEsB`UxFGwy}Ry|9;(gpvMowf7R-@J5I~h&iqt}26>dmtOo+E z-N4|c-@hp)2DjP;D30*FozX!rhCCW3bdU=2>Y8Jk?{`oWph<#hatWZP=L5+R%;Wu$ zKa^iMx={sj3eiTmIxY7a_fZ{_%-lYus^MsKwOeiWVF0#!>B5}d_ugNcvH$E0v_o=3 zWa&Y_aKvG5f`CQ}Aa4mYQq5JqoKcG(KNP$YDmMT>cPHgo|FZposdCptinOD)2 z2A{INtoNdAoeDDKJTtm_Z~RcZVZt8%M+j;*3cvrC_UZES?3;LQ6aU^v0-ZXWl{h(O zK0ALf{{ff`TkJI0g`z9M8X0YdxQE=-*W3*8o_srZhZrXAyDaN>ejG~=W60GyNt+Z_N^N_FfH`TnDn3QG&BF3b7}ApRh6r>K7fOfD!ie~a@acA*DwJ?~dm zh6|6DtNHDk9AWDH1+TH6Bq#25SG;y`{u)t#S(??M{x{>1=3*5<#oq)|?9^z?s^D5U zyZpqP0w@&@$5nBFx{L%ID8O@IG-ykMLc2oAy}m*EUPAB~N5?|7Y^9W^Hu;4Wg?cO` zl5HGAtAzJpLN)Zh`?T|;9oDApk!AP1dyfiuLGL9RkDUhQym{t~8pukt+4RLn$Fbqarr|5YH zrZR+6hrC_@(|8c~r`qFw+3U-#>uL=4(-5(%zM-?H|(kKL*NDY#+Jq=yK%8&Q8w9^+i-z$dmlfE9ND+lxI8TF{U7t9 z>NXQYFlSEdGY&?9SOJc-y0s+C12lTQ=7V-@kNTtd_dH#Xlz4sNWO@hhNUxUc*N|QF z*h&seK7E@JLj}#ODHy1_Y{X#~bzu*Tc|kwGDK$Jl%-!#iBt-l!F9B(-tbfSsGyOLR z?H2d)=`iD_g=t)43o3q2OfH59Ht9s5^*(n9Jjs;03g`pZEsh3i5dj4u^2)Khz^}8h zrm(bZ+48Imc~FG_;4?g5E$kB&4OCrh@=NYL;K%)|xc%i#Q)2FCRm(w?X9=?AJ3x%fK- z-mv$^ER^NH3>CeI4G5kpI~=34JN-O%5hZ!1YuiXQ^*zQANds!)qvhN?^#*{Og(}xk z3Lq-3XKu>kMdC5h!2&tdSB%18sRDwshUwOHpU67x5+i9RjgB)Ji0b!+{iGizCtrhC zQv2UZxLtA@i2C*?KMJ>_*2^!q3;y?e1{Q*Z05?z;an$L0A|&nDbaA&q?#-cM(;i&FuRc8NZ-Zo!{cO$C6MlC>_cDmt(X-z`x3W@I4(YjkNJzrf4D;T|VPtm&~>OSCR#!!oR0_IRJ z{J4kZdFqdlg4nW`bNsC(a^cjqD5gXn@8SW#5=>92HH{fpvH~=sb8Ai5)GPEmA5RE# zit&>Ny&owQ)n0KV-qh{*b62%kUk7r02U8d3jCmCTO$3E>K|{hGI*$2Fu^jdN8#m~) zr2z{Mi0SbF+gAxdVT|~wQq0b#Ugbj@MGbGflE8UD)?u z3u&@JrX;2Or-~#&735AIX)QkM2l(b#h2UOI7if#qi+OTPYn87G02>cb1oA2>&%nA1 z0KTAr;+tI#7m`8wFyp{XLOg1cz9VyMPvWHAiyHy)HlUT-v$FfTtmFIDb3(Tty{f4q zs}5pc3PR~2Dz^Loqn(iLKo7}q2c87foZD^>1poy>4tPHX%`)g}5g))}SO8?Y4SnT8 zer0&|o?FJTQ2^z7^|OgAruF^y`Mtv}@AiZ@b$55ryTUpo2!u9aComPG`_LFL(m5d6 z!Ru+MVt&FM3{QYWr@sQ0C}Y=NUW z9pjl}D1i-B*mk_@tLH*P15WrJz@I_%^Pob!VFzN%-~o_}VxN#(v`S9^Hp&%0qNQJiQ1Z|zJ%$6DC)vdfE`E^Ao}Yi4Bw!j zJG*+4fIfg;2fqncr6@tsGWs4X!6+nIX=xngNfZSoEAb48fCkBhyG7vbB@H15bjAij zNL1rFnU6}JMER;Kq2D+zBIjoJDsP$K)B5L4Zyh{Hf|>92K;pc!A%De>Y17f;KuEa0 zgZ(k=vwF6#GT=r#@RH^+T>r#f^uV;bxnOK-wSF<{?aa1dSo!K*H`Yz72UV2$BAX<( z5`$A?QesVdZy9f0(*fb3v9V@tAIjNIUBI}jHn#8RNF6YwAbUABl@UnR=`z%PdG)iT z-UhPTOMg#3g#!j+zX1k2iLFjUqEh+I`+Z+eLUU}Ae-NE#0MU6dpg)G8+#`22Yx60} zy0hgbdpLsbtJF9>;~``rB>plym32LcZ4?*YzSTC|C^X~wQ?Jzg=SZkMcH`nqT0)%u=YQ4cQJCI<`e0i1!xkMV z(1ZJjLqYME5eaS$gOje)vsl}%Fn$rzAn2;blpNgMmoupHb(ab0viC*E}WVl+=H@3?5i<2|sSEwhKQ9KMY`&5K=R$O5?v7C|`@&J3{@kkv3+oWE;|sj^ue*oCiBn%V zTk$$%+WhpO?K+HIJ>1AlJzw733wE?CVcJmliE0^LKWq(68amtdF4`JY%@1!I_@Aa+ z?c_6IpZF<0Ig|}tLg_RL?t^59LLUwhaXE)0E&^_+e?x0M~W*?iWi`$o;BpG~Nbp;k*zrxGiU;TBiH``MgWLE9!-$`Uxna zkBQA#GcQm?npp}{+35xypH0({E>SW$)7J*|!ucLhoz;d`j8vu()G=puEM{<)3=h2@ z<9ST&|MUXQ)>*{g-r*xYAsG1vBQYK+pwa+FM(9Dr;pzx#9Y^ht8JCOR(b2*;NMKQ# zx~5()Sk15l$UTwTBQx{#-wZY0sPdR~Rr-5D(To~pN3BCUG?u=^9~o3-et(wPEF<-L zFhDHfK5ewtUmR{b!ZfMWMzXg9=h)p$K|=1w_d}krH#ET?+Si)Z)(yNgm$OlScCQ!IsSL! z@fhZ*efOeSa>yz=y-*eug8*F?1VAO32ZY6ubI+8Oo|{N7GK<)^pDE-O+O)cq&VPT)aolmVsS!e}rrKD~yLA9BI?NsCbKX0>TtvJp*Qw6d?YL zo~!7~z@AV2Q9{j6yZ%fPiR_5=rI7YY-r)uzeCn z3)TBEL68v@=)p9|0@2Tx1-k&U6uDFs;3eRHoc-}g(I>|Ym_MNL)xikWcy4meCMVT< z%^b&*TfJBO#4N+QoI+gw7U}DJ2+j;sO4#WcDokNUpf96*SkyZ66X6QoUO4Lbv+efk z>R;a<^E%t(Cf@lTTT0dwcK42_s8d4lsQdmI=Y|d-K?Cx04Jtgf=HE~Zwz^nCyc0q5 zzyjzHk6pyq@kN~3YORwFvp6fp5ABVgQ*7ZZA9w5Rn~&9h6t8zSjK(Z_Q~XNqAa>v7 z#N3L1N#J$=l1ONU-eV8ZRLC#pB@XuC&^9sc769bQm<#}-9#7a0+AFb0+hpsY=oFUr zHbGq(la#lEp}ggli_2M~zN{5%aWtOPq%yyfm0lCerGqe{zYL9KIv*Erkt?sK4E*{F zyqG^0U>vrE9Olu%!1*N44dd&43dKYA&3T1K`#TV|?m?s05365%5`@Brk2~-5_q(Um zkQA7{zMhaj87q z$f2=rAhpIm(%8Y9(y?z%093RS071tlCLRP(sxFWw*$dxnQ~O=5AOiZ7dtKre?Lp(p zWs1X4{|1T`h5eeQY_?Hd+E9)BmT;yPExZd|fo3v6X|C{GtgJC$bENa4=T^cY2U-x=>xK~ks3{f3lH2fVV&}}W zh)#|Izj>X9e{z#p*jsEF;2Xdpg`Lsnw+5A|j?!`pHxz}^so0S?ohGHn_Su&?g#U5J zX>LLd;R^VYXk%(B{+#R%S}TJEvQSWgR$QK-bbj-^6pI-$EtXfGyz{G)8f>wE11x68 z?>Gq0mT81n6<{i6}dYTG|OBI1-)iamA(dFg{_w9!9cG=vdCNzPSYC2rj+Oh zisp79@tZG^P$M7|U35U%C|GRHUJbg>iU4}189IfeSL|Cnql!p=I52q zCWQl&F0k`%QL58OwUgxskBF{9uVIyAGmMUQ{^{gqQ6o?+#WxtU(WA;q$=@V-NwD#G0_BGZ;5`E@AauK3rR_X7NXfv?lGQ*|<}48K0L1+l5CvwQ6Re`+DqGVe zPAW{?a6Z$_kGrv;!A}i#TT4wOf82~R7?7jyFs@zZ9kZ)zvb5IF=}!Gs`A!0*@RePC zXICznj|S-g#i7FjLQly~_;j*l;^+|@a~tZ(ZX0N*G@v!GzysD(Gkm_(D+AEqh_(7Q z@nrWSE-r2b*y_RFc@7F_wA9o&U-i4F!Bb#r#zx#tLH;~D)#9?o*_p3;Db2ut*s@)> zg68`eHxZ+qw4r9NQOJG^I*>lgO57zx@V&{TZO52s6asp8dT8fzIsV_C_@@?uhGjYc ziMd>{BKoiqh~MZ`;49$7?ha7H*5<2-mj0fow{UcjK%pa(MHq$Fh*ViW6x|2URf)cb%oW-chUyvE^l|QNESLI!>d?9J5>V-(Gi>D@C z-vLvS@`YK&)+Zh@UUm3@WZ%J^_iCrSB23K$z}mpbvmz}^V*rTUWwhfZZ|ZC&>doFH z?L5sISxWt}AMW7;XNybF@b>&Jv!^DKvZ*y_8 z(d|+HXK|Gu^tVI?Z50rVW?oH0^lkO17TgHK17O9Dv!3jypi@Dn(*VRwMKpn9!>t({ zkU9*-6ib0{Snz0_2}JK^?D2a*iartBOMK|JK~raWD7s{q-fAbJR`1>pPJ z5J{R2RZRFE8uQrIi#fJMOpR#e+K)jl4TWcK|MV{=_C<|dt}(k!o>kpE<-O~lOO@Nr zmj~9UVg|G8t2)~{njYb^o?t35(oZ)Z{cSV)D6oI?eM%TRH5`bV6@T6;*Z$?wQEpNW zSxp1)qyaiO zNWg*&Rpp|BvSS3V6Thrh=iN672JGmU4&6cn743vyZCPKCrfg$ifv(-Z{g|R~BSKs= z{sAQh)7ygEU)9fJhkx@C_Vzt;wXUw|i`QZxX0hfVEn!iV2-642T-%H&t{eD2uVC6V zpYSz?Js!G>Z9;tLjlr+y$UmXxV* z)QcbQ#)5Pm7kNW?wj=qc!_-PHtBuT?8hxb*KOw_Y+za8v5=#Sc9~ge9hdQyvq|xjI zI?nE&M|lOO z5^WT8%@4u8kBlhY-YZLPupkCULl0rCZNcKR08oiG-0Dbx2X|27eY&lPj$N1ymMw!* zRFeu$mH=Mr)!_=9@w^m_dCdLp_e_xO%Z;6aAlTK9m+gS8$Ms{r-x#41x>n1Nnb4nX z?n5>hA26wCjges5%1E^jy<_%LqK&0(XiMme!_z9kl&a4&T;dklPjxI@_1}sAK9=yfnOPzgf zd)7je5L${tcJJ${$ z;f$6Kc+vLeGg6^1mvla^{B+kLlc|VKCK|`~`LaCrslo17PJuFszrd|-o1h-b8b))2 z^}&(Wo4A7=6^Rz@VAOm9?%+vN3XhjSm>|C1?m1oF1N>YjkVKz=6(y{Ij}D%22mr|Y z2L`D4Z+;nta&d7%E14i-kMllkEKsx#O6+o!p}8^!WfDOpBA9(Ji{m$egcx&M+U6bkUrBhHH^uZ{x%*uh2^f4%v3F$Sw~N zA9Hk?tgupbOsa#_hp&`ub&pHv8#+2Vbe%6KIW>5u&f1uRJ$|NUX6fU;&}ElkAJLy& za@BPk6ZT{zIaC_P1Ce&=6fdnkO9x&@o~FXVV%V(RcTDP1(N*>jZ(xRnX}X#b>t%Kez8kcu7`V!wQ|{XArDT!m|b zYNYrbN&&v1O(p{cjT}90dhdba^!D|J?7O$)jPRZu@v1RgNie9 z&vv|ICKLHUE3}Ff5xiPt8H}eLT6?SgRd7*$I{oAJsHsOJpSP7XrNd@&O?h-S@XYFpDPo(&;`-CX>S|bW zMg$&*GKvMVuNz6?;(lQ>PeC#;7y$bOx{W)YRtX`+%MhPMe;DioX)(`)IQ-zyk5&H&{Z|K7qFRabxA(q6nw zFUa9%(>Gpa316)zp^5ko9+s0~NY*hdGd^IwQ+vLFNrIF$Qdp(Q#hXiUZwE0`dIFf< zNM`-frEdDfCkyC|Cp&$sKHF=1t13El1WyrhmUC2@bA1b4y3Zgl-ChS`3O++Pxe-bIceeFMY$q7;=m0H$Sm+`eV2xTp9UTU`yJl)?%H)F0YU(9` zK!T^Qle8`n$B&)N$u5d*neJULXUS&l69X0rZuO4vV#sgA7XNo+%1t-|#5?q%IkDEV zF*V?Aa|lBH6OiQyNbywkPX!+wVl5;gjWm*ZU#qa+++{RRFlWbW`sUF)`9vbfGkmB$ z$1)EofEYGp763@*Ny|@j`f}87iy$QLxt&Uwo>bn*&HftuotPHYzYfJBaxclvFP6JW zKTdS>iLan?UfQSE=#eejYCYel<5_3OvRBVE*pNyhUU?N zD_o4wjO<5*fm8dlFbpXxU@jjF>9%Cf@8rL;Ch{zfpqqUI{kM@K7PBtIuv2B6%}>A_ zqyJgiBeMRuPx7;7N}-+gRWpK7-M7T)`Kji#;rZr(X+P>&Th9AKbip$;G590aZ(A&l z&9`{sFAKs6JR3>%odbv(c+ko)rkdIzkR?mo{D}ZMY(9o0-{GD#9I;_O?2-9h2I77l zy-)M!nMW%qKNFNw4zf7sJIgRJ;Ff`Ts#1D6PGppuMxmtEUcsT?PC5h-`5N^yF#9FN zThqpfe7%{*MIysrwQ({jxCjp{9MrQqVN!{z;{rT>h!m%E(RGY;Is^kvQ@_j`Oe=%&xNF4Pu%Mg8m<;m;t18KMW(?vlPrIM z`^IgUM3w=D6?_w4K%CIvr?|m3#EDAYJ-w*}ZinqX!3+OnIq+6@hlryrd7MW1Tw0%F z$Ips`ZxF_BMf=%?{7@;~mb<{Bsl|34u6C-q+hys3^!@`P;qP;cyO#NlU(=~C3dFK; z^6^FAqk3I+am2=a+b|UukCKC}MF$bFi%p1;a$7;%g1Q8*JyU^8Vo$CS3YgXkhm0eX>G_V4*(e@HDU0Y43*d=fCK8vD3W;y(U%R@zqP$)O}qs{ZfZ zP6^Mx8jjl}q$BLEYZlD!B7=wTWd-unqjCi6?^*Uy$(1aXC!1zALm+XNivw58s*QQ4 z5?59pb!oYhPt5VfG{~N&u6%SLJUH4Z0(yqje}CxbH@cFwcN*BiByx1~2U#}mFVLeT z8QnMtTDjojdp|_C2OroUXk2dfTfYJzmiAhzv&=KgBP0!Yv{)Fh0Y3r9+bx=ZrC4*f-Y7Rq0zk!atWmHg= zUV_@zBW(%7iyMxMXoao1x$e?^9}AHSB$DwRqo;0v`b;Mbx(bR$&5qr)h)%6b*9n-Y z1ik5*m!uhAb359Gi4Y)iqtD}B8yKi{v&g3SWe`7g4+$(6j)Oo-zXr^O086v(QZ!sj zWv>nnbLbfTEPF@-SyVOY{_Zx~KRBNuAOb&@|L>2wSOyt@YUQXNKKAt+T;+Kv z4a-COwK_F0q5}q+uV%~gk(1*3zE2$dF@>=T-+g;_I{kJZA2Zt`r9<%#o)-CGpcn5+I@c4p&W0_1Zc;JS+|OA0q-e zc>mw7p-dK>ChG$0aYlv3o%wb%Q1w-5LSK6gyw=e8)tzsqH5c;BE3kSi(H2Jz7EYVDxq4YK02 z+QEFeq3+2%h2<$o>%(gPLdr)%h%ihSgjv*)n2#LGj0~gjl?lXD+Np&u;q77lTEqCp zFI;_mB5d0_g+I6==Q_yoZ8Vd8J}B+cT7%fTvVpgWeDLfk!msX9TziHBQz>}hiNw!P zdi(57e#Cl&9>R7GBL_%6d5Eh|9XmMT)k`R;$29WA?n%+peYe<`myP}WCe*u0mrusO z*aoG5W_c@{RR)^cefrlEiI19(BJfD0$`0tL%3Ib2`PIAi?$2|Y9pooE^EU8Oz{K~8 zd(Kg(%qutFltr)8iZi&}DK*1%4T>bs*ciyF)Gw;go&Yt^+_Jbe&>ljF)EZutp*`CsJ z1y68#RjGylV*dL zztk{A7y=NMef&K*(E|A|vS6`expV&c2y=6sn}4hAmqK`o!@ibod_HhnE^&5TJVNBI z*E;Dj2MGwyuYt_%Px-((Omv5B69x9pIX(=!H=_$PEeu+WD%!Y(uJp+FXWSmM+#p&C z`FH;oDl3SXo>U)v5O^z~KfF_U!a-0K!pxlK0bPHo_9 z{W118ZT02ssfW7YuryMzw+LLI-8*f#uc;5aFZO?t4!xKh;Ch z{1`ss9*IY7ZXh~|{r3Xn7aMvRdEAFIA-@)MaZHUXMmnr^cwc`N8ZhHj2s?9SdV1$w zI_apr2kvZ*@;^ogV%w*+_S{~9&2vxoC2&)9&2hVTbDQ(3G(FCv>Ax#N=Z{aSD^7aT z{4c9Quzw9;PHM5guq!Q&ZRC6GLuh}qU)uv~$e<^EwTQ@Du*YeBeoePBSXeM!ZFYP) zn17m1juJ|z4LZ>4HGkjcYJ$(5uQVx{-0JqPP1}SNU;`g3KWi=%)!PGUr*}bRN2|n zvF^_YWx1=Ocp=3b{#rXCdy?PBnpRBel?@g})%}=2R>OLmB&2p-NLOCI;y!y+F>U`+ zYQGh>V(O5J=9UJ*y)D7pYf0YlR*h zzQfkB75}pryInNOzi*GA!Qw6@&hODhzC6WZ+j9pUswonO3<^PVj80-%U<&8x{s{)K zkJJoiMSZoX!Ck%Z^ZT%WiMd?jNH#gjGWh-a6aiHfj>q3%=QdZh$#x7OyVf{qe|Cj^uIYf|W zkAGoz(j-u=$_cFcjR71=CpwNkNw`o+;k@I~T@I<9zNm{A?>LcyP-(VaAgkwzXGRFD zfri>2{e<{dDG`Y2(LLu)-Wvf!cvUziU2IcGrEf-*x1?Ib@+KVb@&{9jBple^wi#uz z;<;=8xv~eEdY(e?d$P!3r`G&CSp7HC_$WLHwePmp?5T?ECu5e+1e#VzmRt3#=gFj! zo9|sQu3Yk;Z{FlbhKSAFPZDMF#*(OfH>vipzqinCg>}d8`tAh^UX$3Yx%ZJb_}G>+ z{{{j5vw1%LFFds*aP8;{Kx*;F7n)kY0N>B-WzAd1%5dSp;Qio9s2P;HeZ~s$3SKq2 z%vh;WeDYAGbtMd$fc)e2)J55*&|E6cv~ zRQ?lL2VT0QOMjl#raEV^Dk>{A?)O{oCI~k6weYT(E&Mq!KQ4l!UIewht~U2WAkyM{ zIj<+<>-jo@yOR!9_wG>IhN>-Tmp%yhjx^9F3+E^1AevU53D6nzNiU{+d{x>dx^sTuy z6*5?7mDOYvEofI|EWT2=J77B)Zlm$iTT1T4yns#l(g-{HONGZQlKDYJV^kBwk^Jb! zKhM7J7j>|#W$I?SFt6Q@l^xer!}@8%)FPzqAu0vGmPQmI&=l{P{Pzll)o8eiF@XXZ z-GZ|0tR1u%#i_=><~`--mp{XRyluzPm7VRLTG3iBbkFKqP77~|6G7Gd z?Z-I}<~A+?q=Qp_9{2Pv>GlivHuF3ZJGy|@$e86xTt#oIQdJ-U%hK`zlY}h+vo5@i}mM#M%L==PWM!FjmkdP9QE&~B+B&GWh z0sG#Ew#N^Zm_dk)kmHu-f`9glov7u4Uf1wlnScJ7Kxl+D?C<-M zjDWhwh78Fx{@TvZ%LaG4XdSBxs(&Vm4Ii#y#nc6y?%4{6ds=LHY$-|8dS&wDx01;b zRr#(|5V*CFNbc>kJ8f6Q%8NKp$??I(spvZ6ULAp2&U)Q1f1zh&gOz-82$}FmPRsKS zW9$%xP^x|CoG?U3#y^58Arr3-#&!>KahN2AkDs5W*{v55exSwS-$$u~v5M=HiB`!g6BJ-? za5eqhbx2m+tNa>%T+}$7&7Nwm%ovLHGGWjEO}noBRGSc`T0&T(C15Hh&+*NwxghAe z60jli9igF78WBcLH!zNuMvZ+BGl`CCk4V_T!?*lM;cFOC$8UoM#7-xx^N+%XIdz}- zzakb^a~*K(FAHM=*WvVSee7LE7jw!M{i(PTz88GYln3wndHb zo2lg-jm2E++bP&#*(G|VxboTaMwApI5&5s{7iL4cuM;a-G)(8{#|ypvj{dt5(b$Ws z&~zw-Rgg4bQDJ+t`CS-n^`~Rlig+w@h48BP+F~I~v;MUxe@V3-tS>Qb(n4Hzb-4AZwku#thiG7p%A_i}MUSq+&3daW zD<6&iirkg)oI=@QbjozA@h6O+|L96%r%w>iipO=UPba2*JWhxAfjLH0M1o#P*K5q6 z_&U=(vQ=!jmPH^m^k2+HM->j9>|j*R(Zf05hvvDB;IuODN^MKI?05Wyv-p~}2Cn6% z5($JRH|YC+*$L777#$8dIYmR^>YKY>u=4DXNxSppWR+=B`u1CW(#M2!9vZm(gre6+ z?{I$z2q?tA_&7Y%1vnn#fBoVneip!!|83ktzQ|2Ax%_=#xD)T+&i39~qwX`a?{RgD^n#0z ztSR1)pfnz32FT+wq@e=*8ua9{QxlVQc(rj7AzT@&L>dV|s3Bn?81V_5KTWo(8c`5% zFvR^6`FASI;rg{TX$MR8Na?DdiA zj74N(%g0uNCp4B$VtlxaNM_{b0c7ARDLMG!ZZM7M^A9rdA1>d)#pM`Ld^6A& zT%K>b7&N|2F2|Ozt@U31>1vTmf>NEWa>4X2&1kiHfic|wD>|Qz=|Uc;%j{yAbkt{=(y&x~-5pp&M7lva-!c$gX2ErT0H?k4E>JNa95B?8TR(Hmj=#7mPZPXToK& z9$BOnqMIc8mHM|Re%;?L@Rf|=l7y3Wb7yd`0drksb1QmVzfeI!)4JS`T#w{m{n#-) zyGqA(D`_Rx1O%qM01qSI?rlM^A7_Ec@j29XZ|8^ae0?!_Cqrq2b*>cQ_D<7?)zw;s zO;Q+5-tB(4E1C6ae_ZjEG{dz>YPrQy1$hB9N)Sr`|k_DlQF^jG@>wh$`lc(i@Y)Sixg$k z?rQ&OuKDijuvFsDcOTT4F-z8rPtwX+PBIAg8l|taT^X;i<78qHOu-F92Cse>D_Epg zj=1LLg`-c_82K_nwb~4eI1T@$$SV^Tr_GRq$8xN;Dq{M4^w|=$;Adp#8YgMKZ7D(C zeeZnF3H#>Nur%#dUws|yl(@Xl6E9X?_EcF>ZaEYu^u-NZ16A7OZP)nYWDZ^T!5xhl z#{&OMVuA&gi_=%Xk$>=e?SuIClm!Gqn3$ACbH?Sjw3VfGXPI_CS~1*Vjw)@XrgW)# zlTJM$=ugDuJP(4X*&6sjJmPr=NeWA_@EcC>_t=&cBPKMiFP|{AXDXyGZ@i$%Nwao9 zKeBTy;5tAx_rjeFO>mN-h`*mk(4~UrA*N9Yhvq_$bGn+L(S9Z>MjACeJH7F6-ciY_ zqgIVj@~N(Zpze~4aH?+>2->uA@Aly;< zdE23MtaO!)coJIWW?}0EF5fKr{>baFsB2S>+%*>2?{DGe9$k+b`k%)*O~}a!C|w8qXgmewNi-Ym%R>I=-;n`{WD4$EKR??Q zJ_#SQ8f%K>Ln8t0wL!T;zF3Z3yZ$m$ToI$l9+g?6m2A%Uy`uV<`CJm*5 z=JM7w%|J`=FPC8X1o_IZ1l3pK(;kr!2tiLH_ytMPoBZOTLsl+VUi_o!*w(?EU| zaYLUj9`82drTG^fFI>{R-a{g{EbRV`65L=d37?NP8w??VjI8uGXtYm+nCXo1PacAU zBG{mVqiy%B^X&_rYd0RVr%bf1{JAmRZQ6G?1F!GLN=Rka5dx#C@=O+kS-WPtwo{*9 z^-lpS-AdB=z6>AHYNx zzaZ`K+FMnk7nW8G%q|2jNa(yllNDX7MoCiq@rE?dKJ~Df2-FM&t0jpb(vG;; z<6TG_Oy8a*G1uQ*SC9F{4lOjh2dimD-PDfx`1O-txJi^Mt0G@kkIKpPp)49%(rzVm z+2eNBnDZbH^@5JPpDt+Cdi6cp_5nSoIS6b9~?74+}zplY!Bd>@@j z5l#ts+e1_18%y$#15wTO&QFfn<^dfvk%(&M1QhCLx4$@#l?WC-Vc?LrzP|SWHNDws zz1^F0frtwytxHDMl3;0ewLbrIcu2%pOJ+h-+52l-zn#hE$3RpCuLYBJMCI_`bjMBpTjM zaPfB2S_HzsVY-7sypIg9&erQ}W9Fv`f{&CJM=+!)+FIleNYo|HVr*plcaA>}db>Sq{?5j-qpuLB#usuUctWf_SOQLugQurM&3$-FUbF_B584Ae2%3}GSk z6T>E1Z-lL0rqEyL;)M6Ga{pip4A(@R-%-O=ml&z-IA&>m@PaLozKHhHM21uY;l&@H4&K1uFH;Z@NIWA*Ic+Mq4tYMG|+>as^pxPUBh<0l;`n;@)2GG!BoWk z#&9`2PelcV8jh+f)tF~R6T_sdvL5|MHg@+tej>xQ%E4FAfL&ojPg{JR{UyJ#du^9Wq4OW!UceebNgK|2Z z4>!v#Qbo6~990W8r*(P-u@CzzOnq5Dkwx_>3$34>nwwaZn)WvduwpX_$VD23y*4pd z-_ELI3eU_BHaWNrnr2V??XcN$+(TL1=)B6D#byQ~FE<@bkeKe-|D>aO=eLiva5Dba z$8Nm=4@GME#&7VU)Y~)1Ec3$?{kr5lsWwJ1h7NYIU3W;7jB-8D#|NH;(;akWr1484x6lB zv0>UTNgG9$xDzmzmgXWXjw7=ANVsg4IAz4D31#*5u-2%vAbM3myD)78HGPQI^w9`Z zE*@OG$Kv;AKJ45eabV;~lQ0xvyEPQszNpOqg-{WtR?1Ln7EZ2dFwQh(960@g$3R;QzF+*i@?XnuWdn-};ZF+mWX#G%}< zWD-jT)&%Nw*TYFW(#!qpN5<316~+=?w6b31#_^%Y4l-e}E67{&`P0EU^TDB7um80T z#0T^&wPRq;3jdS%mbh=Nb0r$56dfhHO=>)MH_u^$*ga3rHr~dIswsoBB!5w0C_Vm1 z(6|{nX{=*qJ-!Ov*W$_t%A+$+2jvKX3?*u)x9= ztni?hazWSV+oRn*`4+QpM<3XVQ#&S6(=!v~OjVGEEtur8H5>lngZGG~@%ngemTJMQ z+mIJf%x=$jp_Pv)0J&_egqLT~kX6|NlRVS&pf+?84QpY1&?|r=`$_BMi2Iae&ZeE2 z#HO+DD_NJv^~y_rUG&ymBE&`oQ)@>qYXV+#gI@MCwR1U!dkFt@w#+^I0XnVvCD*58 zpc4!o#EsB-TL*n)Ncm;pbGgaP><`qV`h&R|KR=k|Rz?AzFt2Gh16;_W0@>nUez+9# zpgC(-j?Gc}8rtW+9+b7G4*W%qXL=he5PPDm)U7ns4VZhEZD*cxr@oEjeL(3|5V{gTc?2ZmYqIbD#nLR<+MwzNRCO-AAPxpMBLA4eMVgReNEpQKP{eFN? z)pH6&zo}(qaUeXLl8lSl$aI*Y~?$Aayp z1ImM9lt)T94*nW{jznU-#^h_p8@W|4D>rnjtkAKF;S@+MWy>A)aTsq{n3(9mZ6VR) z_4@W9$bmq_m!6GnsdTTUwN(!YhS-ZA$8b%=Z~?vavoBx2Vqs(J|BB&0UQ~u=FuKXo zqpaNAw5n5y2kex12wBj|LE4l@Mg_6lQ%tqczj`2q?q0smCVaH>wKo0h{!>~Ctr6*g zcNmUZ`?OVwi5h=q95KR#NwmFk54SW^+Fg1@DoRU9VKd6h%LlD+b92MxGnzf|gM$Nv zMRIcTnEMIbVjBO^#zD`=7YUaNH-Xlg3-}>G?K)58He%ThS{X%QPAse?k@G<}#tHsj z*|9p5?Pus<8M!S!&2)e^ACs5QiCEP)@!$8>u{{P(bQm`td<`I2@1;Fb zds0@>AK_PqQ8%lcXEdhV@N%!ASH~Js*tQemA6+{fB=%LYrVo;!=g9B1poBaVE_&2% zC+JNZ7%;$j^7i&79>TtQH6SEJY}ErUfP1}gd)<*JLP$o|0*v0F6i+Sq_Dzw0|G|RgE(0-|j_rQl;gD6or!m=I6+%poBku_@j>%yHlJTjf zmtM0$g>lO4yg~9Mijh%|;%B!@E$H@Mnvb|*eyEyhG?HVtqF@_h-F8ZTY zbwm|s=reWIImi<|DRYlr8N!Z|PZW-PgNFGbHnwH>r``9QoY~oUD~$0b3ab=gm4;jS z6tBs6jkutLGs$CDm7{E)4kxJq)?`-bY0>L05Tq1x7}ro^D$dd&SOQ^^eifNREa5jVYJIg*3ikBvY>BpxD_{ zFQzeT_K2Uv#$SUpNmh+IqcL0BTE5nl#n;tUE{{|NX)bND9A%&$`Ko=veB13+lSk~O z9OR6atB%=AVM>L>DF{r%94WOBWgbBbGXlXUoywCcW6g1G+LI=0Mce8gj1hFJ3=0*4 z&~dDjPhDR2Rz}@4dg(lu36L3Dh!lLU6^Mp9e>h}Y?Eb@t{iWk=T&22V2jjUev}N}> zl$R~i>8>WYU(4imCA$qeiP@NA`*C@S6y9n%WE&E5cU-|;C$ zf85?J!_fPBuXdz3D9-BfA*4xX}F#?Lznv(i!gu_et#?yf8Fz{f2aQjJ)n| zdCVI;`8qAbJ+St%XI{O2E^5K|cJNf_Vc)!`7CAJKbH(y?eMk^L2iNH6sA5{o^_qpI zNb3Yqc_!roWD97<|8aQ0W72vPV}l=svGJ|BN+nVC4eXyI0#8Yk>UVQX z#*bI}E;Aj5-{HU*nwd#)q7H4$>Zi^AN?VoviMHx|49rml`q*31mD0cCa$@=(>Ii;j zFeDip7K}HkX3#1(5R1fwPV0?&fxEgz^xfBh4iH{K^ksXC(tBDb<8x1+E7eDNSsFWR zU@Xtx)$mFM2A2FTFr1k9$F%pB#hlIo-m?82Q#xg@z=O`{rS!i6yN6-fio;f2gt$ z)s6q`rrr12(4rxhwz8;82!i8`x?3ZPvJ0W+#V@O+20Ap4?ZyfukkX`v|pk8dqN% zdQN&#y6*bkw%9MSAJpzeFa#pqQG)o(BD|{6Q`D}U7jo6sANI7^%l+M3iZ|8>Dsu&* z*ODH$_6tIL4Z+9pwFTQ529pmA=ksSua_PkTr@?qOir`UszsD-IT%Q4f2Jw^S9Q)0_ zkMFC?e2F^E4cZ9346I8wG5|=nD*M z8()8zH9y z3nf8;Im&cspwgZ*R^g!$n>=5m-;V|sJuPmA%~fjvjsje7dPd6IXzxrYlKcm6vtRNip! zrlCKdt9ZfHQvo$cGoD*$Nu~hbU@JO)VC#bq<5@{Sq`+yC7N34;(VW%%o!eKny`<=@ zz9>I9pSTXz{1N@q$|L<6{X2j93hV|H?)(4EZ>x%Rt(M!wr`Fr3;ETy-n)H9D`;#^d z70r)umSk$7TSOE(wb5}mkXbf?>Dl5dvje?a%p2L+HEZ!V$ls0JQ8SA@8@C^3V&+V$ z{;(c*Ibp}LuG^a{Rz8X2AnWtLgGP7OxH^aUcuSz}1{aQx&k|m~?Zh*^mG6Jb%~(dY z8&U=EpKdycVREPhSm861?8eER={`XA3u$`#|3e7qs6tx|=nS9o-114?Buss#rYLzD z{*^T6)jD6Z?9scpaXR_Vro5@qXV;}0uZuAGrsQ{B?!Papd8+zPMqE<3V*Nc!-GeXl zJFG7vUruZdB$~Hs%4sOlkh5tnA1$-Av5x8LHx6m^&k(ORCp-YuQ9Um=?U6+0KZ6r+ z99@%lH+7WD=lic3q58(0T&IG$HlJyGG2b@pXPRpDagk$r`f5UNWF7II9LCx4GIdp- zas4vFMHeTEWB5*VM;7X9@IqM@tO)J))*E&+U-s<2XH&;fRq4WCRfMXs+ZR30!ylNk zH5t&3gFvL7)~x+^YQp*dvf12Z01e==pEK?Urev5~n0hVPpFY>LcR1nYZ6%_amz_yX zmOD%~ZA&lQ81C&cETQ;!;OUrY3!k$npDi=x%rd=VTN>cDX7-PoeO_7+bK*(S@8v8O z8}&%2Fw^%#?jn}(*iERun~u0bxR(3vB9o@GeRu3_j#Db^gR1P)HbduObz=$N{c*q( z2LCGdZ|0h4+6`5;_r|Q6oljVq5DLtu^0)tG{jfU%+oB1aC+}6VOV?i3&simPHi(8 zG9TX`x<1Ztl5SxzK+atC5>I%bT+x~#dL{ScguMXI*(jOh3uc?l6BpNz1zDN7yYi{} z{+CFUXlfO;yWK0HvyJxFoAy2*3j#?@hJMM?apYd?glyJ6-B9o($bmEpis}JTZTy8 zuj6lLas5hCPNBsG4hUt#{MYL!eq(onC)|B|W>UB~qb*W3RlLAJ`LvdgE|^qji8_NeFnm2Pt?_E&b09U}guPyN3? z5}Ej{_35>LM(Te&mQL#*v;}U%``=awa7O=!EJSo|J6AE_XE#O*#Dlxi|zgYv~9*CQ5}F1EhQyIr(}ps)S1idZ`Q%+E{*#-s+j9` zjb%wsiIw(jXY$yjV?CEMaKQ!y1=V+Uh5?mFzT4hvkIR*R$B6#Gx$O1X&gsz_ui4+* zS}rq07=Ud+o)^oddkL6rC8ecldOT-ZBay6FNCq}w14iakTrQgi{O0|4lf^wy_E)UD z+K|`#fVD>oRAH)*XE>2>hwF(jl9ICGL=mU!q@?{uh;slI;`$daUl!$jo-hQ~<&g5# zvdn|Bwi%wusi_b^Z)i$RfThJy!@f(3y%?8Tw7+yJR0Ic*;F2K=P*)95UNL}X+yq|k8FJ8o!gtUCGl_?XxN>NupL&g)ovLTan@C6*eR;AyIv>yH=c--hSq~Kj9zCXQs5}03}yF zJ-SS#?Ej+vaGLKxgGBql?^s79_iFlR9r6$<}dZCRVWtLXuq3_X+^Kd$xw{yvF zzax$>2smVUtjF)dVj)4d-rn9}_pNr6Vdtq3`^7(juw-al`b{`M*WFmqDc&YUqS=5X z4=i(7+V4p|z5KexKo3YR&k-ng_H38f*!_KHfaaFJ12Hi26@E71fVzW3&C=5YkQ9~2 z$L>5lJSurQ_qG_Mfg!if{PYQ8El;=Jc`nh(dAm#6Wjb71=Fy|6h$rHvT4+S$Z!oDp z0pd1fRhJ9xANefcX1 z^%FNi6YJf(tGOqs{|3(Y$7ir(z?`4j>(~YiK-#18JwzbHcu_Ki?{bm1Le5|RH*Pq= z`_}W+YsAD&M9LZy3(q7)aU!nf)y^rJ@^~n~By=)vor0 z&J03I%3p9^4<>^+;St-af=9n%c`+ke8sN*2eKm|L_S0)u;+~S{(3#1uUK|Y583de^ z`6gX-MiGZe zoC;F#o8J@@O9X)KsfvoTEhf_@JtG4HmvILr(s;tjCgnB4iPmzx1@w^;mTn%z20-Fn zak!Ydz0|knHndPlr`2{Xw-8AD^}ADKA8KeMppw#f9dB@3Ae9g4g@gw32FyX%D>dJB zXHkFfw(5_DQosj0?=}K_^F&woGb$-Sb0V|+(QSq)X=xP78a8hy?1ke?jE#*c0Az0B z?G)YeIg;pF8-N?~Q#s|UuQpURHa41I-qj0x*3^U|>gwu(CC&~y5$1iy_gLB3LJAA- z=y!dQYD!o98Vrj|S&}%)Hrf8iXYrfoJOwLq*{Ectq|i|&CMFQWa4`uA8R8TImeYW9 zHULQPw5HV*OjbYL65#^&Mq!bgf}C8X+EWbhce4$Ze<=Jkp5*k6QVk9y0Gg4R3H;;p z+$Bo|H=RZtNJup86@&T~owv0JtY)VcE=}(7iMN*q(;xW<>J)$jCZd@+e<)7+Kiy_lF!wu3>{KRejB<}xi_j`?}rN_3B@m0c3|M&UJv4V?5+H%$Cntc zcs!;M*gUWZv#$q=iooT6>^8*6$hc8beG&p(v0cDpspWOzAkWlen!A>nTP3^_MoXm* zk`4ofri9RS-LJ-Sy;w*hpgt{z@(<8`TI*s`B>CS76%1R99awD<^kJ=YLfTuoOSj zp0;;G#y9X(Sy|Z^N=lm$ALc>%2`PH2KM3n;15-|A7wUQUE(+LXgqV}|8qvn9q@;%` zo}`G_CJ|oVo)~@$wJirY?hsNe#N4Wok{qNTFO7zZ-Bjrc35SNspTB>p3p`*mHi1(L zb4zA?6h*nmovM&H_+^CVY+suG)~%L2wd`}F@~SuExtM6UQu$1jdhqnLLH(;Daz#bO zrv7~Wkhj<*NqLpx*qe!K>PAgma2nSPd2s3lBi^W}%~e-_7M@G6+pniNt#O%4>^sKo z1$l~2khF9GHO=_y#6yI{={=C|;#`(MGm{!`skb@Zl4fz{r)zz*QbI^gz3Pw~4`aheMngik zkdm#?l_q32TiAcv!ki2b6MYeBEOxp-b@}q;_n@Z<+L240!TAPh68+7jHok?uqC|gU#L+R3f_} zI|FkD%dZ0if1#|5mgl&l)**4`PDf9Vg@vX2CtVT5Fg`b)JZ2)ytvX}{e%`vVv1G6v zAHdGT7bJ@cDk>@t1%EJ9RjIegk=_^T(35Lxok)^PDXB&qv*T4~$1Ah6LAkHemiH#6y zu{hwQvh5VxgAJp$eaH!FFLs?`BoY!5Ku#4a?%}#+c6q(~5odT*l;4OYGZT{^TTbbh z1Hovpv_OPBR?!JNHz5xL_FxneWJ$Oa)L3WbxkYihkC3nhg6QXieSO+qk1Z`Z#@x4X zz2MwBgWN#u9nkHMfikvYzq*O?pWB?HMRVd?aT zNBxy<0w~D+zB&>QsZVr8g(%Xj>+d4J4obqRW%jqCH66+PbWxtFsWR^lUM4e}@OP$Ru0B=h6U5(ijL!#0>m&MDvug-kg0as1y& zaoFn-{I4`z7rsH$WfNGlV0Fu%jnLJM^td5sr)x7HIw1g| zt@`jD$Z7L_h=@>MW`nR3`aIf)%AD3L6Cf&R?@LrjBe-@=rvf%K@1kA$JT09i%}JuXYbYh`aCSp^^eJf_wuqmb8PdgBd0uEdO^CnW}k%Cb91fZ{&z>yK?m^kNC-U&#cAk4X91? zYj?J`@}Nw?GFgr8!tNn=EU!E`oC=e$RJlz&1vUNlp{o5!?0S$|hMnf8Tj(yfw77`l z<>jRh=nVVfPpD&uKm*KQn1xcHfD4JYs`~j7p-YOWn)S0eo;wYfrshU|^3svjS&OaN zcHT>9Xz^n-Umu3>K*rqVe&n5Uyy0Wnt zWWfJ&fq}EI$lmZe+w*z|3EqUYU}$+K1bh&={Sutee;3fa_Z(Q!0up{8CB5Mg1pxq* zv@Pzsw;BR9`LifJJ-vCz9JU;S8t+R=UVi)bE&Hkfh?~qNd$_xk3R>&fQN;^b8G(B9 zWef~{ZP)F2)ZcnnmVvaZs)Qd96gcno{`gk;9{cMP5{ofCJw0S1j<-FIc4r_ooQ4Bu zW^-zJ?;dK&h$DrmsVSuV&^Rdn@+A>~39s^#K^ThfjFONL?f2x*cY%SQb8;YS?y6wF zbt_OIQJ7Dg24sWazH354g8t%gfiXT%{v~*w9$XTvj5p`b>|73DTw+_f@n)%glP~-Nv$1tNnnmu3Y_iC6W z{A%2>e4yG(0>VylaCb;%L0E$~z;(UGy!?%bAe?5cpX@4lLC+K*Dh5|`87UTTS+FAKhp~xo)hJ&H!@j7)!29gkE{RAHDeUNNB`%1lJkbFer zTAi?L_w?nESRt1%Ef12Fo# z$gGbznuahKP_)3XFyqE|MC`@6pj53@>3Wjx3XT<4Xbz$o12CK_*-GLN&CH%WP8Lr@ zT4D$|^a}>mi%m~DFju)PI3C{>u$8RrGk8!doW!(g+d)SB1N6)+p)Ur!8a)^hJdi0<}9xAk& zqgk$3r1mB?=@4?XjiIqqNHvPB$7@g_!CN9+eJ&}f_T>EHCDY;VN*nlY1Pt-F-VylX zTdb^;kZ-X=hKvqQU>p`5`p!!qQ#&Ey;cwrNS}#d%t3u#eN+B9XDTS4BUMcD;-5oST zCbC!X@gYPIs{m<; zgKn9?&`_hD#oil4M0}WwkYAtfmQ-^CQV9LJNVzpwC5crmAynYj2Um9h`ys4;Lg#RM zLBpZ#+EO+HIK|1Bdi3M1(+CIR~!S zOg!|t4Zwgr5ZtX+9a(}ae5jy+hXgGOfRB;;as@lA{W=6A*6n z?`e^A-_Vkj1~F?MKp@Dy3e(kWob1t5<#9wRWXk|i!>?osnv$Ur%I)XRo~cy2@?qjp z-h}vXeSMujR~=HT)Ug;O;R$%E@A`f(pnEL>aF9S`TOm<{Ke_+j33}l6-5MgOnV^v5t&fmX((@>G8K1uF?PRdeP0+8e2M6Mz@ zZxS$E*`w0d)?CQY2J#2mkurxVNE~MdjFSx~8v;=(U~_zojO?oR@Nq`CZr38Wm@RVrQxjH?#3FD0Ecr7uz~@MdmDz1Y>I?~oB${P)AzJ>2oI5% zQ!u3vq{?*=$vCw-I0D3bur&vhOAh|@V4%~pDZ6B}^=p{8YwOXe_7kz48!$zmpw~`P zN(vQdtT+IHf*{Za+y+pe&8_zXM>P!%{#_Fj78;Lj0w9O~3_Gp@f(E49g^-EjHGIVf zR{*#}z`J+Cv&Xt{rOuOS%IgUZbj^hqv_j-ui)`9TeUJ(1lLF@XwP0lS^*;-K|1|_m jo>PdN1Hb=oB~v;bkf3tnt literal 70459 zcmag_1yoi07d8rm3J3~_NSCydBHaekAs{IYf^D-vUp&%$p=xXT!o|?x8JdFO3p*>@7gpv*H=Un3IGWqqaB~Q7aIxKd{^Et5qYx*j z_5a?$Ve4SV*_%x$0w02HC#~g(hK6s5e4~F8Pd7(HM?;g5xc|g8VRhWa^~tlNmaUCW zlebG0ORzvqM*%MXXtTpAA)&m8qFrRCW@ATNggOk1;NMrIRu|q)I@H$% zmdB4Ikgq1WZ}*7){W|Z{1vS)b5>Zv{P56cd;H$*hR5^Qyqy%I?pH_@aOR&wm7J zT0^OXL$y8J#xE~-e&jAcUaxdpD;fMVT*S;-wRzzcCa%$Vg;P^g6Q#rHSh-{Q_77IU z)4zRNJ3F((X36sjj@^d+nQAisZyE2Ql0xrm5};8vapi@B`p7#SH!D=95TKeeG17CsKx zzs1T*FD_m?^6=ksE=Ow+ebds?D%0VJk~(lY`l?t7LaC#dJ6gc?8plC;j~SGgIopgN8sK)qgukg;?7$Hke&MGdEuAlBS(M;@>mOTRM+Gcqzd6NO_?%a~kX-0HAD?xG6<#`aReQO-vLd&?KK_y0439+j z1%UyNOdR}JI_Z5(P-`>O6et3#?|HgAnBef^cB^M%qOeOuVxoeMj*j&s5@g$&zYw9u zCnF=9o1gzk^@!XzKmU%Av2lSW8?z^V9?N6&^_pXw-0D4TMZx(S?tlN(U*W8}r>smc zsOv(7*7z1T#cgK+=8f9dEZHksipJ~1{)9(ZYHDg`N#_0g_b*{!C~IoA&4!70GsfsV zu(D!{=d+%vIbNq{XAimm3iIQhR}eBd*UF2{=JN7a(b3VF)m)`#=eJyMad4PU)_9>Y z^IrSogt7ed^TYPe&bePwG>r80uQ+ro?s)92X12(TmfE&jhz^Y|^=s&Vt*T0p z&i+1@0bCPKPr~L4{k&1EehPCMRE03Nkd>1gE_`-HMn*=h*}v`AhYug}omSK%A|tbS zbKYQ9;AbM^2yi7)Sc!_u3`r&;`u1=C%n&{Kgc@T&fX3sOET|WqTIOFq`g*6b?VwMs zmCEieH+T7b^wa0Vg^YOquZD&+p#n7Zh@a~?DX6GiCw@2ozV$UWA=<%mR^I0B?z8p? z#{P9tw{4RzU%q5I<7EWGDT4(oJ6wpz7jzl5E;TIBBo*^Kpj{+p)Aa2!okfj*Y#`?; ztSXys#ozoqLF1O-MsFV)8aSqwKH>3X4|q26ve#Z{C-NyR@{VU@?U40iB=-}Xvam!W7P|9}8ylTl(oAEz=>G&Et_85smPMOYYr~8vVjrig^YeU&uMSsRC zUHW&tPmk=EzQ%0VW6|7kT#%=ur_a)*At#r0cXtn|@z2VuiG$KsXg$g|>v42w22*iy zp*zu|tppZr7WO8l!RA!GK%%1e$(Gd7-rCcY!3%amiBJO6ga;~JY)!l3)MhNs zDLmvcIu6*2i7wPT3th8=`aaJFvbE$B1j0)v+_SW~zj$m^@4sJ==!)mh+w&aE)$L3Y zjra9MTj+{!osZGiTRUkc(eH$BofMs4zkVgSOt`^5yBOBm=(d#p6@J!-c(0-LgFOsFmzIX6Rsg6P=U*S_tO2|6&q{4IX= zr#70Zd#U5T^i|FBsZvt_0e#u&-YB~3;d~6f2eQMzWoKs(+-RTOnz9p!6>?(v{P{Dl zJ9}2Yd*?azHl}WC#tx^U$IM_kz0(`W!2)uTRz#&mux+lOZDi{qt;zs z+v;87oy8urkz(@%uf5?hhYt2&Qm&b@jU6*+acNKqgMx6Nj=X3){P9C}!fRibNhztb z_p4kMbw@Niy_i_i{-n?OYyHa4KQI5g?r)a(<{{aI8nzVDQ%8^FizN%OcC!^D9}*M0 zp2g_4z-azJr>n28XVWeY2qa{7n0`Z|Uitmgr>Xa+@)s{$0Nh|W`rUfWYkyoGni`-U zv?Q-REm-#Ei})gSP?#^(F(-RAz=qeVbhZxJ9=76xC0E_uuRWT1$Jy4^HGi~{CvKAZ zH$slX5XRNNr+T`=cNcAKv=l2?d9ZP9kerb4RsVAJ><84cHCe8*j>vdx?Gg0&3(y5( zXHQc;B;ZmzM>A&q*tqseC@pmFJ}wT<7qgxu`Hy$sz%hpoeE-3N3sAE}OyW`93OZKt zNI|?!MWBYhSJX;gZIWKKyZvkkzk1@8%a;vWg312Ek{ze0gg3inm5MiwgdK?WVoG{ot_Q;PW4XGLcOw zGL!O~KQMKvO2i#lCZ?Z@a|3?j@k4rw9&Ih#@wevN_ufcy%M zyss!m{12frJ^JtT1-N4Tzcna2y?@8l^-Y%`YiB5cX(m-v@6w|c6WEO%9Lm9aKpDRK zUQ$A$^OF}+h?-arhEL1SgUvPb2`CaYovMlp1Jb>#;u?ZPx^2Cx_W<&lH~s5`<~r-L z&Lmb17F-h%Jox61WL^Cq=2GHSTwRM4BPVeMTIQ{wf9vO9Nb?| z7!R9t?z$jgWshSg*->l%to67+%WEj2v`~ybNZR@qr$2@`na@B$XQ#YP`8=`qcdNk0 z>6?6f(SS6zc6!7$bR$1}cn!sSj?1v&5?amCGOMSTmsX*POo@k5lE}wz-)=#jw@5HM z*qrwF$_b(1r`|o8s(*#wehej%(&2n>Z4??UG=dh|#g;IdFzBu2i%G(BW5HzHm#HTIu8h0%C>sVB1H8hu=3am@?FNIr_Ua<}&GpbQz=sm)#xY(Xjrv_-SMV zhlYF$39WU%vkJ6BMGIJ)2$~Pv8rxVV8smMQzE19$p8OCPKr&Q8mZtQkzXP8*W%%Rf znDNgV!r(Hh>#7#Jj62)gvHZ5wj*H!2m6FBK7?_xPQ>4Nk=HlYviCKIWeD>ppkn?I= znfgr`{p&fBt@)-!DCFn{ar{-JEXBL>~K zd0lyu`V=z(H`7fx-^`bve0OxFVkQc2WMR)3o=xtl8#z_o7EN0A$<@N<6j3cYruP5z z>878b-@)HLrQ58m!Wp*Q0s^s1ed*i)$dG$;ULC53R;j%fN5*YxkdYETRckSjO$Nkl zCedXA{Zm<4EMSVeMoj^Ydg4$>a;vswSDl45^xPPsk7mUrFw4;+&{4%U;j32gq3NCU zCj3wO+m9PgpqdEFV0c@R|RSCrrilLCMLVqxep#blu=R=H_hd&Iq>`R=~L$7!?#zb#m^6W z2zoAx98A4JzWYN%NV)tx*313OV#%RxWqxsS2f%xQLHz}^T!1_7 z`|DlEUq94abakM)tzq3;`v)~@@3B4oy&E<$q9c;~sbzG@;~4S7 z5v38u0URYXPbA2*5o`+BJ`6a>7Hs0XmIG`|iV1B`ZL6C%ryH|!D}jt;iDEsUsB$Y= ztaM&8+FKpIbm`I^+X)el+LLXIMHq|`N6o>Ev8fP{!K{#)GpDXU`aKt6t57;5BOi^l zhGg%fKv-cK`@eqyH8Jz@Ms+6&U;O!1js&3QM?ps>Krg3UJJhzhBdI89VYzDwdofZq z;=Z;7iMEuJ@bvMep@(R2OddIJ>A8O=ee#sx(VXVlsasdB#}waC`Dxo?%6Z}Uttg*l z*RUT*>k(yFb}8~d6s%kL+heJ`J!{> zM=`G>d!lc=U25^Dx-4CNi_IlMBd#4vFavMZj?83US(PvLj?^^+{OKIicUeK|1R2KO zXS|i&3m4V1xDxmCveolXpNY@LP3&JPwj2yqg0oguvyf9dVRUwKn5|jh2Ot2c#FD|J z_1p6uVMDy7Vt`WoWFnck0FE^@HsTA`8a3k(vuihjSdkUtyf8QSv(#39AXiroZg-h` z+g=&fcbt}CKNQ&w4qjEPB&NwqZ2IY3()%P;;cte-K`X%mNmuk(e{q;#4smagbWZs! zdhA|0M-6pPz4)l}or;5j!qrtPj>^@$a3lBA6%#Mx;hFyW@(4kjKxgwuN-!`m{8!D$ zuU)$*Eqxh4%+SbxQuV<=-Fu3U$)h%0eQ3Jn-|PFDsm_9TzZ>Vs!Dm0UXOusAbOB$n!F*DlqXM~ya(dd z7EX_EzPj@#C2SkM)rFn=6!^CQwL5?|(3hpbX;Zb;lIaKp9HDD9UdQSRyG}xh*-uN? zQyqH%dzY1!S+w@{^@V93oRw(xq0i6HpBzt~FPt53h_4ql=Z-4z*G zHV@+IsN~F_5eV<_qkS`skY;CLXMYBWm4TUgc2T1!=TqpnD$3{+oN=X#m15Es*`a&f zs(o>?|4ODA-(qg6?qBnS>pqH!H`39(#a@<)QrApwqpuXj*x6(?x|G}?AUr&3F!xs! zBsye8K_Hc^F=~FAT=yi^S*+=LjC-DTvWYbdEeT&e3(gcStbP7#U_A@8LV8kB9FFy1N{`6#f->dqtXe^-NxD7R3^M}dGK!wZFNQwPe%qM${! z?0Lt(8=VO4(yq-4y#AmU-FPjlV=Z%VkeDDmG96WH6tyL%`JCr%P2?tI(EwPq^ek?A z{OxD-4-*$opop!SViMEaQK_!22?$7_M2*-%CFsYFo9FstNuTj#_VTRDdm%TQ2n>yq zL;#j8yxX-^S<1Y_4&$X1cS7J-c%;fSM`P>qyYc0lET06s{IuiZ%%rmjOo%s9Ep^15 ziL4m7vU4)rBqUN7P^F|zX3KSK%wgGaE^0l+Qb)gN)}UylEO%wrs#8lA5NhF%>y%<= zrmfcr!pVQ$&3)W{D~`7j zDC36@HxLxY!h+|0hac3Ihug=8hg2G8M>D#$GO&YE?;p6ep5Jnb%D?R**mWUtv&3zY zB2k?{cWcV9(viw0Y;;wCPC@07J)^j2{%a-9xDF-bn8#WwTAX>pP*)^F$eW?uKFOK7 z1R^NXE=1t$U8NCAK$;a1tNJETDyT%wa-3=#7sOmQ4WRX@u5H0-rO`;5nK8n|r|x`( zFXq~0*)4wV$->Hd2*1**a^(VnaN%U9hnb#!HbCFFbd(H`<)r5h?#e*U>>CojsV@FW zL`vz;y@HLM5$yxTvNfu<<~fSIQkK@64_;pm zJyno(#VVo?BMRqLql3_vu+b8&?Y7( zpkV}CyqN~cC|2A@>>V-t7t6t1wbrNKtzn}@UthEn2mmcLL*8ZFi3AOxrReHm zb~YQI)leO9ZiKX=5i-e7MQP|6&i{y#@;rsL0VyjpiJ6J%E~v^NDQK(-y=!*poqXu^ zj}8BBdr8o?)?K2>u71R%E30D{QT{o!-lCwFJ(mW}Mv3uj)FUS5>*fb6L9Ag1-`E`0 zbW5ir*F2B*X>JcGcfQ2FO3goK%Q@3md)`)YZk6@ROR349##4z%E1*}SV1VhNsk9Eg8TxAYY~v`*KgkffW+(hoH~I5{s*+YdmCSG&h`&w*wZn|C+aa8dRdUd`2xEaypwo z=&D04!hyd-qa|xH`uK~`YxGUSbKBcp?Ba7rD}#EjV`S+H@hu?1;*$0`CMq(EpB)&h z5tM_V^bqIAJI+$OfT7Ge;f98!PI;H$6SwdU6C3S|X!d^ka4PmJt4lHbNy4WhV|%(L}&zeHp6E z&{QIs6lMUJn}Nkq{QTEUs>2}Pzmg%Jb(duGG#Wo&JG(egD5^##<|EZo*@5O-)zR^( zm1Ay85A*w#N>Te&&gyK(QZr z%&&u|K!aB8zWYTZPfu+y$@^%j*m^V?uxBF3D%+_=gG~R8HHW^^-YLD{gIaX2@Yc+1 z(wQmWyXJ=ZHL0Dw-qz>DAACF38ca(*Qpu&>C;vXz_Ec8Os-+f}_}!azm+$i{;a5Uk zttS^1GxluT=N&NzWNQGnC~IlS0Lba*3Tu4@$}adjuiw7y%~WFrRas+gWoBl^clpgC z`pcIuQ@?)gm#v{k%E{qBS%;CKNi+HQ2W#FYP|odc;f>9@i};(cS=5{sclYyZY8^q7 zL0cOsX`FXJq!))C(S3s=sw3OPahr5F?N(!D1&X!lgr8CEF7(H|bHR9dwCW7jb((~r zuznloR6+;!naQQ!+5E$dmH!Arx2e>1^Y^RhysWfw$z%#o{O=TMEN(3_jS#a+e8*3j zAMR58QzNCSrPW@!QPTlZEEofhnTeHuzPxiiKiw|}EgiAW5N31;?nP)BUP%oR3CTr+ z5_MZblM?N$G<>KY1Ap{vO5;Ij8?)Iryz(TbqdAC(RbYS2QR%MJ+CR?hAEj0m|B;os zkAF!8dY;5lE1>~CpYQ;7ktW;g6 zfg*%RQa^t#_xW>{&s_)ovIXjI=bv9Ghua;TOOv(Yvn?ShE*lfC{r!u)Pu)RmbCOop zP*-p)ps;2YWNHYx7qsa=K9;m8MLbP)Mo`Vt%A_=skOR%lzL_`um zDMnrrnnyPis&o<7_@GHj^LD{kwphWaP5Q6Ulf?su>z1WNh5`Buo zA;rZ!+uPf&>*b3>->oV5$Lt<feaQV$U{Ojm~r%EoO#y(hbCav79`+`W<_v!2|z3!eAf-GyK? zVHg0IwVJFs{Wh%UvBpd7bF!7W2mqZJ4N4SWqdz_~3ro;&k=YJ-uD^f?v#_u{pR5s0 z_Sz#$6sB=&@ed2b?-4s@TN%s)JM?{QY#UrwZ_NYb%V%?K;V`$?sHqi!oPp@8|9mia zT$ww*e&%q6N!%gefrlTdq{w|!PCI`Wr}d(gTgnElI0Y*^y8T415Osoy0&uud8e@aI{VEf4@1TLKV!&cZV^4dt;OpqssojV5bhpIT3jWWo(z^gca3Nm2`BzV1ZqVQeSbN;kao@$$~Ad4lbjc{$Q_=E zut#twb7eQw1j<*6V=nK!qwVDUu_~}j_me+1xWW2H^x|EY6{&<#i`TFnB;t5bwM`+m zL$^Jtfn9S?DHG=}Eyu#4|(ve?p*MO*? zFcdFGJ=3jawsX8bjF$S^<&L28sU^kuE9x#R^!%>!kvSfCQ#_Id2xrP{P-}5s)c&E% z2-HEPLHHw8I}h*(O?EK>xuQd-MGezdFii_ldQxh8p`G=j)KF~EhnE=|#w9#!JvqAT zI4wOipiwF}rmfpJV(P*@f6s#}72{G=T!$pDQ@F;<;Im)mr7Er$=2n z?o45C4;2AVyVRyjL!U|~cXP-%jLKn>&w7LsubLDw1deRZrn{Y_!6m+Z?7jsJItkmh7R zH#%+iIDfB|y!&xw%b1UIwM3S?lK-&={CcMSo+Vv~_bjoQ_0+j>12Qu3Tme zC&*1(Kb;^yD{{x#;P40C^brE!|d~N$9Gw`v?^lU*|M;w)wK@uXOEigJG6B6WsUX?f^n+g0GNXg8; zAM@X-JwFXYtQf#dzp}NsK>@A=GY6+|cM zZ96TTb<{gqQv^bccJp@jseSFCg@rq_o_yt>q^mNOp<@x%sPV*j$JTwNVS2A0t?RTp z%gbrM!~49I^df=fb68McnQxiS9n>=LJv6 z1e__v5k*`p*c3m(U&X<}3H?}JV~&{8()0^#T?>a8r7GH568W~I4~2v4TP^s7qX&z$ ztVM*USo!8T8bjXwkB5hoYXW_}Lc#&?Rt!BjBj=$%-ZQY^q^RaS;kIwFu*|@q<{-zD z>AVhl*aD!p9A`EIB}OrW_U<{#{}gk+yHGI8;g$RqkN5fvwJ zE_H9i$ADik8!EhRaJ;t$l40)h32gK>_zoCdV`5@@3(2U9@m-S8KZi>!NdO2^0>HUw z(Dt5IO@9zDzWd&)jFAx?P;OcPzFr}Pu#XV6JVf)GKEvP(_xF=7K8+YTwsdvWR?exI zjYb9UNk^isyLqi#av2$`2>G(shV*aswt2lc#6zR}?we`sV=EkVWppgK%VB1|`R|pO z3saWD2Zld=Klo7Ydja5*eD>^FNt!gI%lsSbe`lydgz2kVmO2Pyxg&$k&CTfjS9&g9 zxOh$uHF`B&F~2`K{P;X_mu5<@|J*lwyeGT=Sq zHhBZjGe8Ff=SAvd|J1vc3TS)EUp;h$@fk?FJ!S3<&S!9?O-?A2-kFf_pi+BcgU9zoFJo# zii)a&$e291U0>y5)J36GNeHXw;3H%MymKo$=`-K4MsFE#f z_B+XHs(*fYUb6}N#Xv76&^-49SHoM2INnhsKkqqn%=gMG;>o_oKH&keKpARo^7F_1 zhkHFl^c~t6foX-r+tz&il_IqRu&TG##|P#{YGa}r8^UIA>CQObtdZvoq@%qExD{TQ zoqY%yDm3HP&}XpkkP-WLmALJgf}PP0NdMuB7d*l)>n07au@8=q9Raak*gRZJE^^t> zQxsm~IXO8wfD`Ek=a-b*v{Siu@u^Mu8%Sq4KwROj#qV2)v;ftpk;-LE*{KWcl`?Rt zq~+yJVBZE)@Z-gIIX8tr<<3BIZssNv`de%pd7hzyPsOH^^zwdbkG3a#IJQbk}rkqXC$II^%X(Cj)jC5 zlJ-L&D~z#u%^AvQ=X=_Rq@wOGO7aq+K+vXyKwczUx02Ww{zX~Bnwy+VgCs2gDI@a> zOu>FY%M9V;*9ZwO`i|Qy!pxdN`E?bc?(OY$Jv&^4V8a{?9%O}@vm;B%Flq(3Hkc`b z5Vl|j+UnEK3$r)}%#J}=IR4L{=iMSZ^4_Pr8edXU!p_9MVY4L}@3IsB&-A{2{W>Zu z8J?mYUlNe+QxUhLt>5!(P13k%dFRhaK9|{TH1-GD(~E@9ZAio2A8Tv>fc+`0sF-Up z<0t~iAbVhGKM#y&r$VgE*u{VT_g@M*K(qw*<*Zu;N1JsYZ6nElX*HX(%U-o^PuEOm+gZwR?<@^@$U;cv`qvu0kc1?ug}dfzA0&)&oFUZ zcVN+tLSeTTJR4GQftOi!QAQ<0n*~SL=V_GW4g7|~$#aUXpNH0p2H4e-eizaJh&;S1 z4dp8c1wJLGzEelGvv#G*>ChCV@K^vP2Z*|68$0(I+%L3B@>{aAX-SzXswG=R|F9MA z6FqaLW+DuenAQ5hg;sO+Zf;?f$Z*PmmpB@N=cOlFvaIhqL+MqR!D2*%YQ@AH{&uFW z=f}(BM8eOgcHzPWkVTo&uiMW3FRur`Gb|cbJkUeYKJrh8qv9!JY7HQ# zpRk{rTDuwf)s|K#CLU4*;5~oYp_{?(m8u*R5`yuKMdeW_6B}Fhve|-!mPp(aZ+YJF zC+aYZHQ7CS4SB+~GYP*f18`+|gcT#Hvdxpeq84#W^e zK!1^O-*2m^YG*@B=|zK+pm(tAtf&7%{A-jXVbJTJFCta3NpU0j7T9Kg(Qte%qniYk zmJT-#wR)Ha^ELVh-W^z;<%Z;y+x!vaxu^Wq{{H9L?k{(T-+er5H8%B!g7EVncR-g8 zTkaMY61(>%D|jN1Br7tF1kwy;Ijtt9wx0eI?3`a3)I!G>ES=d1!ZBqOA}sDHL_p3$ zo}=^~yBjN70KOt4G&u)4!Gzu)bj}O5XuuUE=JG7GRZ$QiAm#_lL>Fsqn4#|81{#oy zEP-7k6p?9}D;C9g+J#F`*Lx3DqP89YIp5lOyVL)6$+OG?2Yv5a!>Ms+C}Zn2!q_@2 zR%WiF74Ny2g;**niPUXi3KYj7+LDG=MqPBtLd=8PIO>Ruu*HVKRwk3VU7W#4xCI%xO1=4<|-7e?6o58jRp% zANGB3;n!8Y@`wpy+8=6%8{XJTQ`vvt{t<2M`U#LrSgN<)V9Nx!2EzHHJ24KtBFn`7 zh1FXO-Bc)pVldNkxa-?8zgEOFZ1d5WO8l2{|*2vMg81R*Eyg#i2(rRfmX~ zSE_+H0qJlwOSG;CR?lM~x4-3%+WGQx4jK{4Wkh!dK4KnAzP~my@>^a-*h-yZ_NYq9 zxt-cG+Zm{!-N8XTm7GLV*1zyq;DqMMO_%QVjxXbrXzwW}Cgvnm;=f#c`ks6O+n4Ha zMP8AfZsrt43}aJ)r$T*0KEzEYb(Pa3)xKbqQostGtt+;p)iNy(77IQX6;U*2(;1xS z8ZbMrpDH%gWIqBy?FZDp;IB$kmOHbZ(IfR<$5Q}HvFVg;1`O7KO!s$vJRYD4c*$gU z4C-hHJw&Lfz5XhLA_*d^8AQshhVnn>*5U#Zd6+P~{eZ&;WR*(Mhgog8rmf-brlp4} zI?8qN?`US$#9KgIk!V_R)qN=h`9~!Aj0A}z80G$qm2)G}dI$&mS9`CIl_RJQqOJIB zn)$xaAG-w?DM4dXbLwgeBy`(qCP6a!2S7Q&V>0>q>Hdf4=z+mfMmo9&a5TCL*^U@a z6M-w<5e|)IC^ex0ar%zs>{Xl}+fb|NX4KfI!&;4<1H@PUm$WCh9vZjd|9^?v15yJV z2ht-x7$)d-OD}qXH6cWj2qK@I9t)61BPS2)TVh~fn47D)4`s-~d*VzS+T%+{mAnSi zUE15(qGIZm!v#$YP!0HFL?kNzP&Z*RM*i2LoO086qclQ3MaRSxxo#N&EO`uzTXNT+ z4h>?)k5fEukdUZCz7E7hG;n8V>FHBOL?1qU2u}+v5^QLxt4n%&dzXNz*cNCPZOT1A z`1H`dPZ%UB#;y7c7R7i0kf=k(lWF;GVS^z0d7q4q4h!P#aZyokI_AG<6~Te#w;TwD zFY@tO5SN+7#A-5cif%f!I`(YMw!-MNcOeiYFkuV2(k0)=wbHrkJki}<-7_cZ^w{}W z@l-NZ5)PVJXpl0KG=CP3)Q_rH5X)z_1Q>{j8VFiHI6O?;^a6MPUEfl+JE(~%#Hv97 z(yE1mE*Mls-O!(V2#LOhRy(|hgHafqjMNKxjYiPQ>N;?KLx9YRj{=Ou9A{4er$EoC zcP*I};+i17eXtO33tp6J|JFr)7m@uJ0+g>`zkcF@$Oa!qXBQgPdWr;H7;VC?_#RB% zfHT5xK^-Akp7p^=>)q`|awco7i8l?Zc#21zh}+nPfrB#34?kUb5LUVH{OY9+T4&ld@M zL)s~G1;kM;BpVBYieF54Y|BtvBHt$zI^*^zxKQUq8`BA5yAluPdM4+ z7bx=%<1!8l<-NtDk~KAD zf@sk#xXg>C-Z!AtYVZn<)OZQ2uhdr@{XabhfLRBbR4I690oWxygvAp8*#mh#P94aA z8KDgA&<)J%svqJudr$t0EWUrmyFZ9T7H_34ZS3ob%kDd!fiuMmtJ-=DbPAD!Yp<3= zijlBCrJUrnI(Tc3h*~ad${Wam!^xB$@pf*jTx0uqJ#Q)5lQG4k+6tZx3fJzxxepDH zz&rrJh6ta_EtjtKR=^{GWLXsF%XHt1UH3`83GFDuE-D_WKsVxCkZ42%i_TZj9l@oN zIA|sy{B~M2f8g|PrPXrrT+(Jq@4KJ|9L{E>Ztp6h>Na~>b*ss?Ecep&!PeDVy}pki zA;#9xvX;S6%O*v?Mb|rrimbO`{{W0x_QiKKLKO5zft+SHXn&F*mrz0MV*9s}#w=SG z3j0>0R27E{#2aU!E8;5+=L6N4_fP=wR68ottiHiNiwT4+jR{SWy&?UZKvMtkXTTB1 zKCmBc{ZKBenS6>>aK9a8F3Qlua|va;zZaLtJ^0L+^XsZ(aC=BY4oo)b+p5<)(gX(CU9LCy~n4 zM~?7Y^5=w3EE>*bVX`h5X5Xu>p?0wO1!(myNqg6`_Sipp$#ednUZ2{nDS}1(yNv)6 zasMmHO$ato>Cv$vdAhBRc8w-M)>m|BPNMhsld>Psg)e@3D?`_NvmYdXBrOq64^gr% z%XjN$x_fkJbf>dw2|>44`LF=peW?6#@SjGV!Hv=l97s{%F87)4p3xq$jhV@QI`)1T zmvA(XVU4;^Qlhw@-?omPun#S$tev3@bSf*T{Hg;f9KkESwoFX5L zt#I;(*A=LSPLU(GFm|Gmq@tgov2cEGnq^NPCz^VFDX)bI(Z^O`A4X1Gg zGzkwZBuD_1!oVCf-M${XI{m61%BlG)Tjsk!n}NW!3?dX<+hcVivL7^84crW4M4>x6 zso#8=%!zTkOr4x@2@zKTX!brwo(v3U>YC3rvHj&NLd}mx8!CPM!PEEz*||S}hn12} zxsdfk`FXk_l#f!UQCq~k7tTktu<5ShR+1nZgMTT%V7PP_qt5|SZuJ3%;M8gd%q5*##cBO6&zW7fE& zkMj^`mCt{;KtfTvhxp;a(<24ABwgu?WH<=sKmRHhK!v`ISP;kC@}_KFSN~ZMFKa9~ z=y69w##oghoJ}bK9A(Njz!L7{X z%_RRKws&A5K&Kdn?N`FVbnE389A?WxVig@dXD=6M;T7gaqK6_Y=5!kGge;VkNB^KwxU9KJQgroV10Z*oUx1j?c9zlA*cmN zR>iDa_Cy#ItC_tg5&F>&1L#qRnKz9|2A1vHo1;ftVWIdx8NcH%mQn}S>Z($I-IBwx z^lzOt+-o5N@2Cr)or*Cz!h|HP9oKP$c!eYTv=ih^?jc#FroRU@Y=ZSC^UN?T1{_;cYVN(Oz|CH*r0Nw2@HZDY}2+@S6U|UzO zO>q2QVs;~)x)M#JrdB{uQg~zVpD^a^eP_WK_~4BSdY?q3w1-MxafDt_U!UhlXzSDgr5j4wsQOBmHWgtt$=a9rQ^7&l5pZpS-?hQSeg6 zv-D7OJ#IW1Y&K+F9WJ8|?@jiJQ>wx9JnrN?4?^FjpWlINl`uK*sAq-j4$IwQ>zN0b zhjjS4Yexzkz(#w=a%hybwK|Vh8JjS^8Xzo-VP+R}iWK*g$SfhTx=+6?Z)M!#L3RSK z_A78WaC)^p-2yP;@CK z1b=GhJ_DeSOOQ>SE*SO1&i9{ks623LMLC)oD6!W3+JC*$VA2kPPeIK_w6r|qtD1DU z>YqeEv@Yl=n*LHuOFHK6dZ>b&%zuAG8ohQJxKZj^x45EjhNzj1!hp6@?_aT(xVBF6 zZhWCNLUa-t_9axhis#ze7Y~O={#-!sx}P8Nvk|{TOfeoH0HW!&E$e;?Ajqg7nF!sL z@<&ZN$c}4TDIeqbE8y-~RT_F) zoJdh2`Y2Yv7|J5~*O{OT5XmLVYL*OJcqM~lYX-;0{0pi_>a|-GINV=}55Tr+|Mc4s zyk`(`Q-8_gSV|3+dA|r*k+U&>3!5($yT}#KiiKI~Lvpgx^XIp~LVACV7ylYT27Y(1 z)!lb4Q+s94sfNel#DwU*$w~mb!qS(>FK0ssh-5Ehj75V_XBW3V{WQ|q(^}lFP@z3 z_A!Qd;u&C5b3c@tFnHNs;`#!KLdVY+D)d6g`GnbJVumoLxXm%=r1hCN_-Q;G?v^Q_N#E&#xnP;DoVF#k5qO{Bx8t=7=2}@fs z?gh|;h&F(%#E8wRSW*{M5f7Gj&JIvh4Uu`JLrG)uvscEbew z^t$hzTG9(%59JjZ>7;u35AQ;r*mr9(FF;xsg{*g%E4wxd((Sk%OV6-GuAz+aE%o{N z{3+&HB`!56sA!#|d)R`_9!T*G`G{(q)yt8t*n*5?#bN7@v`t80aQxe@2Gc!vPM@`P zzy3yAwyyri9us<9x@82Q5^<};_dNsEExp0zBE5^Ekn)qJN0sGeh5y6|Mtnxl*M{wz zD6Ge?_N6y0&ttv&wJPtr&h>l}TXGC9@OGM{RVF+w^Mhn1oxlM9bLyANJ|0L+CzYTO zMAEQf+A3XdZ!w4zz~i3}9uzCeO3b--O`egl?scc@ZxbOPLUX2^ zY23Rl-n?drJ(2WEk2u{UTEAHSvDi-wP zU%;6*fBg7VJh$0=o3u6Th2ruf`NtRL55Iyh9S#p&y!OdPZY^9n5@>mbs-gEUo#8D# zA%5X^J5MKlYem~urDxbhsE5jNYYsR?cG0fZlJ2c@2}e;r+?nD@_&O}F>&kx|BmvvB_KL|f$riAh%~0GEU$^=43_9LkAzK5pN(G6QcFqI>ozLb+=|O! z8$G6<&%K+pyswX%Z4?c$fC%71ZI=EVB*B4qqs_ePA4-#Ps5IPhKQJa>JEj`Q%h2;Z zI=JV+`g|O3#Od|^9UsJz4=BAfO9YDcR?R}q) zR&K|BlbXr9k-w_bdW8xrhr^q$a*&Lj;J0<#t!YEiJ8rgFgx^`$eq?WIY8~ML$4D#l37V&j|QtD+K zQB2Ed>w3v~ZYe)pJ#W+2?H6Gb5a2gMCoSjyckkzC?qUn9vorr%B_kXWF*5J-<{>Oz zOBxBu#(>eOMVhI_a>c$ed34 z96LG;+w*>&^5h>kBqiS2!@JeVk29REhvswY`LP}B$h>DtJ6&lm9|i3A{_A9VvZI}# zd{%=l8ic`$F)xT#eAPN-rkLyY?U!nD(_xc_!*p#!xH%(rxGt1cX_E#4fv@uI0+i77 zCnG%+^z{YSvS0PgYS$4)PES`FjGDU6c)MC%7ocR`7jkG|)6|SFxn`!tcV22FvY)sW zjqJ~teU~k8p98v^`vbB-@ZkdGwro*Z#t8yiJN2uY4tHUfRxBBmj+bQBskv=d z_2XnLwfufcLlY46_R}@v>gT$nWyCEZFAG(kPY#n7lvvv87Oi$p)(ujeHzQB+&=wP+ zJ6CI54}WNmpvYyIGy+$V15K~X`<7`l#h-t;G;B8?OUaNt)KlEuAqYQ?rzqi%qi8O< z6V!JUJ%CB=IWi>d)PEN$LD_lWtB~kay^_o3&6^xyg^adtep60B%6K6HT;Kh}^JZBB{uhwmF!H_~3}6(_buyxCk$X=$^` z6T5RnYyHspOZA&kXa!8AJdxC0JqR>&{qOWSMw=R!4!3g*ziMnv*27)|aA9Gz>u|74 z_&ogbt20bNt*JfVu<_W;(F*qB32|9+qSblM@u_O4SqEBJv27e>E3B%9khN_ z(;}i9 zYfvGQVm{O@>~5}z9GHhHC-@b--D$slXUT~aDo6!dT(g_4y?dQ`_4ELjr1DXtmFscT za!Q?w?TMEkgxl(Y{7vWPAy^Uj12R{0uTS#l9|FnHim488d>T?`qspw7H?>vQ4R&bC z*V@KqqQ}a3i#lkh{-lEpX$^HdA-5})xvpIw$(N!!PP+J&adSYfrOnRZ+STfT)h7z@ z)PmuYu-iz;zRc(9n|U|DP>}GIASXqTslx*fD@X2MFWE^W_!92v=k)NaDbr?aI@n!_ z&F)-YeAtM`$Bl#YHd^Lqfu&b^_S09KJd*zBJDiup?%=44`xL423c?=;Y=#-jP2d1) z&xCcSjcPccUM8ac%u$Y+{gOMI8MPCUVE4 zmDL}Uuj6I6I~)MA0o;@zNBhrU3s38YWHh5K23psvzRgmsj|tzxZz07CpO62?kTqrP zp^da6_gRgju*v!x#qr>V--Cn2Ww@ao7{_;mZ`T@}*k=0G=#`7w@GWv+A%>gS&~@{M zVoWF;irVU19AbLhQAO7|TUwXp08kU9GdIq@%!v-bdRw7cw zB&lI@`W;CNh_ifUfZ~YUzA{UR-fNG*m?HL~C)N8A9PLv7y~IxnSScA{zjKPP>i3I6 zcB^Jv>JDOV@=d@M9*q7;(uwuH^4UAwS3Nqg?Uy+&6m@tQhUd|L(B7dEd|n%8$_))= zJWi2|S<&@Su<*@2N={LxPkWskv{=HNJAGOG>;(jXs-Bey%TFEs*cy z08`!7a?RWiY~2i1-++K8$U~5;>|=_iTX<;jC|P_$+m)!OdYUWKqnyEujEwm%_*N5W zZ!q%z#Jn0z+INZlD->KogQ<(wHS;7Pj#1!JQi9QqujPW9o4Wpr<8FVu|B)+%;RzFgSL^E2Jb?%z3ur z3I})Eit{?AA%TU>Tu4Jh2%XdFt+o-YurZ9DDw7*|D(SHIVLJ45dEQ2UwstG-@j$J3 zstXmUo{UZWevhSYV1Le$!QBXMY@J+{UbxNjdR}gi+w1NgQ+pn+&vJM(Q(?4{V#@N-EaAyUU)7<*%?zy zBMPwx?QD_44HbDRjeT4=ey@r_PV^jO>4=}w6Gf~c{63`R*;?l_vu$h3!r&U^zEBz& z7#{wcLK|yf1b1Pd ztqCTeHaUsRJ9-|ny694iI@e2Tu{Inc`J+m`CPJz>PJC8c$tO1#69Y@om)>OjF^U8= zFu1I6dA96ac(#52N>v=TYQALOZt}j*9FGu?^T@TB)ko-Ok&yJzU|uGC& zuffT_lHt&m^&7un+i~=hn1qCr)4x5AHNH$KX}xde(zDAaz_{-RP&)uU{1E%1V#92H zG@tj4<4REL|Kfg_Pepdnxniw3+z7%Nto^gN!u4CSfCB)`O!KU4ahw&wl8{q=w)Nai z+?-4Imv(GcW|RNUFElhhrV2hk_~3D8G(Qo-jaM%fKV-a_`O>ofI`t@f4Cn>^Cg9+X z)A5afe8`fHxDZXdL6c_@LC$VWRvP-VJ}yGB-IGkh87Fd~jNNoF~!k11>l*hdZ? zS$jW}EY4j)ynm#{qrzOcjcp8K7^n$2??vFJ$I9^sk7%)6svIXPgiLj%9y8!(maOcE zclc!xk4Pezi%X z9WjjT0yNdYaBb=Z4VSL+KByf8YNr`$$Hj)S{-ZpnR#C|J-%t@FDj@-uxfV5z^D!0}n=@z&t+`3|I1*YNX%t>^STWHp85 zYpmwf6$z_aQ2-K>l&r9dFS%&|PC)isk9@f@Ahj?Rz62Bj4=d1FgXKgYI_!|#fmj>{ z+UWpWEG$ zC-R2pww-}n@E2{d`)U)ug81;R$`_!@KKxf@qrS6kZ$AcIZ**+~xZ$*(y8Ds1I^K$0 zTx`MO1ID748r(86!7GK8bf^tZsA8i*X4`!!CD34|JbPS_DT;unySEFUC}pRn#2oWo z?-1;)C-l-Sx&XFPUe{j=RqcO7;9%w(@Y5^9NLT<5YvNCc9doM|BpSnB$^;&yOBw8H> zcfHnFhjp~`{~JZfYKnKb2Zl==`L)jVd`|ZvKcIF*7wshmcNi%@Y}b(&-dov4!O5Dyj(G`x{-Zy$~JU5 z(ne6Ms6%l~^70XKywL=zV8cYFzb$;o}Q{-o!cAf zM^1bdoN~W%FGUqi!M0~J_d-MR9vQ@=(=vlO;j2IYU^zj2=NrpHeE!_z&*w<`nuPg$@<-t)^TzVHZd5Lm2}reJKRf{0@$#06v9$2Lx>s|9}}0%4f7IY;C}g5G0t zz>qWx``EMZfTvs8H6c4^?qQ6Y3?Axy5KW=dpQDzeuSj%VeYkas@_^E7MqQjLmIcv?#{xYWWIY zdYO-@fwD0DE{x|@MmBQhETy&w2T8&81pJD6sC;gCU@SL=4spq3qVN;Qn41^dNQZ{14SIc^jN%~UXq!Y_Mks+}h%D+}a|fO_ZLxCzsB%$yehUT1^TN(PJ$ zbOHmSZM+w$pa!(g(#E-J?0dx6udnkTpRWi)P{w3?Nl%Vn(|=p+`5p20bp5D3?$B10 zRYx`>4D^!F-^q+KoqSweP%ADZBYD7bejs#eN0Gyh{LR%Ll575OnV4o}JQv6vn~R~J zz}I$I+!RscVuhWnUcckSO^`%*0 zfsu3SutDbHj74k>LKZ374pL9|U+4eO@TnG9gZO=j{?T zaw2P+DF=S{d-jH<(TesRypEGAeHOhF(3Ldvxtr%Y%h`r%1{RI9a65`$BDVkycPlvU zgttwzDH98ggNGUM2)J0`Q7>qr*Z<=2!TPQmzJxcSITM?=-4&EE(cH%+ z>ttUaw2X8;cqxt}nYwkDS!?E?LJ!CwfaC*s$^(}8m66L82%)-1?EfD{iyBPPGAp4< zxYX$@XwvTS)koZRlAcjDLk2j$(_eUU!u@}x*Zb$byxMuhe`12{rOmZC{mc*~QhPcG zT7=M?(8Hq$$;|Qbk2DSb{Hkr02K|<8$R9!*(v@U$`KyWU(mDbUCtf+JUIXQuq1zhA z`jh233zZ2~XVk-XvOp9hpueV_T$hofjQa?Q54j?dBef?kZQS10&M5+9i+se)WY}a> z`q?yHT=u}`MEN%>7(bSekEmoyQ9&VU;hoxIn`?Tyy$UYMaedFRc?%=bU89Ohp(N0% z4oJIk7MJ!7rJFjBGgOUDbU$6Qtz_Wf3YBN1b}&9$^4r9|2-ch|CHqQ4T=wBW<@=Dp zgD*N7pEa4nR~O&qf4QBV*IV|~?xqh!NfCLVfs8RtVdH?j2Y(u4p+xOa#+M^+0KMRD zd3wD5N)O+b48**;3Ufj*@C9S2=1?Y(UCg*zag+@r>YKjpNaAD*-J#}fON?*9CioZ& z;Y!k67y7XXk1zZ@0TnbhW?i@*h&iu8V+*txn17|bt^pB%vM$Z_&7dzVWoLq=>~@vN ztU*hNxx{_;*O1k6I7M-8ktd^PydE)l_(z}2Qo)Qqas?UEu$)p8Z{T^zO+m?Ff@Gg6 zEgSx>wi*#4=IOFh%8UC^o0eVbu{LI!Bmp(YpNNDb$VtrNK>OyXg5+1~!6q<_7A@=k zxPs4}qTPNEviR@s%57D*bnP{Y9t=5L-f?Gg=+A0B!xX9-?b8;#dP(|gCon&HsuIFY1 zEJN${jnyB4CERz+YYNQ!w4}jQw=ur}aWyXdCP-^u($6i_1gNakb$3 z6mBes%|k#DNVpq-A{z8=h;gY=icFMCtlwsUs@N_GL#He$0DgRs=0O|I`S9rKRzaX6 z8TT?wTK!Oo*7Z&)I!=ytn1nq1cUNra4hCkPuF>X^1@!oU?G9QWPP1(mJY&hgQN;CD zF6WJ!6TYxGsVPp;z;SM1zwcD+0**B2^B20Ip9ofyViuRdv=&u@W&}(d9l)hS$@ojO z*3aVJPpOt}h{kXm2#ndWUu|F6w+kjcb8ENQXEbOFOnJY;>e7mn)4cGM#XZoiKyCaB zCKAn^U}rA9;&RhUm&r5<1vH{OO+&dJ>?@@^x2Sgo=MQwS7f0`~!8`~b zN}~*$2fdT|Mb?1QNK*DvtRqV){Ud69OfRxQkQ?Iq1-DIct#?wWKvih9IFFoCw)f1K ztQ;k>tEsHmjN}1#1klQyb_kt9f5PX=x=EHH{Tf34AcD^{7Q7lN|*d7R==? z1bb0*A~oT#+mCyiz6^Hzy&G`y0<7yxj-|)s*(KaR7?H2}pAtLk!78mM2Q8V&y7ztt z-yXK*9OJg-MvOu_JpxJt*Uqs)LFtl8Uj6yWEdEk3z9GJ?u~IZNX+pyg{+Uyx+Tzlc zj3a<60SSv%p9mpMzLeRwrP7yQWmz@USG$zbvoPJ1dg6GR@A6-^2xH}+bs2RGd76QC zrbYj&;}%@%%UVipccbP|52`pv^Ngw)~>5t=HrQ1#h#kySfr{Q7h8=Z)PCZ=|TldPT;X~Ew2rj)@#l! zMS4L8y4-*^zz^p7K;+1WEZGaO8q_N|y$pOnMjQ=4Rsi(|vx(&`;Kh$@gx0esgLykF z0HTlo8?H58a4-k&oSIKPyz#TpYvCv2#6Y0&UuSV2I251H`@R{R`3S%88Pd>p<^efb zc@cMBOw}%BCvr9C9NhA+S?Dc;%vU0-P~qe6h<}1`)Q$akFJVK1n{0{*I*x?=%;5H} z$Y3Y}k{iL;D4ha)ofEsxJE*k8RmXROg0?Z_v0r`N80&wyg@zvsZ-=AEWOs8+Zs(F7 zaF&|;lDWv96`2#|!3XQ8R>Z^#6raqV;+hq;hg5E?v@AoI1ir-E5SP%Y>UK*WACdxy z=Ig`IFnZX#f?nx@QA>8n-zTtkr=f=OznDMy-&c0h^)injd@wP0P(>VHnA^Qt>a}nZ zunmfiG2faD9f`YmqazV`>yNs2e2q%x`|;*x*7FA|h`vpym?y*13{3 zk>1?)Q&}YD#do{XI|(|hymo-Ecfbc@4$isWQvpi)B654hC66#1lc)644K0DX+pHGa zf1WF`VgMdiBEjkq$oegt)-}*Df=4KOKBLx)huX`9taRW`QDjsLb`5879Mv;;B9Gx_ z6aX0*b`(fEUOp>5xA#O=`4LK^9Qz?nV14pw3lCA>%!xjZOY8b4MTkNfZ#67Yw^Fs; z_kfUazZ>Ztd?Aql9D4QOLQ}e?a?>A*90;gV;w9aSQhUAUt29J6Q42=R`MVf6+@T5( zYmfj>_?_l1m|cQ)9v>z@VpL!HISqPc+XlKQV_SWHT{pdhkmbU9Btm-CsRA=oe<&5y z|EZ$lJ{GldyUk)xKSn!P#OcCOP!^O^T=L|Jo(g(duT7&HUV)W4GrGOJ1qU=>c)JyW zW-`CHQn@1DQa^v7I(Ub&d}@>JN$AYZYD^5c5eUHM^^NksM|anj}i4KJ*BrZiZu~+(Vj{A8Gy`!$00QduKHvl zP$Jur9c>pX?i0d2#)Z~G@odA{1w~U4r7wH97_3W@Uuo-MCj#CyK!Ykjn9i#Z zr=d-cUlzQ2pVxq7nv1aJ=k%Vo+qw{>P+@O;1L+G~D5uimt@?t-VA=g(9_THDzg4Dc zf?^>HJ$xMm5_1i>Sd361|AUQAjK3BG1Xj0cMKQ7Ng@Gj0@Lv}teT)iPHBVE`osBuN zFo#b;n*rk`C|KN6iIO%?uLGgk`f=T6@2HG@KDByN1c5`Kqy7wiRIxMTTa5=0d4k#1 zBs~}}fib{dXOk{jTuJ~7f6h`cTPXBK1IrT_oLAAd4$tp)s0%n|}EhjFD**#9VS*tMQ)nw1h-37|O zr%we*1uFTA&jn(5n*wcDaN2SZCTiolp1pAzGR-k_p#&^sAjC7CyubnHn(GE94GP1+ z@wNQ%1>5=#?tNr>_Kyl6+yWzyA&@91h)IldbmhX*C^VfsrGoJp+=mscF1CoYteSd) zoUzbLjP+4&GBWc@t4|^zb8<>MK|u#IK=VZ%1r?rXb?yub6SrrDO(D}~p>qQG(1($h z{C+X^;j0g@ar+weYnb3{H)7>=rQ-dCve%*a@ns||jr&m%E|UMb&4sV~=qB|9@j)Im zyJ51FNWh<>z>YyiLFrq7KbC}78H>asjU9;~zm|Jeqa26`A!@_qFR>PvfnxCV1-3U+S&7JXWD6xy0#6RZ~hF60V8$bbco_ZA;FC8n6hDP zKJ&D~q)4ln7*h}?7pRDX%Qf%mA6wGRi}qssZ_ewOuC#odLHMAJR&*QqL;W&z!XmLe zzI(8w1x=5We-#PTkGIdubB|nEjlHu^E_4s`Z^hOd?-CLI&{UfUGTvQ5rZ;lQ5%#YTT!KIm~CjK3_$mG6yr1jEUt^NBQ0Hfq4YEa&QML!X&;Q zz8tokHjvs<0VoR4Tcm^NF9z4-5SFS4VJ8u02h@Imy$PaV{4mV~1O*FRKTvZ%gzOJn zSaRN(qJW@sVA&!<77_U}Pvn7`?~?Lrj&l8HMS$pYipfhs!99?sH;iQYb0t2~$e%s(BOyzw5X5SfE)DOqOG=92RTs!1(DUcml;!wpcw6wM>Ho<&29JFf< z5#06YFQMt_%cT{hL@~25PEN%UTtzlf=a*CcN?}@629nMiBmW_`VWg*k?uV0GJX32R zqw?zr7xW7c*h`rsRrfRBhqe^};V?8d4AY?LlF3#15;lT)konKYL0OG~d&jmm|AK$b z@yY(W{rkJa18za1ugo05fahJsu+mBR$9I`o6khMnf=^;^5wR^B1AhX-bmY2>F?>pP zI`R}K6I!lQ&>KGNDZ)mIRv#3!8?7i)K7q2PS5`WXrAJE@_&|Za4roQ5{ZH5dthQ-T zDHWm|kdWbHq#^eXt6eqV>819&`+lkJ=E+~2bn^JI3B)n+Ur{k9XV~)UHrBl>h?|^w zFmz&&Z?GdUxtzaAL(WSI^YNMofs!6Lbma!hqSD!D@mGEDtsiko9x*mc%0I7|T`h&$ zkS|7nG9Tt32R_wGk`W35p3MJp2vvDG29+P-G)g^)^FcA8>)RSp$Fpz3kgsbjKh)k2 zPs++M4N71p1nC{dqR4~v;0mcmu&}({;ycTbxo0mU5D#We{B?%e=Yl(Z&A||SjCZzJ z{9fIPjk^qDm@!fr=UmV4%#WKT{7>wg3WRPTL(j}{zkTuWVBui)p?hHW!q=Vq%6BTV zf=eyPdo2_k<>~*9at`xF&jx{Az96~4U4@qo zPs~D5SA&=M8uwUla-G?-HJk&4*3@GAVm=LI4lvbpSuy{NVrNVS0I>sp3_oDMSprH1 z+}*y}BMjWk)y5#~`x{t&!wG%(}h^JcnJ+XDz7E?~OtTU*NoJju|y z=T@adzu*7;$vZav>LosJHaQ&7q(%1AE}{rKdC{SAE+L*O$1>!)=XWd{D8D-Iz*@~j zISmY=>55=4P-gGE?cYqc_)F=sV?gFg`we0rIO+2j(0!Q8*k1!E-A0I3&C;~Fl1zt& zD}|_N@4UFf3Tyf?w~ihxA{fuPKOt>y#ips?`utDvKUtW4Ote;I(*E4%%m(IZbaCN^ z?bQHGBG_l8m5xYEO43|1R4riXLeTgV{9Em+8-aQ8(M%OgUrw5{j}%vzH-p96F9Zc| zsPs4y&CI-P?s^?f1JbdHKaF>m)C$_#q-Rimb}*T>g!x!bjm*^R^JHN2zb7lv66?QF zs^a&W95zY#~e0f3AMW&n0!4es(8W75jp^TW1#`4X-|znYPSrR-I38(^ORT(!Kd z?QitRO957mt+6c5tGCpChDfM4n>mDVo?()ACuakkoX?xQgvZ}`u9=BXqvM1x{o&7e zf{Y^hnrL3Vi6Au@>}3KoP={e7>F{=}NRFT|jYD2$I_z)x$gq@gGHLZ58jpHrv6BnB zu>)+~YoRli&;@uii-|`8y2j$s=Fed1)f+(c0Rvav7vg~ret^TOcGg5^$~BFWAlK(k zD>u02U39F<<7b8?9SV)W+su$|S%KW-7R8wVKB@_5JVAlNW#ZD8P!tq6zM#O4Z(s=0 zKk*U;%2<+ogbiV!&joIRXl;C31GV4CVCd#U@iWt^QkBZPBzpSZ&#}wlyD5Ufd`f#t zLsS)*OWL}swY;PfcBO|AO{PlJ2Q6!Bd@r4Vp}7Z8U0~EDJKlmQeWjXy2`h7Na?v!* ziXU;myK_lESC5!>UFi6>s{zT0(wa~3roNO6HUyZRM_{Z9FE;Y7W$@iT1{3<)SCzn0 z^$VEnKZCy8udD0{Qc$=z?m#oSdL;0w$Zb7XtHY65+#qdo9>vs{9203vhU zqa8+g1k{c!_gOFYXWCOX$spTNevkpTHdn3hB|n zD=nF6eq{95$EE@xg#evfGwp7fLMVj`Cpetjt0`Aj zm7~vZZMxyh9?hMh9vDB|=0S~VEy)3rpUJ|kGx1V@{01z}B!KsZ-Afu8n@e!7>@~JZ zFa88ayV@j04R2Y`{=m+9{Ngt>3n8eL)0h5nC{?W!s&jp7ZPuqL^N<-U*U5Oq$v8&(p0|*l% z$K>~Th#Vwsx_v34S8Zeg9N}!w*E?Rea1do=pAAZD&4CfC`WPhy08tJ&7DwGps6nh+ z1P&Xz#$kybFBLDczplN5IGsM3*+1SN=Bp!$g2NjaDaUopl6+jXZu1@tWo40p!M=BJ zFcJXzQrQi)*x);Zi?0MEk<|>kzA-DLafDPb-4EXsOBYOoUyH5 z=UY#+zsOY>5zsGqmH4{V7l*}nsKldiXZ51#n0}-n5Ss(gDr||D!%ADDfU`X-acSKAUk1=6 zk?Zw_EF@;556B*W^T#9fbxCR1FT-1@)C)5@@7WGz^(Tp0O;B1ZS{bl&3*n)Fkt*hTwqJopCl}`80yM{Ex12G$*s%8UZO+YaR!{)77VJpalKN-B zjV2*Ya)3n?CtVs24N46E*#bkW<6V?_|Jk zOpF>AY{!F|J>HOlEgizY&FPp%fOL<5+QzBDjvPpi!lj{S;t+n@uW_C0lS`CK-C+?k zOL)Zz$Ptk}Taw3hgyNiGGsG_U;zGk?WSXiXf9v$ho=J9DfHKq;UC1iTZ0im{RpL2Dn%i3f%j&{gT1LJhA3i zUuERwrvP3RkQS6(j!&w`PW3W2mV$^#d!r?AoZypNn{TeyHH2=TScy2B*HXsPleLg=Y-p7n=$u z)|u(2J39Dlx}Gp@_kDc6+1iiL9}3ODLmQ9H7t#D(^|aj!_tPI&K!pLmppQhw_t~;C z-#z>0HETQtWn_B8${@L_I)G3Fj5=4Z?rq6|^z}&+itIlb-`>D#z(9J)*;`E>nB<a!#M5>>&i`pv#&<(Ovl5FFi?0|}`4I3zJMM19fDwqNzg<+W;ydS}(o30NW3F|v zbo?&}EjMD5rpLMKwLfp)a?l)4?2)#fPbl8Ti#UwdPAg7q_NFP$It=8S;}-M%MghQBSThkZZCQY3ZS3UVvC-uj(-%Br~zb8 zTV-nNAL~b;X)?L{WDac)tRXe2&wR!1_vpWQjjQ*plySZtRgW_~AT-Wee$?2@mX6&F z>prqan3Qa;)mTn`^}9`t!0L51F}2r{?fZL<T8*+5fm8PMX~2_E(Y-df-e9kQbEE)s_W{o#lIjVp zMZPa-`(fhEWe+T##BO>@xYp42Z(}E>A!fIccau@6RwsV<>{a$Y?xvfUI8A$aaCs}# zPC2m_U&@lp>oiN|5Pot1JCyu5mVo38dZy zDpgls4_K1E>3p_Yj@Bs=KQ_z6H?EIOAUB^74?GlXv40=tnK0Q*!G}5jA%_PLjA5S+C|4VQg_T?ZdC&=12?V3h1F|y^57GkYo*!V(E`uEt z0Ha9Lm_5UnvEiE)jR8`=IF^^{kAzv?kdw!IRDrLddXBW6ojghuE0v0BnB|yGxPCfl z&LXr+j!%>u`&TUF+??IE87wRHjg{NI|cMW zyVj`hJk!@iWH+|zOkgnp*m9Y@>sa)Kg)5Su?WqK=&!wQa;>b`0 zvGNygn$$a#vRlEru3xNCwkQGRse7=FDr$eYzB`4o+Cye^&DE@EqxPt z*iL!Py*0PQ;`wR)h_GjEDZX#8{CouDS$$A$@xs+w?2G|QssPH~fM5J?Y7Jl>UYs3~ zhx$F_2#=N}(51p&L{~q#2P+9-*wUlG#}|Ng`3p!GVZ2EhIl1S65Cssh`k=;}`c-m8 z^1mZjqDDdO1ag{`PDAaNX27VN@&4=xlPcV4*@-q=@oBb+6NO}sM|RLuW_^q9JZ;@M zoBN+epu%RoGcFMkS)g;yc%ik*C*4$+&7BfJiI0r*d5i(xCs0Iu+fT2b? zKgzkly2$yI`X{(f2!2vgxD!~o_(>w#T9!W>7V8Oru;r~ittXtxoFk2U^KhXKv*Una zYbTgvcEqzF+gZ)fV@!kT1|rQ%560#9Z_ZCOdE}Z`z|8cUfWBJ+3K*<8$Hb|1x3k7s z)e5xmVvVBP81vSeIFaU7`F{rFey~pl@hL}sOzRgIT>NY1deVfPS+pi@4=9-19f9P7 z9C@kqEQRoY#-~X#9ZK1xr2r|92y0mQ-(HAK#A3@8aB9p|2H9%I;g2VIzI+FC?=wSq zWWXWfv1>_GtZE~sXr=!<_!4vd(C_=w+KJ!_j#b~6_T1J5yJ3JngGEXO9Q(1-oX0}< z*MeY#7R856jSCXryR+}{e)6J>rK`2I^=?Pv z5!!jVY6X^`0d#f*43!*sw@Cv^?-@%KH}5U9@ml-jNZmg{XsUk1rhcWhHr zd&=KHL?*#OKgPM~RpKNE^g9ygq`t;Mz#aR7a-9wJOZ8-Yy|^g37Ui68I!M3H56>A{%385G<>!~Pgq`C zF8#`*D<}?su=uDM|EHP2O2)naVN9^E5;V_^$&fs_?nMh~L=ylMKR=H>EmQ6D%gj>h zZ>5qTtG-rJ29}T-+s=u#jWW`wv_l6v?oR&|<$#UEB)~iY%HraRQ~uK9$AcA5FP%3R zJts%mrc=Jmv}f^jCh%+?hQ3Da`-|-ozMhAjbB$GP7c;W#?3RdwmXnB>7N*8qv`zdm6uSFqT@S2DH`{2+oL@?z z(Kc~05dZPf*$>t|H0*~5+ce<7 zVky*+Uh@u1fJ^PKt9h{WxEg5(fD4<1ht; zch~fu^A?fr<;9?zT({rcV7q3_T6aAbEZwjZZo_nK?IlFH`aK+~7lrWX6!vU*y~xML zPWq_I>)LK4lTVhyP>(;-PoKxSK*tr0R;F)wH2gLvgqI7Bh}z zr#lQ<4^B=KKL9g??Q&{q5u)Z{$O>Bu#dwvL;Voh3rcuGxC|tT@j8y;`o+q35(skNj zKy5H5YREbTmsZ%Dq{iKJ8W`QJ|JZj)DZc$ZU?+)oD}}VWgkO@5yWzxWe$VB~^*N z_8JC1FC?Z`Ig1{?elsFvX-8Dht8jD%{p*>&tF_qq%@g3*0Vp~YY?R3aE)&?kZ?H$@ z-QNEGXRt#wJUqOe$}c|&NjGYxo)!ytwig%v(4Nqxj&f8vJY}VH4K3^*WclLka+oDp z_Yx{7ZpNF$QfOZaY=~yRqL@9aydsW&(W!kgQ|icC(o|;LR2s!uvO=iSzA~CG8?!s- zJp5=-UhWFe`3T2gfBfO-FeAO9M)*8$Oz81TDt3F$b9WXOQ;e)Egj9imizrBbtJKc(O- zj%idX=_zH$FnpoK$6bO&e_UAX1S6GH-fqD@sNqu6_|{(FlH6_bsq@wYnkus<@TO{AQFXBRDS$7 znfqSi75Qk@kv-2gjjwM41a zJ65GgKjvXfJj{kQ$SJvnnt#2=(7J$f`zDs9Dxs9%LTtGAsPe&k#21&tyjvq_=G;9q z&3)&Kt2MjUw`Mp}KCk1nMaz%F4( z#?&T`cMCNv&ke)N-~S*7ooKfh^)!Fpd+ymE<$o5>>Xeh=OFX6DsdSkVAnNwbf#sYy zTd&>ogjg!-f_w6lQU-r0ohQ#iDj$VTII5_N1NqNmd%>x2JgN7za?gytd1J|tlhBp} z+1SnUJ$2r>%|;oKn|Lw5jc@q`B2i~QzLaNO$RbKz2&>E>2snum<{S&7)W6zpkF60q zwvnAxd;@BbtJEU#_53%9q|hdM`)FJCeGHnw%&_GYpZQM(c+oHAtQGqt@ETd-SfO@Gl(w5g$Je4xT94!@Jj|vyV)-@+gL3_r4UXCZFUta!qdF*kpXo|6} z;jesF=>_;2EQ+6lgh=Y}vC`7z^TOJCA2} z(yAo)YrNrbdfY||Sibta3Pt-u362T8HVnD@%1Xl^i30|_6U{7fhsd4n^z~qeD}CyN zH{oQ*!MO3Pp`@aV4!Yo;&d%ybzef!nDfYi#K-JJLa#nd~si7icY4Ol}LDeaZFC|!q z+KBxcw;b<~=?Qjiod-Od{kEIenj1IeQdjHQAfsc%UdFc88Wy5)7K*%ZFTE;WI9~qg z?U|U@J@WS-KwgII=^ChZ8cCU6yX}bbI*x86Rkf);bCnhyAH1|KTGDvm1Rf7RPW?{&klY|L^5%WUp@w%JKvh8BW^kkfmJQ1mPl_~fg!2OS;b->(4 z0sCpGoECrRGdmg#=vS=u1tqD-KTvlU%LaEB^}a=RsU-Z_)AuyX6n;)u()M-28pw!b z=#<8Sx)2)%yX3q!WziTfR}|Zah6?Jrw$EifdF=0feIlR9M1rRYZ32pO;EoY_DVBLE zzbgF>GTzeV5smLO8ispnk*~Ucb?Z*3!V!vU-}`Jv3*5TG#Fyc?t0C&E;epF&&|lfI z)_mz?Yxm5?seE>KTmQW(qoU(e)sJCOxgbsW3vq`#Q=^H`Z*UeYV371G#YqiosHVcm zN<(03?`3S>1$V96wLAW@e`jjeA2EuDBTjCL^LV>vB)Whf9rjW9y>Aqm#%8pS62s=7 zP0}l(C24dSJ>pmY?EX|2!4F4Ngza?si^#l`*mO8FvOX^o{f<>s6L-)dWXumQ+2}p^ z#NJrcICCrTa)du~F%#|)Er*0de_Fe0Wbq)uvf(6yzg1|MwQR79*U)YkNS-j-nvNUj z8|__WrnUPgbjbYAIN60~59;-C;O|7+pmOHrSBOk${aM90*s|bv_Fc5+GxjDV!{YWO z5xrH=YIf&xxwLj%sTMukT>E!C|M$x5^6-PWZ6VNBLgC6I!}$?TlMQZG7cG#{)-Rju zo9mKsmWOof_e3XhT7X+Es=4;IS9Z?s>*`yz$UyPr21PqQ66iv1_0}zR?(x>1AS_Ao zNOM8o1B)9~0e%;lu7DGZ+w;#dRn9F~@Zq}rZctN4CoG>C&||H9?=qyKu8d6D(0Z)<8tG@xC!pMgtZC5oR#-~6YX1ErV(4%Z8yI7W4Dzs#-QMz+ZGr=eG6afPR$8tHYTxPzDKX#TLPB+q7yauS= zIJJp{b}Z)uG158ka3txkDR4@AIwrXcwVT6)DNFvv`@TX?xDUG^KimS_hQ?oD(SB6( z-W2(X!sZ@~@iNohj(@>D-tID;Naz`|noIB0`LSey-i>bn!-0J$+vJxPE2b?paF`NC zBaoV6qtc+uJp%|E+0Mp6MY>_l9@zqFMzZtd&Ao{7a;oRr#!>Mp+-#+WhK6LoG{egJ z%D+25-!c+AadDsDxdn;>5@Vxy;1~Tfdy6^oi7!HQS>RNLGgthxDz?31tu?f%c%N#P zx}I`9-@nHN$Z5II_Nzw8c9Oe*ph+j(KoC9{_9F%dk# z#M`t4g-h|$-+K~=cap}9UJk5CU<)Bw;a#xh3+^y-UTbcra0wkZk;6bvw!Nyw^@(`mxxJPwJb#)Tb*`_ZeLnQ5&=e#AB(&G6t!Av2w=-!I%fT zhx~1pBq-m(0#mL$eo3%v(r|cla#D+g(-?>a^1&uEM;}#M8Nc*65>A?1dhFg;5nF#s zJcSO6tC3BAh6}46N1^J4LuI)-=Fmus`gGFtsM*8t=z7m7;lfvF@!-tdm^$cL(;P7b zUDqz(ZZ;L4ogt{YOX=`#bR@M;6zmTyrau8`aKmr@a6I2)o?pFrWS|NewD91ef7`K2>mF6>;WdYn zd$YdaQySGLvA2GX(!z?(xRAW(77y|;F+Iv%^v z&d5!{Vb%A{{N`@hzuyFj=r8RyNh8JVTf`@RNUyhcsWdb1Oz$yy_@ftWzIfia*rwAH zyqX*VVS+xFORqa#V!5aKliPPsV$Y#pL_L)~-et$O@K27Acx!}^-s<)6>(``8W`tufE+zZpG3qjP~M}C?SB-kI1{vh|<+-!-+Ka=rO2w@GIcVxn93n@e7-00{$ z>a$JS3n6;8oQ_Vj)&KehbI)VOdW))y8OOBZpc%*+j8Un+@T-?sg&9=^p;Uv;gJK2; zWl;DQuc3js@{Uc|yc@{9X+4IvP2l%Mhq)NrYvvYhb8VL80RAg~ANd)^;fn3QlXpg5c7KRRsLo~e^-hgC zS7{IMVOfb|aXD+k&#ovz(luov3Zy(=yT5!XyEdVfU>4-XhZ(K1t`Gg~Bh-fVFomZ1 z8}4Zs-Uo(mygzmhp+F*|qLj^cYCvyxy&AZKTAlioRdxd!_+Hx-q+`(V^~IcP ztaOAd4kPIo^?PN$zXJ(=Se*~@vd^c~EF21y=4Djtm{rX~ou>ySg%-$gpzh~puEUx6 zH2wAO-*W~x+xd0rxM0hmlpIbRKUbpP{shkgZSB<<(CsK;*N74C;&l6?FKAq3JwFps zL8)J*WysDe|8)IOA!($EOlCVH@_?goFeVP-MI*Zzg69KGm^8N~(Xxvm8KLiNsi1*! zkuxI7fXuraJWw@Iz21_iyn;5#e#>Xw)7vtP*6cOcNq5*~gk@-OgyEUY_vJ!YGifP;YYCy{ znZ1egY{?R7{sZ#Ex!X|zJ3L*tNg!}9e&}ZHIXe1UV)u@Uvb*eR>NLSSkibxSa#5lt z+Xj4Dn$R%37rI+)&~7#}Yvbl;;P!bfjKLrr7s^MtoP)ko*c0l0EDcwDYY{=C=4x+c zuSIann+TrKfM*xMY|bI_e?o-U`gn1B2j&>hx?;n(>J4;GI5H{bo`WM*YcKP)r6#eN zHz78qzn9=u#^c#k&4he)KL)vr7Csch-N@GQGjO9>!e49v?sMqW_a|A4@DqcPpkj@p zivF)OH#BLE0(oVY@ZD^x#|53ZPdaqyi2>0x!OR<4uX=cKr?6A)#@90+TXMlS$v>rR z&rMAcKZgVTrTGJw)gmAHM(GlqdkJvTjs|zC6+_JA{?!E^B%+WC_)@P;bjj%)qqusw?_Z0n0~%e^Gm8 zXlfk;9ye;|l}u;OF6 zomd#Zz7qR(OxSR}PB$=T}e$enl1|9+fxi47EfQAZIq7K!#4AnS| z$heG1A}#E%CoQ*~MZy=Vk51(9g1m6!c?`~~917LLevK+tO)i%;Ho|s{O#Q^uoIm*s zvWkn)m6f)bN%4P-3!0O(bnU&%qHCUlD0j{*yJb%DG%Agpq)BeAL?jiBuQQ^wc-qw( zCpvWU_`UGGSAl;k%=|2%8D(gNxlnaH%BQI4h8~*TVp>(Wg}@y=^Tx_9xv}WWihXEc z6;}H4Q$9R(ChDh^Q4OB$_Ch~F;y}An(i;dAj57(_YX^N94uhJS$6n!qZ?W#SPluMR zf?K(^4oh6d@}AQTkyKK)6o^H;W}ZyineLtLt|(L@W+|4!a0|hb3AAcG=1~-Q z39G2YwN`0pqOKH_269@Nnc*!(@zBJ2oDfdfwGLQOV1;h>R{@70j`)p5+wDckgQMOw z%br7aJ*TAk=g6yaVF0|92$>!|2@nYhEFzF<*d{62Xim{OT<39H(x@tJ#xXm-Qm1O5 zMjl1%fOceIMtDB!a3D!ZgEG$bmPukqA{Ff$==T-sYTtp5#v{XIpDaw8i8mK%ZqU{wfpH~~BUf4c^=KfhzzNA2zYsH{4}1d~By$wK9)zNWh<#89-k zloMw39VYAVykPm(uj@Sbux~BaO>+y?C4}e8^Ks=~Ue-jF!9^TYbQRI7eX`Q%`Klr2 zal9RF($elA>An6QP-t277RM6mZC4ugfGHG#VbC`V(6`9DW$+hDSt)k*`ymN5l*+rdFJx2tZn_L>ppR0P`1v6=E{FMjv@2EhCXCLy%h9gsOtI7s4IdIB${aA=R6)(WbcATI7o4FNBLbA6rBg z%QC3_uh9(~Pzl_-_346I*~4uN{1prmbk;tLtRPtzo1=oz6OO9p1FfQ>8FhMAkJc4w z-j!zB^EG~&8n3^NlC-hmLw8?D((R4#R%gD=FcjCe9>kg}2UD>9$B03g}eli926 z{t6PG^TwnI@sqo=-jIEI`XjVqb#c90s=jyQtJS#h`jx98QgfT4IxG!c>eBk;m^8T( z+Sj44X?tXy{s%Yh4tGwxr8j?5QDp=PP!afQ#kiFybr%@oGQVdI)6{L$b{#DnJ-V+H z+p{zvauX&!*bK#1SaCEct&_-q@Z2m~$O7&22x< zn49kbHIQo|iW~i2M?oD0r4CQ$^LEm$<=shE9f{^sS3cX|xGvZ@+W%xDgElXMt)7~; z3zKAe2hR}>vP-HW#p~V-T+oi;dV{Hu+>eLr74?VJ<+E=>3ipe7?dn!H<{_M|;sBZ8 zHL>s}VD_sD`xys$Er7W23siH1+ksO2O7MD|$EylQ3L*_EYFa1ar8skHtKF<5a#Wjh zjhmybZmhY2%C(KEtaRK}rQCK$hxR=m7_3T%sqw@0hbll+(X+#i_DnCCkE1B~7kw@E zljwdu9gr`y%^@Bt*|6-@X}u%5bq%6i?6~#>Fx_JCm17_zlho99!62#$slN$)+WUqL ztb!u%VT*UDKa7Ew(3El)<`hj4CR*g>>`p&}*(IRy0)^+gfZP z=>?Z7y5GX$Yb+{#f?auz!9q4iyTVW-V+in45s8Jmv-=%@5_{woz5q-BDdNc;|%CmQcp z?E>ne_T^@Ht6qa)0+d&S&r{;P&9HZy(zypESRgCYk2Mn#Ikby*t&A(a{Kdc6tS%Pg zD0@QL#%3omL7?ke84;3>#C8jORXrs-`;(o>^L^yuSJ+xqEDzY)?RwXD@D!uW{E;_w z_*|!}Rekfk;O5nDg3>28qVR}?r_%h*GZ3xYYY%Sf8~g0I6q*rWPS!d&v>qsvnMvIE zrh`AiuWKQb)c+9^pYyIZcKot64(*pgv;9u_brT1_wV-lO?L> z@t*2i8;}Sgy2)4>XpIPYIET@&Lxhg)Lh2&1*0`moVK@#WSnfxAN*zm8aK>x z8=SNPoT`HIDhH~ds=Fkw|31x+5H&T@Hxh$Von``SI+nz8J!t7Q=8vL+3C8C;oNV8Y z0+x-@jlZdjB7F#AS%p{e=k@Xum?3c7j=Pr+hV5bi32f=YLe#g#ATFBP&WGZD#mx*W zCkI)~P=QR^opx_Y3p^W8mIy|h9Fj*{BXwhXvApahv~(^$zZOJ2AV{>C)6TiJ#WV{( zy}v(Df9M>v)LxApHLK}*D;c)3U|X@AEZ#zE_{|AJxX<~sx1 z#fyd-rMU#*&Z$2Ti1J@Dp5;DJdF z>)8?~B}nc`#*Wa%0*t2Gh%>69ewQ0@JJ$jnegXl8FcKufJ)Q5jm#bl-SAyB*!VQW? z8%CiB)cvMxUU646d^~!WWVpTPrL?3xTCx1N8_g>GnqIUil9eqrCW|Jt+5N3filAH2 z4hmljf<#>^NV0!hkK;~2sdRodKyes>aU~Ialg$|MU5Fv;Q(GS9c+|pqy1CO0F*vzI zU3hRPMge(65b5bFgb`3iL4}5nvzwes?xLiAa`bR-4}Vk~j&Lj%l`e($%%ngx)xyjt z8Fg$%c|@LJgo)jbos6+ot$$F~_a+-CyipPtqd!XB_uVl(%+l znF`)*&Ku-D6PlH(=W0XdU2zh(#}*RU-}VUioiU?j`V;o_b-z}@XD6EXw4A#w|1j1q zp{3jzujaY)lWJ(0qRyIR8KoO!qBFh-Lm1W#&tW^^_792ly(q){D3pOtcDec;sWyXl=pu7o7!BSHVrS$y4Ed$D8d9{ z0Djk^NgS%cL=f@R9naVSuCFamSJw z$P!+{=;#9%?L!RzhogMmD)q0KR~8L>+#Mui;!1N?6TcYzj)BZvAeT6l;*;Cmb!i%x z25Lg`_2O01r*;7~vu`j4im|`Y8G1ICT`yI^eP-`A`YV4A*4OVD%YPNIzc#!pQcE2F zO%pN|^m4vF;ZZfvBafnXJvyE$K|CDgew%B3Ljm|2t>;vp&)0Wxw;2F6 z0Nn)R7&>=u@KfI<%(&HdUrh+R#0B^39aS$QH0hp1>%PNxksK6Z#P>T#H(}^JSb?G5 zRBfEhwHdtgj!%b~bj#0=F1V=TY5bei!{W5@n0KJ%wfrgRrog475}UMjS;{p{|C5J> zgZ3H?ATyvBG@+4Z$l^!i@GsQfC*7UFS_x)eq^lgkPgw+GUuEn+O9b24R}$ahvX+`X z$NVnvY=s0rG_l>?stX>o#2rW5C)(WGpcp~p;s|hC1lE})PijRSnlb4)B@W;x%@!Hh z?V-me5auz`w=zY~@|62Mr-Jd{tczz4iB*o*wq!}(ANd9`{hM4w;`8>C5zWG7B(0xF z)D0ae?rp9h1}QUOW!oxEsk(i5WONg{|9B+VX5fZl7OGHPl7<&Qy0Y#1W67U8FN#2YoH-92W4qM}n)(KqchE>_DL zp}GqO?k!x1Q0Cb5vDfF0l`87FL-q+}BAA-5ob%0e&HS*xt2OnNv+1VBR-CLW^dUfr zbS>rb(beW8?(1b!@*7ZC_zuvL=bu3>}2x<$S>#- zX@!>ji{T(x_LIcIdh>S)gLO$#6Fq8h-(Z2 zEM#-~2C#i>l>9|>i04vv0})-i{0Zt02W0muxA?O*a0|tl7#A!j)6}x*%us|;F_X-E zryn%RTjW0)_P`T3&3_UwE_a|>ZQ_EfhRj}QhnE=s5LT&TU&!cY#|EGG?%|>JeU%Di${Jtdr{a(p<>Zx1V)@1KxJ zH)*CZw&%F!Oz5*lB$QMtwr;y)%Qbq7Eyh&?g6xa^Y`#29aU5EEAH48!zwB!#-v!)gD+Vm8LngX=DCTP!!2 zOd|21s0EAG8MeqG&5?&?7FxreajpiV(PC`yJ-yR*K{)Cf96Xd~I&ixfYUGoIYKCCa=r(K_G8U2dpWNFE`3C3t{Nq&c8Br#+Dt z6o+YrLFo8;F1Vw`{*M-mA!f{`gN*+3h#YyF#RxUhd|co9M@XW3f|2jBtx$d!qp&=m zt%0oehh=lP+F-1v&VB5V-S*GYebi*v_Z~~BhrI70P+m>Kz~|kQiqDhz^AU?(DAPtm z>7MeG2V??>qznTxJE$Cc^FYm?4&yNHdi6Z%QhC?)Z|yQYNZA1G&~wkGJ^FD4qD5V z9|r35!oqpiso_i;_q}ku&8(Z}?}1-xQCl?Y0ok6t`Y~0w6Sg^0p9m=QqbW!^%~56y z6mSOdXCVMHro?b87+>jopn+%-84N!unGenDcrh9GF4ozx`RPwpgbQYZR`Vo1D!RtI z3mzJ)#*6BLH6{B`iW($b(Z@?oTL;X{DN{v%&CHLF(ZXH4KFQpkbIm;pgRTGT>q3o+ zgdtlvA%RE4-m0CY$anM}lkv2Z;1(hM`Vxc=0C~$?ctNScjyiPV(Q3S-_up-vP8i&b zS2c4JNhZL#<>aWfFdZOH8@(yDGV$~rjqvxtB;=_pZQNY6{j&hzH!AxNbVl)r(JKit zvTwhsbC(=Re5r!?N3PkOJ0sV5&|`k%{yxxWA)Ciz7xk|s!T1Ji@MwN1Pb@`&4_Avg;!{)V&UnET4{vwkej zqveP8XQ2$v8rfUBc@l6#;n6?|+uEp*e7HC(9qup^8&h(<;oqPCs}Wa520F&9XoK#K zQXOFqL^O|H#9OW+QUk_XPO7K-Q{`zg51j!^FP{>ru_ZcCQPx)V;K8aYL z%XSt>K2 zSP;HxA=AhCtU!L_hZE}|A`TQ>{-EAv_7dcKOn!O^>W{tj^NrqPYAqpxhlZwG5roR_ zX3Nn^^UciPino;x8*ZnK;00J4XXc8Evc#3iGHEb%V0tnzEUm#zj9MzY83uB z28lcTQcqi3fA%(Z?BYZ%U|_m7sp!R(S1GZp)kPx!fn*nl0#_IZU^VS^b6to_jmrBLV$0e4ejjJsy%LBQ7ukHEgLwR-_ z%4u9nyyxm)T~+v&Ur;`=FeTUMe=A=2mHb?jmvE+Lb(^uJzVP9(vG=GopR#AUNPQZ; zp4luG0UEayZkUO!4h6Z-!}Y_^b$rV&xD)X;)eHNP(yKp4sImutDa}Km`Wn`4sGBv) zDf0=)Z45b3>P?8eg1VnuLol*XecDb`D2r@@s_m6O187<QX%Kb|5JuJ-W(|gQTJO zdW|zjQxX(x{*6oV4XKE_qD8ISAs;8uA~(u_f$mkpKa9K-U<_V&tO+=1o=%~v9+S8m z2Qu5A+UhPxc(QxE$>#!_lA{&X(9Lc=*$I0Rjr-!PEIF#RYO3!5n)a!HA!yiwQA+k? zzLMLTu{EMTUf@F`V~|?7dgy}59@rhJK`}Q-6NrUHgXGoB6l*g-6a#`XXhJCRoBDN? zS#ZNDX5dSR95q(cx^z;#L6jA%@%SYq-(X0|HHp(_ZDu2YAbS;H_A^T|RJeG^2P1QO1S~(QSBhSfNN?=FeFa4Iic^&^)MyXv2`)}Q0E4GlViocgL z%FJgLQ;IJ3P+Hui`MIJzSfO>HZ_Su##T#g`M}a3C|EXp4?B#Vbm8I6mZQ)O*bdP}f z!q3V*^@ZO9!vvtx6lA0r+l}+xCAK;nkFp~EpEM<@Be7oU5~a$n)j)g0ATk= z%rR35tx;lfD$S>3$90Uti~tw#4`r)5~M;l(C_WstlB>Em`g6A>4=yM)EaVpTXPe~C_t-= zVF+s8h(jBy3|=%doK7?#ukEi@!7f5DLzzyfW3KmXDc^cP)rqe*wYo(6&3(6auP0Rr zYTJbC@$!<#=8yDK_K9^1(M=~rU6l>BhNGY=HK94PT=Fh*QMn!ySbm+bF=27T0fzKn z2z|fd*T&A+e_B`On*VcAi2+gaRO254TgynF6_)F%k68*aYQnmHylrypwK~sNyclP? zQbb=?YRLYBaVmtPCv?GdaqomC^2598^|ZdsBH^WUjVj_sN3AFmHlBu^_J|ka>OVpp zB$Z!GbMV!FOX7S?5q|6i=@cE!x`HNiV<%T>pm9N)Yj`=CWaRT?+2nLCa$mz29$+B) zzfw-a&Rljz9I*$4IN}(I-u4*P)EG_a1ZYKtm^iCspCpWm+}mjqf-IExwQ4e^Yn$0yrw2Gb@|&LgF&cCyVZx!wzKY!NOQ&79pswX9D^oc6Zi zkzJ`j4}YTu%t!v;fy7NQG~q=D1z9T%$UJQ=^;XG6h&?&%5k{5Rh@z}ZwGj^YT09tT zaj)F+UPXTq*mlHU__bK+8Zf){ZBYW0`MTzAu;XcTHrIJ2dK_&kV+J-?+_xxXi(wDj zSY%S728z=7sx}|WqiGzjBb(x(Ap91_C*955atHAqm7f1{aGngUJWoWz>?aY(&zR>9 zky`tMm{Orbud~XKn;d<(vB$VIl&of#-GQ4y*@W3vC-H6S&}`7NWO3tusoDZ%r23*t zeIvSF75m<##VK{6{X!0#sXlQUr_}ts+wHnHw)`SM73 z%B#jt26Rt@-f`Y>H+%Q-jJbEuP5Z{Pa`Y=3wXqim6}jeak4U{=f798l57+(%L#@Rn zF|$Zy^ANGd;BOo~9xs+D)z=$+>NfWxy88(c7iiVVx5-B56X*Hd=G~Sb_w2=kn#=zY zT**3A?xb(rw*>K)j%-5V$QQz`{zEWR`?o!QQ6*!#n@!ef|4Dz58Ty+;3|x3 zDLx%s*Qx3Ll@!nnG-4^N)hELAosxnB3@`$TpI8o(bf$2__5S)JxCvV@eJa!3pj5~n z8F_qcaV&YV=p#8r_wwKaYs{K}`tY>ss_I#j$@ATkNy2ECt#%mRlIE;_xdtTH#fm&Lsr*cy@|rw#n{8A2Oi-49 z`N6Rj+A=>Om^yw6q1RBt!EGXOzoo^w@@`B*J31r?6Ei`WVYS>6q!fB}Bo0b;tk3MP zw~npl4P;la1_|bDw}Uk$YYq2^;xLvJP>`sKF{5XK8A~sh6Q;E-n=-SC=%PuMlTTB- z5NCo4i;&O6zl7cjyvi2ztz{iPPr(`e9?-9-^6AHl!xD3T?wN7}?PO!j0!gl3Hi`Fs zF0q-{#qnv&N&wm?S8l~nq_(!U@Ga}orTrji@OxIh=e^C0WTc-mv@fE0%(P2Z6i&YW zllRv~->F}xc7SObHxGOaKxFNfQ3aX_Y6T;l%>_e^0u&7VXVT*;w%barlW4>NS>Tm~ zJ#AU-uL8YsogWJaQBT}eM+t-g9Ko^V(q-YhddKeEp;=y<;iT|8=QsQpxPrr2!9+m7 z#cBA#`^Q6Uj?Bv(DY6}Gh@dN;=x^}?!vN8v7*omlCMjG)V5xH)x2;6WpR$Zrf^H7X z6;axe)_D(8HUsUS(|WbN3ape>UU6h$A&PwuFet!`HTj&oX3O7C5G&PBKsAkFx>wNr ztEq}Zg+3AV$=x-PLV8{>99h1NhB{^CeBQzKIr4mkKb6kTJgCZVdke0~w9pTF73y_`p2w*uoWPMp<}uobQLn=9 zdDP@6g_&`YGth3AO4}ZdR0|V*MV0G|1f+wgPg)Zlq2jyRFknJtt}5*KD#c5^iMkMC z<CE<~ z_56iJgYOf>f2s`K906SaIRq$&g?yn3m<$!2rpgjGhy4@-!_qQ$cAKe34t>Z^%KIEd3?cyD{NI^ z|4kcl`&KwZt?svV*$F-i8ej{qG&#s96~>fGM}47!OV$2(HSPd`Fa4;@SY*DC-^2sS z38wO?c~0_nT~7$rCtAaU5nPkk%qw_a2Ni-x(gda<>npp~>WG$mp-mHg-S^j2xlPeF z1__rsmil|e#hN-65N>&n$wme(X!IG+i2SyH=D!M7N%Fl$CUmFZdoHMBo;mhzOItg( zHfQ5;@t9a)ph=gac)gJT>1BO=jq~M&DMgV0B#*XpB~$%QukH4B`*449;Aaa-clkqD z>aAl?6RvxI!(V^J93!z2i0?dutd`#;V0myceay*~p5?+G!QZu*S2mbI*-Fk#@UIfo z_fO7(;oktzoP*S>$#*>|}*@avm!{7#{2R7Mp zVRqrzMYH%=uI}^OM5X4xO2fSL0DLcGukjP`q_vcJmY$ zu;|7utH}{R`ScOMIk%eT-^Em>x8WMhKGH`%?G_}KYJZ!a@uR`bkF~Nsjx%>kviY+J za$0V~s1^aBB&myhvfX~K(YSfVTi2KVjEq61PUuJo^Kg1>emW}HVHHFkZaG)a*Z2&J zGK?PvNUq&YQJ_0oynGa$%Pc4=+9wjtx^QjD$;XF!oVCaRR)x$(A{68>>iFM@XgvLB1-w7%x zOcE-;fUFuJKt&LpR44L<-`CZ)Cm}0_@^b7-q+O38CT?76X68CX#x7X;KX99?NXb)4 zOdu9Xcijb4h-#YKpSG)+D?e$eOpMY(y5>`E_shgO>dla3-OfKw9z(i0-vPrB5N;&2 zSg-IF;wYR7z_To?y%sk9r?Z+n>k5?TF)m-)ixm(BqD3bqYh=E3Wc%bAIBEK>)2KJA z=F_T5`Hk%iJYiO#gydKVooB0Wn~Z8wqk0(u-ZN)(?wZ3J*d{HpN|QzjST-O3HtoS;U#`8|!)1EDT5MUygK zXDcM^pboIRb1xP%KGE#cb)t%|LQO5H3nm*eq;nIz9^ALb+LE?;^Gg5gxfhkV@xO|V zxU0^N?gY2)=y7UXqDckIQI>QbXahK;dBiaLKkm_ao2D?`ZJAwDaeYHKv4fnHl_FLDabb=~v5*ZELQ4uYQ9iU5 z9t z|DwqRGwCUPUP^yoEj8p73K&7B*UJ4rSBZs#NAn61XG~olX{*tgAt_1qk~iyEzgX_Y|FEzxs(m zu`XHL7Sp$_)!7!$-^rZZnm4{80ahC8r67__aI$ArsEF$dpohhulxE`uA_M55%H z?z3_@$xA`nEtiA8G5gV3kmRb?bnSi;U1?~2<9$KIK0!K$@L}cZdi|woDsA1ln3pf7p0qo+(=d$0X{5^xZm*k z{vaSyBBY8LC<;6s;c?DBhjUsgM*dL_rr;PxD&Of80g~&SBYBTz;&56&Qy{sH0uBeM zPrxd)spD&4Pg{G}H(_>9N;2r`zHw%I3J7z4na!(4@U$R#I-M_O@w%8kjl5{>0URvf zYttfvC42}e<^xT5swbe847UeY5ZXDy0aRwgv5cz1!C%=Om>afLOHC)6Nj3`aNnf}5 zj5Ep5LFBH^4AVc7S(VejX9gMr6KWBAs&$rpma==re_TOAQqdILSKO3h<~a_51Qtjo zC|zsx8(Gqy@zyN00Pp_k3J*ShC1d6LJqVGTzcKp0cym125#OCb5kK$QL1F4FYpXfP zy-1VM$SPU(t_ZEtZs7XZbU)lYqJVC^u+FmSQSWLUHi}=WKcC(m}|mR1!t454#kWrOIjpTJeOCtP&o? zuhBFx`FSrv>A#C$E_~{3EK^tx%RPc>oa?J;1&>S`)#D}T?K$_Hk0?MKcBlaVP(Q*KIg~G-mt_l0JIf#?7qBZF!g#8M#+Q!zIE(@Hv;ZLy+p(mL zFm$9#D*BFl^E3A?!_iq&c}M<9-=%KgY^a^4X-)-eaM!IE&@%y50ZpPpEGMYJ93G0>gn z)nR1UOZs^t@qg@eePef0<`5`DRC5TB&;o@bH(^M-U$^4&9r;AKV^}2S0}b_CMv=Jert~P}f^}iF?-$ ztYr|*Z_D(D#fyOo8K4N^ zh{XM~R|UtG|B0g+{C4=)Bld_gf$CAh48MTY`3m!uRw#l=hTa-VHe0%-8sky5ISNViahlz7 z6DUW>UPr4aX99x$ix#-s2-HIThd*e5Hdc8<2;%PmZl<+@aIhR{PG|9@#@t%(c3Yyv z=bG>~Kf`Np46;ZII>+Eh58kYUoX9HxC0C}8ei-~dAW zE+wc0-Ep+6XjTyFzd*~%f=?H*>&@29D6vJIB+ECC{_hnwmYFbg#_ACECpA)jJal0& zMrljrQ;S>$a^=Q?1f&zL7wy#)&|WQ}sO5HWHo`I;{o?ga zi2b#p`V8Tr5%qti`4M*Uco>M8WN4vq*dT=pdHlvAu3G?Bz)^C@c z(G!L%zC!Xjz>9us*-#vt_5m~tzUvD||7^RtQhFep4?eodJv29aNG>>!hZyHFuudfh zTsX_zWMIw&@_z5a2iUyZjf8j3C206LkzhZPqvAo%t-^_uKkyNxHKXe{UH#}cVY&Dt zuXcW!9M+RZP)S#Nc;Br53o!@VNDYM*|0(^)T*jv0WV ze;t+%^|(sRZJ|2n<%5&khA^i_c7VV?h1EGvqs)$;8Z_og_NTI4gBqW*7} zSuD8`z!!qF+vb?gbA^d&tHJw!X}q7u#Z1ENxpNTZUZeA@EbYoI{>E6Fpy*ywxBMB4T+Rm@ zu?ns8SU(akZlEWib4dq;mCny|eM_v8k&@uGebH9RiQH1LH$|A;M4nMf5%>r!3oyuz zt7L7gUpGg?-+!(RZ%e;f-+fU43+#!I`I|7)(vDmIj4Q!M!LZUq3|cwd%u+M9>O8#l zEM@LqSR=8yali?SEb3fT(QK@}WPpnSVPXyZFM!&n=>6s9^hYrXK=V^woioj(;P+~YpGjHC4ZV6LS-z!Sbgl$dV}n?NXHK{W%b-LjaF~jhg=b28=9oMI7!y z*k{^tRrwX97}528Gwx!j*YKAw=XftCPe=*7`IH8@t31@z$j0Y>u68zB<mdc~BIMMS+K>B+NSZ(R&y_XO7b3u42 zHV7|{V&Axhfyu;R=V=9etLbDCEuPPBEgK=a90Er)IpBW*leAt}tapiI)3|=zm*F-c z$E>c+5r3!4p&kzPuVG2xrBKEsu^cI+5VC}pQs9mMzg<#zmLwMjXfM(Xg`CHseYZ*0?pOI0ML0^HL5mwi*UH_^EiW-IW221*TxCs81t!B@|E zv?u>~5&}dx2=L=%?C5}4leHh|c{rf2I-?&(mX1%UJS^`v2Q$m=hbBTLbqZ6%Z@qqc z2y6ajcgktyqrX@|3#c^8_cFJIe=fqmD>=|eDTu`@?9p$Wr88}%>X7I^ER?DxDMD<{G&*hTnHuw!xTt1(Uy|YZ?NdHv03WP|mHJ5}}PLK2E~l(2od_HG|UYy+auj$iQtN zXXbeRxDXJ_Ra&ud#4?Td-wun*z{Ar!#U8$#Wia1~UQ07DctolZhygQlVFXNSQ>q3= zCHluy-Ko~=0Fu184syr!uszVzks-cv@Z%+h3c{W(4QzTs_gy0CPca(Gb2Af!0LSZ~ zpGJ%qbV&{x<&2HdZ+6!Dv+bFHeDCfn${gqx{dXPy30O-LC*S_4OS&_HCR9f%pA(VX zukpud$}(mJy7$kPx-1_Yx6tHk6H^N4+*`IS0dimm4@bMGBurHxFZjp~E^MB+;C#8p zVELE*H`gcNoZ06M30<*Z@#6nvI+a)J`czUqDy$fz+LswbyqG5FD+vJ<*PAR&cymXR z{}FM4hS#jC^i-UQ?iXBo?+x&kOjz0aV`S|9&7t*IRG;;*s|%{ z`ugS+ZVG=m*nr*G^S8nHk%U-fQj`Dxb|KdGPr%&3ABfL^>4N#~>U^aE9;-gg82>e4 zMrnpCAF;sG&F_^E(Cbk~01@(hs9aI9G-SWyRkx+=91k6Mok>ahr|$d@O_)$4>72a_ z>x1mODK|6$)CZ%C?jsi_LbK66w z5IoWJIlo^=JNTyiaG|>1Z3KMPOhsog9E`CXecn#C?jIP)^m=~Ma^47-o}NBr3ICtz zM{xHXM#=BGL~6T*zf#KVR&QsLC|@igcl)h?<;TX9JNGc8xULg~99__oS;o8bd}i>> z`=R2vl@WC$92`XMVN3j_ZXtDxjdjOrS(PRd;xwBKnOM{N`({}aG{9w~v^70BS;ocX z)~TG9nfZC@0-gV_g0|PAqtS3e2e51&D^aiJKCI{p7O#IMIRQSYGG=CGLlZ4-*ZdCy zq7q=1iW$n8S;V?Li&B-k@)u1CffVMasjpkrdMY2T<;-1?*S=r&&^j$TyENd&bdMei z!VVMXlOXY67YRZ$+@CIV zzgjRJPUecRZoM^X+F7&dLYXfuk`KVM|FYVTT4Q{#t0=nUmADv3ec= z-N*y7+EdfHA=!itJUq=NWu~~Pv7wcvz4&)54#<2CZ#KYsV1020JoU*QOpp91NpdE9^?e=l(|7%GU-ak8tMvZ>Gm+ z)?|HT%Q>~uWJMIH+1|s^JE;kmW@s?H77r&J06r!ft#5wxfCB*sZjS-C(txk#jsoq# z4Y;=J0unfz6ciSc3JMAe_#m$gGd}v-KePEJ9<0K?w8$vZ!jHzlc|e~R2NvyHCpD~% z6kQH(20PN6YF8~sX|xjXOVUz9WqY{mruUb`*u$&1HaR+zk#DcpspT_d$K`P=U$RvP zCTGGhWar4_c$CZ3w=ZtGZ*<%v=d|6zwua*EHv-;lUfgouA67$h{|;qq*a#%h7;Sqv zA4(MPc#kglz|!`3MNq%y$t(E$z!tA%hX@fC7N+HPR6Cr=76k0MfiDtDIL|ij-QT?~ z5QiLY@x+IB&13}KCyp#tF@yv=m{W(X%oe{@h8cpE8(%2g!uPzqMbnqYq*@%e2Ew@ zeth6(GKT%+w3u(tlTFqbB@y)Gd%l}%14s4^u7ErDiy<$Fh^*iy3CMO6_A2Ky{cwRh z6X1Q_2MpMU`XkA2K`_k;miXH}@=#j-*(BZ~r7 zDPk%rz$6ef{E?p#k_V&!#sEeo;B}(QUU!7?ra{f=H^9o-c5(AIU>~bCVPtiQX4{;M zRM-#$pSgoa78@D}ol?&qeO`?*wkzT5fsfkJjJk*!|L-iuY!eLDC5&`L!RG=b8p2xu zkNhvHG$<>yz;S9*se5!MXPHEbCS;jF3qYK?Q$&~`{r@=Q{np!EiAcaVP`qVWo^?P8 z`M&v=)Ky|}tCk}_N)wT+aG2>f6l}z;Qp)R3Tl6m;EiafONYrlXwN@>Ia-&jg?U-mZ zEW$Vm1pe>`znT>e;eWL!S-8;+_&F81tXLLO8YKOT@65LA z-+sLAYJU4b>^rZzlTT2iG9%@LYXIG}9Q7v4{^EWeRCiq(Hu;?`^1|AXU{1AGw8Lt? z0-qvyPRt;lyc+4G{%Ml{3?8TgO&A6Nu@j;(_ivBUU9=TGFp`OyL}{y|YrHH-)FRia zj^-(t!DLi_WQF+QJ6?M8EG|JpQL zTK^tNUA**Rt|5AHjR89)EsLlFci7A~QIx4L)Vd&#s|A0cL4Q>yH1fk+e~NYTh$?#_R}B29k_-OV<^aDrBG z0132XNJXA}|2!~(N(cA~{;N4LQiBEaj=rVNOWBuv86(Vx7r9PG)%DRYLz~O}SY4I@W8blr4gKZpKeWTu}OX*rOup@ZWjQLRNp{ zJNC%J1<@Axwra+n36_dIq9RcjzJB@m4OwNZB}^L$PQb5Bv4{2BKoQq;x#tp(uV3}x zqxcKROcy?)5gKuUcNX#q{$D$i)%8k!T^Lyl!8!Xhm!#F4SnqdO#~aThmMllyRld%= zCimG_WM?=IL7!1(%k*n(5xR!_EDp^LQ+L!%6JoqyB+}roL21#KU}^<1z+?`f_4o(d z_?uvU?>K~TUjZM&K6!UbHWlYlEW*G`5=QR7s|yS|?a3Juw{{l4d%an6@}$Ng{_!z~+p*80bc-|PsCuM=e=MGtTiy>`g&9-{~{xx?gt?$qRc zpa@F}8@!hMb29$@;oEd*+}Ybz^D0?3^J$Ns>i`tsA?5-@!~@YF7u1lHAr${v49LC^ zxpg>HL~B-dCof*^h2s)w4Dp{BPwoqU$MoD1O6H`fx*5z0j|Cp?iz;n>li>Ni$L2Ij zW;s{6=Jwp*8KSrB=b>AKiaWWRbL=*7S`9Q%W`D|6<~rE^Quc*UxzR2c)7Yp9#h@}r{GHc7eptR_m|jx7*?u+ zoC&iXBSnxt09HrPLYeLD3qI!{G&To{1@2B!XjMg=s4aQn-hpNJhs%LitA<%`<)JUw zJh`&%?edLxjUtOUF)6p1L#btjUe%hQbZtnS((8)?G%Bz>55Rua*Hy(7=n{w2TtKi~uGg3~R2OAo?AIJ=fGd`1z5!PjpX}vyFRo4*pArKhTZ^^!X zcXA~;eZwPt=8>~3*yZWT34N`s4WbXBcv z^7H0*(}51(=vQ+&?t-6aLOG!c=6n_^z|>9b^`SDEd(r_>$q?@^PYutayEypEYqaXo zEawX2r{+vmlIw?i-(s4@uZ-$$ssM;1_9{vSh)!z5J&s2Dt;A;i<)aA#%AU_;go0!jpB=F3F^PpR zLY=ztNHr1LUZIiNJOgxxeKcVpkM&y{#ACo1c|TdH>o`}v4mN7r3HN#As z!oK{mdqk6SF%Xk$-occI@05&flOw)iAsrNbml!!M0x%)K`atmV7YpvE&?4bX3_SRO zl_tiqo@g*yuSX6Hu!3pmhBNYTt{iJany<0GJEPIqcJ6)aRbW0ZgBz#0#}pOr!lXQe zEDM1o->2z+;qMU^biM<#`86~F552POsxj2H@@^)}nCA|p6CeaY_D5?@C1}6uCLYxP z9kFPU1^l7>J6c4`Vn83yZ}0q(_SceX3h`u2-?0Ujd03kLvfg2bX86zEgGQ@BC?3eC zscTs$Iqxvz+6&_5LiT@4zKJ1{xcbs~B5C-PFB(1ip|40J>Lm%A+cNQPwyDQz+1-=hcJya|3j2 zXq=%l+kWc7_a>V%l}WWGZH_HdlP0kQLy=3@E*&oF3LZ*3d~+$^zjn|jQFG-z-{qS2 z))>1$)r6al>0lJSmIycY<58XetaGT(Fcpc0EnF5gl!6CMf}uNZI+-F@VDy@yBu@IK zq7(DXeFErV%wxO6!Mn#6VBhdcKrcYJ$lu`p*0#_M_Mf&G>_4ZSK?XY~=_4JYzEQm# zHaT;FfbE5=KD?aoJs+s=SIjc?=eJH8f3sNxIEx!Ok2EA%q0w9sXH`_{XHswispuHL zm@FKL7!+%n`*73pcU621~&$cDelZtm2kj5*v@!-YN z^l`&!dYz2F|2eGwibwdyk4#rBkn{nsG4#pm?ff1qOkB72vgvfhGN@A5ew=6$m~?wh z$LU%;2L^{1^?25t0jJ!D<~jj!UUcIF|2#W1{~rl|c|ag7Ca1rqwlDr*@I^^JSJhB0-yAY9OwWh0MA!-C-w-VCF@-0)KsU;_wXO@I`qno>GC6 z=%WVFFlc6ldDez)AY$OoY!eSrJJyCE_~)IxYvqnMcDib#erc|&SC5E{n;{RHLG3M(gHibUE zk_c+n6PLe+pF=%7WE^RYG_(!w^;?AC{cw5cQnBfbZW2 zNxJCvC#FANyF11NOgAoW7t)?xQ4>WuhUcn8B(8h?6p?ljzGYy;J@y`8%5Cz^9_ zTqte&HOyX0o5WMIkXHpgjfvlZF0wBL^oQt@-EY!(yuH`NEC{?ck(it7S@91umAEtK z_0tdNuAk17cz}f=zeQe#t7)?j{(OOs;4}e7R|+bxWxIr;C*Rj!Za$PMW+^apEV;gn zxcYk(e}FXS7ww=eR^p$QvkC4bG(Oe)hx%Ng-PSMbn_qoNZd3_|T#k5Anzk(c$?ffb zZn%cSEx-T^;}msaR4(K8XCm*5%^$B0wa$?yyJ-3L^V`m@Nl=?~vTB511xQ_XC+-7NGDw^wtoayH7;6&fweikw zNWi7v*<{Qy$2#{uvy|~S|IUbtrS|t~*+u>j>0VA)RjumDsJKGwd!y(dkv`mkdw1g1 zv{{bGX#B46@gr<(@eq?mP(WSS^HBlgcK))80R%us(`m5`UQ1ec@U|05B2a!K4?2nI z7r8~6FYC7G9{Ic;EE&!<&|@%Ju{=_#+anIL%***lN#;C5isj$VjnKCJQ*46JLkQVC zcwKlsv$+=Kxf=LeOpD&~*fSM(-=5Bprx}k$Mnf_IV#6mV;}-mUg-h>d%pJyK+MXm6 zUu>R;(vD*$KiC*>Re+EXjq~1xa!|TO8V&6b)8uB8DxsbJw*monA`w*1a5zQeh*8XW zL3<_74$%CTHmyB&C8x<7!N*!B1b})X8UG}8ru_IcN&i_(FB3{pkA-3Q#;+P@&lKGI zBtwF09k^CZmzUqJVi))9a2!!2Hd?mWT}3kb&qN-vup0f#qQBd^j_eK#8p$ppjWZfI z9w&bHwJVud_>p@53j(f+BbQT8kI?m=lO@UK%lvW$Q}nlm3Qg+W9(`4Ip24vuW_?}J4Jm46r|QtL28 z01oF1-EWa}XUrsuA-c8-_nX}*8;GR-#9!R05^BMy|E<&5@us27(!pJy#k(rDv6D$^ zs+gntADOd0V>--6&M9sj8aQ9$$TkZ5tHSR;k%TL7^~VFM;~^sD?e z7xbV?NI_1D_U#Dyq3FG;YATlK#*C_?>xR!#;IXeef2&6(0FSLiPLD!T7kTP3q z8ld3g7;X3Ux{Cp%V2+I3$Z-A2?Ve89XjEo<`Xyq|VQ}fmvnNv!^QW{)JT0xrPkB3S z#y9aPetNOyEr>8J#Q29mfcs?(njgL%r3UV3wQ=}aRVhVR$mR~X@9Gm}eP~HF-41(l zn2PIHGQ=3S2ZFd=k`)Dw*eYq0#|l`d_ESE*FMN#VI*XcD#+HmdL`=Hs3A{D%cMtKY zLqJ+VOx7M5n}Fb<;Y=L)12F42amy8DZQp8KyE{$@m}NR!KjGRfo9xpNu-FI~h!$$- zKQEB_Xyds;Q&m51Bl@ZnJ8tKhihd_XQ-;=#|h zvfFcy6`rs=OrO~auO;O)SSM1oWM9;zt885_{QV4XUh6eQXu`u+jP`A;Tz@b(>u|4K zqO9Z6@xrGRUeP6F|4EMYy6rvjB#2f@?&_GpL?HobI47IH7SzM)xh9*#YT~5cR|`7I zCg|k0FZbHr1ygBY+(F=)fgP&3glWih@w0pQ1{+grTvN$fvWxex?QnxpcI_{~)kaK9Yp;$FUxx=7@x?h$9;6IfyIoQ)Y=VqZQurq$s0Ib#q_(5}za z#~U(rsYk_l@%VN6iWcFrmVU8cQ8BKRnYu2s1_SdfL-#wQh&`+TqbtF`V zVPJ}L@1SW4amMXkdOn;-n}aphiv`Zcp3Dt5^7cH)r90JmE_^vH#LGh-Qge(~D6}}= z>7$6I2<0f6$0?dFwYf-SETgdI>ToUlQF@dH` z{c_d&@RJM&W?@*9Ie0qI(hwV0LU^&A^&p)G5{F+c%BM8y%Il{5>Lpb}1>(E!y;zcC zxICz#enZzBKM6Fpm^tUq>7n9K#BM~g)9lQ5Vv#p6NCe`v&efn`A_=3-^|XTIE$fju zPKA;d6h37-nIQX@A+632)ktsPW&R(~GEZxdnlkQT&+d23<;9tNPEgm`rOep`O+wc_ z*U`Qw-lLJkazYUC112){ml+I)&Df&YhNfE7#-)!l#W*mMOadQi6w9zXJP7*IoWJuI z?>^ArMOo_8mwZFwrkFz-)&%dRehh{_s^9|HRDpOeZLG99zxiQ2B7;=>rhnOj>8j+5 zRE-T(_G^nH4Rh?W$9a6W4vQZN=i>$2-o%{gC5)BwGNzckeWmL{v-gb7GcL&6dV2EB zW5Oj>SY1vz+3UjJd!Vo>g+A&U563fQ>q@vSxYNZu;?8Rk`!{{-htV7D@1{)A&*({4 zvJkgNb~yC@#gmmld-UR~Da?7Lab@CYSlSiA#jCa>5xS`j)%P*wID8CDyU`V?JPFt< z_f`4tuv2Fn_X#u}B021d8D9>P@$HOFHy)ffH`Do7SP^?js~dWw z>Mi{A(Tn$q7;Sz97dOzd2pQOO#4tY|4#~}}6+C6ZG7V$tRUfJt&yL6RcW5gwHo7uK z>oA(8JXAAnWJ`o#Ss`)1>RgvgDgW?hK_~DGBUpOPBWGKwde{`vL#)d9b>fu^zzUU-4eNKW`U9R+Q15w(tBNzCnf^OR` zbq0Tnm*-x4*mQp@*znB72hSI}FOHZg_VET{#I>Jp^j`731lpld#AHP?5S*|u%c+$# z+eo_Sxebf?B-cJ)b4awJ=#;a8R$$r}z`f?fqC#hsrfil#FJpF_%`34axb1r*OPwM9QQ*^9hR7U6a zpK#rpsu>KZ%#K=m7fWy;g1H*IL1KOvVeeN%iDQlV{bTZqU&-iXpH}Ce%UUOODGX@d zxDmT8g9iDC(1@BCpYjF4rRQ~M(7MH6cK(Ca;RI1Vg2u-P!1;F}O(8!&R*9QrtUO3{ zaIUcJDkHvCE;!*EwTnb3@S1+umy1Te&rhikyIq)KmsGxpKg@I0npY!I_Z)OGNTBBi zHB)$lqPvXMRH^P_fG))keo>1+^jI_!0a3fZ?>QebV6_%o6GZaojinc)yRWAfW7BwC z|GRE_!?L^MMJbnGKPgFONa_2-ua9msXD@}UJH)7D@7kjPN(FRAWI_@oa&p($1B|!5 zP-cgQ-ozaUj~kE3zF-|UOu@YPCj5x0V7NT!(VLAE^ZkguClM1v>0SkFPpntEeF*8W zR&>xsf)=O_HW5QLf?3QKXXNQ#bRh9ttSW;=FG#dhtl)7I@;GDp*I!CFaR!gMxlkO< z#m@h{GaM@^5t_hq8NXZA33EBXcE6pq=om`<{EA|y-6BmI)A+9K%kHES4zrUS-LEehyr`r|8_Oc1*Ilw5JzN&ZTOVf%6L0m z31Rz+W)tim=7F473h1pf29FZeNoS z-sNNM;{O)lq;|UV7}}19MUTcp#HRpWTEx7m(I5S@%jN z@ikQ2oss_Q=}flbXa!-EZ1eVK`sE9AqgT}==BK4L9N1v0NhD2i5y3z@8KtlM!+SFZ zHy-iHd!@Wmo4nb@$46Oa?2%C$pDcH+oxA`!LLi4!XP%bdIor=}cCiIa-Ztp!v&jDN12bdv*@IFre=0&{V zQfutS31a!3mMIh`zL?B~8H+x`O7tWCUTs=)Y*&ixBQ>&@K@UZ{8a~`@L~CV*MwrEv zwzhSYQcAv;(hN>$DDPbEY9F_efgOw!{L@P1!8V^MOJ*ANU=K75In()O(LOXb-2<3xhJh7I=?rXb9(iZ;<>Lb9wUqa0^X3XsNHl@jbP zpbe+|OYB<&LJ-yQky{{}mS{-KzO+=y@d6QymyM>KxEeCF9{xvh6X z&}dSIr8Vx&xWV*l_Lb5m*|*LVLOy3Kg%f^N9;={piz#q_@7Gn&ejU8pYxyCc9@D0LpS!hrF{-yi%tK=oG8y&Z$-&5zAwOy*EG|$$tF*;YB|r8y z#`%dl;b9a2wxI3r@HWRbctpHrwEad&n6r^h+mXGPpd?ao@D^29eu4H|t{;%Bl)R8o z2h&*63Df@XwR`_w(h{aIcOEX-wa%D@Z!5gLeIElB9#2iavl=&E0vZX?k)Q$~?$~1X z>^toM-TyNF03l9^e^k`9X#7_19WrM}q3jbE7bz=$Xw#Zv$VD*a{R;|R>I_x zFntiAXE&R-jlA@T_l@{MWykX$c){gOCN=yWEC|ZCeYB=4=~evd&wcXq{JR4rj4Z#p<6f7PEz$v{cwZP#yys#h^%TtvtwAF?tyrAsCih7cwt`P48z8U zie)vKT4$~E{W7@pSO%o&Or+*=bESaQM<1|vset$SQ=Fvj`>9XmN`#v6mM=(a@X%tK z2-iSDb1>TGvGTo0aOANP)|VL1 z@G2rx($3fU1B#&c9WAgM-!5O`cl6)Z#uCfoSRKNqe%HaCxXN6AzKYkPcxTZmepk%G;0o{h2Di@oVYKDL;9>~> zp3RJG)D3P)p!xmg+*yv;{y-+eX}QH^pUDnauIA&ljJ(nKU>ymWP8J3>n!{~x9miG4mHQf`Xh$N(O_Ea8fEQlHZ8y8WRXzLXEMQ-D(fv%UJJ`9 z#4`sYhFa6;LwA(Y=%I$<{JqzDeknM(;OoS!MV+j0mv{EY^t(#Wq6ZP^zG6@G54 z?Q8fAQ_?W>12Q(5|JtaH`yq(rp>T*UZ zFi9GAt=p|+Bqke#L~+8Nr)1&o6Au62y@Ltr__;q{HEXu**&M;MPcl*d??E1{`AXva zu=}y}C6n7vJ~8FSM*T-WFp%ib?boLel1t`&~XFi*0^!8OB;7q|M^!h5X-RrR{)F44_EKG8%-n) zqFuIK;%$wK<>gUk5Ytpn_Won}_U&6pr-X#5SDzhMHh2HR=%p|;3@n4vaY`X4w!usV z>%H3C+$s0B;nY?n^g?eYD*ZgpMUOx8rOPG|pk#xEcCi<*{JaNMg3wyqnF9ex{UmN4s6-MC^&t$LzvlOr^0iL7$wm7)k)eP`&BdHqWwFoRm$l0h_Ybvy z{gTR3yy_QM+0}3J>vmY0V(jhP*@81gPCK{L(kvN2?#JkGs`mUj?qB%rER@1_8QZHN zDexi8yec}L_9!Coer&zv_-nD9W2E8lR(V-$R8$5Q0o7Q;199=9_2($$Yj{P4F}u*H zIRKY1t%RAG8IOR#^eq?i8=b&TRnMZY86-o#zNp6q8srod!tW_4C^*>IvIlJa{QL^F zPJcDPa6PMuvK;Zmn3x#Z$=%)E_gPsxE4YvetoyW{7kN(O_);4SJSX$e{rU53_1ssPC8eaUU%U2zt9IMZ&)H8D)&o2m;WYRKQda##QV_Je~7!jzlbU!@}; zLDT9E39`y;kDDth(T;h!?@~0xEiH4H*m-%&J}{yo8>r4JD^nw&;>~_m*Q#^l zc*O)k27P_~$DAJ~2;0PDWZnR2I{!U<`uq3qVHZJ^GON?()MH`S&HN2+-zRN#zH2GT zLpKWD>w<4xzi~s|!J&9+D%X49{iPu*2S-O$X=!QOz^9Vl-rh{vC}jnWyr|?@-zo}a zk=@AZ)~KS|RzSsTk>a@0^ZAFq zEV7{#Axg1=g}WjmQQ_eXN=m&GglD&66>#a_TQRtBc3*QO(#ps#Q8!<}4}7T(m$-a# zq(Z1H8-3BrY4McvU>&-<-{(w;CfTA{#jU9 zf_Z|IhN$vT542%P{idjQDKlSU?xCd=0(Gmb^d!RX^CseXTaNW;;lwB7Hi8h0st90`99`&`wzCtNoSY1- zS8moFM_o;{`7&O~#ifGta?rrwpuI)SF8N@L?WI2o!Q&8``6#bO?Fy;KBRE#DeJ>S6Hs@+HhVpo#(cg z7i3UJjjZT3_9P1PnfK6?TaRwO-TThr@EA*=d~ba;K9JtK3Qp0N>W=f;`*0IHJiLSv zbv3n^@82zW3>s06s{_m)zh7Wr%NrP^#NIaTP@jx8(a6`DSDVR@qlk=%_@}sNZq6Vw zDr!kNEV=xUozH6MTkY}wq~g*PKHH5OeBt5YEL>c@Us_vZAEimDKMAWx*Zhi;8?s!~r7c2$g6+}heI>*?-R$kQwunW^*OGxFEM%7ZV9}c-0tA?=;q?bkC(6SX+qVPs1uQbBW3Q;;q&ms- zmka@|kXi(<$G(l%;e6nqo#fN}l_ZbNEId+_w-fx!Kf8lUwnsN`N z7cGR#fW&_#Jw3hQnNYZsFF01TUv_a(m2ZcJ)C!)I%dU?WX-Z3fBVWHvL17ILW^J@6 zxhGk)s6XxDsKqQA8d}Md0!1!-_M0~~l$Di3Ca?-$1_lN`DYHlor4_!;!6Db*-ybLB zY!$WlnZiz_#&v5XM>T6GRUG?sO-<+Yv@RwlW*on5+|=~6`lCmWR$X?^5e&kWuCvEf%3CP_(2#3PqfX=&!4?i zRCHF)46ZggS$}oMr%|cZtaP>cC4N-lf?gHh-sZG+vgfZic=-4m`iVl$11VzuYFb)s zdBbaE1YTfBv)2pU0*cJeQ&CYVv*^Eee7xloT~t(b9A*zf_g!UWrMPZDz6KoWD z`7>8nP00U$A03^gSLdDsk|8P-?|oF%YG11O{u1NE(Cp%3<&%>Wcw^-MUH4AX7oogu zNLl2SRa7FHo14|1Jjq2gV#_OnKW(BX^J>u^^CKXx)^~&J!@|O-1nhKHOON2B$|k%+ zxC<3UpNAa4ocQ2jD`)regLe$#T^N8N2eGhGqUbVF-rdQf4Fi8b9PsJ;9G9#9P7?9x z`nk}?F>QAIXD@1#@y?y`)S2DYK?NEHZ}59cm3DlLRhEKCpKZ>$yCp!j;InX&T=yKjgD{M-of1w(%sGe`}Z%X>5RqY zWveDX%qQhmQDBY?K~=#7p-gwYfTp5i4}mSuy?c7AtE&QK3aBbjUFfL7_~_{9O!?T4 zfR{&H*aW&j26{|S(t&J5VA1pERX`V>7-_jjg!K3F;c2ExYG!twiAe&4oX=T8IOqQU#t3e==5fi5X4rjZ0Q_*Ap$J4PH zqfZt+33sYbPma`!^h5wVTdt232swR!hk${Fg)~_5>h^q#;-~@qGeGF-pi_3gF@}AI zGP|g+&woEJEh!~Tt{+@Yn(lAJfp>!EiSO&-K+a&|*j9#u@4?}5k z5Cm)VX{^XgeWgAnS?67#?U zLPUIheZ5ux$Co4dk5!j`wzjpc@AQg}e(z5M>Z6f57Oe z5PtxWL1c4bVqsYUDB54(WMk_C+i}B|PQ<;egA#@6K_Jvzoj93Synk8omMxS-~?d6V@3sB7Z0qj}WI ziO=a#@}K>UJU~|Ku=)Y0nB%pd0X`a#Qyk^Idi6f&rambD+3VuzwU}#su{Kf=4`amB z0QwQo-PKy@O)lcigyJX;;D^}QSU3%pM~}kOx1`*m-cC>C?{>={kSOI&t17^2?cVoX zHzqR5%6Nf;*5;c0JG#5o0a0wUU7@DVgR;4S88ZtDi>MV!lrk;`s?k|mQIVhM-eJnE zuQ4^7)twiq`MW5MyWWy>bRGEAnV6U$058yX_W1$tK3+ zNiO>46?%I5QYdIL4!#9+e=9;B5N=&hYY>HkwDfC0gKy#KQ0CRo#KI!<gwv z=iA6T0hkN|ip`_52P5P60{!WCv2RFOC!#CurmdJ_-FBA8J1=wT*?=_u(Rt;{m9JLiaa{F>&3YAP z-Bb(9%Vt1U!M8$3cR+320#L@IU19U|^~xL8B<`?#f3jgg0PkZ{#RE0g1%sc~FMn0@ z-c0s6aT_c#l`}3K|6$5w*2N8Qxbh$jS$Wz+qN6{ZUdG#VP5UJ&#B^$Es%uo=$M$5uvf&Dp*r@`1u#5-$*=#8Lk@_Yn%E2@k zq_~w0xI)}l5?#xn-gDh94S4dIERqzRu39_uifyGBK;z$DVuEAtld$Rc@~2{2^I;*R}B@FkEE=M*+ABWOK_YGnZ}`^ zp&FpAhe3c6&E7@3YmAH_)-b?6%*oG}ZwsY$w8#Q|y}yNlfx+B9 zuLHtm4bJcp7;<%p;_i;)E9GkY`n3a~6i}VwQ##-$Al*@sgQ*3FO_)?}A!^@ycPID* z=i`qtF_a3F}vo$Ww zo&JaPmY@s?+orRW=n=?&=b6O8lw%kiwe!(Nr8Qgu!VkGL8JH*?;S~W;{|+JU`#*B- zdHt~fw~IS?muN@8i8Y>8tmpFcAIU6!@BPx`JDl2_A7ndi__d)~G6#ohgZDA7X$M)B zGvNJlpRI)j)eU~@W~=h+fPrDX{QzzF0IwXM95jsXZ%mS3x|9l#8IgW~VRK9>kb-zX;CU4556^R2gWs=_w@_z1Yx z63!as&s+gPuKmwmYJ2KP=eO$>sIO+h@Git<=-Yi=2c+ zWnsUex1~iKj5k74S|O)C5E%)fH2{I(K;G?6OM5+d;HT%dMD7K*EabkMJyM{pX&R66 zT{A`ijX3B84Sy_x0WjQXIu;fdod4`v*8S?>pyD?0edg#0ra2W*`t-Zwo|s$WV2Q%1 z3;_S80+O;CD>jTsfB&AWJ5g8@kr7|R=(&7+d|(yQavwPRC+!<<K@G~ME zbi^u@*RS=Z`ePB%<-^HNyG+`Sl9{U`HfbQ8yEN=l-N@)8uzD8Q^cs&(5d?wHRhyEZ z&k1UMb;e_B7~CP*uV3TH%!ZID0+864C|3n7Yg+!K+@w8%s%<>~F%QDopxTu|izPus zLFDHb(m27VMj?|YsQ{a4Mcma~r=AAFZCzWfG1tb&!`t2RIn{QZ^{Skxv@ep0WI^0a z5ktj>;y3i`br4vkruH5|A)r_DKrKY10~K_DHc-#gumTPr+yVCtM`;ZGJ<1DU`CN}= zRT}At;;{cdWQ9U`UqqA(eCePgjxlf-Gjq36Am7Z9Q2u}D?+iEvZwE2O9KB#A@^BeR LMTx=(27dnos6PpX diff --git a/api/_images/tutorials_nihcxr_monitor_api_12_0.png b/api/_images/tutorials_nihcxr_monitor_api_12_0.png index 31702a85a34b71cb65468dcf20dfab37a11440fa..4b16c861f948a399a9c9044df78579ee703fbb1a 100644 GIT binary patch literal 50496 zcmb5W2UJt}_68bt&?_p;IAEnIAP}0ObOkJw&k zpr}AlQF=#(2uPI{dfq;eIL^KQ_ttu@Tjt*5Ir-JSzy0lR@B7-C%6k|OF``hYJs6b> zSQLr@gF`?SK9S5l3fh(dOJgPs2xc-c&Jyk1=0H{=FqrKEnoudYy;4 za8}PFZoJRkMbGu?`j25vjcfRw|55$(H}97LiaIav1^EXBy$UjWR(LPOg=I^)`QGtP zof}Cbz6c^Yg0~Y7~p#w)xDGwa!V;*f{&`!^4ea zF?TsWZX1Tx#lcY9?&n#fyEp$1S5BT;g~7^XMZvRSYo0v+)m0x%b4H?H`C1}vT;q?M zo3U$TQQV2@yc2kX8eIRC#Kgn`ZGOua$X>ypdd+lEtA-ttv={#0=9G`w9JBwSS|_%y z65*Z_vQ)@uobmfYp)yku_}5?u+uBL`B4qx7&5A6s?@7OKH2lXCQ~NJcAwF`6-&?b| zL-}rH)V~v^P0}rVP^$a6O+=-6!68Wpp~NO@nVtB(_y3Y`?9bJRmB_kWd+(sE`AOP> zbB(281*AisC_OwRASv15!sJJYh~O^h$eAKi&9n4W%?mnQnl*pC)S%7GD`c>~F!#Y3 z-DeUjO$BPlEV!fo&rP_>!?5{=cFzB?xBkW>&s#KGlFr^$x3>K4|Jd8<0l&qw?ZkE7 zwduQ~d-eXL|CLtt5N^ez74ueouF<_a*tjU88I8U*TM8%3?MgY%hZLE_jCB-5cZ}&f zIXw%JTfR;vle6@547^q*O5MFyhmZ#A`*4*0E9uQ8S+(Z+aYq zFC0B|{E~k^j_NB60~U!^JL5IiIeK+6yCH&a?2|HQ8@qdNGOM6LCXTv}d~ohttmEX5 ztJk)Mj&AM*DoJ8xu0@MH?=}DKWK*W+>^FSsv#WLAUkrw{l)H|#KDTLM4=FGy%`bNu zO@Yf}nvvj@&13WO4nwvDv0BDu+0<3xL6$LaVSz84^w>(ymV?p%mam0NI*zfXc zC*Md)un2alzsePMwsDFw_M?uogJHiZSM(T_=(IXkKy2@PcD2}L6l>pK>A7++)vhDI z?@9PvtYfv#sY7iCt>d26PTaq6F3+U2f1<9D=jSDh5mIB^?!LBompRI}!_2ww=G|Nu z_ypX#r?^9}N8sS9AJw7y`@2_k^R`MV`;JbNb;Zw5lsYp>DRjFJpna=n zW}JQ3<~vj~T6!Fd>`mUhc~d@K*r=ziopk5Uoq=9aK0f8Xa@Ur@Q2BfqkwGAv^WR`1 ziq?irN^X40*3WUF^tq4y^`~Z7>cARTCN&fGyS>1IxVCarDz`1i(2=@6UCSIjFxBx` z+^%prZ(g?c=XgqeDFod&gCjVfg)ZwtA+_0W?{x#2*!40r*&njY8u0S+9+Gw*;_Rn< z4Hj)L8&1d(tzNtm$b19uSLR?-MS0xq~y;sOZ`#*r}Diy2BDT9<8rU;l{u?=$}1%+o6mc#r}bZ;J2iZwLCv& zM~W0!o~)QcX1z9FfNPunQcGFH-BrINP4!ORGF}Mlc<0X6Jo75Al{YS%Zb5qujB?41 zu9UTf9xZ8U>GWG}Mg!Hp#r8cC@8e}VTvQ47-&|RSL#AI~erCz1n%!?7Q(#+);x0mD zTt)KLZKD`VsJPM@p7I?#^;*bg*R5Br|eB$p1mveWYc9^ z3YGQKXl zpI(`6{%B1iKRAD7A#`b-@rRJAD_~({PxZQ+_`3BxFu$$ zdg1ZjXtQfF%o{&{DMP3c3x|k>F(6Viqf9RAa+FoWgq!u;!BpyH=~bdtXh7{{Ru-1) z^WWPT1J0%2LdO?7#KROCE3St-PgUx=^_8QIO4K#uWzt(VzKGJ^_E+s?F!AT$mMBq* z-z7R-e$bM7AIle)H1p{Rp&y4U^IJE%ec16-Jk6Wxp_Qx?mC~*q?5P*2>-f}~_mYi_fqVATUiF3#d#Cz* zR!F1tXyxabupW?Ubz$0k^J(1y%rk3eXBGi8o@eP>Q}oIjWzP=!i}&C~A=j_>gD4|M z8l56L3KAn#V>D^wbvw*0faa08d}mx+WzvzT|KYh!I)a|zkAL4=l^{l^?;VCNs~#Ba zsx+P$Ka>3GKS2{TW|ip`Qr32yqJXrQ{_?WP z34dF-#bE8b>(Qcy=81AYmuLX)LiQJD0j#M|-9!{6uXM=w+rgjn)P&z8r83K^KRfIY z#>1fe5KkiQrf(<_UPbH6xnwqLJgzTxda{*U`SAzZp84GkXVDk@UE2kjC-p}id3}VN zesXIgozmX?e0vjaa!EhD?g{X@kq1w zUQozEZVV~@#QFA6`9t)B>-SP6$o9{vHnl8+JWItVq_G~rx0`Fnbw8Y?t$~cST(}`E z5?x7Mj;?GvV_i1-t%kqDt)vqEH~oyXBERTHt_^H-XjRGIbC~7D z=rQ_eGRZKFwL51O)3u^`mWDqNyx%a=rD;3`U4FooAgq2`HV)N-|<}rlq0iq^Jy`PTR=?JrTdh0S=mgksQ~p1{ zC8!!4l1}kxp&#%u_mEG-8ZlM^%j@`#;0iFLL zcotJPsI$3^J_VIWn^F|h=@Yqo0w$71T{e8M^kM)^koo5Qqd9L^J_BIXrA=nN^!fo1%RX`-_s?ki<9R76h{#g2E?tx>T8xFzF z8&RSuo`vo7#h^O6jZHcRXW2l2NZ!{q|Gi~&i<&Ik)I12 zrP)!-6YwgpH*rl*&hl@V=cI+e!RlcV1cSC z%@u=!c`@tz&BKQ0JLpEA>oDwQPFjex(la%Ya2|#od+>XA(s#370*;;+dGKvRzKP+a zxLu@okNwY&TER!>aS zfxyhhk70apkUJ;!HQlv|X&5|Ab?uYL; zgq)sHsapIRO!U41A)A#^)V24I^&8rb3rk$`Z+;)!SnQg!^?V@RRVdtRcpN_0z?awx z{J^Pe?+yrCRGa1*7h{J%#1}gazK!Rg0@VHv0bp~Rp+#P({Q5-*Zgfi>`T*~e2G~}{ zi<-Ve0BSh+_F>MlRn2b*Tsn%uJHFgnHsD!DcdlZX_6Mmauf6+N++m&rz6 zZ&0UpdrQ`zn%b4h%tj$kDz|J)wQQy%2eAtV4^ko6$w;9ul4UAzpUsW~F@(61ttTtpAGdDD?mt57SeXLd7tbyH-R~AVerIbL zaYa+QB|V02Jnz*9g}Xr11;L-~$E24`rIOb_DgX;IFzO3295tg(E8(;eN2v1J@_bKP z$o)V0vXhc7tr)hXYq-x6YIrit&nUu);vx6@RhSOo9AD6UU<{X_Qgik+5DQtEnJNfj zA=KENw({V>2?VY75Zm+3Ox_SOZ`=+wC4Q|vt%{_qel}ikf`OYtFRA{+kUt(|9fakS^P+xPZ zCEu(9Sye*|U)Pl%(PnNja%*$CzB3JcJw)Kea*v$9cl}d}qCVxyr8wW|mqBY@_X9p_ zNMcM)_HA6#4IZ&m9|<~H4Na4gV7`v+)&n@XX(~J^a9%KYh&!FdZJICq2@s5Dermu1 zVUg0c67!2b$f#+Z{_z)ZBk8cYhIl;);gC2waCq9Q%C_@qGL!UB*mqwiKoWO%G)m&C zd+pl!rF>o-b?>*K+n#%tZ(>sMtwq*az}jg@4)_!qmpbHW$t_(Fg?M*?+1j}1+C#tP z(Ts_@QpW*vH~}qio*QTuv}>yl0<(AR`swH%1B)gSee}&6=UxZT0Z--rrCANyb|)QzXZYqo zj_iwxauD8(e8Spf(apHtekJT@L-P51{8dxc5Dli*Wa`izfVRc~%x!A@d;Oo#)4b#z z-3nxH;})2&BBhYg`;veXldF4TB4fSu$$2@$ZS_%3&k-B=8^f~H32xnR3 z)V#Z$hCQWq+sj>lf+zy~X8hk4o@v-Tlg1z=LPu%ADBI@Z=p9kQUa~e70WXI@v+5uB ze#M^pf5B(jN4Z0^$ER@7fLfTNkN!dT0GW(19!`Ev3H8yp56RsxbZ+ZB`H2)6fndY& z9ME%lyBiSpv$~=6#j8Kz=M8u^n>?SDYUBVWvR^4G9 zLE)qxr~4Jv8WqOzdvoE+Xt#-C*w5)N*i*K2>%;m69;VNPb6ZJX=jvFVXYBPU`ni6; za|=AJn3-XTIdL98gd6&!On&WW$b<%u-MOtn#4K{8*T_I7?-HC9`&b%mso}W7!?2)j z`CShIp+4(ntL}YP^!@Y(VApwGGvZiK$RS=p+A&A%YPZuDzVpuqsR|6Q3o10TxI@D9 z4bm@B*Xif$=?<7@(9H@2oeerSP`>BPRLa-V4g1QB_TH&eX*xTd&s9-C&KwB_0O!dB5tTx*4kYRc1NLhy zW^#)nM>=&3&}o&g&NY3C>y8@$P?!s#0M)zI_^L=_xDZ?4b}%CtB9C>kqw?ZG(s1oKkO+dl^BxBjy`3|Ig4 z&H$DeF-80kk?L1gy-cE;3pWV%GtV{L`k*rtsS5~=RPkl|Km5aI9P(~MA#xZ(21J{J zSZCy?{ppLp$_(op)b;*xmd}Vb#QS-rr0&Wt`j^+i5NYqZ5)h!u?(@|2%hRoQx6{39 z4el}zL-yT{oa-Air6y7%hl@Mtp69b6%v2mxY@Y*GOcj6U?hdsdFX(%!0?&%koU#TB z=H3le*B(0asng>X6kM}5k^sN9%Zw!e?kWmt9!IsNpLyh)YH{ufc)kRF!5F=N1r|sG zEUDZm>gY*p(vPJfqiWN2WsVcHtF)0~+1?43*{A+@nB@zn!V(8@TKuH#4L^GC_41s~ zvj4WB?h=g+I%(6QYumxI^hKW_mi=n@)uuCiO|g!LXeTT)9ujePv32Yjop0djoozc* z@Bc-cqknf`ILq-|pI)gh*D(^%qJr-KAkktbZh=dWbW8J7{ye6Fcb+U)1J3#9Xewa4 z4stoYWKb<}6cr5De)?3~nT;Ol7jNel2-_*77H(8DU3__paf!0#czUN?I*B62l-|EDiPpiSYYs>HH&`j zZBM~3Zj+w>E&x;$j{s$%hiqKcO*>l(@4kpLlN}*Y0HC5r3?7yi$uTwCe2z;!!fxh2rDqUwh&?0xR2r9o|Ck2 zSbGqerwE@itRD}iIwLU(NVE3~n_j2&IJ~$|CEf-9wXdSlnTvRKiq5Aw{>z8sQ`q4RvFkdiULi+*k zrFB0K*Ei3vtoEfFFH3e9YfqVJ5DROAQw7;~R>L#Vx7}rv`cp6fGh*vM_a#tpfkH&M zBxO}AEBe|M?g0C9K9c!xy362OXZzmFUqDMCEV{PtZ(D;t#0g+#nqv7VGvs@BH@C77 zFpKtG9$7cNN;^YjmIKwl%yJNBDXtC{M*3yaX$#-9xE@DI+5rjs0rNQY)}~YY(}}AP zB(`KUF8@%bTmBeGr)S>&Y6xlH9D~B6e*hGspRBM?@Z#h834_!Z7eg9(2gV8-S5{}~ z2Uct!GLJNq620-|F(5zx;7+~XO1}u#z){&go%w^?Qt}4>h9`H4pfCCZSoBuQmq|xY zUQ@xZ-Wn#Yjb_j%DaH&Rt>u+sf zt|xE{iv3$&0K21v!EcS=YcwYI(}(j7jEL?1#o`XM>+3%@CQ13ZIwxR~-LEDLXlzpO z{>Is6wV#vR3gZb*H7Ulfe$RnP9yy;n<4j+=Z?NXY>MpJPU3(7IueE4Flzf$jD{7>` za+fqT83O76SoS55ygq)CeqOI3?`b1mTx!k5C@b<`lv&LIcrz+UGf@Q6cL@YRGLd3V zzmso~IY#!S-rty`GoJlYGc@gR3PR?a-q1!@PdUdFly5(h19- zS|2HZ=b^4q8t2K;^li+BZA4+PGvh@Bsd+t^;tb=jhEN!s%<8M3Kt<4?9!FiHFL^ct zw}Ah|__g^hzW*_i|H^$p$!h!bj9AjaskhohC)1s%=!zFl++9xz32-R%Y%c?K60LN>lfDp zIVI@+dlXrPBNd*v2+Ztg3<=C^dz3JJNa+1ABze}c7Uj`x%#k^%7jD12OE*49ItYdP zFs2Xp5xIiVRZkmJHIl6 znZF}HTKChn6WdpI?G&gI_PPKY5tuY`4IW7F2RA4iz9DB%?y!wp|6kRdPT`kWGR%(Wk-4tB*Tt zZmUj}CYqX*qK~^|(ruy{Shl2@#WnCJ7`)HyaN}CPH~liLv%yhNCCL1^@Wy*Cj4VYO z8?aDKqo?9lA+AIbME=jj*E+;Z{;I>R1qCCEKk%u&kQG>7_okaKVknH3pknHLA8+47 z3VOpLBoz5G@l^vUpRJjPekQ&s{SlzLp-1K8Ebw9URZi!>ulTM26b1tkP)k3$eqb{c z2x!jJ7e}wXAL_0&0@pw{8mr*o{IdzMIrZ;i@H_*$S`Ae$Szov|Je)tfRhx=e9lJXs zQXw@oe0o;Lk&}iKD>=P3*CI3b@jPgho^Xer#)6jME0a8t9A)A%k{pOWushqKul#%G zvnO(kpYLY->{Q5${QmLmkJ%3qRz0M#4y}I{>qfLV_h^KcT-MpU+il)GI$>PxQ)XOj zn+7DD9q@*-XV!rVY*XBCmYP#gZOn;VeFhSlbojarnMCLbm4@#l(vz{GCOObt5c7bu z%F)fx1XYEuYn4z^J3`jQt@@M^*Nvr#2}YYjFTl1SfNS}q;w!L*`aLD~$S2hBH+l?! zjcY4)wAjNbw<=jj8Sl~!SGgcsIsIy(Cq#Bqs@S2=*nPm4qM69e#*~wkq!7GcwB05n zej!7HD($zKZ}wg!`FGbsN`{f?5D%ZEA@5WbUxke>4O-VE{foO{wZlQJyU z;6e{*AAp$5q(CktgW@?=MRAid$IG}+u2$6X?cLc2CLhEY+Q2Qjd8wb~FqC5J|FWwl zKNv|MDzo$ERGPk&^QCXB3JL%J!ABC+>WI^?c99wzbs;jn_8~3{2s-`wv5tY!tD13A zIt&a9J;cY(``Dg(BMeE<(2KsA>a~)}UHj9s zI=?LJIV_P0G^K2nR_(n#?xTyBj%RLTKCKOBFm4h8QqR*Iec+j7ebtErp!9oQyWhXh z5V9Npo9HYy1+rHzQA?TKH8M)bsBlf9r=-}jVJ{5GA%kKA+$2+-S~DD~<%&8gW$^9b zk09l3i@vx0Q;2@As{WlAO_FE~3fIGfC@od`*0+%_ft>Bp7JgYo>e^J$g`?lwa-w-g zL2}jc_aEFPoC8E0u4;9r@v)q5dG+#l!9M3kVPF7bmRFZApMc}UtsK(2GDR#vgnbAT zonQVP4MG=9+)B^DgG!|&2~2|9heH`FVc+~-av&GB3lT4Q zEs>*3aZ)WH3L0`=qrNZoU0HxUK!Q>zM_xF$^7o{>OwF$XcC{5+sbTOv6Ya3mX@Q)6 z7h@$I4M6$RT4HZfHQ#O`^Yw3TWB?`i!P_9vvdEU;92CrYSn4ByfU*{FXCUvUEHyBhxSRx0%EiE1&uys&Mf~# zwzi1Tyaw?7U4n2O8BejG;wfdrv_RkA7`O+2Cxnd4b$7&IA#X3R_XI7lwnapV2a|mk zZ+1OA)KGl+?$#&Du{2V?_&;FW-u=ECEq3)DEO2=hL1%tiR%wu#| zf(~26cf!Kv{!W~fNn?^XH86_#g`E;d7JdBl4}L_sK*moI42L{Nd1>ra(mlXuVdBlW zwVbaAcYmk$9)?V&IVuGW;3BzlHh4HnzjJ{}1|Sn!oUgD4c~=@v`TQ04HiSEQqO2h>Cxiaegt zzZ!r%EC$0a=(j`$y7BW%>}dy@)w4W|jJ9Ak%EYoGhmXQ6&kw0t+GcV!A_vb)lRtF? zP<(3K%4Eb?P67RJ-9SKzl1iL+KAv5sUiBEk@R$5y7%%*0>+Vf(yXxl&8H)8CoTq5u zw(vLDl|!}tj`9TNgGVu>s(FK7vcX;cu-OmyBH;Ee6CMG#APL^gdix8(!Y5t(v4P@w zmMlEZCUjUx($er^?8sO7T;H7tGV{s;>wZ0qC6pc-#3117p`M&u?s&N?*}O=pthDbM z4f0tcB0+JyZbnE-1fLqvQ)SBe1w;wjofcz7J}c<7zNDIP^A2RaUxLczClabxfD33V z(ulQe7m}7stZa;KlyuLhul#Lf6|TDl??V%RD8acMzi8A`60>JBv^ofcnZm>UV?BnW z+nB=adL$UOGfU9o3bEbrqmP@0bvNiKix=7nrTt>`c_QcC_()rR{FVLYkbPxhB170~B^QdK_s4i@!Ruv<4W{ zo44^3-3_Wd{{no+k>#7X@>9}P%S`rOb)wy)8f5*7Ly+tcr<69H<-kcL1I&FIV!pH& z8LhytS>1bd-ex<3BI8&6z^4N@Wt|Yd67Rm7Cg{>dmd+SSpRV57Whospvwe3M9z%yN zpi)2;8_%_ySnX%2U+Z%x#YnuTS+?WI@yYwvnv*e-SE`D4b|jkRNlFE%HjJw_oDjC zSLf&hVuWR{`S8LtXx}D1HO%fg+(ggqXM@E=t%l42bZ*ZG-NZ=7^c;*H1M-{Oe$A=< z{RiDBvcl2xm&eEEj3DTp8lgq1x)Z)=PqyOVp6Tzy7abb)vt%XK4D)547 z^EdlFUP?#PJmGYXfj~xPJ>5}VfDL=PD{lK9mMZc-V6xxEATm^1*o58#qa9CKWHscU z?;w)?l~mKlWZ&TN9egOMr>B=1uxmf5WFp(^5GqsdpJbxP`TpUAle7&+pAArgRHBy( zlF$eI4g~=KUfQxC4+sH4mN#YcdvjWFv(Lw!{)f1H7rz9}PlEc2iBm-JDE;;+>R;!H zm&a9CuPvB>XxDAUzA;L;1rgzc4kF%rvdp$Q^*$iL6utzHlvmGCVLM5Idvwd4u9itS z=v`{%r|-}m^eKG4X&F|T!!s4s-U~em9$$AFMWvP98vY(*o$#qSO$`ZmkXi)fD}R8# z%=%pz=#sqECqv~WXodova*lfx^3Bgd6Fqse2XyXP+We^yuVC$J{*&#Z=G z0wYRHb!M)GRenrplRDfR&9Wg`;j)7XX&j4?HMKj%5o-4)h}CwWy2>=4O8p4L1$ua)hZdjvpV3PWhiv}a<<;4yQXKW|VMqQL^=w#ES+@O5 zf%@9o+8Zwqp0Z6Hfh;@TIYTS@pFCnsLgq)6?&R}3K<1$uaZIBbsw5EQ2P}h#S^4=?6jU9Xl3%|}OEZk8Gd@g37Q5e< zVrJ&_hE-Vt?j3j0994h z2a|TJG7&7O>72^bh` zAVm=rOz73Ohw;J0;0@oy)iTkp(p~9!%P6W?S!s4(`KS=JaC{Uu0DQtvXOp@5?>RO*!r>xN-o zn+6u)GLf(7KocV4O z-5C62*)Yc*j?)+4$4W-?>^X2;f%){bLcrB6Tw@obQh=EU{h&2jb!qq=J zOjFaq)-=gebGI=`U0R`-7l6RU+`M{C0%Bvt(5OWTWg)M-{p6XeRtrxTRNK<7*lISs zZ|*$-LYl(072s7=@$GPuYn?`2jG-W9Q71b^O$lx$0eo8toG|&dxd`Nlf`dYQ!sCjVDzMS=byCTL3>QEdxs?KL=})tUehmk%r~ov3J_Eq3WX58 z8L$r_forqg66KcdalCfejx#JmPK>$V5oY=@vS6B(&S1(qAkvJ1%X_TIWLMiNf z)}9x!QZW??H679#j}cIODcX{xVw_ysLrnnPmI)#>16SV$EDn^?^pxa$g)@BZDM)NT zL=Mh26#0~`hMvBH+#t(82A+gwYmT)u0wXB{@*>K}69inmk z5~_L_gIgZu(*XHkAV{x6( zsBmvq#60&SD5{ndb21@&2NfrWv$vwSRy@$o!xxSw14R3t9LRz2VCapqS0<^?C^Jto zp?roU*!Gv*7gSCD>=ImK9A~^nvUBpAF?{iQM!qQRvD6S* z&1WE8{7~r$K~*Lmq=i0mEk-C5*Le>JH6gt>1oEm7D*+@H3{Dk$^aOGE)pL6F}i@t4uZj=ulE=r z2@Ox`IvT7J64}%ow;NPqxW^n#EgR;+06(thH~3I>Zsf?)8queG?R%SQ>GkBeiYbH1 zcz0F&6_6l~Jh#E;sLDYVr9Wdsq*iGGSa91mG`n;C5kgmlK61x-2U@fQ3)~$cI#uoW zQd_va0?kTJUc9S{K{XZ@>JkPu&XJ-dUBWiJnA#Ca|c_}%vtc0w@n&W|PfChFAOzNb#V3P7ZdMrGLK5O(tN zmq0ZC4iuNS6WIY(fAiV;8o}YyxnHtW{@GW0W(IDBGHObl?Ux*g9Hit_x;qj+Bo3K5H|fO{ck=dK@=|UWE7a z^BttAZvB@agj0N?3i*jb>05eo4smh!_6U-t$ImnAc>K7sQ9h*+%ksThF(FM&ko;^5 zsvZe_!x*r2oc~=6rWc~8Dy^u9mRhp(lwVZP^vQ2NfRaZ5^HEPJs@Ow*_#$*0U zk7o#tsBfIT>d-gjOD3rLLgh@MPFiRxq#JaLuDwUET;7t@9vs3cT9KqM*_J~%X%&Pp zRN7}J0sLj^@-e)9i1?M<0aY@>T)XV`$7%BY(dYhFo0PJ}tgAdfLR?7JfEv_Mw)GlG;jXH!1kPl5hI7o_- z)-^!$fDIrA!Jc@50=u}z|zk35Zn`^9Y|5-zco=|VT zD3mS?%7ymYEf7LGeF;$I@XpQkFoh8MK5-Zy=6gr z*o~{UW$}1c1)W|@x?+gnlo0lu-dKmPl>I1wH)4VF`L_b7CZAu_a8kIGzqPFBw1uBQg(kbAL$y&_=;@SJ3?C-S zDjhryl+h>#G7&(u?U`{0N3DSBx6v)AnlQwRLyfI2WwOtzr-Y|r@CX0=7*1Wd5exp) zwdo8c)1=gaus7Dmqv8xo*O^aKZ}PcK;aHn)L!p)PqC3zg2ODSmy%`s#L@A{Ms`$N7 zk~Q=4EieI9BOHRkLy^ z$1;>_vx08@p%Rk$F!LHs>n?ZA@tPY+mYu3BD)icd!jpC|>3I>?hPn$CZ(puOytaS5 zfUy3h5$%9-H^NGfqg6*vMtxps_V~*k1i6LI2ZvO61)SRS(G^p2U<)8*EL+Orm$hyxZ>W;pH^A~F{?E7!w8S-l`jtc_Fzi$5koazJmS za(3uq)GN`-q&cU$7{pK#XDZjrLFz`Ta?9fpaQYTQj62g^UflK6>@yTvk}Z6m<*HnO zG`!wo+3?V*8`ouap|sDp{e6-qL(hz7O2xah>L`!GCPdixJQlN3MS{d>c`RRist0AV zkWJZhZROU)ad2Y(Q2PSq5K{C^$LMT+W9)tl%{{hhWQ){mxX9`FMCoib~7M#(8W!$I}KuRC0bw13EBJMb| ztx~iq^^V)b5N`a0bX3}+=di$OT=iZZ^k4Y(#_vIPF|Uq6j63HN6Pl z69W`h;XaiQ$wxy$!~E6SLCE!_-;^?iU>-I8moBk7WmDiCOg1js5C{~9B62OLs8|I| z2LjqON}nOf(OAj`nYsemugN%ucD;`kthBt}yn~&mqr{%kbpj2l!^aR#CaFRYzt%Ib zo(?6-IY7Y}uZ$JDxqX9LdhOtS!f0f21K}@*_VR)j-#{q+(&gmm!_kkS=SD@X(~$SK zgRIXTMM1h=?^MQ8F@268axv*O$TR(jqpui|O2{vU<~lQ(PmoGL;^(cN`$dqdT7@(S zguLpH1ddQa5jHp9VKD~f=dFuB28+GszfZ_(9g8?5ZW}4LGJdk}X6+u<5C)icqt1;C(^8eibPo*o4}d7Ec0cXMi5CBdT$3j}iC}g?Ch6N(?e@ zto}&L#9>K?%35)Za3h{)0xD9Vf_NEv8W2=?pjzU1pIeVTYr*^DKILcp)$y`^mCn}h z@n*#85@C~L2Sa+Nx$O=q56iud&J(zAv$U}4{Y|8hGK480iDHyp#xJC;5vOjT;e(;%n zFWIBq!VEP}5W->FabM2>g{{s~xoo?%Uqo*?>8{?)LQnDVJ17dt_6G)?b$r00A0!Yw zX~rdbOAjT{p5J2dJ@zj?2n|GNp*sr_5g*|;p|||{Ppo+Y@y!c%E-(dG;1)sZIMOZ)MZ7;7Zo8uqC- z(I-W_E`(A2F%RgU3w^x_5NdT!e{ufaE*>BK0|GLGhOci_B^^aNzP%?+0oq}fJB|z# zimw^`51|pB78-T{k8K;dnd|r8%@Qo&-YXR#>4Z9>GDk$wbhF<*|tO~FOfP`nXIeMVd6Zzz#F7n9;1`u^VI`XTivmO=x z_f~Ete(JlENF_}dP$Tu7&(Pi@N78zV2gg4JF>co{zjS*uIggZ*I0pr(8*V{O2g0pL zx~B##r$rL1wN5s9bc2bB0O)wz``KP$*f@L!*ine$kJ16(JW`GVXE zznBf4^zEHaxyIoZPw|MxG)Nr=F&#bzNxoqY25(9fR-pDW3bktR|EET<2N$J&3>tzQ zM;cl%Zog~W`{EfA?XN+fCjB)rR8qI}p2KLFYY#vWxa?xITET?U4)(C{RAd18*KoKp z4+fGB`ir9(ti%Olf!~jt8rB*`T{$0^eFI95MWRUmY zNcN?Y8>7b%wjODw@M8wTWBNbjoUg^8RmwSm-ci_q%?z4!hIbTsMo>v00{KDg2`(8%2WVE1_-Vbj;>x z_(x?<-&81kbRfPbJ7-<33-LmvMqY`C?kI4OH|y5$2cmZ+4>UNbFBEEn9!eSVp>>1s zAz7a-3KE#o8(E$69iXDF4OH8#$VW$m?qVkY#kr*_uZCiq2q-2+s*ND0w>$M97qp3C z1nuW|)dGGc)=}@{vnQqles;)Ojvv5CLOU!MnLN*m zc8R=D2pJs7ub5o!8&rC5AQ_LxPgp=JoV>THs7#*!6-s9w=qPt30oVbxDG7><0aT?H zR!m}Dpu*{WZ0v_x&CZpHjA=YCLScYg6=*HaIqg_^8Nsc=R&P{{iGIFieGc}(Wd!y} z-snsMMs#vc4#ZHsX@k_0VSb?I^_p)pq)vD5@FQ9zYhMo(Mb#@ce26DV4etJzD%&m5 zzLEOzJOJi$k7sNJhR^Ksbv#~f<%O`n(!3>LaT}7nwET3Gx2J>v3i{QAGi2WdBk&3S z#%RzFCpKk3qDB>{<1W8g`yS&$%lin$+p_W;bW?CPMxoTV@5>@}cd7+$t$3fPc`m>+ z{r9k!yOF9PO)f4-NRg;JtUp0Oecu$0G_`UTsf7oP2v(UbxzKw`A1b4V5RDLX1)2pr zdaFsmX?YY;>Y91yty22!${A7GyI@h!7{nTYymt;Ng2x&~iLC?Fb$7+1e?a7`hIawc zlilmT|L6&w8XywQ{g$jW66MS+eCG+!6KEfVlIp(8bK!H13f)hXnUVh)dS>BK^XPL> zn-zd=N-$jIfagP$c6{91hpg;pjPWdwP8+pPnHC*H`9HvGHsU(W&{97xcnX(=hYy}xIm*53)_iv(oka)avQek)bc$QWyDu96s(|Dx!6b1|B&F&ug z9Tqq;0RNLky{Cze?0B5OhS?|L9PhCUf&Frw=eVk6KAEv}iC>#~#D zAWZ^x?)5?I%<=UVUgChuK2%cBuN`*8*UMQ^wq-6k20>uX!ST6d>X{?z7=LQhT9-9r zykGg&KabU`@3CSX_K#QR6elZnL+ZFeZ6g4*QCc$=Ik`yt2~^TZ zrcUAEQ(-F^iGZ)(BB^Zb>3pD~S-yAbBs9rI#3vSvOn*Uxh9XV#45756U`NDELU!T(*K;BWjITDPI4MmN|Ap&o;;b1nMIi-SRwF+PY@KHNRK z@N!2E@B(R&_<{nafO41c;Wf$zkATR+YTVptHJGIMQy5yxO59v37r14{_*+QxBBW=B zqC1&5sM(gFk24J+H zF%l9Ki$8L2*vlGs^Nusf0PrlpvVF-&z^*QjrCs`XgH0?1D%f5@7q_ANd?Yv!?n~qi zAv*wi=(oX$>I|n>K>|7Hxlb5Tj$~fW1&$Xg+LoXZ9i`k=Rnj)K(58h2^z&WNYi0Db zWubyX8l-nNOO2rds~|4sqy_*vq!S0K#xb?$xlW~_D5R3>e;3$y64IZU0+m2d+yUy9 zdY=!-3aH)6aRIC9HIE1CW%$TpkE)foyIIdV^cihlkEgFT8U6^zo zV>uw(4u_Mg5t@z&c(m!0h+i3zJaoCyNzml5#GEl%I1>2i!}$^jpX0?8KmEZC6+)EW zC!bwApy|+;<0u70l!h8Nr5Ac^W3HzadKfi04aLe^00L{I_TF+f6?r34y%=4jELwJ9 zW<_KF(cm`@l{!|C({w5u!hJhPo*x%be6kU{K+P>`x&m*VnD;s>gQS`kX?U@|rxPOj zH&B>FhO&j3e4;tDh9by)MiKfvGmyqAkV0wk%sjFe3Y7|Xa3aYON&!y5WuXhHC4g|C zUJMSr|A4g-0<)3Q8CF50rW6EB{x?2L%{0a5+*z0)n>+{NEvHl8P@wYCZ9Hxzc4+>w z$b~%-R))(B4vhtFH==zkr`(5G{^OU9p$RsI8GP{xoKTyPN{5mnR%d=237H?cOafZntu&_ z%l4^35#;70@la@9)|b9ZM@`y$DsMVPQI+G?gWMTsvV}*o56HQZks@NU8WBOxli#Ap ze4y2*vtv~ooY5LC%5Wkwqpi@&;abBkFS74OT`J{)CL=RL5mr!wEGRU@d=Px@Pj1*M z=wIA0IzyAa#k1x^SzpkHguI#cwT%{B0w0OQNX^4c+fbH!k%>z>2FQX?ny zAfn88s=Sfo`*_xw5Xpbs<0*tP3RZ%Gx|ceS|4P>`{y=+w-jWu2CaOp|ym&8MD%Iil z5fQOSg)6_y+k=G?_F`~B5rHAqgxeAYk<8&nO48vCsWSE5aif@lDQ zl6w)c1M6iNGDKhJ&Un=Wt2=&gkG_Oe5D9djqwRSb!&?aGzVwH$g7+c%=E-6^R&d&r z(C!HtCUWDokNj^}A@BN?W;OKn0rT}bjtFRdm*}4G3c^aK`8F)qB^l<-y$fe|WFZdD zJmlZM_ zK(9snc3w`O^+ykbb_xj~p!IMei4=)jUz(|2OhG6naioQ#-o+GecivEWbAzMFK#guT zrNX@hW^|#;;sb}-Q-zSmw9bJ2*@*uTsZb|1oG|;3-eEYY0n{ZeUM(36yjUriABMCz z0&rss#hIu~sZF)3c|j$oFAwCM9|NDXx&?ZWks-dB$uCpN7dC+oi|1gRhR|Q5YX`@5 z8Rp~Mzb}%vk;+|>vYW%l6{JsIdz8Nwwb8~Gs-mE}iwu1{!C^TE(^@9|Kg_*(T+QqE zKDdQc9&s z({tV1(dYC1KELPn`u+LrKb(W@-Tl6Yb+2`;YhBB;3O9(PI=Ml{-X2D^a4CYiPbZ@_ z@10by?A~Vl=WWJ_kVCtNAAEKAZO1P;z=Byf1F(omA)8)E^>^9W*=Fkaxvh&R7JoE+ zctkJwIG-`{O;}&aR|}9NGc=-8rC;3%uUQ~*)lyK#D)=7HK@dkF((=4F;}*1*j#Io- zm~XyY?k?g;kQ;Mq>CnR@HCWkaCkCFGE-L2|Yd@1&IXIz%8cU%ldDBYJId^l``6wLl zTh5u59lnj|ddN?v4P6+e-P0tKDMSQZlXQ|tzp)K8X@lP+6__K6T?>sSAzYbk;5#9L z29F2{0Fw|fdg0GtbFz!sPcR4$B<=ak-L^1R11OK@OcQZziP{H6$e7S#8D=+OTd*iRJiK*0d2r!-yLix8Gw7;OSj`Q)#PzbgTR_DoGU3=MS|!qrxb zvX~yfPxcWXb05k4AL`+fWLr?Yp%ErZgg5|CR_;8j^RsvXNoK>kpOslrp-kS*vxkqV zGuC=u2(lD}SdC4eL|C2PLP1}ev@3t{Req~aB{d=XQi({=xXL;tVk*iH?UL`uLS#p1 zz!49NdiJi++4u8%3GwTCpfZbWf{)Dk(8>D&#IF-t@=P0BYWdv$JRC+J8}9`3B&H12 z7O_kqF_H)=WE<}aksG=OU%n#QsKJR-!@Tj;9YLfZm;x6{zKY$EJhf*s2^6n0A7(@$ zBx|m2&%CUHO7nWNf9Ta+TjD71VZJ}=Su~h6`@MRLt}GJ=`FqC|a2D8{zQnW`=2*nn zDdYd%x(-wEJ+(a-dv?d1sH)ZPdErBNeJCw>aNc%epr{$wT+DpHeiYrRe+3PU9w_v~ zynr2OD7s4XSl1!OUDt#bQ?D&-EdsRyN|HnJYIU7|1*~SK<8|l&5-s?Uok{ula&?Gftt{05Y+-FQ!r{L#~+kNWAfIgS3do=vne*PrQI_%(y9)5J_Wt3 z7snUHgV-O%F2LX$hl4x1Bkz9)6~gn|BbemJti@h0-Ny8q zWXCE7FA&df0=!uFQ+yPQTGknjtoh|9o@v}x?Qv2`(h&X`CWcy6Oz8JMS$$<)VnuqM;@Q7 zcRgLM>#x$EqhLxM4ETKZ6y>{V+Vb_Z^NbKWBrY>lBWN~lM<|D-zWw^?cXEry4ZUMR3299U7BgaIvyB53cX#dO-1OI9#(D$XRPF$N}!Y<|rGjd^PK53m5$`6WHT zI6ojdAU{jO%m=Hn<`f>S4Kf0rZLZ7&>c1kWNhY~lX7{d`b{PHAQ3~=%X-3hJPsBrR zGakC2x^{ljLL8$PD0B+uzbgW+KwF4Dee8P)S)*Bqky4JSICbo6nwW3^pyc2wn?tCs z4X~r~1G@qTQ(2!_t%eXJl3=SXRB#?a@{jY)g+oWZM?AhmP7O2$)z> zyiLhHbic46$z3Cw;LMO|X z!5(cK06%caLh1%74HB)s3qPrBlh>n2sTbLKDv*BSRWMYJp4r6?i9J^E+Xq|xtNX%M zQI9XNeyDm6z69Nc_;@&9F%FOACslC4P;YPD1Mi|Mt2_l-7;NjMwQ5Yzj z6gr})8v+$MHpAF*dMXEZQPLx_=TTl)@fR@iAVANHJUy2FO|eLKIf` z%rF!)$}R-oj%<6Ux&)G9(&(<4@)4)#Y$Imr0I7%ktvhyz@k)E~b5)PV+ddaY#C;*CoiRU?F$H`|8I`cg~+UXFz?na&-|=`6K+t?*0wW7`Qk zV^KP)0qJ~+bnG&DdStZCP1vFNtWd$MXMA(+4&%ietE8ZB1C}R~6=R?>vDQ=s zrP|E*hPVqQ(4Hw5()&IeuR79ul8li)`QeO^)Tf0E5My`++a9I9ATB&``{yyAWGIHh zV(Rfr*9yIfzmABBlvmBx>;eR$aFgVnDt7;>*ElNbIy)lfde^N6LMqlLu_YifK!?5T zn)$Rie*F%uriWI3EgpG&&!$STJa>w_wVOc7K`9s%e7+|{(A=uFK&@1Cf%o4iL8k-; zy#)kpFwlmAxN9r5cnJrLcVMYl(#P>mhF8ZDP$EFi5Q2-0>`PqB(K=Vk=~ZEe-x%iT z$l2i~khhj=Tt!Ji5j|z2dB_Sb(E?2#f}J4Sj(q58ak4#8CQj((AQi)+CO{>cJLhB- zOg4F#P?grimp6VYkpkt}U0zf61lgco4=3YeZl8P;TbHD(GY-^(0TBXEscECjnPhzh||2#gc_x)8F?J zY!1RAWCKAQ1?N%hzeI|e#UIcuI5?BYox4iQ*VNn8(6O;$e^xG{TO$P;KR_W6N0!T ziG;fhPbx7@@%UbHw*eaL5={5V6Tt=8kQtyu~InqT{NU7I-Tx@yqL2CejVy?C8|!I)ybuF4TO4 zG-ITGO65*m@$1;&vw%Rn`<@TX$2#%5ma!{4edQI7(u1!23poW4-?2$~XX&6|7|Er%|JJs;b#! z?7r(II@@|4y#K&TdQ}K40?D}n8?VUFJ_s#CEztOsA%_Kq_R@JVZ(lB6reO%Nw>+bn z?z{S)0h}-sm`({!GM&PN6A9)3wy0}1ye>d075kzgG5frdUl`Vb*kY^1WT&>>r9a2Q z2p~W2m!1Zl({&$Y=?0o@g`GZ!6InI{MC_z*QQ#vcB>m}Xm5{JDb~)^bgpy(S{E{nz z0O$xz2n8Cy8(f*$i#auZHkwPjp@1~3@9qA05JY#$n<5JN#nnKY20W5!=AO3L>_1V< z6d|Mw|0_bsUOb%XmCSVD+dYT_zpX|C!WTktK?p%*HzjFja;Lv`56Xx$OilZ}W{t=J zg|H3Tp~U-8&^rv>QI|{;7|#dCe~A|+81V72{20j880!b`o(CIk|7LZ)rl(^<(+$t= z)GVOz5Zwimca%IU)KGSl@9j0A2*a*8^cv787HM0y; zLKBar^EM85F_M2YoeYs0Rzb35XlCa8#H^{?*apu1PwnidszduWM_7N^!o6^*fd(}w zfx2YB<{pK4`!%yP*jC10^Y+{LC-+7_`XbjorxmQd6?H^t*B7yAT5sh3W8vji>kpx> zvkHzkFLU1Jot)mS&iSg^_GGQdwp*_%`>Nk1>!Ci6`(iL4CW&=dB=}VVdz`BVM;aVp znCpEhk=zF^Jn4YM+aRE@+>-$>Dl4IKd9OI9R>)zrNw0i?_q{Ef53uK)5S)B(#HSSf zsf2Bp*=376YZfn{oYBOpDc?9$pF;l|$Rc&ui5oZMXC6qc^j5UI;}^b5-xvL(PBck` zI~Qal<7+!;#&GW8E`4bb^%uo&afE94YJQ>K=ZpE2vcNP_zbmIDU}3+N@_>~O@xs2! z{wD3%J3B0gCmB8M?O&xREWY0wOxe8ZRQ=%D^7DPchuEg5t+j zqVfK9EX(c@no5Lf#-gQEuc|Ft&bjrKl;Tx1tX**FCyirtYWS7d+kpQ+)}$*8uJNtd zVSZ)RdP%)%w}DD0nUHg1twUl*;*MQq4K6u;PLU$;-l4z9h#hWTU5`$6itbSE8UB*) z9GNwgNN4iQRs2WuG8~?q594*^bl0F)X5sZ$AD^5!$@lOKf9>8CmGCT|d{?wAoXXBd z40S>)xPFil^YYI&yMI7Csk(9fRwo4E&(-g&LaGSjBpCh;Acjyv`s?Rxf^?U{2)u-R96oJDUrz6

b zhq)}5bBX4-yQX%|Q}A5_(^v$w_1p(O5&JFt8Lb$R1` zIhK>d>aJh_ban=$gG!mmF|czUg)i*5!1wBH62_v^J8fuZKC7gzo+scvT_wg)Rnly^ zEiQ3s&!Y7^X|uC4>P>sERETJoeRZMyb*@@Dq{|3&70AJ_{8J!Sn_s%!rR1vt#ZH;I zSsxyHbeewQ%O)@mlQbnp`yXKnb~iQod2}psHOi%#*KOWkXkrO(T*AadH}=FU-jWA0 zn<)FX)b)l8r03C^3n!kdGk$z|&J{V2c8dA-Vg*`V3-|TKiJ}||Zce{3F&t8tb^pepebJyta_$N}yl$RAkN~_C zzPokF#Y8l%!N|69aAtDN;`#RsHpV_WJ@>|+ zQgTxozUavzd-l$!*_xQ;e|K{HK#o@B2qG zoRp927%k`TN+hTRS>;uYe2!55@=l3mVH(!l=Mr}PUpuO`;%O7_w1auau8Yw}OIEDm zpRX*}O%EB`X(KY0W(Wz2-pnxDPl^n<`P8*1?PVy%gY>5pCoCbH>E z_x<9fVggzPxj3B^{!NWf9uYSAA;n7^5j!g*g1MXhH;~hLOOec`=#|*wm%b9_W?fTL zj-}PnXU}oRytIdA^Q!ebg3o+X4Br{yfaK=PI~|7efM|XzS#;{9?~Jgjv6@|eG%>MB zv1c42%FiZi$j*F0R$Y@nI5I8m;sQP;`vBRpgD<@m&HCEX#{ruKxAx4( z&sel6{1w~Ta*kcZD7C61Z0Qf1L$D>>kuJBo;!dBLJH`lWE^n(ulEq30LfWyaMK zRUq4>n{X<<>xxCR4-_$~*wE7JfOBp~!8z^fsR=UBPUb+5#9mn*(i(rAx3Uh&u!u8f zH^xYbtLC40CF3&sg&rairDlnqKBlKrE=9>GsU_AgnMX;yRn9XT%tyCs);l1THjX-w z3;oim+VhIV?<4K8?@^lOeX5}Gkgz94TZIhh5wgfxd9|3Zqvs}tIvFE63HGmXx> zd><^eM_iv>s^kutR+MM^8x;tHL~Mqg;X5vqr90SVMxslQp7b=(pvJ z4S5dI(+u8_>Ad%HD^1qr0m*|tZ0b7lSYr@Ma+a2cQOhW-*Kv+0B^t*%_Jyk@My}r} zaH4HDEa(1%TLs2m`YKz$SE*UP-lD8jaQNclF4G4J&*4llZx4!JQY5D=P2A&&N}{&7 zmDPXlIqEg?Or@ZlTD|uRRvZfMIB+A-{-bxPFQvB$N@i_(=~T(nv>Po)7xgxT&4%dH zWSx?#9T;i;izxzsT!NIyvr|F10sO&w$uop9qm+v}F+zqQ5%oO6a_0L# zg(yhMJ(pUaMcK&J_6d)a3_E;L=@ze&_~FosnM!_aP&Ik5aOlm2`DSQou#!d41>orI zZ3mlB(IKKsClhKW*hxPW}+BJif{L0oJbh5M)>DTtrnzQ2x zIkkIc@?Wd0{8x_I{)skJwxN^)yW=wSIEP0X$i0d4Ntuc;%uSOZ_+F`66n#gIh65_d zkScP`d}cBV9!i|M>!JezdSzZS_wAlu&`VrEp=l&E2)9Sr3gzuz%Kkj2V*t|3vs2|T zO!qjj?J0{YzM<5tN-QiWYKwY%5%YQ%(5V?~)9zr?uaJe5m0;poBjWu+x>}htptOfV z;fuxv=Q>Pt?7S(#z0#G_)1Y76+@*F=u>=_-_2pLT?d?hlC7ZgRoO2L8dJ5K4W8LIf zRb5`@DwxgD4ZEnxM-ACK%Z0ypT=zTb6hv(Do0m5FAAQ!6^TjJ@Gv!h$J03&zHQ-pL zu>BrR{Ku`_Xd~D+IY9g{51pY25w(Sp9Nh@9vVh8bes#-g9lhuEo+6m!Hv6m8^=EM6 z6}C$(vjjgA9jTOqTj1i(`0oPHbH;JrH5oEcjy>)b{w z92<<4A0va|{7q}TdK(+w&rt~@qPJ^o~v5zQ2 zUC!T9Zb&;?JZW{vFyukIQR2GDtnn7uL$;^pK&Z#PjAfE z9)$4dOthOtbDsLAzjx5Y&!tG9x(kjM8K_3gu~faGEygL=8idOeREHAcDss)Q;vnst zr;NV3{(C+HoZ{uJnCT2~kRQH*%~`TdwG^#8UxHPYW9FlBb#GH%yJ&kyDGP9#E~g{# z>b-ebAR^W7$A-IqDz{nR?iw?S{8Lky8tgV?!MD?j8^=My+&tu5y9bFtK0aztb}k@yod5@C zz|`STf$k4yEH9V%4K(X#RNhKgTNHCSmh5~fOY~uR0X(^x%S*tf;;+=sjVw))wxM~@ z%>d2xMkL3g-uhc!W!URKe;a0nPmVHdx23ho3Mvil9=&Y_fj5=94@W7=%b2ULZ=E*3 zR!&&SVT-{=n9m~-i{J1_>i64sc0K(nL_BhKuFUGIoLXflm40-ZugT>Mto?KAow)V! z=Ukz@rA6N_?Ur>@jtzv%NLyHV>krDug_rM0>Z=tv6Qh9O<;C$-p4iJdUV}b`TaF0W z^cleZT!L(#yjyNIIyo6Wc}Nbvl`LviDfiPzH`3l`&?#;haP^2deYY{Ej0L~9O>gXoP}B_9+7>^XYh3uakqm#T$x z^Q_YB*VV5?EpqncSlFu7>A3B@Dz_l{6qXHe&GEeYxnTw_O3waJc(yd2rz%J!sd z6?=F%V%XZRQUZb!5>#Mnt1_PIjY38*&f0KMw2LD9wv$3FG4oCakQ)-WNd;u&;q&uM z2FMGE^X<>Q>zR$SZ$_?V?_0-n2>hf{U|h38o;LibAx-VFSjnpjFB(&^q#jRzklm%T#Jnq(8>qKDgk zYGw6vrzaUtM~_JBWg=4aHoHv5su;NA)a&OtYn=!5T6h8sHY_f^;aJMThodqUDGlEq z1iZtlx;4hzRfI-o*l7hzY*y1b_El$pjeI*XCRBNo%&E+0 z87*tJSS%UlgxjP!{yKHF zIk`=g*8nD|2x7UxAy~Jy3-UIDtp$hk^Y!=_Xe=Z_vPOjic+IibMT1xVS>ZT4O~!hx zIcx7ADq6-pr!98bDa4|hrVR1Yf3O$tRa+8GGpA-e1 zif=83Ggw%ptCc-(Spwf6?yS2YOLAr&93A@5cnU)phKXYPE(0&1LK) z*DsscFM2DkHA%Vw4Dmh0$W)ZG5rZPqq6Kq9QB=5Ngg*F6lH7Zvy_saB`5b;5V%rJzk)kI3Ui<#<1ULfs|51q1BjhY&BQ*{eg!SzArp^B9Z-7+3W1P?Mw5&ti5R+&27rX6)ft`oLY+uyXo%V_e`u6(MVEVUs+}(N}>3z+9s$}q?<}W zsirAUz81TGB8Bw~HZ1k_aVclTQ`Z0?I$@p05g}PM@?t3#e^ZXvNC^CFA)D%Th*DT~ zp4vE@W=Q9h*mojaf|wJ^)#IU}TiS;hEGG6oxNb^8RWdX2s3#*O@m;atiOqb1j*VND zv|1k9OT4YyqIOv^C@Q@X)J@{(qb_{#LWs0elEmj4-6U7X%B^WweTx5PQ8f}mPncMOp| z=3V`AA8~oSJ3l!IZ8g7=4ci|~9Rp)!gN%-Z>h*u-Nk#doD#@Jts)N4D#?b#oQAPt1 zu;TGIeRwM9bbSh{$J0@Ja;7QUa^f>lZh|P87Jg&7?g~WETv+NBQ0_&yW*|bBIJ>hn z?Fe7_5JQjug)h**u?imL$3IUKL@r3elIqeYZdo|wr?`B*!>9m-QX29qq1wKaCVeW9 zS8%j+Eu*JNo5e?j^^cEEf@}DCE-hNR{a7*OCOWJUZ5dFg%}D(Q>aRuZrcihN?$H_j z5eRXZx)1t%$g|BH{nmU2wH~hK^Dla5JnmpYyX{e@^gk#Y={`s`*O;CZZ~?QOPS2KF z>36Q0we3UoFb&3zC{vyL`c69ID1?!HeSL` zhsveRUTMNV-Q|ck(}H%MN(5O-Lk2_*8X89+#8~AG5LA@^#z{}MGET+W!ZNYUfSOMvzKA?SVMZO zW$zxC`Xy@$`=9(%ngnByyi)U%M>pEN@^EKqCsl;SxsCQ|LbVA(dc&%j23hysu5dj6 z@yCxJoqv0w=$ZZg%a<<;Gf^)X{cZ>`k6>eNx`Vcs1%ze?T8)?|+)I3BN;}%*DeZOq z^}b!_g^tGiNo-cpKxjlwHf|;t+{f*I?ywPo6Z+pi1DDrBGK4q`VSi=droB#Rz+IS$ zvZ?y7he!bI_+lX}8v(mUhN|?+pUX=@TL<`k0t5=>#6>?r_nF-ucx7?*LC>q?c3|>(~b14tgKw?xPz{}ef#zuD);7d zk@`LNPCla6ewBFZY}ufA#vXZOfh2?L$9bup`^4&WszI)^es@URws2G332o;*8}!M& z*AihHdQ=o3JB4x`_PMus*MNXQX7r6T5k3&{y3b^i5NDIn5MMG=wGHJ}*`z6;Ei!hH zmD0jNfE>dnr6=EVo6*HFuyAk;D%E;v2C++4Z~lUE(z=Quo{^r!yD7HqMXu&J#ECc8 zOP)sizTh~Ni=Be@8ox&?iORxDVu_7ezE>P=F$Vh!^!WW`%6{W-U-{u3|g5JWsG!#Ebf8ND$RMe z4Fj`}tByi8Y5V#9qfdXlJ^TbMJ45c=Nr^uk_VvY5vFi21kaheLd{|Ty1^RqS#!sBy z@Ihq&Vqj5iAq#-S*|k2QBfW+@`lEv2uI3L4Z(eL?+}Uv$v6=7*20C;nW}|O`7!nz3 zQM`$DUoTTIUWa_z;MY`o&)fZ1tmxY;uC;(YlwfsEg2E3=HQKeBF+4%LeLD$~Xbv9W zcrV%JF30yimA^S!mR>YwV(HI$_FUYmSGi{+c27@MO}sf69QPXX7QL}osVEz8kP=bD z4)$AAr_Z5W3mr`5+Y$ zPiq_E!Ggom((ttGE|EJ-VE!dkAho1s$hdf<%6W`e=xxdY#bMQl+>n!BG!Q1R)F32ezoZg&*dINk z&y+1oT^+IvR7<4VvJAILOIioA!)IR18R+$VKD2PI1iZwxcq`PcP8BsU!obiSTV-5P z(^nQP3zx_)k~vIn?vv5UX+$n5>;8ek&p&yaB+mu|%PYP4Hy@&0f)4#p+>fFh2z8F3 zr-N6xeSICQ+eCnZJ#p@yS?LS}ws+cQG!AxJURGo=agCQiam#4&MTx^9Om|S=69JAE zSXr^~^H=4b&t&3xPtK8-U&efSGexkS5{)2F+WmZS{^74#i2VDmtz7K2vMGCikXAf( zo!rrx*-3dHV1yEwZYXgH9M?4rOiM^Z^3NZn%yBH5vEiR{^* zsb+WG-+q2R9I?it?9F_1ky`Do3AVvjs(@ zjyKzAS4T>dXDKEW(Bb}{j%#~LJn{C zGu=xm8eF6-^AKs$IGVUf5XlszW=pN}_9D<<%%9hFGBeVyasu=ORpo}qq==fuhVE=j zV#YJ_9WDR9;vnNhEKELZaA_IIolrhr%ZAuc8H8a7gr2<*{>tI-a7^d-wZvohd)!y# z!6r9p-84F&-}29jBOAIOZX4|j>V_7F9lFMR`w(wepTgv>pk!DpHIyI~6n{gTv3@#W z6}+IC+_*v;QnPqFAOOGKUTpJ$iwKR=v-k7arO zn-IxrKxss6OB(MuX(083bvSI193(RF-5c_i^!~;knZ!NI-{QNci zGQ{7|ch9r&d)Cd_G}^EG_`q^Ym8g_z6i)mL{ZS%m8l7cBTTC+!HDzbd{ZC>qP4HR^kE5EMt+dHM_ zWj8ImKGW-dZBQ9kM3rFN1Epk4eOwSOE>3?kWn@RO42e2JzXX& z34UBHq{}qTb{7DbK66TTFnScclBLpd;HksY@q6{j-bo}1QV?G)-78`V*c$kC*CF=B ztOk)^7G73#P!GTNGC`GbG>?Q`+5H9TIFZ!C(IdEvn1k(MI0%~8aFD%GvYi1uCJS<^ z5^~ZDsSB7}U~kh{YoeV)wzbzx^5csO()}He_91v{elqg>lH@L<=ZH;zgMUK|ru%ek zLxFL)c7i}JDx#6il1qII-2BCH#6f&q1Xw7A6brnJ#j_}em6n@n>`*A*2=EWR1IJQQ zyBZ&Bo^UUe;JR>#9jS?TDIpe}XP02HmhCkxxhlN%G)<)>aI#*X&8zvWmYRQkrT40v z?FT3nfdoa+L4cen1t)rW39fs%^YzNcXXA=(Yqn6)gqWGn-x2IJYHhjVZ{8dyD-y6# zsM69%)IzQk8?F@Y(q(W%r#xZu`PMK8YCtk5G$Fpp_vsD+>rbAG+-qqmIEps6*n0l2 zBG{BvbUr^gK2#fiU*p#1;NygO0`!XxWtxfZnh^H&!rebdNEA+ZD>7>|xS9CJjc`l4 zfa5y>V1MtDv%xbh^_?lt@_f1~VyA8&oGD6{b*ZK zi&v`)n15FBS--QZPZKlRNi6~$qs{eTkRO}n?1(;j=C2!%kA?aAQO5$rJ%;!rlks5|w-X$i9|qx~XCUWTT5c4&6fghydZeR2Yh1iwWTXhmYvAQM z&NRTF2#7Pc{yc7!Nig#$r8n1YD(T*pUTceHplB-9hVuLNB4dn&ZQU+CcAT;Ad|{FA zp*}|83o*>kc86>`)G;I^BxumejjReK(br1mLpNnZB<|DcdW+@)eft&i?jNEXCTeym zBOTn|l*6YajkIjoos`Ie{@{)dH6vEM`l(}~LVWE=-yl9kNLLEIvD>(0vGS#y-& zbqDBi;EtU^1~hu>^RGGzSxks-$*Lzq$_%HkB+G|XgqDELxVqULKf@0JaAtpNx({fFNwIZ@~>d(#% zjvUJbJeiYu9LZJM#LLyeagCL?EGHRZiUvu^w~=mZObRk<^E66m&FC|-4Vj}`MNT>5 zsUI&}piK#|P?}Xv<;aIKegiFr^lAi!8fnbCem})CaL@s591GKrR5s?6qby#X?6P zr2vVo*k)1jhU+iZs%Z$bS-;&^qb?WJ<1C!2&NZ=ii`Mriy}Sj}@2)~&u2^Xabba07 zI^MOvVqM@|Nn&6~Gn^BNIYg2OF}&Ar>LL@bq*Z-sQMPTPU1Ka*SGNGivq7ErH`^*v zT_0$ygs|RjV_%F^<4(u=0J#R?NAm%kVushp;`BA6`Pvkocr5nT^oBk=0 zofGoc>0)J@*ty24(dsi`h?$^Y41>w0#1QvI|5ndrTpEq(9iRU;<)F zP3Wowp4F3LJW+sS$&#UGqjwyP@Fa0s zKq2d&KM0Mc9Hr(RBSMZ9e_2*XrM}kHSGsci>@hMz&alJmkn)&BADY_RDMhj_1B5on!5m%~?F{+v~Ox zDKt<~1P@^ylx2XDKRC{^dm;|^*%^>{&-ZR-bQwe~d%(<#YreoXlHd+5Dl9tCyC>k8>&!#uyZbWRO9SH0~0lA~#v7f!f zK*p)CPlSo;!edMG_Yru0GXl@#tB&JE9CPUs2p^Q-xC+CQJ;f=yEEsijk;kvA;yr$X zR5~$4K#%>PP*qxe2i%H} z4@o3QKE->ovQW>EgaiUmPHl=p_9*Rax-@FC1LD2F5XQHTl z2~e#?^RYZEgyF;dunLd8HwqCy6N(7BCO|GY@2nBK*9<;@@^Jgy}IF#M+Y2$J>`{cc~L3 zKI4dPZfgPKZ0nKHS~)OF?cV+#uwC`P#sKI=<>%o_x9JgwxOm*FQi8;4k&l${|e zKG?f>qPsSXeJy|YmF0xkW<+Y7C(-|gf&wCzN+>B|*9^@~pP=RD&2(%WmYueu1YnCgFZ4M?AEW7-`%3cK z_0X0Ey#9I*vE0xoachyP+@7xX$J~b4PDq?Re3no`0f}>$9y}!xLgL)}aBd}g%-7K` z3@I%F#RV*0@x9TUvT?^=cO1KRVr~h(IiTNp8Qj!w&iRo0!*G=@de>+D75{qyj`_A2 z*=Ux{PTytjarw}(J7+BVnoph+*|+KU{x#U#m~fMD4uS(W5^@MJF1F9G@iedeo|aJ9 z+KsbA3_qGMKiHm3sz>M+y>dnB?|1fQynu9~>5)4xaHBB^iZ)vamjF+ho80}1T{pIM z9X_o6Wonpkz0WqN)##=Yi$v~v^6};_5i!zZvIk!)5cZ&Lk)im~H84YbOhZh*;}<&a zGGXebnva9Y!=dLs(B_~Tb^4spFMbI5hQI|gGa8O{HuQ**)RsG%1--ZgEBmdqeZOZ; z;11{uYLQ84SQ|p05>g*%V^Y#-+vmRW1VPT;t3q3y(+I=dXDOT4@GB<6T;tO3WsIq) z%I_7mEc`+I^8Y5%DgXIEaC>_Plp``doJUn(4Fu->UL*}`ka|J}UP-bE z>MDq~N-$gM>bdEg;b2_^ zx}+g#w%1X1Q@f@3A~T^)T|D;{cFgeo1A>sH=dGNk3;R9mWEGTb=r|_ub#A=(y5?BK z!k@v)ew}=a7KF?L_4wRV>>aR6;7?RJ6)=#rCCt05^I!~V?E7uSWA?Ei;nn^&o>=iL zt6NMWA>lv$N`jL;6Z4YEW&%v0RaA(oLT-X$wtL{9P{rqd(wqMe60YJ(67-Xg_bRbq z8ZVB4A{3w^K%n@|H2RfrCSTboblZ|%0r&J01OzK;^ay$r4!VMY!2I8D{g>=+PQp1L z)PxtuOHpdyKoitUyi_{(1>^t0U*$;t&0kHM8^{;)96=;{EaiS6*XWE!KNrSA6*pb~ z=Q+#o*SV&Kl;87zNR>dstIZ8BeEcBhz$Dv9y_)+$^$r()Xq5fv0WY^SF21rkBZ^6# z@u_1HMalbUiZy0LO+i29hfCLZ-!@kOB0VS4R@;qIu{|9yA9t-vD{zl zz!eOb$r~l(_3jL8ev}F<8=*;6{)wA~uzcnNCaLD1cz>TrO1WTTN{IX6Froi29heNi zU&#mNQ&#_#p|4)VCd_0md~0T$eWN&v!Vt_bW$u+OksVGFef24os1RE9;bBncvstik z{8!I?XBD@S5(s+nuaOh{JSH6L;U?Yg3Z{k>>)dNANmS8-Y?~w&fg>Mu>;5<>d)v-~ zZ)bO7?zLZh9ISX|;p+f8)UW8KD|&n7R~@N8em_LvIMC(av^777=ar&V!{W~S&o5Ta zt+r1k+?4S_y8HNX05}h=hJN%362f)Kr@4voc?AOXsX&Qn&m-97`lnMm3Y4`Lor}&2QbS-jLamhLGlaKE#NhZ{N~T zC1w;Qbb4;`^z8mM;^#vNjfqp_UmBCh*SU$&%W7u3Eu(8V{S!7EndcVZ&Oz5opWmB% zp<{f%2u7e4B6M;awFY`4Nbd`}b5TXs+hEs~d&i|?N921rTFGte~p)y&%6t?sxoaw z!5Zq|*6;~6%}pJ5*}svP^W^h^Z_bONT@Rp?tF%&ivrP+$;_#vF$p_sNQFxzGo={|@ z%AO1VF+uxj;k3BF7+(bS)8uUA|8IFF5edmq@J)4K(EV=S)KymY^MqWlcK)wx1zyi> zGwoneg9i$vs}$Nj|Cs2$+uMQuHPGpN1gZS_<(Y;#2atl-4d9ghQM%SN386CS--iYi zG|3a-;@sKonhjD$0_ZMPor6ixF{anl$Qh^p@{TFRW>>84B-C&6-wy>`Fk@t8$66eN z;|}rO14ALj^qJ@1yIsC->fCj{KMn14^4cy4+a7^Tst)9%R3mn(CRn8?hX|2IOFQg7 zDk#0ZxL~nPmf8NN=;nh)idCB1CXi;`y!k5{Q0pryzSuOpydJ};=22>i%Sr-yeH1tC=MGY2@3oV%nCxYB*niv_lnN;hxjut} zR?$h*wGN^z<~%{y6k}f>FaKb@Q<}q{d)xc%s*C=4uE=gg9d+|xIa?y$vC)4ezhtQS z!t!gK8>+-Ry2{r0Oh@ClfBKrgY?nF^*<#?ol7q+py!CcYo+-~~HL_zzH-H0ak~#Ju zK)&9ubcd3oqvJ@^$-7n+fty_GtanCeX=yz~8@KsfInLjXpnKcK_J`n-oauQR9~_5N zwUDf=v7n%!>+tH;t92o=n{Hf?TO7O{YJ}3#(yr~3?s7_R8?(%Zza8@0g^51bd^V5a zA%CL!b_wTq5N)6U{6u(QauB!5wrx4ZSxQPuUm?@nHg=0&{r$}JB;^V&Uy?W~U;jl9CT;m+7JdaI!mQtte6nJ6`|i?|0S zU57vSU@64x(s*zFy+deVR$E&eiiGVP&VAoMl?Jt3mTM}i-s`;f=fVENSz&ENv*rWt4kKfEw<`YBpa;g51osz=$Eu?Mr- z+#e_$t~p-b=Gq;VqIv%cuN7LXPq55-6`=XIF8UZMy(L}E`3{G2I9rE_8asXRS*sjO z+G@VKD?j_dd>3?)4vRh23I5R;Ab%SD*{*JILyH8`s53YY?_~ut4SpVa2a*O-!EvA? zL8;jae}txok50W&4E}-M2B+vWLHxr~HvJ@Q*kIO~H|FS|cXfjiR>$}}(Os#oR=LT( z?ehb3vHY%8=Ri$-`<#mwAU`vHyxhd@`J%6&47H6N{2TiR+v(q3wb=fK)HU;$vv$n? z?BU>H?N~P`&-{=5U**^SLAqL9Q|bpZa<+#*X{~UMLz))awDw11{U@+N5DVQeanH&266aY-Ya_yJ+bej_m47 zHN4=p3327+*@-0PalJfvOwC4w>*A+%_J!usI1!Ea9<)2&__%J9{f+VU<=1YluM)px z{&LWtvCiJX{Q3*eTKx9%OYsg{_m-LM=nWFt=UjjT5n}rjOdy?Pt@!y|+W3{ne|GX2 z{(`O_-2dUxVX(ji?ZQRF4vU8M2KJ~W<`f4s&o*b>5L7mwb^R#JYCb#jTx(VN%&>wM zN7)DKT=TZ~elHA4wyIScB%kW5!o&)(OiEy4{m2M9-UV!7nUtOT?RdHJesj~$>+Cf& z8^fdzaOf}%K%%F$X5#>U>m)Ne+3A|D9&a{iKl%SA4h=;a{#1wbb+x2PuwKT|a7j67 zX~Pg9UAkmh_plYr;#K3#zs$dPaH2t^l8_QX`DO2U4@rtLlMncA+sG>3WX<~r?(90B z0U7Uv*u7W3MmpAz{;|XT_xLsxCRl-+1hal0ohW<#gfm`a2X;9Zs89aO^bE9_d>@cpI&E5=*I9PEp>S*-*89 z>AvN;=RdwX)~>kyxZ7es*3pCeZry5XOW*y^4_kuuGCvABbN=98#Ot9(A#K%fiWy> zLd3iHfaaS;;!RCWUy+Wdhi*w7A9o>ElN@%*&*(y|jXntshkUpQQS62w8uW@|bDsGcrEa*cT1r{N9$<~KXJ#WpAjJ-G_ zM&)`_`1Bdh%<1=O;e{rd_y@QNSFjI{4bKesqI0uM0)yvC$YqaSgZHtdBB^dmUJG|- zL#kH1ax$7y(JLw{^4f4U7Mw;!#MP2mQ17_Tg$sPR=j!H#j-d5PnmnbYrOB{ei~J|X zYFCzQ-R?CrbzgM7)JmT$c~9uR;|fSk(MwNhY&3{E-{yK}yVcuGwIk0LbA3T~$&f0> zTX+cR`X;W7qzRR}cQ~cG`3{z)Wo1HqeEUgnnl3)^*THOQ-(1 zaHwqe_u>T?(8UH99d|l3oZz8BZ)XFm;d=}*85U#hIC`{*HDEIC{i_at0hh!MG&LYD z-ofgy@bF}qpD&m}%v1;q$Lc>9It`YtJ%cWfd|T7B@(MWyt;>IXS~+9KD_+>fj&~MmPF=K&9hu52%<(%JGl}p^Tf-q2}}a!cMie1#~}shi;`q z(^JVBu`k5s15_yEVXXz{BZ8~ph(#n=-I*L4kc5|-f9lP>LUA;CO&6>@ioL%nfJ@x$ zvMVN#OX4Y7H=MxsA5x8g_YI|+ledEob=}U!?fxoK%D!V|`5_5Y_%ioJQy;uvT59yr z8ZD^M%k*tPjiSTNB^gGSnL;Q*KC`0?ROOGPUr z6VPqr1j2_E1vd`yn(3wJRJ#A{NgPi2)((BC{G*@obyjw-xaqI$q$5BM&fy6)HMO>f zaJ$0MLsi6X_rRcX!l|aV*&e%rc>f=}YO)A>@~V{GM{nL_m2e5%ZSjKZmVKVQu8R4F z{LRVJ-#$DlFKj`>#{AZP_c}9k^GD|8tkbwUeFCS(sqZhux?B(aHtn)|%)NWwXBd-1-IHAo znRGPY;R%GxcAz0|c!Hro)gu3d2czW+7PEFWbKwDQ73|hHO>!L)q|+~0+3o>{RaA7a zU(|n&-F$SWAw>x)^uE58VJFen{U>_)sh@5Vkh^E;CeH~cMibk+9tO|@hNFDM01(y0 zJ~W8HJ_MQfJ=(7bC@HI}>#L|#Z)#YYY>?GqZ`^(#F&F7;0gf`&cOPlPat0n~a9q3B z?9i zw}L%AJt-L0rmF7~?sPg`$WGcz>{(2CRA24262?UL@I8y`WF$IJ0zr*IT}SElM`)9z zn|?%>bYBL|!n3*x&_^J&Ts$7)q-i_YPlMcSgo~jb?aNZ(UZDa^0UY5V-X`mvXTc^J z92|5ty?-!3^kFyJu{sr5f&l&Wb?D8G>))m|h%1GzlBDHI^2yrhJCOKIfH+NLWTax% z)!70`d(7*R3iA%f~{=ku~pq> zte_fhLk*Zo{|WodqMxUWJU-tKkdyheY}WbtqP1OHkekmGeaN`yV(wO(2?qBQbfMAB zvoYRr`rV;z(E21qX#0+r<|bD<_sw4*5RN805$8)FpCrX&djW=$77>vOPpW(JIy%1= z`1j8Lc;)yhG@ zHXX?uTTQHclXY%qfiUkqEv3dh|6Eo!Ass0T(^HKPVn+wsGi&80RdB9Cc+o@I&2Jy~ zgr}=Q<*Ibd=ZDAk_m#s$RrmO5-^0nbEt)u>k9Jp2Krcear=h@ZD?9=wKGgODnmG-J z2EnzteEG8b@U2_7bd$CCuy~A+eYh;pXHh<5mzzGeQt|G9-9y(dJ&%c0J82S)WlDir zEHAXCioJRA^llQ){%2w90OZZQfBxwCe@eU3s3xy1ini#}BDOyJw1QyUU@N1H0fksc z3>Z+tU>Q_oh=7Diz%WR$Ye{X@XaJR2WfD=S1;juIu0jh+1Y{OuPzDVGkwlCXByV4A z-&*gj)nAW4g0S-4@7{CI*?XUR?#bqdJs(9wK?ok(`lhzwL<5O`wY57)5f8EV6eFLZ zsVGuMgML?gm#s0WcWcDFUdNpkx%v4z_>zcD!Sft6G&JlkVR0Rp%=Vk#8vC$V0VARm zS5zyZ9e8YQ44=Oimt{ayIslKb)a|pMbw&#R^Cru2ujVqaC-@ zg6@Pk62t7?v~mc%o(WKJOx_zA0LqPaU86na#po-~lju&s{B)>P7a+03eo2#C@t{S? z!kyNDIK0x>nTTfq9lM&5ymZ#h zbBv28wK$;(FcDhreYb$q@N>^NC+_?UG+ZWyNyGh>0;JDk+khj$zFS2hqOG|e?e zw{GG5;@Vor8BC!*SR0&hm3weJ;Dl-HAIFH*Md9ta@04k?XC(`Ed_-41fe36Iw8z=` z;^WH5p!vWFDTY(CjC#3RF&8ZyHVN!5y*GTcx1!yI(K-v4Ey6=DYjEq%{PdHtTj>$c zBDeC1>(dBKt^=WX=~U_nf`viw9&kI+D(-5-XFt5e)q`0nh<;QkO^ouM zz)S#Bl=Ejl92*<+;`n_sZ1bxyTo(bODq5b34Q@I(ILIjO4Cq65uso~_HP5xoUs+%6 zH>OFD1OUh2RfwcoA%qynhvHL$tLlAYVg%yJ<0ACo>`KRIK2uHL4(BSLBTJGH%>|q< zi)kXw+0zgh4WUJd04LSM;|v+CXLfu+oUT90UmgKd_@a%c2t_VKYGI}CMuX8l-c|-8 zy3s@bQc6;iHw|I`FC>h?SVtR}MvU#3-7IM|>SdRIi#S(;zGWi_h>>j~1POKfPMVP<+@Bu zhucvFNTMmvJ2j73J=&yML!ZN5X&o=`FTx6Hn)N_&D8@9ourk6gK4F)`^|a^E|B3GH z`S&IltExA{6FXK$1ad4j`0n~}b~_1b0blu4Wsw&BOY3tYx#3J)kz|X3#m6d(Ofi7o z&;~tlm5bnAKy5^{BN&C06UAG=4PKOY6KX;rISM6{;YlGik7DH?s8t^RZ7C7qP(7BW<$9(f?Ti9arSvtLakIDc?6Zp6aKdom0>VTI;E*j|uAvK} zg?$gyJ$^pm;+%(>s)ptM!8)!>;(7)_Pw(W_igpAjr!s%1SVHsQQ2LG!E(6NlbNlw~ zKZX+ROQYp%4}g>IpFO`neE6_bFY?i~outGoDI){+?=OZYY=!8JE^<+LdM`Fts-f4e zzPAt+;ouKq7dw!}yR!8IOgg;#OMoS2R8+;>tjr!^-NyEkemhVC0oHT}>~oow96e~A zirg*6yKZmC&~atawZ_d7O9H{-zxf6vrw!zepp08k{#jYE5yCnu23+V;+<{^y;;U}J zmu>>bEAwgiSKyPo`ydcVs^po%x6eKztLNW*CB6}D+{mv821V4ELgrw|Z2}lXI=2kY zz7VvF32z7X*2N%GO2yHrT-^n8o>Cb|-rL&9~CU z)@?x_MQ&UTO#KHlBA?j^u#71@5$r|7C)6!F1g0WC91_0u%{mFyuCZ#*97{?)t6c5otfIGH9eCD;($xp247x zK=+pBHKm$1BzYf*ooe@Gv)RHr^aGQDUvCTx4P7caVNT0xib3b(dp0TlUt2?9=&rVHDhvK~(2zErI zzKfFIX99_rmzOD?MsEQ;yLCVDt3pf~?eceVHEsbC z5)Dy0g8(LE=G$S>-GqJwv8qggs5uibBVwVTtZdaaaEMpG9$+H4CqDZYKK%Si) z9C&a~tMm>C%!B&+iyKTk-NWib;U?g75^HFvz)_k@n0LR{PJ5R`Lgw7fQ&&yETZMN` zD+G5~logMp!wp(=2-W(p`1+M&zX-TFEEda_hsS?Khk2!=H}jl5ki_QGW%nhdC7&^_ zaRcfVV@tFVzlS4B9#{A7zOZ`-fT>qJSLcN(h|d}5Qqf)0%2n$XZzK&L?B+ELKZvfP zy&d>oAjTr`DFx6SqHw9U^nd||sjfM}#&EyO-Xs$lFHdB*vWC<^+ z_-;>SWHFAXQVL+j*0FsEs@fYi&H#cM;J^m7!qu5|9$^tNIQ^!(m*T=jY+hm>h|pg>_+9OGqheOmO* z5o7gfZ<@C+N4J439dN>Jc?>m+3_A~`XZ%}oP7}1{qK{*u1NHMM%wR`r?RDJzbi`hc z;$ZVzI0AO^c@f=+{G6(N$9JlT9nrgBP2?=rKhvu5$D#TB9oR45GNalek z+*X*zQM_B8T}G5mC?+_GGA|OF2Lf^DLq+rP@fq&*nLF-?QhaO|X7!186uKHN)-GrF zmU`AKLRhjx|HLjs1EL@Da*(4iW75&Dtu}s_2-f|Mx zMRX_0W3i85gr$&FNRU{&IYN{spOrNQU>_&weu<1^7D}9QPTC&An1<@+;m5UaK+p(w zD|9Po!=#hJnDoR0XQBA?Hnl#5Cf1Hdn9_+awxA<#23ihj9~24@D)WnR9ULqZ7uILA zU){c#P83R0zZOcej*HzT_t4YYxD~3pzZlfa57CSuq8b!~)NkUV`WR%hV)RC#l$~k< ze3z`}=1iD6*5@@?y+0P300I(m(MH<30x4vtT$@i3Hz-Sq~zq>!lDWrIKg**9srHs zJ)1wvv~KBZwD*KGPt->AL6=UL_uq1(A{G9w^f`a>cQuj}hj0BB9-)owonZ5uNT7@& z&N}xCV*$hR1(QTwhU1&UvjU(^x>iM%0egi*`nrK64v3k%btBPmMWhRi0>aY@@y0+7j@k*w*ibLs^E7}%B0`BSDBD1e~BPq&c`0we55 z&^+-qw=NrTcNEX=guQ14%_gE61tW4pkZr99e~Ehl77#fVWT6u!>gcsl`QYh*9?ETT zPHE&RyOU%V21>h7N)5*Y6Dkv^nILWtyngzhgwNlkc0w3`9)?!hch>mN^WsYX5B$bR la3{=vXE@0J;S_(FVzCZ$y_UoJ^R47(`cAtYMcWRY{5RK~1?B(% literal 54707 zcmbTe2UJwq)-_sc+qS6KjbKDTEd&Y$TSX*eAXK4HKovQuAd(RfB%?Ocpb`oSL?q{| zMFt55Bq_9jl0lM)b|6tfMn3Bt)vVVz%W#ql2@!INY<%mPkp1ddhwzcnu7H+@m{qVHJw$?18EAw63 zoJ(o2MO!Yc0sV^#wt39F{v!?-xRN)?eft>4YV5v$k-v(0o7&Br&-b4( z=kb9=zw%%L%U>2+VafWaxF~%i8@#B z+w^0XIJwqf7Esl$fDBVi&2mlT|VJ&(Zx!TmK&1+Gt{=;c>=4y;o%y)`taVhU(@^>* zw_3x`Cl7wN!^Z28E|cEvmU+7c_0q1te?p|aeYh_czR$EF;j(FcT$Nr$Q?ja@g!63U zE+z43RYegQ+Vs0qbxC@~PTxMIw?*{UijBP}F0mYKFA$yn=fX^jaU`FZm~*Mv>+WZx z`Mu1?H5nJfMQ_pY2i@koo#r|mgd9e7ZVlEOl}4V@Jn{W(qpmak!phIvJl891LCZ3# zkuau_Xd`xn)hZs9SlOkS!li2+g||fK+HL2y$I*g9L-~kWx#po6h2K&n{7R?m6+|cA z?7G$Mx#t_BMxeoUu7fADDU~PU_W3}^mttGBY5vSyZ zE!%HP9~l(xa*1UyPKLWJ4mwM4cwcNRyfw7qR$}Xz%Fqc=&QNnZp5H!`5fn8Ed^xDbF>` z>oOHcBs@{@#rRzaQu$3c^)el#N{9M>ED*O`%^|Ka(V!SOGm^*9&i3CgoKfGzFDTfA z-ubq8$-r|6B>PTX|5~pgNIkKaa$@gtX6Dp_i|D{p+vzvEl)koEm45sn$C(ZxVsv5U zpqTyF8o|=W;g+mhJ>EQ|`mxU6zUiaadLJe{w(ue;N&dhY^X93AKP%Xez&>-jFaH_e zrM0I0BVc>DH|0McCUD5D8LceNFpeqsNv-C?t|p|V9ecFzl&q(xXW?K%*y^~MVBy!p z$hjh2XIu1y&1v@fdDBt%nCp>OMxEPa(VjoyF4SC$H6{|SS#J8L_y?ET?`29>Y`yXg;d zLxn>bs-m9;hm&Quf$2yDIw*M;RH2t->7EibDBBy|N6heTR>2T=c zW5dc$y5Ow8fU_s&@~Kf6*_ZnvH!$Sa2f{irjnqKiECGIt7%blE>+D8n;HT?*%+n*g%5OWwk9lqh_(SP%) z?|EqWdTJcS7RyD2JRd!f@#cxLO*YuCNSDw|T9a^CSPh-c$bvz;h6 zvA@6nzQTCq>P%gq{@O#@9}an202x@j&2>cFnbuFcc>blT67_3JDl5lndHWMLl29T~ z+6yNo%@qY$f=F9-b61Hh&^Q1YbaK)Les%edv^2BaWJG2a?1c33fFy18+&K5OriLTY#o@EDt_%QDN%2555JJJSqQelSW z*i*Wld$wxUM?^Q;i&C8i!Wq>y{b9mNwL1>|rYR6RWirf(Jeu zJ65BjrWSni)G0Qj;yp7`?KNZ2%c3D*|96d%$TCZamJQ?hyL)`wnS)vwk3Y!WMW zeBPOyzrZ(g39+%UB|A=iAsjn)x-gS_?cp{Yj_^+EW=xv=#Sgg_Z2Lti&vz*;uic^0 zjwyV|s#TewaT8odgk+qi{YPx7R=T~a_nsxcoE_;87gi$hpPIW2PsK^IT>H2Ed6<4`#({Y3XoC<&x4jik0Pa`xg*^50w>zZXdnCNImwyD>e^pw<_jt8&TsGR-as$T_e^vuobR4v1Mo{()OKV zU8>PHl!={`ocQZ5&(o-BN!LED5}lrt185m4tSCANQN;z;9{)*;lOOB!3AZ7YN7M~c z`g$Hvr$1>EbY5tD5YROgW1l>xpYcx8HOR4^IC)G9FLRjw`%d(X@9U_ZYE-r9AE;4O zXmdTT5|UaUA=a6b>J#az<~df9I_@}7HM`KaxNIB0lQSbtExoU3fJ1ZhX8NoXdIp(} zZHM>yLkm2L?JG481XNz=77-jn-zdu^+l}h5rRir*cE6^d{mLbhYe_X2)-W%1H*v;{mOaos?!PNLn-Oo{*jsWTX(Tqb?T@& z7P#0B5N@~MBypZ4*Y1=`t4B2j?kpK$z{V4wGIS?9T=VdJr*HVP$gwNC3XV?jy0jP( zmOpP|6V!;hu{6tI+3Kk0M10915%eL}t6i`dU*7w%30WO(Z4$wvTjrnBJg!|Wb>(i_ zaqUaS2rwpAB$>SSs##bVNH~S!apQSx5x>{Y4D~yH<0Gmp{1dHm;zs^ghqy$3yOkM&PM#w7 zsq4J6A*Gc*vi-W*@-KHOQ5NB(b6g4x+Y%J8hp?Qp@WkQ(rlBQRiPw87{flxK4Q1d+k(LOI4e^94U|*Rc41u z4v+ml$T}z?^1LUmKg9FZ7v)_|j4(a>wTv55TDdEO}jl1|r+_|EqyXo(SIxkBGXDfIS!8 z^ZcaJQ(hv|+*s!ArP=%U2%#0R<3=ILza|D_Jc(Ea6;jU(~<) z^@!1S_N31@E2`ElY!E9T`Tj=x!D__DS}APtK`&cR7aX9P={=JEjC~FW^cm;{Or_JzvCp4sB+^gx#eY4cTC@|pDZk2iL*sAQb*qT3u>071oY&!3tIV=XHV;wgK6C+J+GVFgdN%Zly3qWbP+6xw_}5k+PPhEDNt*=@ z7nGXllGagAIb94ycflh(4k34o^SO8)91c$mfRr|!=`O?`bXT0iQ?TfgXR3PYe1IIQ zMVFr1;X`!_f_%+ci6;RBj_%P9>bcnvkJgcb)opyQriQa@(zSWSekVg_u_?OD6E9Gs zlC3VtCa4+ns!3lx&RD6%GOwM}HSXcLd#vK4XB`J>=_G~AAz1wR63UWYY? zyL-8xRHrrh{U26sYTSMj33r9eSofbL|FAE}b|^_s^cq=onq%)G&2|+X%I4dgPV%*! z?v$RWd-jns-#%xKS6>%4PhyxfP#~f+lw(<~n#sN~hZn|5v^CSU`7P$HMWoi+*ZrPQ zrlf(x;YCuPkyn#dxlQImedRbU@{{f>{I`J(n`?eZdhuX4-|Zf6lGK=ZLGbZF^ENw# z2t7!s(vYT2b=dl`7uoZ5W+%TA5lOH$-I=Hw0GaB84;#T{R#T?Xo<3q-nRV6k9J5wcW?2G3M3gIcba^ba1j_M1AJ@jLGX|LuwRev%t{tWV` z=M~isa~%vOruB$^RvPUn{?E084wX!vtY$4L@a-qVRfo8J#Z}^Wibvg@8KO$M`8FGW~Sg9};e+;CsWyC#=bj@8FX{VikeZQ)<`s9JXB!&xbQ6=ru zm?o#FqBmoDyf_6?U+9!<;iNosb&lV;m#b+D=i^$G-JbcOydtl%`uv(vOKyyAA+Jp> zY{s}Y7?{@%)$VT}32uFV$h75!(B&(qCTpsPTU7VCucWpMmhhJMt|x`%4an_j{zD^q z{f;ZQS`-t{U$`&tRyv4Z{^LIu7O%iI*rJ--c6{!MQ1#x^@-KUR1EF?K&Td>kmaZ~% zEDR!^b+3dLja6jol8p28iMD$yELI&_|7Q!k*=zX2!pcf9x39V#;jWjFV`j9p!qneS zw9FgCv*X}&=$FG1P@3$x9ozG0f0Z%?zcxMiZ<=f|UXOxUAnjxEu9R|nf#++_jO;lm zx|jL9XFMdyj$4G~`D^rchsdifEsU#wI_^2HG9DKgbaS-8=D7CJmRu|tM}5K!-5WD> zD5qj9J35R5MCVfr-&%{Z6^x%}OV@~gWgJP3GgEJ2_5!pQ|E|Q9?)Yl!r1->Ntlp0W z5YK0N&~0)f1VarOnMtK^0ryqsVUr5+`Zqlp zz7lFBMPtD^W+7Mviu#15C*u6|cmCG~6wAZTP|xyI*fFP^>-qZ#Mby}r=~Jfq!gx1{ z-OiuAEtl_v+Y1IGi*0_XtH1f#OU&WOy_kjlk{0P6Y&B~R5nWi_K34Yr19JHPFfpL2 zm^}NSWO&)@r@rX1!Nzs`&iX3el0pOQzPt-H{gf8!A{i-a_ciKcs`}dK^GLVFfwVpkF_cQ>64PH`H)rZl7`cc zWt}@w$6y`#s8FsDoMb(yBI7h0G-6*gKHFHbA1zETIRSqeVuU=B@|3kJmpDGCOTjALqLI1Q=<) zz1v3@ZU8N}p%j2J!(y|nUogC)xax-piTATyLI|1uFQ!E2 zTI)sh*@r2fC*1tMIp%6UEAzTh(ez+Tfp!aQ7;Fqau08AIQWJc9Z7ShX=|HTXWc{af z?T@(@+66iS@Sk*z=jTs>_to^PEIW+u9hz~XhlUn3ZNcHT;8~On+RqYI^7W<4MeR?s z|3%q7RxiW-U{9)bKgn}xmOe67HPatLDxD-5<(P7JbvV?t=G0(L>7Pw=!_V9nH*LxY z4;IiZ#0ar?g%D&fTc)2TMmVK>%GA%yF>4xKI13aVW=|unIX0rGbgQvaU6Oiu*gT z5a|&Y$RZVhTnaeBkKjFNby90OA^L6wBn1U}VBirVkX0U*FDBkfRLC6;kmxnWvwQ$v zFx!4a%XR9#Ff9)C5{!+Y*=J zz&?FhHL-f-?EyxNGEwCPahK=ntgxqGp*%@RSO?fIkJdOKD1oU|zj7t|gX?kbS^!Z| z3FBRkiD`_J<*So>pzdn6V>XSxJ@kp7nNP+_N$V(7N?NujWrM4#)dWxa9poSC>Wtn5 zD{RD&9A#HUh<Jddn<+WyHz` zBKCSv*Fx}^e0k&dz|{SVOs!a*9rH77ttaQ3^ip5>NvT!2&hZ6@ALrj4I9J8PHe4^W zZ{X>XxiBk|PBbc>gfJ@eV;OMF;tIi)_GekE-_tj4Xdsq#BBcLHC}wz@&Z$?RpzvUAl+=n6e~!}HlRWT=gF_Y;r#I#E%>uyE9KlnG6Y%y>82(eKv1 znU6yltDc7UxT$QyMWwLrsgW}BfrSjlla~7h@89zvUDfoN{TAQjzN+e}5JIq79AtD@ z7D%pY>=O}T%C+Dh+q6@jn;S!P9 z{nPRo-d`k|2zMp{I$fynrGufbhY6`S2+*-TJ7X1W_2m*2VU@qPTz;}wU}H*f$Fu0_ z(L#mIk!~rBFiRCInLOw(9pEs^u}sgd5e%7XP`Zrq9;M!BUkRUq(Nxn6z3RT2b$HXS zk83xiDE(w;??QcyjB9+#`&KHXSbs9KTnntkZoY?}LHaVkXy(Z2N};g=PY7Y<{sY`5 zu(ZWFbqw;4ia?bY2#|kewypZ?n#*P}hv0$d6>-+h7(T_&snNEF2YC27)U$1kWfrIZ z4BxbOkJKQZEzz`BPPW+9|Lr!`kc zJvYtV*Uy)(Up6sG2=s^xxbfk9e3o%4A}#bC<5_0DRXukt+PLc|FCs05GDEJt{uQ&4 zBu|V5I+lBU?du0x+>N>jpNO0HTR6Cgn3YZ6z^sfI$ST$In`X4X%hUjWb4hW%V8O+V zkEz&(M(xJPPFlXco95`pR3qnNgpoP?2Ju`4j^a!^52n1Lrc#!_#`Tq&(;?Py|8p`Hmhdqxq~CeYwTFa zwsG-%b|X0iogy{vQ^tf(jQBK-OP%h^7hVeJ2HmU`u@TfIe8>E8Cr}AQC~GaGuI@X9 zCqk)jC~RSx|65WtJ2Pftll=sjRmY!9EdTSy|6yV(zhf);Ve8Pr8u!?cVC$iE$gRhl z;P_=9TZUHr_`*QV>{9>oH~x72Tl96vKT6B7O~m5zI)}sT-y3Gt=Q@7{oUZvq%dMgP z0vk<3E`phnZ}!d|PuOKjxq)Z+)WQ zAbZp&#!#d3!bl!wr;1PF=KqkxFu#;OhWWWeDrZ)gbn+0%SNZ_C+@{ZqpEo(`xhUtp zjwb6x1VvbiZuJ0a?4M|YP7bMj+a5w|^t~TOw$GRs8Cj&eo=^ED#5r(Pp&aw9)LeTN zk?J2B6jgz($dbU#Uf1-Aa4YoDca+&|Rgzpem{edVO3)m`lc2;nPObunyE8kIok*XRz9sY}fI~dt%n>ePX3~Cj`u^e+glrRSq z*@j!GSi-E2Z|{Tn5fzL~-9VonTQas7-}d-TY0 z+QL{>S(^TEn*jNlDvu*{{FuDf{dPaLrG741*Q=fzJz(+TNcj=i$yX24GCz9IXpobbDhaC;M8c#t&+NS9}vXtXT#Uuzx#DV zlAZVN;}lWnT&%K$Pbz0dutOzq;${r0Eb~W2MM{=xF}#+7L&m;TCUq+%tzM-ZXxr`$ zn=TFDlFlQzIs^lx{iTyt~3(6hIb+MIAQjx~UIe-eUuiO{a)$ zT+dak%3G&$mNyJ|aaJ!aPce=wM86Q{ljwln;XM?}`aZ}}pIv`+9?UZ!ly4y6GO1|r z=*KE3)!yyZlv-Qo$Cj{6*LAIp2^zvgp9uRWF~v^%m^b<#8@|7TddA2HkvaBL?;#uG zQ{yf|mZ^-8OmP3c^Oxu0A#0GT17@L#xEezLNaIez=$ z=Zv14j*)I!FEe!MABytY6+&zRc_2&S5jkIG zG0Y*{K2obqTU1JtRgFg4O|Y=Mb{|EMHHun7SsZcQ+&fd~u##ln4>6u3~l9Z>GD)KbYaNO19{!NU`b0>fAb4X?_YPY?mu~vajb!eQ+XUt zkDqL_Qh&KPLkJhwoH*j^&&FIc_s<0;Fo1f&5{(RMYQ7~HsK>f_957q5Ul=Qp1MDEK zVL$Z+utVcs%e+?w1z02l{_}6{`h1UptQGen&xcQn< zdGDm;O7>mo{KYz06?EOc7bXrpB+5yYDxp(~80`Fc_@>< zi*i7qQZT||wPMv@o0MMq9)w;znaLAN42{2m%X(v4{dwWcijBcNQ-$g{le zjQi|>*UBajrfCv1O7;5Hb>rW>+*0%Wn%71kD-akn%cS?VSz%Br4i7IPo&H5LTRx*s zO8xMWYp@K(L|DfB1$(vNYO7LRlxqzq4a@z`o>x12tn2P(Ci|~Z(+>oL%{~&a5cZ4{ z*=UZsV*z{tk@jkjZrts#GxzV|45acqeEPnmSbrq2NzFcnBwPuYKlqsP^-R5L@fnI^ zgtOxJJc*aU*3ln!O3qi`O}WSa0&DGiI!FRpaKlo-zZxsCl}`FF1s_-a5yP|-rw?6V zMKP=;EB<>7BchB==GPRnuM~DI#9}&&7pLW!-*AL;JU!Ry!<|ir$ zp+XAJp@w7gt67?EV6q=dc$ifey!1#ozY127G=uG^uluWCpal>!(uz3TL3Uh{6SLRh zJvvb_Mm3cAo(DcpT^QzG7e=AeC|l~rWIxOc(hn70LsT%7{f2F558%E|*FK3y>^^*s#P0HpUCf^Mgb5AHkh5AMB`cp$IG4^r>}})zQQ@wjrI9?N zq7J4V`wlO-Ko~7ME5@(TpVyIq9&*x=(Idxxh@U;!>LnmbJMv=ro|+s}wx;7iBMTu_ zX_Won75%`W0I5E}UalxoZv8tBzb{Wapj`(c%AN`i)$9vfG;@#F(YULJKPrSKMiA<3 z>xj=EBR<=Mgi=BhoA}zimrkS`K}QN?m(e+}Ek(<^_vj_vF0uzh=MutemB zo;Dj$To^6UhHwrg>=EA+U}1d6ezGtL?dNLghTj8NMczPGJRj>xRHr{v z!nPy0w}P|ZdHmdZr*vfz(n{19Z->z|T4JOc!eMhm(69T~#(t#8<}1isKJUcd<=EOA zZ^q$2%3E`(z$G?_;K;GuD1@!dt=E&TIV@W^k5$x$GhKQT2R&c5{QuZknH6ePG|Ja1 zNe0X%C*q0yj*dtZ@Egu_%l|Yn4!)mEOlD72jtw_vVnig=ARpQM_F({C2K1C4vg*$0 zY{KREx24NlW-zH|P$qi)_*^c+nLBO5_|fwq3sW0+ik zoFYA91eC?s=$;ULwU?9qKGWYo785)as1zh=`1f6l)=DwwT#Al4a@oeKD4ajx4j>y$ z-yo_$ueMxK;-mRaoPpoPnqY!s-ydvgx~YJ5Nx$5)SzXSm2e^KVk<|}4Q#0%gh8A*A z^%W&MAwCnNv#`Kus7JX?2lN1dLJW|3iH%V(pkGX#c>BnR9#rYx&BMPn9rmrCXW?ifT(_kQKO*%ts7hTC!&%aTqc#AsTVx?x#z zMGec6pa}>QrGD}~h)N&n9j}q=|A89g%H*iqQ(u^N?l%M>7x|p`>z(R9Ow4a@^qWIo zmCtPxQI-AmcfmaTC)uS|@Lj+#A#oMsz-i=gNyo4(Sxns==@LVO z-CeFcV&wUHQeyep-GgF;m6!*8S_LW$i-u&#EuP5MRU+JbE^2l^y9zCb`qEN}>e5sI z`uk2^^yF7hfz-e@(ySb8Q8V=|wOV}Yl2L?>k2t`Tb)+xNgls+Tw6R+W3T5lb#o!<7 zKX6eb&EOabr=Bl%%MUlCF(unx`~_;|CiO*P8we1W>yKnt*_S=nKpu7eV0aTe3V^ zLs$mM82vrya>T7l_`qXsSN>iF%JyGyC(11Ukv4MZOvZQ*r_`RyPbvv~0c#~oK_3$y z)!%2PPX#Jr=YkK0#uSMDlLL;(eVc8wYJ$d0BM8Z7zJ9o%ooBi7zPF~j+HStvYX~}W zYy_KgO23gcslSC+8 zaC`Us#(VneUrbGD%2iKAe4vlP&k-^gYRoFWU}*I8R&aY}sQ@<%s>7sd&&|aatTweo zU)YiZJuy&LN8`S?;%#b2+lfJkv7owd7J~vN0Q?s5I_HMME2`nyA;Xx_OoLg!Y1|j&G%kPa9)0LIyne>OT(OF%L_KE z^Rb{Dhy&WCPkynq7UU@0PlVM6--Tkp_J}O+&B{YI!|lms2OW6-+huVV=95+G$3YVl z8JQ{bVE0P*&HrkmJz?5_Tf52z5}+nsS{%$;kl1epbsxq_6P{-=C~iaPg!#T*^mfO@ zt8xdqA!m$rd!f)YxJQq-$$5-ee!}tN zR7FK!yh)kIhQf)r2jR8NmUOWteN+vy4P;Zk9TY3TSs%aFW)pW zG`unO<$dc5$E@m_n$(r0O}OC$YjH%zt1IOo0l;J=n{Y{2SXx>LKmwx7H`%Vk&0zE` zFBr#n*gW_K9f8R%`!JBNV5yH<#u#bLZ?1(&gG4^n1oUvzj>4Sl?;b}p9~70RA+bC1 zyq9-3)8fWT*H(q=wnINLH5l?Wk#THDSbreei=#fu)n)0rvT^{3+CflXraiVH%11)Uy<=S~b2Ts?65$maF2--y zPxrAO6A)49xeS_Ae7NC0;zAfZ&VO15)U|a7tSaqA**H%AbqBCZF`{T^saR5t4`CIV zq5MdykiVZ@lS55|_0rR06IzA5B}BSdIfWmQE_7rAuF({8Z9n%U>lsterMZxUzf}TN zN;>f8c_ig@07bR^FeWXV-395LD;eRRj9Wv7NTl+GghVPhT+oe9o%mD6rs}{a$~`1Q zCD+$npn9h&5Np8-HC0Z`G@-m)CW%rRKJzCrmV5CPP8^PSWG`hQJul^Rpc2JqAl&ER ztssy_mq61Jc))o5+tE5>#XL9pp|40og#nj|CFeZ0|FayKn@1SB!(ySgy^Zf^kHL)ycG;| zRECnIvXfrK-E{35F|%L_1*^7}51?vGWfIA;#2g4e_>TZr16*BQf zwcw|v%Q4wdL54%C$*SnG@At|8VFQ|fj!B?PmN6#ZW*j(k8W2X=ovfiI^@YAF6!VOr zUb@|oz#u8~M~bL|j|K&Y@C+2*LK~X&5rHKl&k09H8d?7NusJ9VQEb7{k3doIEtNX| zL5>i5O7446AfT7_nJyjNj+gkH;P$bJJi4p^B z>x9BL;iTz44&UNv(0l;RAAfsk>9DkP?O2Iwt56ea5|xOJ1?9LFA^P4_9PMYlb@7z1 zcxLg@|7bXVfs#`Gv{gnu3{mk*>G%K00j=?6eN~8lyJMCS&^wfg$c=TPhj!0`|AbRE zp3mk>sL$-MNiGN%cHKQk?{Z3Il3cjRt(w4V->3}5#{!JAXaZ&{c6Tr6bX5n;2Fk-m zUWCcxK0B^DqBdi0S0+kEAh+0vD`SW1^W{D2bf+`Ht!Jx@7z|W7>bdKN8b_wTQ&kKw zp18`l`xHCu>U-38J0Zvt0IC+?-tTT>9c%so^(&6}ioq%|a+$8pPFPf@6ak)8Vm99G5l%J1BMp(kjUQPsl&^SBBg73-lDhG6^KB5uBsju(~jS^ z8&#q7fiHvrI`@EJDX;ZVdW!Az2c#1Fc_u^v9_1N%egp108(S4H*myp1Xt_gk68K3R zEey2X)jUdSh+HfhIa7Y%49q)JF3yO?s~wKc4mctb3(V#U_F~oUW5qTwA#*$MC{uqQ z^fhr@w|?2kr0bePGOk_D?1CaeMA-bq@0)SbrpV{_UR#-b0PHTP5Y#00qHAmC5>?eq zk_&jDsND|npzODbJ^GbP5Le^=d3FW5J%3`4_tCNOW`Yxxsgp>&5q1WIZ}B_Xd1VeK zGytC63Wtn40s`wQBv6{TxGqqF{iy@l@N>}VRK4EG9}sY;NnO9neJDL4>-%RsOa}nn z178ZW2q*&H@jwyKbbFEV5qhVsA0BBuKspQUVjR~3a`2Q83x4aR5n5a&bc$ND646$h zM%)Ep_GGKHy*6EGbw;w zJC86jS#x;+hx2bl-v5zjKNVBtKpU5BsIdwenUIF;ebT^t)D?!BViGvk!NYLCyHSDG zdYjWt1G(T~enj_Iz0|(|LgFQW5nHyC zdj#G81Vku3LSBV=l20jgXo8?!1x+O+NO@7@I;P#FW0E4dR_f3n2WAAsZ}9isHpzyo zE-h}QIzvr0F#3Wm2xBCwLG@MRu(m>rBU@$+AHBSN&juX12>(P#b+E6BhVLq#t6q4y z1r>nu0_gFC0qB{69>r&6q0UFgDH+NsoN0We%pN|Z4d}TUzjNPVdhio)S1yc~O9|>t z&Fs_7Cj)B&cp7V<Up&}TQ+)e5I(FJdw4>Geo$mS(>Useq*1SPs{PFRiH-L!v;MQOa zm?JGN8^~8s7oayd;fF{EA!rS@S%u(HpXNh@5`x&c)%fMyHrAzv$Ua_z%HrpjDu=HC zM8L(OBc{Fr#gL8r_#M!Apd&*X5BNm+5Vh)sBSV6tKs__q>h1OhII_JMf9LWc2`n3U zS=S|k{j04&SK-RsNy~#ugabgQ^_BKAi%d=JfPFT=PM{tkg`c$>x8TH1G7a?e0a!}A zK^eUFD>2$1z3{`&iE23Mekje{t66{QTjOwUAx6oDpN=84*8c1qOe|bNk4HV~D3yiL zQvLNFH97j_J?o955(2f`BlHf0a`hWdH1PpVo%bL47VWqimJh)1}kX!Ck}d6-Zj zG+E-oQFAR|KRrw_W`NZW|STAF+6OO?H7zvlDvom)6hBa6sE z?MsSJ+57}%5%!cgD}5lVaG!B+wDZ&!GKH;}9&#M7XwpaUA<7AbFT%SVryOw@#ep0K zlLRD%Q|Nt}Q9@>u04Y_pfBlvnv>0XN*Ax+y^~#%3ze9lr)jTiA5P;8z-<=I70Pu$T z52XHwU@$5H>?g?vc>vQ*AjaFrN(I}7I$-Fc;u^9P3OVNHHF_tE3n6K@&e)4<@KPQr z$R5sGKY#q)9u|4+d%Tf7NE>;BgmoOmh$MWFr1@h&HE4ebXn)QcbXIT#u6KOf;R_l} zurG)Kt$WbfX|l)}E49V(?gU#{&q=hNO{!XiHSpEA@%RwJdUF>?ZW(@ei7q}L1#C6) z4Zs#ajp4}L$e_2p5jG2E*UsgI$uh(aYX&3ZB5%G5x!CR_65=lqKGm>O98FJ{H6d(^Z7Bu4!b;ElthOUW#`Phm%m`#$(g834%=UoKb=)91?HwAzq$48fS>01kH{QB! zf|a?)JZ)^_r|r;6qeL}>Nub(8n#J~fWs@UvPmmF*AS0T6^c};r#(F_R6=8LpY%^5G zw3aMxVrOCm4dkF$sJw~R@7m)wLoHCx2pX9fmVD5Nnx{D2cJFYP$x(Ms{~-JKLX2EX zA>?7@=;^C@8kev}R=1=p>rg#n)^R7&&EM?>p_Yp8-Mbx4JUJFWC6||C8DvT3ggIq@V1}Ju=V(ZN?Rn?Tsh|4CP*2k#>lk_!3+Xghb@2};8{3gMK>7;8$_16O+DHu++|(}KCpr=qnOu) z!3$tNdENQ~n0B(?05%YZ=PNq5iQeg)iLWX$xT9lLVuD;|1-ZcdW#6%qz`1BI;Fd3V zRcENz0pW&|zy1NHNxyaJ2V3xi2GeMy)d)F_EA|DKzqjH+A6L0B5Qbt9Uz9m?(ZWs# zTwAh_-*Esb?ZM7xw?fSNTzXb&QND8^BG5t;NtyQTLkU!xAg`p3_B344F<5|Z{Bk1- z>ci-kg|f~cy~om3>W5Qxr%~2WA-=HCrt7;GL*D+R-9JAnhFoUZ3YkQ4zP`IIG>YgW z_WY2R9E-6p@Y(u^J^4nFJq*gCksa0tC|Rvj@~iqVfSG9=AX_V@^xU%J-7L6FW1n5h z^vf+qiSbo%r@*A&0b{hIm_)Amb=HjlG=_9h_AQK{g)5@N;gaEga)vq>#0QBR%Gv@` zI&vg8PIzO3JjO}rcGK`kCOUD(0@2GJlsyHXH+t5IDgeZsZr4f9Z$_4dspq(elkY>1 zQ~;V)E-m@dGJz7imO-(vlOUbG!G)0SNJ=U)yYVn&c2KMOk3~2`SbxgS%`DZ9&Mb*< z*nrFpReKww&$WAVL8MbP`ieC~|8uSBI#em^q=6!cSNw)QLK5WHZxqj-i|&5SO*CoJ z7aSUhM0xTVvbm&w_AYlpAgKVU=tT^#H~4U-F_U3dYQvAOfrduyZPdB-#O)yg>xl}U zT5nlT=l8OXHi6C*mXj>bL4Oy<(>6pOiuLOYJM-QS7U>L5AbtD`Oldgo5e)t>i`Wr- z_8Tw#(E%Rtns5RXeh5c2qpMa-`Pv5H*RKtQM{mYc=`e|jX~Z^^~4M{bREy4GD|_PWqfe0*jX!EJhg1BPLzOxCX9~|^3UVHJkCI_ZjYYcAMLJIgBPC)v2 z;PjEfS&)VMRZ!u!g<_6O{nC;%FnpX|C-M^mD-s0^>@IexRo<}|j!;JZ6AkxX)Jel* zudy@J--X6rl)bN`@5;TFo`-T&<4K|v?P%Zus~5^}jfAu08O!z?5D8~PQTsaJ@2eJV z1duTxgn*m93NqY!=g|N>8WlAwXMzaj(F*tE)I!GK zJ2wh6Y*>oXFLi6pwFt9>;@hJ01q>19eWGzI%(mYitl)GHdOfk`JO(2RX=f~2hZkJn z?h-TtP-s7r(q9uY)&MX0=y$&wDKuAXGuz@5?v&Ea1rdDhcxOp*wVW@-;2Q;Xr?0}S z+|A}IsGt>kYy{U1i5{i`^$#O0rmyes(1~OPPV1Of9L$zN&`-WGaTVR1fFfpDiFbKW zORN`QC!{I$f&BDTv4IMW_Wy1$oH zRu(1J^q|O~LcQg&zxwB4`FE{xL)UR4(~kXd zpmj&pHty^RGzK{jdbjdkQr&wxiG%>BDHn>|cd%BVMiOcT4q$u*fa2hI28hwl&KqE| zqrd+^Xix}sQyWj9iT8gefwBHJsAS(}sLK6FB(s_Ydtj^!g5MPs{O(TxqTy#zPP=6W zB&sk}ym0ph+Ue8gk0CX;ni&EAfvq1Y)P?@GU2$@Za3W!nZl+&RhQU!HCfh7khn3uE zu}SiSA|mT~gnR*Ih8-+>Pssx2u$ip#dFq;r@{~t)|4a%pBo4oJP8Y5&iMhwfFMod+ zha+Fehp|zxz7~NHpj+0-W+;-lSEqUCk3gh13G~Xq;tWb8LL1Qg{(@Ry6(k^rBhxkJ zMp1o$OHqVK_`$LRZfz*)vgc$%I3eyV+RP2&b>gUJP^qY(3iXXm0orFA;v+*qWzb59hIlOT3O-;W5mod#hBCPZ_-$)KCRDrTDd^a`8_0S zE;=wK(mqq~BLxTEJ|Z=y<}GQ(t(!xX)iMyo;awka|jwvD2`B&IqJrv*dn2}&Vw<;cYK_pG&5Acu$3TG_aP{w`7w zE<-Rbhgk-fe;_S$p>bJhADiXrKt%f!0jE`2{!@lfg~z@Lkm0Tly$=IMy$1Mgw3*3B z`==7*UXTCY?6v9k#A4t>Cf!@~mFAwSsoooogOXXCYFfU_BkzC zU_0{?{q@_NtDfQtA=OyZ;Ns-cWpq;bNAi)9Opy)|aES{RLX#@NzqvLeOC!J>>-~zzP>Bt+m*I5` zGs0yZFD8A&mBg<5JR zgW=#$fu+g+(dorOo2uZ18#kh`S=1w7`JerQ{PxFd)C7apF9<8UUNm zcLWJFc>t&)RcyzGyDQLz&rl%Xvg zVE0d6LD6?%XB8;d^$Juk?4FxL*tj8VaxcFog#uXEhpJo}{0b*2I2v{%={O9GKZH}DoI#`wf%}EOv?7!C0 z&fN6s%u+pCko{1)jmuIxN-MX3WQPxMim5>z_0^k)U^7~PMIO`me<}lfa?N;vPDeBz zXyX7B3Ly&PHEOEWrDj(DXM_!`KPRvuxqb_0P#>RMd?;Krx+{3(vHV4zPs})k{v{HVT3fSba7217k zPU)#IoU%Sz29F<)yb99;|BQD7 z16jSJIASAk)*jVwAE~~O*@miA;DWIu-j5-*uw&0ZzY3kXYi-aL z6G9__RSXREL@~~?6C6Kp;68b>Z}A)df>l8|0Ef>wbYyJLbIk*Q76V*@#;Q!N!e$`- z6NuL1PhFR%!I)bOXraKZ%Qk?2c@TR3cVh!b34oi5_>m?Y)jRqE>-7$HgN8JlwaZG* z3qMH$;NXJC3+(f6>sH2@1ZBvOC;JyIxNO;ZZdKH(#NA^ehvd z@yV7SG`2J0JB^Jar=M@q&(s+D1PyF#OR;P{ya^&i(#6pb{b1)A(-yr&nOp!P5r`^^WEGSSRdP77k<3w*={Ug_kNhv z`GATOcORKGN(Fem&f3|qvARCLc=kV{AlAL5z-iP00x$^rWA zkd9gsNXK(nJ);&Z6;VM6IRG=w&Vk_osFaB{DZm#ELJ5SmMNxAPtJ_SObStNyuDjs9 zGTjnUCZsu&vthQmv!N0D>^-qprxw$Q9wI9$V?_B&PzIK?kRzI?8&RgTqk^B(Gf$?WwZ{JU^ zhJR+LO(kvgYw#JNUNwr(E~AYsPI-4VV6s#6*oO2{QN^%#z1Z~3*@~y62VnG(1ZY63B^nLR3&;Lj$I#guSz&u6m zK>hO@?&4?G7kjN%C@UitLhPXW;Ksr-G)`H1!lt5480>>BD>d6*hYsyX0c+{0;eB2) z7D`D3kb8KUASuh<`|Bm(;b)o2$e_#kVUE@-H5`tlAg%_dXxs7bpn=m!H1U|lNhuMx z68I}t+?5>Kv0hqws^C-LVoLnW>2{CRKifT&sJIJ>T0-1gQ3k_02Q4|m3dq!U+gBM3 z$!vRj`(v=#h$%(h)Z`fGi#Y&W9=6?r@vZ_cLj~6+%(Z~B_V9nn`SAQ(NkQ?p**l1n zRnYOXjNnSr5Xn@-vH83tWV`c*?#^N3iUW65@7{jzcV{akAJ%Rp4y1`%$oe*U;LhHY&!5D=3X;Zt*+dz>^$lRKNvXQ#%t@_nWQ#~2@1aD)Ygpv>94GN zsN1~%?l5w#Y78!BkR80t;0U6GRq4qs?G*NSInDJwpT$o@J7{Y02(^3Em9ZKa`GU%`DAeFN z7t)Xt#=&r;emrD;_)_^m-|9^1xl_0moc3w3?D#QMyO+s&W$+VseYKRR&T}}Qtef2{ zUSJ9jnU&kETlBrb88%K;oMD4Ei`e?k0dfx0&yyp)t)t%)Q*FTIojR>3!KEd^^{LNJ zRrRftvouA`yYJcJR>w)Z`oL(F)9YsmVpB-i+m1d03?V{*&SiXgMnp$A-SBsHslFM9 zADE`I{Zx7#Xd<}Oqid+vqA_2u=YsA)M{Q$A4@j~d9%A{!<*D_#c712o6o4x$8PgXUDAlg1GyWmnv^$E7B8B-qrn>9OHp4wg=U!`BHSlN+Ukl!|Z zVoSn_Ekf6fyU#SX+X(r}YxJH6L)UJpD7~XhEa2r!6$qavi-<(L=2@2(>CnNL<6W}f zncicFEGo_X6Y@ed(sY1l@&Nh^9q_KNZ4EL=sjO6MZE2CG&sn(qeywLHG5H~0+%QWH z${%i8;JHRphgglLJZfU4shOI_5Ih&Bq+b>!R*S_*?8qg1U-A*tZO@C|6#9X~x2Gj{ z21(dH83>9>FqKVOH@aYQEN<$qLyPW%7f5rfPmK-OI;dlX#lm~HJ*(k#6=>l#aJI(x zAFC+84g94z?=>sD%pVYT?nmn~QQ`+})8f1TJ4pw?(!OiFR8%L5p!~}WE~eT3_z+Jl zk^fwK;EhR;o>o^Qw@XWNu;dZ1^5B3IZw%o-VE%I87OFg-9lXe@U()$|b4L@9qG){q zff`IH5lWn|NJCbayHtr7D3Nfq(I>$JO^yB|%4UZHae~@!gA|1R#fL|8BaZrRu&eZB ztr8mjrKfXMBRWzT-76QJ()ZcwPnAMj>hkqaCuqVP4B1?q#=rcSIi>tS*z2wtKq7i# z3v7p+J)_>G9@nqW(&O8&M%n5&m6CIebcUZV`PCVwWZu$yn4(}>p=H{bPt>5i$3r5( z*#c@F{v!U(R$35x3yG=uI!H;7j=Vo>9JT%I*KhC5Q#Bu$mQ!hb`)rq&dhXksFXGOP9RnxfEe6Lac<7&!(`Th5gq$s3X$QO9 zER(KDu>odRn&R^DqErCnyQCEc{XtH*6j}85G)_=I0*TkjIFZ(N_F;o4O-M|vvF}!G zM-6RVXcU~CNRASIvObHUuZaAZBW(ZfFk{8KwtxLm ze#bx+fJ+~Y10clmREh9~iCN5hBxZLj5OUD((6?`ohG)OO|2OmpwVGde3L`C3IoD)0 z;wFC@! z{kVOtp7X@OV>qAJBp(qcGXf;-`{Vo#DRHOn%6SmiVN{8>1|HQ64IwnV^#(qAV zMxx{$u?EoPxrqC45dEZpjIpjE3;|FVSz3il*<$p3Uh?4w`>w6Fz4c<;K5!|88qjO~ zpKWzK>m%@-aD(qCx(1HJmc%qjX{L+6X?>Q3_Ml%1jzH21@M-32CbnT#s`9jDjNPuAaTbmep5XNwq|J@-Ogs zgeY}l|9bm0d+%1l(LMp2kY-OcMa2yHZA-9}9#E}aw?Jb@_RKGO5X37%lnZvBE~*3N zQ@ilf5S=9-x=_FE7`7hO8+#+ubtvIFBe4hl0KN1q6`fX5;5-_eaP;wR=O8Kz?6bVi z6cCzAe7r2584TfTqG*49guN;0;t3}reFusd49e_xeL-L2j;nr3K z?k)1rU10f?#=ntAL+%K}Zflc?JMycV?6b#-9s-vbP%{_IJYsfyLW8(?PdE4}mY=5+ zyo@c`Qey`ut(rklU>u8h#(#%)>FxC;d>X0xl0=adgu0JSvR`G<@(nU)@<&Wf&drpG zwo1_x?%rG>{~qM4O`AwH0H+tf6P0_T)ngUt7l#_f+DZd}RPkhLy#Lr`oOTO~nqLyL z3r5?dr{WKZtSw8g#yAZGo)g$Ec68o4 z?gdP!?E}~mUz}$XziIs=8FV|Fz}xT4sAAwFlz+1lE!@c># zksp+$2scelHsEFyQuoUHN1s*SKe~qu8KG;yGd|&hAf@j3UC_@{aL%EDF@(x(OiCo1-F13fmBG|bLG~ABrP!S^0Uvje#oG~9YRY&T${;6pvctpT+jd&;nK&) zC13{k9t=%*(>QhdF)M|xg_35^Vo41a78cw(R~Z>HsO0n0%Qe`3OTW)@VSQlRMMuRC zsV>Z7AQ@hTij$&o`MK}@gj3@eqV>*)j-UTXgl~eM9%mv#%PVl&=S-yN;$CU$FPmf&-Mw zu=3QyiXAj`fp;;Ug%hKsMUQ+t^fwD-nJ9g%H3$tB8!B_DUV0;fHox`CW*!p3iS1lb80_=V=EygjB-#3R@ROk`klW_Z~9 zql(W}=^5-|Kv@*p3no48m}%+AKrM1QOhPh0AO*|a8`0ZJkm4|5vs_|_@DBlC_ds47ZjA0YyY~&#p_*sui0y-5-~N! z>n40}3H%3%Ztfqh-Z-92C8h=`6|E8vH15#)&8piFiR1=JcWNKlYlxegyuLnF?HY)h z5Qy5qzOmyvpVu1{`r5R3%FnU?q3Z=&>~eD;F`<8>|{!> zbDs|>P0iC{wr$3LUIxY&=M-qcJ)GU|RA7MjzYq`TL91z%YfXZyQ@zMt|KBqK_E zG0@q|i%Z#NlZp#+@q>8xG85j&+oNtc2?d_>g;!R^t7FORqWW|blCljSOld7^wd*?w zK0@KN!!n*D4?q8Jj{nUS*7;KyEI^5qLi#fXW-^%{Gcq#bd_fnm>GUISclOt`3$fLej#d?FGG@Mh60XN5q zK9Z!mlODh~vY`jEfLTJjM4Pp#pmpg8?1g{?V$_8&eB|(pli?(QyX{kBY{mn~KYk3P zAwuLCJWnSg=|udqgA{U{L>V5HhznIf@i!+G%Cakd?i161aqaXNnUOT>=aH&cj4iNLklMDv*Pg*QrY7> zgHp6^M!Bq*+-TeqwsB9-GdA_Niefzm8Q9O!_!#b0WXU<_N5-qf1amwd)FJ17Yo#Q8 zGLR%i6(>f4dY(YqE$CeAuum;~bo(|7HF$!9XQ5E+seY?tHQ5?9OA)9m_j%I0Y!iV4 zaGt^39d?(MQSXqzlw@^D9uJ5CH#~eaTF=TY7h|;Q(uxy?v)hi%z03fYT<(--1vpKP z^oksb0Z~ZkV%uu4B=uOr0qy%%*A?wmbL3%BnfPaueqj{3_vh}TrSDw8e)zEU>EVLG zA3JxrTU#{`Z*CBue`PJta`#A=>xL0JGICGA*wd!Uu&an2y3eB@z$RlS_7nS`~{D|(2hwj*_w(rk)} z2c1JkmSK}j1o-V58-x`>3fa%trWL>`VSxc8Xc)(?Cp9{Yhv4{Z{DLm-Vr#TZU;2XH zKhh>#nH*fdi(E8aXt}sj+6≪feFnrpFacPoJGhG4a9|xV6Fa2+T{O5&haC4~?ii z`2%YOn(8F_I(qBvptbvSje8rpfZ5~=L^4n%Z(m7te4uq)X z%U*K)$@LdY_*n-!1<_1-AHF-ixA(yQnJ%+rX{_P03b#?SZ-^r``^DCPm}c_%y33F= zy4NJGEB;!pkcT(Git^b-1&6l`0q?S+U%!{*CepMy3N;sV3k?h zV%Idk>IOnEIU!48o`pW&_O2~%VsP07X$E?jKP+mMp2C!q8qEgQtg`e9+|RLV{k~<3VtS=?JT7Wh~gDWf9-M-ye9Mn-y96=pqRfZO&!cXsBJ&!0Uu>AaeX}Rd=!w)@SqL-5lqX5c zFyhsLqF`}xF4CBN^7OuWwaO$q_|)#R6=c@QRebytE?~oJSf*HyPv#iy=ZY|d7M$_G z1ZKV6{JL&Ha3c*3g3{9Rt$1GsZ_+tjRNti*ln#BqOph{D^6Es&jbC8>9~NA`UF|Kn z0}L_1avq2Q50|*9}VeUR>=> zE7J8<-t`xAJ=mYaLd1`MCTy;R@D!wsH$WnTcS-aIG6%_~ z-o)Lu^MnNH#JTK=htX%z%5DD54;%e=Scbzf1z=dnI>kzeTgU97O3OOIyo##uX&FECY>W8UF@|Uxb3hBueIK#&Me0PMO zCV2iMKUySsUwG=V8YGU5Z$4hy({RSUCN=dloK6|5VS~VhW>4bIh42||Vyf^q4p&8A zPEMx~BDQYVxm4QIB$4_RE3m3?{0*h;8iudA>f__B9R~uif#1gAZ;-=-CA79gNI)e6 z1DnPMw=#Ag8J0gPUaA;Eb4Ne(P6SgyHiyiUNspwmsQln+yvWzx?5#+@G;3~YivCCD z?#3xMoLJ-G#ar@74!$EAa~X0#Ex8#O^t~`mF&Sri;QS}M*o#t)5jvvby$>u#_TTh@Q~&n;M4!%h?PcVM z`_5D75^3>pM8ar2+`*FPn3=b2wUGf@jMp~C`M~`%h-vyrD-d_K^cT*Ov+7@@RCSh(aS9rR0 z!FW1(>l!+0Uc)l0A7}|92&?$IJxc(ckH~5WjjJ2ojQz49jVzxjn8z27JNh2{w6{*l zh1_O^U+zndwET%7p3x`nJo};oNSaJ1Wp6v2f6*?jhhB|-Y-A5wO#t|uZC-6Gj>A1n zz0P$lwW4gm!uFAAus0jOyrD zA6cu6h%G~p`^n#areGrGkVwpqbKg0F^<$M*w|@N^D4~4%^bh@F(%eDfPR6s6o?9La zLLS4o?pz6f(6`X@pX!YRNiiiUnfJ}t*VoF&e6EH*Oi)|Kf9x!(s^UZh1*x2|;ZR+m zE*Dz9Q;XgL7wy+IiRE)<`fvzcr0J|_>Ul(MkMvkyi5^uPilh$G-2mEP&~G(PU&t+` zi;1uT_T&9k%GZQ8`5fx)YYmf7rE@&~F2ooE$U`pf2G##|Jbc>AAe4DmP@sXTl-)%k zr7$Qe^JEPjLlV%8@Hp5Avl2Mu9BJBxI^tu;FowLAv|6{<8GDOvi$Svv#=LnDETEO< zAxY_cJ@jOj^{M*ELwWW&KTe!E%v|a6)WGN`@W`!A5+tnVJWv#GP&BML^T{v-!1#U{ z@cNH5!;?~kQ6ij`6hdOr#VvZFSlLwM;qk&@*BVrS`#Rnw3vUCBAYT0ZKF1~f>!#J=TduOLPI&d|07QW$WIiq$ zr7>8(P^u`>M+dtS(JC?@AMT+?k^U2`Wh&8fu=!-y){Z%wl~AB;br|f7H2H)+5t;}= zq+c6q^9TYU2D<56f{h z>g|7Iw`EvVo* zzQhTi&Xrpit|KXh&o|b6-dde;_elT9?C@cbU%h6Bv!|a5zE|dori;40{bOPYGeDa` zGrN78(3yF=8qC`O&HmoTW{2QiO*kIP5BmS-A32<)c=4t9`{w5E!l>#)Scx0nr}96) zjWk7yZ~*&Cg-K*RYb_v8wn6{fhv09W+ssB&E4{VR8lfHOqtGg31#>I1TDcL{h`f4V8)hGj~u&ZU;tDvc@YEIH^gTBFpv)!tn011%r1!U~1Q({dr`?J-56_91Bmk zlJK8;v&UUKSqPkeg^}i0Y7~J5i1TbpTM{rd5J`~YdR6Q|3mI7!CLs@e7u*0V&61sP zGEfXc6b?@hr?Ob8kemaDz>yMwD$}6~W~7MuaHy{ zbv$zW5?{TeZaMQz~fDsp=aaeMsli~+~e&)3Z= zzGrBg)iQ90@dc=TP)4*?+!ZC7$R0VEmw!S^J|C+{rhV@{g%yO7^SFf_{wA9kF_Pl$ z0kq{(tu7x;A+LQcn65_T8g?U{(8!&dd>De^%@+cMNHzx}Sw=Q@Ke!Oqc*tS4+y2nd znVQ7hK=PEaDhwNE&S28MNBdQipbd7#Bc>QG-nFK+B2>7c+1H^}0hXj&5o=~*-Q8Et zKm4Et%7dQA=Qv-L(jg6IR1bCcK(ZDhXlhH?78>kpP_N3!VHFvsCN(-Swc?gfDD|GJ zNa2W|v8AQ2wTL`OjyFfjmU|)YMfl8n_yTQ|0w%3(!nXZySxrpuc+Dc8jy68b3L-I5 zNFrxZJCj#~beEIlbCP6KUT$BTBApeQ^WSSi#oo5-Ju3w7)RM91e_D&`9K$VgcgKsl zhS2mmJ%uU(VF&4%?tlsu<=aE~+7#BoE@7I&s!e;}br;|)!+A+Y$J+*J4TcMxDpT9A zZhwMW5%YQ_cvy^!h2A|%BO|Z2?mPm)qc25c16G|a$-l`XYp;}p%OW%Xrm)E>xc3qd z5bKh@A30=nPCGW1<#-2jti<$1hURj=w9O$K#jiy%m;b*D?r>hR>U2fcPH`Xiy$XM6 zfSu)E$-d>Xi9Pqn4!QRagE$uoiEdVR--`@JWjE4wffr;3tK&pwlV(Ea4v*^gEsU3# zQhN1S#FNf?I8?UiJXD&@`LPL4m<4O-vokBJ|0Xhiq~F_FfcRA~005bK_uACdCmG1h z8$-5RgR)gGgHjI{AO}}JCQnLT!Ai)tL)Nv+6-!!K$kCp>w! zxXf0f#jb0s-BOVaq4QjJ;|Y-IoOZa^RBY?VxNUDScL|kAV&i+^*&^&h;LRI1??dIj z9QCaXnOY~u>mFi5mxZ*Sx!|rH_;UZKJ8ZnkCUpC@nusa3*I5EIS85xE4t!ds?~~CX zqNW*-H;-g zK*V3cYf1O;&lwV^Xxdh5wvkETp>VgFE3^q?6VkjhaGFRu7+8;gme zqY}{pBuFZy6$QHdrgvEu%s$0nN9?fb{@aTfi-FU#Ht|0zZvV{+YCI*wa7gA8Q%>Xa z*7$oh$hvPekGVu(kV&Xp`#i*6&6%l^LT+hO-6K^{6|6S1I9j{NB4@gKo=&2*ZQ<`p#51s7Zo0)5_rd$1Rm(rHAQWEqR4MnCL&60- z^kvGC+UX~DkrhKYa)}sYLNk8P)mvV(KJ#D$4e%kO@V?xS#1v6flD`grEH+ly8HfSf zwOp|Rk)bMObqxJm`@-7uQIjIlVhBzht*$ut_ra4D@R%;z>o7`|5+Zqu1#55Q2)W#e=Y|F+wwcC zukP?eSvQgKAvKpIHI;Z{*hAn+caexgE=`OII=$M+gluH2JwohaP{qj8NezSU9R7RV zGQ2WRM`8~80oDT=_4furq5qHK!cYtsJp1eL$Z>QvfJh@=VDblZy~)s9hJ>AAl0~N3 zUgYV%y!ejN?CC$ihNvYFg%Mi9x8?qAxwJc=RaX|?Rp@h zPa3g6Z>&WFfw4ibEE9k>ow-3!2Khl)`_IDRi2+vV{1<%~Y6cW}C%@d&&Qm2_+n6bY z3M(lc%3k^ymo1HETS;X=sFNfJ&>=V9Xl(0 z6)SYy6<5IX2~BKR?)2Q*%8A6DtFw??fRDV|9!d+!2#)6p-OhSbj zvqR~;kV#@7l=+S&KK*1t7{c$banE8J{nGaB=^Zsd_sIEJZung}h@XuKfvcR-Y^pfc z+l(ln=1GPsZ=1c;hq_uek-Gt9uYw^n9R=pD| zAeX?6Q;NhnZnBPIj-0dUKD})*x#I8-9Juk3<-uie<*pnZ3WBARuS*nNg&!s*jj8)E z{}z0Fm^_SvS2DO`5`;)XxNPYgsRlTh2imp+mjha~Wthtvye;{r`mDJx`rw_GtS{Qo ztxbYW4zt?@I2+g&(BQ!fEkwr}uYPddOu9m$e-zXa83ZUHX2rzYnkWK5=d-9!kAB_* z<%l|1WdQ*J(f9?K$4Z<<-hnOCP)B%bgvtwWMEg_X41XmF5x8~%Qfmzoeh1aN47os; z-ldQlvk>osUgbN~wmVy~hm`OgRj35#TO0lo-x~`Gyd(z?5gbuaP!LRe{Tt1(%3&#( ze%cXu{=mGR*w0!bo`C-3zj(Usvy8`4TE^@S596CD(pH z4+DJJO|?mXjKXzAMJte)gafG1(F)`s1rXKk$_f4d7a-B7xw+?23IH@h6Fv!KX5`A; zLBD{YbyKkViBd6*AqI}jJV)Xfa>2Q4@b%~50jcsGjv;vFZoqY&$GXIej5gN9tH;*$ z13MHD7k~KN&id@xq3uqESLR!1>puSRxI-a;kAoHVDyem|1kCeSY;Hk=v1rpK4z3MP znC1GDzf6&1&s;1efQ`H7imt~}L^chl`Kt85Ys%>7SH&vV@`2b^maee1ViM3xF&9ER&z6p2LT_1%1flJ=cUbZ&rsKC7rMXh~dp2^WvPRCh1Z6j$;X!kGql#nr;UbLOWI|bc;zT2f$rB zd*E#u)~yQVlg%z_4@?i%BprTGXa4BpX)t27@kUB!2+x&Q$R0b**jw(BVF1&6V;sdu z^hmj0|NTEBPGW_I5-iI>_6~9F0ZN3GeHCaO8%ZoAH zqq|O3%PAkgfW{Z@uqYOGJ$?PVka2+XYP-Cvmc8jtl#I#O$$}}rjw)pnM*mC2haiy@ z+doqc3|!5s&@Lk;4nukmTwN5v$-kqzHsRvo~eMQF62SqTb<#(N%{lbPTyfWN(#(|PDKj+?KG_^Pg zDvxArV1hj=Ur3!BvYi39iPDJ)*$o#3gv|}lrO(E25$Jzn6m_&A6UpG&y%*HppI28= zY4H#Q7r*c{oi!r>jW|P>fMDUq%ZnB0moRpG^QMIi%#}i=7ZQa(j1XO2NZNkr6@q32 zg3g>_Q2h`|;p5GU8G+0;sLS4FYeDB9y2P{(?g-4b@_bJ^hs1L(;tn+2JiVy3310y} zKG(rNjeo-38t43e%XaC>I!j(2D;)jWp;C|+(G_p6Q~d(}wSEOwL0zh#_E`l@noY#s$EH2n9Wx@PBT8wEWsAHVto1;-^516Y!svs}zl;-_ zo$D>Vz766o{p9y4=Ds`X2FMMfn7r!HG(?&S=NO>H;>K6o_sSH8$ImEjcpXZd`Dnzg zq^WrIab{i}p8j{C+tb_%Qvxi_*}!f5H&4x4{4(uaA{Lgg1ipB>-$4;dd-KGV=)z&* zP4HBBhsw*i0h;sYGw(AUF@@(R%Y*b|;wKE5c~p4i1CiE>JJA>HABQwLr}{UX2Dc^d zC-MsG7Bp_OcDqKF-x0i6qdA?2(68vldd+kW$!I2(?xzdSuv;4e$t%5K3|}3FV*=L} zdEg7oyq!X)ky^L2YCotg7w#unG+-qPtw$0P5;ffm9qjtM7b?TfV79>SgfLq`xgc4l zj2i%3|5>$AKaRIaGXeal-)o{o0IlU|>(Ivf_yjQvUG&XiG>CjJ?gB1%(^ul+2w%Xg+8lsA-o?ziRffLcljUVzOpXDUTE{eo z!xN!fL%=^u<}jL9j7qEeK`b(@=}L=24^d)S<8;XOWCFvpD^4}$&l#MoD4ee5E?7$Z z-O-c6!MRx;PLj1}>9jN88$ z+j!-iMRW$Yg+O!RH-`y=FM5Q7f#9c8rxAQ8NH`9JCV(PV*3*#+#Pd0JAX$`Jr7oE! z9^*s}&*))o+roT_UFh|ii9%Cft}%4!FgsP2MqD)H!X?c4AN?hm9lB#e+2_ws@y;B5 z2KQ`$uZBzc1ucEJ8l8l@jlG$fwfVbW$9Mc^wOjIvScm#jjPVFAlUEFkelUqRP|q`q zV~W7)hexJ6q2TQ2)BNy&Zvq-+yVTe0-D)>tf~p*;yPD1&CRjr8*TGC|PE6gUk$GVu ziCRceZsDEb5@^t3aH)X)x`#NVFt}96&0JI(^I5|jv+&JkC@@)AfRbIqh>P7n>WNb?MgnmK ziwo;N{E<>{{}(_<@n00C%y?^HC6jgF)7&+HQzfW)1`~!BAB7l=%}b=QxpfmWU2)m8 z)cmb13oLbL3M+PM5y5cCJOO9&4L{*%1#ft;Yg7@+em%5h5zu2r8SjVVE`#Fo3|H0) zL|%Zuc&M>#>?I#U#}ikyOMiVq?|)Rh9R_%Dn16v(p3&IJQ2pK5p@i$!U*k@B!W|US z_c~0hwlW&~O)D5x0xSSnNrl9O@L>SV+}T~Mmu;WA$b#k$R5@LD%#T?#qA8-X9+&Kx zW)XdJB|qFW9J9zEPv+K3xu*2=%6xZ|V`P_AgK03qFvDLVnvH$NSg-6LQ9lCPhKj=6 zbNZou!^BJ`N%yRV&PP`DhBPT`f zM+tAbFT!~sECt_cefoV=HPI2ylQ@Cv zZIsw{$_F4NjWk^bk6y$3O15g5A|vg@nDP1tCNTa6i*2Z{f-Gy$1V5h{#}Ik+e<>9Ie*P9OUK~bhJ-dyK$r0VOzY{4IjZoD;P0Ez@e zG)f7d;Is5(MBR;bzk)|o+TxuDT;VaqG!cdKH`bh_f*Ms45J(B)gL`dCGE8KC=Mz3Y z#F);|GzRyS7-S3vf7vV3u0rRHC)$6;*vGnp0;GLr%zT1!BN-!)i@acEY|-E!7%EC4 z_!B8r`~h(l_sZQx=JrNNPgXJtV+z})##F*w%+V$DXLBDM4_2Dp`6s_1J+K*b?l8=h z+5L_6V)k_?8fvF`#6?bd&(CsQrsc^+0wZ*z~lvqJP$jSGa_Ksh=~NLTbY>Z6xDO8J!nO+&Gz! zrd5zn_V9r_=6IKE_t4yNSbdQJcKe6Er zN8^#|ZKyKY(|q2sKIb8E6PVuPO8DMqC0`Q%B!Dew!gl+%(}>Z-fQYDz8qsS5F4c5x zb)9YcXN3JKtv6wJJldT%z(2k zd$HJ&tOLZmMoTLYkWBO%jO_z>sFP!xOpOl@mx13+{Eyr|CCAbBSo<$-%Q9g2qIcno z+coP|Tk=w8l|gB1bG`Be zuKRt4*}dDFk1NoD9c|jQY0I&fe|*#`Y_BD9Wu8CY5QmN}$&i0ACT5l2(QGom2txqE z3nMVrR_OV|ZvTyZFqn&vOa+9!!ko428?w@6|6+OJrHPRS(|9VTGyb76Y8G2E((Fy# zm3qS*1IyYq)$Hu-PJVcl1|aNchJoVs&9rC#541%|ub?O(CNI-P2>g1$y7>*9$JfC~ zF+)?>&0%O8GuBeL;;J=TE8wNw?ti>p4Gnk%^8j60|EL0l2&1%Hu*g+EWe+AB5F;@7 zva_?two1Y0w(kDX?;mr9)*R_j5s1po%{5xAvG8@Kc`NoaMhmUJy?r{paJjt1{G*PW z^F@0Jljrluh+9iu4O4dn7ekGZDncSYph4Y81>vO{^UDHo|(1e=&8~XA;&X zFmUP7Pj%dYQHEW0Y4^UNrzpMp^U4U3>`zWd?mqlP@3Il{M+bjmIu&$D|7=6HVRY59 zVVQ#t&w+Ka`~iRPW0KrkBGBho4CFWngAASYV>fo#d{b%K1uGYUZTj@3V*0wL#=}_J z!3Z1x<1hg}I1c4s2JAIKjWk-ke5p4Y%CnA@q+(D0>^w_=Uc@KH&;iVSC!a!h~v2b_2kL*nF`p^LSLr<1&T%z?MH2F}SC@OY9~ zwd}fZKT40KJsOS@7+d)L#=5&IB1_dzpH2aA3?-gt65n808_fPjJ2%%03bI0q@;efR z-*khOR|N6qY*tvcMZQUDqk!@JDgl6{inz5kdQiT8_@E1WB^_vSg&uFOf`?D5<#=iz zxx;ra_R>B=%k~(|#&ggE+X15^DveCIo0@2xqS3)s)a%S7PSa2Ua?=M2ch7Tc z;ofOm8-!NOp@yvKR+me!+J4QA^-2U?3Q=K zEN7Fhy1y9UyrJn@7D2{e(|F!TT)qSa9$oF)BEM!>+pm)~*-dl50vq~+UQ?6WX_z%X z+Wa_!@#*khVW@A=V)6?JOC{Z{3m85vt9vyT-T!sk;+ zLs&DhC3s7T4KMTai25chm)+r*^fN$vnqWm?OJnqd#g!mf7}DRaoxCYz-VGG6^NZlN zO;Sy8H7$uv(lkczGCu-NfIr@Al6LTnSy7}N?DGU!m&!lnPaa~wHiuhAhgmVY?*ah) z(;wmx5kWVa5BA6WX9J)^<&MOhid6?8AM;05_T?TY&&@_0yE$1x$WT|N+Bw`VteuH$U}*tK9;X{M>?sR9EM4}Y~TDH?zL zS9yG8HsYbX*#8heVa7{Qn>tZTVYmjWydl@QczHnqlyhtQxA@8M0W*g!D#GyOr=jN+ z=xQ�*IgdI$7Qb3t2Z)7$!;Er8CtH<#(p*8j4WD8@zu7AA|F|aW{F%;R80oF@f2-ga_KM!(X}{0(m=(oe7Dw9K%WoiIfun zh!C|6y^FqX=V^h1RylY=n-E#dh_(x{<`A%s%;vE zupFRwPmZV}Fdp0FAJD0t1M3^p=g&hU^JxCvihT;uc6qZ-zAg$E zGT;sJMM1$|@s!HGa)Zp52e0X{Bd~ZviO1vt>T=Y@o2POALJZ1~hkH7M{)7pFV2~nB zgeI+Q=ZPOV8qqxtph%?a9v>ps)IeRF$&MxX(*KF zpRk3t7;a{+2vg3Rs}t*d_m`$w1Xrd%;D^Fx{s%LJQWg)VI@9QA-~|GUe|Ez%PKDm&lV*LkHD}5RTZFKp z?Y^ti@q$vs0&A!!sCb`-lSYvIa~mob;tK>;|E+)mz2rRGHINUqauqm<^VZbsod?$y z{zdLjVNbbuuhirtX2AGfvxwPfq6pmnT^Zvo!?tfaE8>GH&PSefAk%K~f*20F8b=-PBW^+v;iKrE^=y|A*zX@D zV2~v`MfL|Q27>WU?+=t{jcE6oM1ThR=)^fDeU$M3T1zLwre03;6a&#=0i}4?n(0;( zMM3m^jOTxp#;s_?wXVa8`1Te}L9B@1ave~dQz2O6w5UUesQ9}yp3+5}KDbVH1vb%Pq`OfAQ&!S{~>d6O*7ebe#(rCvcF zb>X4FnHcCheDqogD0~VN%~zG=FXFDA#XzZJoE!r0GvZ|($9`oIDyE&^YXW|^*Cv`g zuKpPzf?eytcDTn5r4?h7aGhmR8wb`sBW{3JZ2LW`aQ9`jE5$!jg~h?fBdk9Ec>j&Y z@Njp}FpvF-VIWM(4n<`>D@NMFOlP}or^?rsh#h>(RH9BdS>?FaJ9y zr{NWuk)QUQw_rD4%r}H~QTZ(hi`i!K3zlBBD3dn2LKUpcOyq3~o$jttWJVb6HPw6Y zd`5dsHwPsKmjKRZ{*ZZUNuH70DevPz+kUAe!C7AK?{`l=RtfVJePwPYmo&=)fZiAykaLTmg0(*N zDG7ZaLN5M|{8RRE+~iI@bZ;LK)vAH=M|PrUATqN|3G#n)1u#RG8Gj@HlqXUC91L|p zyMJ5P!`9H9wKlwj3CMPf3|nw@i7e*2hYregtjGLzM%DHqSMYb$<_{2=?Rs-gcZ*}c zDznPVJozgbQrS2gj0xXu7DPPW0q!Hn?1fUer!G-9SMUk1)Qqw?;wF~!>eoi+{_MZR zn^zpesYOm_Q*;F@rY6D&#=G;#Z{VL2E_;L9>dH)pd(-dYC@+FqG&zmwfhL(iriL*= zbBfAtH-|xuZ%rNq)?Ou{Qd$Pk#sRBtqRDCETy~IH5azt0f%gmIrGys>JsQ$4!Z;wW z54zEd)|}eGHV9&0^fJ#NTc zyK&EQ*iz1WrxN%O1kfQJwx7%J9&^GZ-MZzg5a|Y)6Mq>dYDl>OV?~nj!dMYjD=);e-gzY+vFExUTzyEDBCP{%J zQ%KSs%i0ulaiUF3Xr#ji>VDl^(hAz?oKKAhca{tm{IyNYd?3PN`dWi9+Qm<6d_O3D zTWPi`-AD{#e}8NEMG=(`nn4)F%3v>J{?Y}|NlU{Z|7>vtFlyjbZ^?^&XzyK?1scic z%$%gR^<^aU_X`Y;~N&kc*8+0yT82%F3EU|z|Z4PrBJPePM15iba9?7aEK9HSu z4O!=E_0E&oVnL1F+C+>Cl2orQvpS;~rULPfDm-%9ml}O@#k~aJe>xrSdPNQy!g4NP z13&RpBc!X7&#x~Tg>DssQeol%cqHqTpw&2BQ>$~%pD{5pF~cti<}C9;5}?+&5GPPiS`=M5y!$gi)&6Y7XT$^{=g5>BlLmdA;L_L*t7j!M#!P8(B;dv z{oimx+Xjmq&u)l3XS%xR+qDKnnsqfi)CTINh=n2bm}0(}{@_vAFckZIay>ST8wHy@xw4q~)K&=5mwH zfT2AST<^dmuBdM!_IMn`xdbm=uPZ=%fB)!Z071m= zEV8YtstVk!ouUT$xf=ZKVK7}Q{POd3m1r5gp=*8C8V5CfWB!un9LC7xd1!GOCbF#$ zN-VsYX>r6?KI*^=tt%6Ejh|0h-mG&oe*V<6b@|hcM$X07HzgjWaULyb!@tTlE$><9 zwPY>~t7aEppIALsJF&U?e#E6U-bn>FABHM%uCcn(Y5AyE0#pOeWG* zKRnYI*J7k<*4jyiUIV2&E$8*ZuuUeVYl^eXYn7JiTDmfz{pMnC9R5!X zm6UWC^v~${3{%i=l3o@VGGssWL$810(+g|H+L>NL>$&)Bzbx;OX8d2;g5v9X68pv% zGybo$aHCPsUg>=zlf8<0VF8(A;Sd>VV)f;-_V3|8nnKfAauY%USTM+W!>Hg_6+z*O zy7FkP8H}v)42cWjz;IdSayU$7I*!@q^;at9lvlx~o;WUuf3V#1HUre>6Tmu&rFj0- zq{HfS)vD0F2N0}tOAOW|X&J;QhvheHQrzLUg^zDfd2Bo2lB5}uO-ex z9urP5r6X4z{?_p>8qS z_lAe5-)mD1Y?8hI@A~&sw4BLNt7nVEPrSOdaR=b+nnzZ~AMM&g6SPzH(;jF}@3zOqlvo07L${8$_$hz)+WF%RnN@kuTS{lavh^a5Ws<1G7oBzX%#|qL zv(7Z85K{{v)bxtBoh=!z=ky&^2{eVAmhpnufdFBQ(u zv3-29WVXgBJXXZF7jMuD{l@fzwHfn8)_8Ydk*Nj0g2TVMZwdf?&cVZID z?t0?$A6B-vDDYLoSY4WN4T$2=QBiT&)A+qc#wwPSr85G<+4?800v;1qxI(lCAEIg6 zGBj2L>OZD1I6kbk2dDg8(~Whd9Rmq8zqQ2gaPW3Tmc>WpeLFBHv=twYR$P{h`Kood zDm%6LM_}P-1J77URs^w0{<%&`WbmSy7mK_|$>Y4Bujk_*VpzuWFlqE9qwN==a&d_Q zg?|4O3Nqrb`6vwLw8cqX(ka9#u;ls$ba~JBm82~rmlpxrhwaA ze_My!bNZ_WhuynfAD{0|frE}?YV$ttHOU6f6Pe#O9((CCVZWLhTYCRYfaz)l>(&76 z?-*Y21|}r~rNXJ-KAvx^dEz?D34g)=aWJW#wN$tqXGEXNZJ|eUGICX?;?ux1Cz3)N9g~j zwJVQm^3K|h&gdCu#IGnYE){KKMFp%?s)9&IMTvj{3J3^M6p^wB2ob{)m!lm^(Gn$$ zltsj_xMA3WL`bb5rBq@74O?Ikk)4P@5JF&{8~guvzH>hRF@%u!eSgcn&%M8UpGN~C z%m$pOH;Yb+6hR^l=2Jgz95^C?se0d8eflRZ&^j9@)a;*H0ngRYxG?!T5CBN^$?l~` zDm#XpeEe}~OCY$?EAhu9putfea&fzFpzDzrpyU=p#0D2>1A02^wZJHDXPan``**x3 z9Dfxt)C6jh0FiPV`96&}aBK>U0wZ^{%-SGf%_`m9^aW;U7PJ79PI;Hk8{Y*EE;?-P zWL=@$%RddgEY@vp@F8q?jql@n0Ob{!a7)wAmtAc}Tv52nKIy>5KyVfn$@>bYHA=4X z>zI@3mu;5sexAj~@#uhq5q^(@ayIBUZI?=w5efUX_ng%xP^q}dwXf|!B+v-x&&UD5 zYt;Qzzw&f2*b7?o< zam&x#ySe?(G(9qEp<~>{64OL~x+gDcJQO(89?K(CRshwLU)zIEAj$i0qxJnd2MOMbFvMAAp2CRxAxlaJr5;j}KTibp6T)}s$ zGcmn{A`0~9m|m^iZ!E>fMrb;2^5e=ORG^-M=_}N+nhZ_>ap(k?s#X48aHSI?MXLL}SLqDgvpD*P>dsIa z>Pcg!ZdE~P;;U|1#^~=Gq$gk|dK>ez9)L3tJ22Yk$At~zye329$pU#+NrPZN?#>xa zItqR~T-PtZ{GyvU-1XizNqLyNtADkW#WG0n_$p8-2tk_8A94UhoHI&PurOLF7N=j~ zTiknn5N{j3rQxPf!PG!5t*VlNXF41ou7>b340Ors@7FSz@Nr9!FmZQxmmO^>4)IYn z5yyT}KiE?Fjd}6K4Xvj)q1b@rjG$`#m;^EGZ+vBqmbSF*=?*tKcXYaHAG;m<%(N)r z8}G<icHqtn6fH z!5qTDGsJ>!o#0?HQD^|Ptn%i@qZe#A#&bpsIt>5)i9BR+tt3 z4@*u#P}%rf@1yXccadLM_>+Fzu0qg}#qb&Djy1Q=KY*o6;xua)&aLVj&u zGlYxOBQz15n>B|ZrIG3o?mJeoVp8gZS|n$X3>$bwq~p4-BZo8-qp>v~uwnACy5D&Z zlL4&nQ(?&0=w7yI3a^SQ?HnK8av-RxsMIhUo2wTtV%=y27Jpu#2VyfB41YHKmj|ZR zR5gim63{x{$7&}h&togr2VrD-U!*^ck)(nF7S~(Jq$rU@jXq^J9O2#m!aix~o2Kjc zu%yMB%Jh43cnLSr*eoJE-m>(HM!c56bApdo73v_-(Hh9=evy8GurRgwtx5^wF?#Nc zTAdKItJ3BiFojDs%tq(sU5xU=+eQXHg;p^`6$T`clmIa<;nB)Ll{xBLUQo6spoxgJ z_>O`-dd@jcf`(x{1-14S5)l{A2<(vXCJnh3kznP0SiW_7LM~Z&dFLCpIQIRI(5 z=Ox%k9h+$9qkUstJ&t%kAuTNzwJ3V}`uZu2!TrL@-#Ui6F~W5eN&~*GMd8xaY6HE$Y%B6FFVKwYoUv;jmix`}PCkr| zkkO|y9VprB5EK+7dz{9ddW693)@;Zr;l|v{qHxr8FnvSK<{h|y8Jt{rN8F}6`_i^e z=EX(d`Mdg68SK&XpEkLU4Js0@UCTh)33mU)yZ=0)-T!?`g$Af(%~BnI=mj)ED?!E? zklxVC-i)D2yp2&teOVwedU*>EI=;mcFfuW*Cs2dJr+ZMTukIT5gFQpX+@TvO33Des z|JdJvlsQFqH1x1#?~rFq1P>7k~ycPPCM%?(!x(45wdYJ7!$R)Ij&h4-|(<+oCzbtNMw5 zfCF)XvQ0odX$aZwT7#Z*_JyPkzE|j4L~JMEUKoq&h@4Ti-Rbhx@!>9mxYfqS1-Y=q zVk|>8!tH3R!Dcf0!p<<*m-0?5s3+J@tw1!CT*f%0(Z;UoajEa| zW-(%=uL zRZkxt7>eje%WY_yIySJGy>*#LiDE`Eo`K*6JzFGpSH-h_e@W9dyvH0*%<+8QeSzte`hMmBhE*!Xy*N)01J+>baUoAXKRN+ z~|qx%xNAc_ZW6TXcR&4D7n_iw7q5x$dQjD~R_ zdxT)G;P~^!q(CwunO0j7Jb}kFjCyyj2!xIR<6ef`N#WLI`-Ghk(aWc7(fKDgK{=QS z_(0-BNM&C9m`ln9FQi`FI_PP`Q5QhQj3y9DmZcc@1oSQ=ed!KJH=*QC-vxH{qf}dQ zaQZUs!Q}Dd$A$9Lt!MHG)xtcxEn2h)`UtLwwG-mw)4|sW??V|0*%6e*qqaB)v1r9x zCAJ79OBGSW&nc@#>V!wHY$4LfI`{z0_b4_HogQezGFTo;rUIoD0%|OQ=b&Fz@W})% z)GSE`GU8xD(5b%)@7p5f8&8=)e69zSn-0{0{?-G<%X_zUE~Fp}{ox=5xQGhYn5l8! zXkbEf>|Z#gUQJstCW#j}4~u_KF05=3BN9c|VoTAHr?WkH3YwYJYsYN!fIR)65?6A9 zgYYvNedJBNelR&U?fx|Ux`uAcQWDD&HCSc^}B zu)@b9xObAnqbs&o@_?ayu3e>mzd})(WXBQbiNzFVM8;o zAI|o)XdK)GxFeJ5Jk0r!w-lMtdj7FZflc*fMv?4%eyi)2EL#D=A`f0lN{VMdnbq_> zMkA_Y^W@kD0c9(8T*5H^<-(I&T}UpTw9TvhVNt$E&H3{))x?3?F)<60RooB7mKYnA z-$=I%v+XP!!-@m(X99x;FlqhKON+k_I5-kTy8{)oHat)OI0d*tL(v(c8|2v#{V$As zfI%gN8ipStPwP6Qu8oRClJ1bD6f#5ugx2KqLoV+)okLrQxEVoU| z{Ue`sgwRO0L86F#_WL%rR#7oOZ?@Nye_MajlJn{hkMdbn2=!aU^w8(Y9{>a;8_Vs9QrxoY+iJ zV6zL4#uO?6taTg-?(QMCSgf6m93+^<_UhrL%xX;f9I4peYm~Ptiu;pJbZeLmBao^pHir&k+Nc~YO+Yp;cq#M-Mpe@FZ z92*RUOL=)Gfhbr#Ln`#FJLwcwg~NFKr!El94CVe-6|vQ8B%JAMH`V@I;%f)4TH7(uajrk$2KlDOM2Q9){FEGe?-E2e;C=xU4TLN z8GguwRHUkhXYY%2@3PAEpO7!vtLed-k%Iu4{bF2)a>r%O1xRgCkj$%xPG@P2GV~ET z^b;ZD5yWG2S$N=w7L1=wdsg77}1@!0=IRBI<_Pi;3!!Nh@$zyFiC@ zyKD?6XSZ6T#}tZZyFUAbYT|1LeY(nCJ%VH5-Bu5Za~npG#OXn})+#MrV}Yn&L{a%j z^wwo^7}OC`4ngpa11Dq7Ah=jwAhE&r*o8pV1qCWOZ*&QZR1Aeg(oMa98KdMwH0U^y z0CPs<$`l7p4$J#umdypJ%q@N6gAQQ^;}(O(J1SA3NwF?~qCLe9WbH9Vwuy&AFEe^z z+GHa=by&V8B%4KC)06_o)HvWA+Yv!vI5Hc9MKuuDa={6C*xMVv`ihNy;C`VT5H-%w zEFlS+m5N@B!V|LX_&XUX-q!84u*Ze!0CaSEBI&q_qIdJ5@&%;GM%aVgbD4V30;{;U zYE{~GC>$@gic|$?lh(ihL<5q8T|)JT2ZLx#`s+86d4p$8;4wP9Drvv8WFu-#aL=GdX~8T*NKM=G11{r>PmeHbKRw-& z4q&0x7P3%2rrkjYniEKuQ+nasH^0Vfm62gWcTA+(0Eu!ikQ+l@@3e$n<{&db(2x@J za4aOH8XJd>gnLtnPP^eq>tWZjv6r(EK2U=c98@j{)vG&SyT)KWL<{>Z6%Q6*f&9E; z2p`Wz=tLbevUy2(FSt9{{(m`DD*obQw*e|(pMmxG<3Ao+azDO0dm9zGA73ud(T+I% lVDqikN6^dv%SW50XBo~t{KE7XyJY%PruE*P54ImZ|6d>wnbiOQ diff --git a/api/_images/tutorials_nihcxr_monitor_api_6_0.png b/api/_images/tutorials_nihcxr_monitor_api_6_0.png index 318cbfaf6e3182241d0cbade66f09af9ac4c05d1..553c4c37971b3e178def4655c770ee5bd94cc8a9 100644 GIT binary patch literal 37438 zcmb5W2RxR28$V1LMJQxT!%S8RnbEvNbd^YER%Gu@goMA*+n6 z$o3w;^Xhq?`+ncg`+5KG^LbSF>AKGIH;&&izTfY0hH73sM@Pd!Lq}>BOD<)?1-w%k|Ia-LdzGae!o9whdf6a-EjKLWFkf$o8Sdx)Fe1ki!e8oL+ zs^7!?%IM10+@D5M0nP&_$u8w~?2W#6S9hR>+)Q*k<)6 zKmY2Nj@5Qu;k=GkU0t`f!#DH~{|Zp)%2rnCh#%k)U}ropev%N6`<6NRSXjW~=?N!> zojAn>`EkYPI!9Pe5qNO~A_c8LF&Pg1v(o=C`dgKe>I(WBj~9QYimnp^$hFYlQOvti z(ceU((aC7|o0pGr`)l;KkPw?DANmTe>hCRREJH<&ObP~k<)pv4A4*P6p2}%a?DL#V zpQ_l}oWAd~&?H^-{hqMs_B?gNRz3`0d&-R>_;6pQ(T7Y-`KY3_j4OWYjFT`f| zyY{-c`w6my)p}+%yc6&g4!%$6#q|3yWR~kv>-F5fbBm!tf3ymJJ zw?(Au=G{{cq?&8Htl{wEd5G)ljQV<28d}-{=nM6+g)*^mPS=oHGgG!{E6GXNQEUf4W*6W<{I^s9~&Ea zB_*8_k}jk5Z1aEzNFF`Prr>#OVZ3D=jDk9VuL%9KbfLL-V)(-iiB}h&)E|nJuYRPV z_z8Bl>&)H@@YPV*%+se%oqExr$rJnZ=|x_~?y+HB^^=rwQZ^hGi4Ig?Njz&a6-ott zjy^>W=>{X zGA(6WI(HV9m;JaEv(nZ|3p)co9Aipy5=wzM# zi?PP|ns|$+-D!_szkV$!DEKTpyH&ItW~oZk5G$7Q;za-$&cjEKa@3!n>|uGQ6aM%y z$JGoyoU!qNQ^C8sP1P(UwOT3LOij@N#UHh_viknS?VIuEXUeK`O5EZ5>CLr)tq*m%em%9CT&ez;lTk6!+Ouh&sYNg*L2@;jn&2Bi8q;4gPa4)REvv?eO@zVQ@LL+zSVgbu(B|o zW8U;ws^$2tjw8*AYg1Bd^Yin?Gqsipn0q5C-t?u@E9H=SDz4woJXP_$a81RkAza`j z4!84bipKbZQ}o8|ueEk@$?OJms9uf(2jJA_Q1{M$NQLb1;lu8*Fz)l81lXl*xyaNMVLlQX5ACdM3Q(@=1E z;B$9aJ#ym;&-3$R7?jo@aJ%(AeEasu{vG!W*LfutKKOWGZt#8-$8i*BpQZZdC*Z=c}-Y&kK^LMj>p1GFzoe z&D`S1+n}^JN?v{GwOMu@7Lg4!F26jk|DNoOgu`-TbH&bgfs=-Yrf{KIu4wG>E&sv3 zwit<$U&X@UQ%AvTk3PPY5jxXSU;q8?q5FgAXTCvf{QAHui?)FWpT$!T^YyOU+FF~Z z7d|zyqga~8x+5sSEdNOn_XBR{$!S6DVE?LzMtTI$5gn6ME(yK{6G3bAcD=zk8*zO@xkR^QN2 zG@ak8Q(((&xG|wUYy##cC?dkg5it+eaun>@wcCu51P*wonMv*rZpNN_-8Rc1!6y*ASOJbxUZ2Mb@0`}9a)d)1T`oRE-x zo`RhQULuy3mLp?hM_s3MY|B^7zxi$X!0}{L^p>$m@{x))@U%=AFNVyZ5Po{5)|%bQ zYrtN=_=ssI;?^We;mrE^j}tlc;D;v)7jSt)j$T|1cTqo#ZF<#2&hUvo$9TzRv+)D(dk zh9SfUYt%T=bmwcw)zi0c7Q_(Rr0AQtgGNPY%5#~@<#x=cCkaP1QLi*{7f2d=4@=WY z`C2Co+x^x-Uyf(fysYLxbQ*5151IZN5Z=Q^8?!F;Zm5He_E(scpY@9;Ehbgr)(x&q zO-Tjv`R$t>krB2{aUDqoub-EV-zu_m(lxN~?$5dKv^US;<}bk`cB04Z7`^3W&bq%G z?^#w4j0p7hs#?zpSRboiW@*~AJ9ZJ@l4BXhyQogp#=H>J`0V=3>sL#X+II&xooMk3 ztR8PqFxPd7lXLao^lL~LqKcp}F5$D6&ZU?e^HD#!-DdmhhudYN@1`kNVp^o>=igm@ zUXu1mx!h%Trhb1#QJtN`g8}#Jm9L%`Nh)tj2HL&ZNJ!W@b8r8EZR$)w_g2I}Usp$1 z?gf#lD`GgGSn}hwysIzj`$d?0W@UTSSW*f~Ky$O~fP0e@gxJKlhd^cD` zq6hjWwn_1f^!i9{3tYE&ce#vr(FW!n^)c+Q@CmjNIg1N{-twhx2S1*(EVp}E`OV;g z9XqFu;y1W^Okyh7Xb#K-2;w){?f)nvR`-t3lPJn#VnjF(e?~%+I(+74rZBLg1 zy<}L4^{3T@VP~{j~y!yNSsba4K zb|kq$*$<_zFwYo zIc5G&#nzKEVJwi=)EI|wf4HonKzY*KoWIwuLgA5shWYC6pT~|J6LLc+v7J9X&xNy9Dg5a}lg{sUs0m@P zSeYN4Yw??Zlq7EVO@4Ew#qYzPz0AxHqN8h3-Ww%!dAUw$le}_$WnpDh%)~@mJ9MlMMcEq z$w|*DaL+9>~K-NFFwNbHEhr(B`&jNeG8$NvsRq~x5`P2u&M}F=-Qz9e* zYVk*dk~XF+Q*p(6y<2u>Go?W=ho2lnAwweI=zuwUfXSp@}27X z&rWuv4@3TA0_ll)r9V0MeJ}Xea%aWnUWQ9B3l#C(e(6C-&o8?FRLXnV-nM9zMYQN(iPe0&m089nX}$|mFt>zvXsl2R-zeyJot$;w z+Wb?ImX>C`zC4%c+G8m{Te4?ZDdE@JE>xJoILY8HlBOSb@AI0Hs2<8+ut<68 zc^FE$4GkzIY-KqtyM6Nrfdi-DyCq#dM;9Y<{R5P5 z_3uNOJiz;O!!8w#KlSS28h;TcdQZu)!3G{bnN{x8d_q9+R6;^R19%RZiPV=pQ5f&yIxB$t3<1>uCBg5#NbCZSVhgl z%SG=558IvvPx^365$@)1GNxa}lNstyD@Jd9UX^nG@mbVkW7>fV za$ml(Lr#OwU9z(1&7-UAs04}+3WfIniEWNZ*i=|H#nt^`==)JxW7t=)c-)3)Sm8Sb zWjFYug@gf3P0dQki$5Lj)MFYj#N!!x3MMm3vR$WjFDfiv$$$)bc@sA7zRdR>=ts0- z-LZTz-Od59o&5NnM?^(!7rc|qAo0|59}1dlVUU{=g3b#3|5rwb*R+T&xPkZ>m; z3xd@OF}Z&tSl_Kbuci9!GEY)ZcJWPp$)+E?!c#~hN=EE@*C z&At^UPSK|4P0IApT6JtGoWE(W0TOy6jpop>`R!9910I}8|f8P3K&d9 zFc74OWvTkq5cps<(n==V@WmSf;mTD3jgI?7Wf`s`s}Yp6uds)k-J9NF1;lHXHKyHbhGIBwT2<441N zPz0~fhA8!!o|ti~SkwPizGe&dUo7hN;eh$6J&}!ene3Qr&&*fw%LiBiLL4$_h`qId z5OkTv>UTjk1p$lBaJ4nIaHf21dB$(6A%w^G<0%G(_jJ;Im2mPq$7G-+iU4y@2fU)! zV88-m)@IFOr(p|h;TdIRa>S%UL6TbnO0&K%Jzd|>A@c|Dx#M0V3OD!8CjNq+ZELa`j#b;pyYC@eUcd6$sg ztEtMv+ohj(K90ZFYb>z*McsZb(&*$uvOd+WU5XVGuWU=+@2V{ISYSJ9x&ts0W55H~ z!Ho<(582lEzWMI$?0WGh4yaEnZmr0~T&-CnCUZzh305$V~ zgw_4Y^QO}sum!g!;?w>>uu@_ zMyJod5GHsU*w~2h_%0ui`&D@8+O=!FzLl$nHIV@G4JPe^14JfyiVDCsJCUTeou?0K3Ung`an}Xn!O3)&+njfMYM|>8a`K_w)aW zWRrN&-)Z0P(rGiT6p5{cfvM-E&*DGRJ>zcG@TOhnu;TFWTvZv{x5cZ`qH}(D^@FWf z#%M!qogKn0VSjCw^ub|xj|v+a!*KzxDYS3bfajzL%1i;~xQN5y*4-g1HH9P+r8#{N zzt$(TE56qYXHpo|M+u=U;VpRfN3sZId{?*cf`fxYNS@;QYz?w{bO0Nl$QATUfcLVx zyfr`C5HIU8A+=8X3E_U85zj5flZ%X7)AwdI2jg1Jqbsy)`!bb2c}0p+4wfm2nf>Za zda+*i+Sa3-Kp-rqKYQk{DcELi2#^#R9DYfZBEe9I@7_I>Y?cYk^j&kMO6RCrl(yvA z+1bgMSy>Up=kTZBt$^JP!gm%>0uDeNxVpau^f-xk>LKwm)Q z3*~tNuS;^cCYV5})~wF)#6;Q>3;yE6Y2)jz0~N0B1FpkVl0(|mS*sB=PoK_Nm6+U6 zmw^92E%V;9-Bs+FyXgTkzvX$Rwivsf+t&5HbuPGm&b8Lq^7p7>+s+_g8OWgc(Vu*~ z6#D|Wl!pKgnwT5{4|S);7{KX#x;*vx>PzRiYmrNby!!kRmSOO+qv4Xx`?-F(XZ!-- zXe{;R{TF^)n`DSQL4meiOFNID$+&)Cf`%MlEzzIfpDa4({s8d1gUlRfjNk@WmfLeHsFo+tRIZD1@gO;d^tntS5%U zB@sqDu>3*#`yU>M_j{02#tJY5&6<8l4FCP-#4?Kv9L&2@^n^(dW2@2pJ0E) zvaf&0=lOZTWi}d#)%E_BwQgEjF0ZbLwLJi3CnX)*x|<=K&4i%NvyuCnAUuB9bB?PD zEj83HJ>fq)GkN4@N+owUdj3L87sTwjg$p%9;*j6*|M})6rmgR?7v=D?H4GLhPh7VR zN>{9?mxkg!J!Q%Kw$=t#et*@FJ~5C7)C^44>HQwgP40VPVZ$w%8AAvGoQPI!9h@2q z#uaE+>vHm^MV@cLP0q%|u!lx+y3U@wcaDXzM{v)bYRyvZ1HC+og_rB5=}}_s4)tac zL=_o0L)?eie2I}wd*g5N>X zl!JaCHz8AYB0_?1_9*@f%JXZ?aTBsA0JPnD@|2-BSy_wOR`3D@VMojOGZ8kw$JCF| zylfdLYnrmuScPL94`hte$|sHQ&*y;76JVy1@LB!cq`35+NrRU$)E;)I?$0#91l~U{ z7=G^^*p!NokN1XBc4l_&&DHepVty;Mh|7T@(Ap{Cm?a~mUdeB*YZxBo-Ri{a>h_FX z)oNGZey~P^)%kg?r|hp?%Gz+JE4>!myQ1L-lPu_Q(@bg@ESlI zf?wnUG7DAA_h(wbEPGYjJ;(|V3k!d0Y0+>#LEyEd)z76F%M58rso9D?DI>vj3Ll%6o*v=$s$XxA;MqD> zE++REFE9IcX5)Y`#f(&C;4LQo2;Q_q*d|QUsRlYd9>}VA$#|H9>3Sq@nh$neAn`GS z9I>j0P0#S*4=Y~Wv;+!^iU$-ZBojFKH(pX1Te%p3i|6r%7T6Gac6wwv$+o>8?3q8UeF*21fKrr2%ZIxgkI>|AmF+XoP3rRG zO%s#EmfdbfO(x$k%g5%#u@8)}NsC%&OuU2ZDj(^p2xklHP>!-2yY|eFqTGYN5e||$`qo4JM#TXSX4Q&aqUH8Ai8oT z(0ZAkwAqy*q~Uy=&?b%1U_E>2s~X|XEuGbp$H93LJe833;Hh03{FxjBrzdUVcyayB zC}+rJAK$B@%ocOJDpQydjCIi#yKmD++8PGh!0EM)s-r05D?moc>l6HPt;&F1lQr;7 z1NLD9?87a)X{yZ5RPkIC>!^B!mckYr^TZwfqk}{khIG`aGDri{8u;{2mH~9aE^&hb z@?3zkVt`FZt9fTvzQT_}3LE_5x#r#Lwnb(MkwUN}4`*0Zw#1{Ps>BXs&r`(h)#UM> zReq(O@F7~;;8S%FZ8rdGh>rrpwRZDXSEqwAn+c={+zmcE zn3;RRs-mK^Qt8iHR6hx1(tpUySJ7<#ni#K~o|!ogqeIZooX?Pb+}vJ_U1q zeQqr+EgM_d=g)oOX-cR4wI>EcCs3|lcCMA8t^JMm*ETTKDw}~|E_ruxV6PQC8@qEX zE^BJ;t^jz>`^{5Bu-=PF4gQzs1Ev!W2Q;*tC*0I?u)8u{tE zQ<(G#-E7mHL$krS0nnh#1&Mhd*j&-@ooDhzc&%-p45X)@NVmQo4mHuj;M2U>ua0c7 zbltd|v+4x=1-w4>@oOI3aI|tyOun>VchqU85E!rKJA+OU;X=JW;wXi*%tD3;utW@* zfeaJKl_wv@&KIkUJm&{t~`afBeX)giZkCKDngUblO9|!i5v}|9O=%hH>9{8Q(iKPfjd~{V6Liv z>ifZuWZ!K4mAb)BWHCX*g!!qjgV(_g+w9HiKweE0`#M8h6hqBHP4*y8%yIAukgk5* zQDxRd_h?ghyIl|5LW<-!4p5uc#AY9$($lB9gr>`ht=K;2OIw5Uk~7CDPhnw|kCk)} zjzp?~PYn5f*C?aaQN2nC#k^~Xk0eh%0H}g}n%ML_Fwf|zJ$H2b9Nc|$;C_9EqKNEZyP@@tyY}FSZ^K2o5nyIMkv$5pwmxH?!a3O zD7jda$3{Uof2&>mr{Uy~8O&>f6iINVNoq31hFKdX|F~wZd*C;1Rb7O=28x`-rzR-6 zs2<%oB%UYU_4G338wd?)SoO=x_uOuzTJ)zT6K%|@D&CN^SSk;}?hg#6>AD;H0CqwA zg+)D8{2|GqF8B?^vM;dfo+q$TG0Ii!o>$4r-SaCS=4yZioT&FShm_9;J$pGrgN9X$ zSrYEovR;=6x0Q)K!V4B}kQRUyq8Pby4RPFRs0hO|`fIS&+P3u3KXaU_w^Qq6Ao{op z_Hky3yxsFPvzCYYuEm2rr%ht^j6dzm=BvqOy=5zM#P0mf6NI)=?1@4nZ#IltcBO_@ zwU35ooFx=vky^OxTwMa&CvKA>rw!>;-J=N_%ziP* zP#ilkXb5+X`c4|0_4qCsRLIkfR*hPKzadSfuP8{9IXGI~-V1wPI%(-0HmdC}f%yVp z&Il{2O0phX#)&KdMP!zg0IljHRPCRc1mHTqjLXN035t z^_1-FS%vjv*)Mx>_&U<{zFB9P99Ykm!_PjT8;}w(hPXrqzCD7G)#{iD^kC~bu|2z5 z{H0)*Z!QN5gg-nZcI+1SgqYS;fvd_umds0Xb*EmjQqn#8_Bx~p4Z#$9l+VY{$KqPy zFn7@CAm4#|k9qLA#A{@y4r%TQN`eFs&q!JW3HAepxiBh|_SuSJ5F&)mpNnscnvHT+%1n>TvamUb#D_IR5N9WuaodVw4h~|JpP65Fe*MKRi2zn37{b)TA_vfUd%*sj$1gkpw`N(pXW3Rc%g2H*3L+Gq0r%Q}buf_O zs7=qYjM8~k7E!&ApdqWdvy(}u$kD81ILU9*0}&>GU{$}#EUyPBs0IB1*1v~G623Lo zlu!qldmWH_N}`2>+d$hTzYpm1r=Hg!r4t$-k?#_s>!=+pMx{nt=8oDM?}#UIkiHcd z_26FH5<35z$Lc{b3b5T_5Tp&5u746pQgd-R4(y(e_W(IHS7qv@m)~=Uh)NxKq%j7n zrN~HjP+TI;sZ-BMJ!Jx5{1<@Sfgp8$VWD7@4}w#2xb`jMdet4|Zu9{@IgI)biC5aY z)uN9{rUH9YI$tjw&ZDGQF2+SK>AUXEazy9zFB9~qxqKzey(e4=I9hiQ0U(3}D9&|| z1C9ZmH1zRMkecCDZf#*WJ|vO+7ZX1M655QAePfXvi#eRHfOiD!T{;%q!f3aIzF88X8@&?m!egNGExy;u30#YnW_d7G4ei<#sf zTUsnYy{ZRlJ9Iz*CYlAdW)AS17+@t+c6vR5Nu`;ivX@6*m%H)BrUY%PN@#{E-tN&A z@CeauEaKAe+4 zSfW$&&$&)ehDX&mi{0^SuY|ffg{EBV!H;{qi&8ij z?l#j=7nI>{W5^8Ri3R5{Mt}P@?s)$Jp=-%~*l(iN@3#c$e>L_wQYiJB*M$$cID)JQ zV?aaLehT@^w6rK=qQzWX?wO^JcZSy}dr_Uu^nup}3+aUXu0ON~ly)T@tJaT(1ORV` z1+i8Z;k%WTP5R#dDYS{-Fd~we?r1GK^^iPIqVN^MsVC?#x7>4hXm_KvZQO5f5&6rH zVEDzZslJ-gQ97a6*lIHqeaGrSrAPtb#<)Jhq08GD0*Ci`mC9X zf_MYEFUI5G^ba!!#GlzsZjcrz@ER&y;uUO>@Ugu@+!vc@^X*>y_uN!zco=n%bZ3@< z|J0k>{J`*}k?w5!MQj%aUJEXpY=ic9GWmM4xQ?p)6S%B`p0WM3ZhJDz_{4 zn6#RwJGZwcf_F#-2f_3GP`9`g6URFU;!D{2w;fVB07a8!<>caQCo05+y0H-0W|FTF zA~_#8ef=;pB}|({@NB!bA}+Jd>{4OTK`;VUek`ahrcQ~gp^<%*b#HbM-`7}C+&eFibw~&xpeTea%)bQ#EGjt3NVzZB8J_?mLB$X8%l?jmCta4$G zB77k4o=vvCORgQO40FII-9YIX9$%E|XTK8f#xeLj58dPMozr$*44fIE?yYzmQ2z=g z4CADGJD0~Z^rm2FG{USr?_qPs36yEo5Iv6176ap_NIG=HWBj!DZ`#Hk1DnJrkruJF zI7`ViWN?FOSqT=bjI?05TSgp-mv>uly=JWEgo2#-3xgl=csV|Xv&5?6zu2k^R(28y zx}H1CrNBB~P_eY5Qm!A#@<5VPV8^1?xRZllU!O`HX6;FGEBI;#0AhW*c2pD?6WWBa z-Hl?TIz3nl8|QXaB_0NBK)OSe!;O93qTH`d>}@>Y#I?0!=R%d;GM$5edhZtF)tW ztaEB8%P^J6Cqdu4VwL5S2~(phw+!^{=0roPoFCC?u1t4sResAxTX^ z_vq=HAd6cl<47m@hRiH4DsKhpuJQ~n4)k%7<#AhunLSNm`H&weV=rPzaFQYn|08FlhqGddfPq9gUK9rBa(m z^TBaT!ax_I0npnG_X3nWw=PpJyg}Zt3ER0e?cNjHFIoaOZF0tbg&p?^<6emdGkq$8 zG&S}7g=NS$Ox(rRv&^7ET(1pMk*d6`_h7_$?9ioY$Q-3!YPv%O3&i)vh9`(Gt6(Xxx>z_fqPzg~6(&n@`cU0^x_nh_*a+zfStH)Wq**;OjpwtN2+ehfY z0<~pwMg~1f2{VB078TZn5HfLCF1bc}0fB_iq#l2E?&7P32jTRm|5fs}^<1TH16hO<^g!8WS3uTz@7_I|H1x>{sT0P9M8U4jVcF$W zMQ}$wMsKzw6*(|{-}u)+b$Sih;S`(0ke=cuE*jPcOF;49dxc6OGvY8`P&$1oQbdB1 zMp3MM`5>Ua2(g32^C@I{NEKNid@BlKdhwMDHN<0sd7g3FD84Gs`Z>N)OHzCSX*6PT ztgNhLpe_LE>qs@NnCV1Yn*Ozy@U^y4qpOI4hUdibyk z1b9`OYcm6UL%)}L?JVBk-2;`01c>GhJbxxP-S>kf>jDYv$NKskASU|`b;N*aBPtx= zsXEZQ@B{crfS-*&5%_xb-oTjg*In6O{b9)GF`%A7mYkYy@Ldj6sZHPfYWHee&q@3T z`9}NK_0FVdH0C-&zQb6>%%OWIAshrt<0n8ti5m3kxSV#O#H^0TPabp!cn zbe2fU#Iy0^+{pO&!dQYGAv!v*b`hD`A9hqxSJCDH=;8%Jyj0Z*kLzXc|IivPt0c5Q z>beZvC=U2Gr=+#MtNOGq|9=Y`U=QWUQ1{7s4UKV7O7*jJeyv6VDO_1^E0v6~$LIDx zuMf)P|9O(f&v&IjY|dw~UAwmr^|L{jN;BGV-`PMO>$$m!$w?1TuYufbJ@|XI@rOvB zmH9(jG3XKV15;TnhG)@rB6L|TgMTQh*VnVFg2+kt{&;CtsGROuW& z!J~Q*)G!J4faA4EyLcR$hVu&me#vUqbv_QdZ>zGu3Wt}g7<^Gl7^mnX3wx^Oz0=;y zyfJQ%A2+o19f67`MHMO@e1K_?@mVLh)>GG2jnO;lK2NVwv;Nke{PK)zW$#Iudi=Yi;)Zf#Mn}203eo z2;@OFUa?kn##CKj6ffW?H-|V{XYF!w1MIORo1P5uLF^WZRlaM}b#NwIL<;&;pr{7n z7?n{g5x0v|DjZ0Z?e=g$B!LD%ijn(@t2d!XlH9;|#mpC2?7B#gFK1XCfLK7z&T)At zL=p+SkrEbaAXkqK7=)_Nsjo(=ihY+T3$9k~Iq{%(RNw>7ss()HFZ=%&MndH;BauY^ z|57SN7;fK-S&Lhr12q)HW8ec7Q6m%dfr(S|c-u!-D8kuH4wj@1SkR0;UZqh#^qL$g zA~^GZ$fiOI?d0#=2OTspY{QvZH^7hs8Txbgpo3Zp-Ng{!UL zn`ao`g&0l4iXoLt;JJ}bsMqr*j8f=1l0bMDrZd`R-U;2<59u(zpnJl96_l~FNG;cC z==VfZ@N`4kTagB@gvXDIU!k5&?J5)uYG0i}KHhrv};B`!i2_=UB8QO&DY&u(pQ3_tPq3VZ$fFociPw{Llsl$4-f6s?~@T2PL* z%8o)W@u^4gKkgAnI=j`{leHb7$!x-9=nCA}%Ep<6E1v0?S~1|-_}CuUlyp0vhK5h@ z{WJ|yQXNQz2neERPCK~^6#Z(@vxgca;at>0)&Vyu(|4dKzrNdg;Mz_z$e)VegXtsv z_YuSL#0Ig7#4V6*BB?o&{pfj3=XnE~qObD;+(wl5#pb{#7*8S$SwDW}vzaBrfBPf}0zP^e`L!Sf^HSKoP zm(G`Gxp6>%g6DX(-5Y=|qk3BNmu>?w`4V)&p-ckvlZIQ5k!_ord+rfL)*}MAk}g@N zcBQ_Sy|ofsR=c0s1)tulTb)G{uiwakB2MVYk*R7&m@cu+NoAkB9^K6G%Dhqgua!_( zCclDs?gcqrUCmF(Z_Ysvr*=Dhls7r*{0?(4;w=LPv2+b<1^nv?0zVGneUJ)TYI7m8 zP{ny!P&IfRh&y8g8GLSSG4C_iFVUbD0l}s#2nK?UaEJN;>#_`U!J(RrK(PTV3uWA8 zN?}e2Xi<*&C!YBN#R|>i6-I+6TPR}TGyi~4h|s_7zY13T4kC0maP&^ld6W&hA}3Ii zX=;t?Qla_lKisWnKyhF&URTEm+{IV0Xy0+U0b`KXA=N(vWFli9IPFG~w$=sKewAcG z=?ke?%JjpXb<)ymkM-&4@~t1r@-g?;)1T|^?k-*GxrGV7eV|MF(M8#v{?LJ#dh4*- zHXz9%Tmq^Go96qX;UPpgnpEq6;h0le%;irQ#+d^Wm zTnpm0{G}{dG<>G!?%T990n-B+L9NhBa40zdrJW%6x}0*+>}PAT&5~RL+E~i_O+gAr zpGi@5MnSzTw32Kyyy%WL9i?CJe5^0z+@k7cGs4 zBpHfLSl%TWSN1Dshu+G|WcndN@l};=R(4ng+?wxc&8>HdD*k|bAw}>jXeme=clKg6 zM8kjL=B(5uynW(^y~{PI$q0|Iie-ZQ`EI?d%n!8H@g10r`ejRkE2457=OL#PNVw21qnID=^uN|qI~SYo7j^Y@`HN&xhT z`=tJdGT|{A2dDv{$d3f4=eNuj7BNWGRMWb%G0)4z1%5sPL&3$?1Yrd zFOzMr&dT0to2dqlrqXX3peeq`Dm&axsefTiBqEkqXlLR-F(&*C(o}dKa0g#Ngi0yBVk$be zB)uu@DAz;qa7%-3thqKb*Py;db?**Dvpsz^eEFtPWKWpWK9Z~0oULm%^MT~UI_eW3J zTLQax^LVK~(&hcaxGn;rk2PoL^O3vTa$sHt7$nD=>>n1kf4h4L`KBqXIG(iPl)Kae z?e(x&1Nhe-P6IC5ArWX-fV=OohNUs{Xa4AUd@` zC-5bP+A1C1sz4+J_FcbJPCW4FkAX`$7Gcf1;w+R{6c3)GdB1^9rRg@f=9Z#Obg{R zB!H%kb}_QDt=h=z;@-FD79;?8BDwq_Z3*#|`VpN8VUiLA*zYr7^+EnARzpFHkcUD$ zEdt-$!Xg^)n1G2ki2_VUz*Kg)iBSOfOLrf!xl;lYwo!I@iBVs z0nmTxO@;7ol_=Cvi=d9*zkfe<7eceZcPnf!f68fXs7+6Y76q8f|GY?Md2V?4A1{)b zRy2p#$=H0@4s&|mvr)m=!!Q8Y8s>U=TZf*xGxO11nW0jj+O?k&*aXE~0l zqW6wKg?%0n2Wa^i3sG7>fL=TDCl1Is051xP;LfJrcNa*}y_PWi4L9NyG#kkQ;Z*MM;MxYDj;qCB($GeI6ltuXn+d%^ z1+ozdyKklLhlo&y?WVVjTUG!Dw-Df+_!Cb2ps5ss3~W4J&P^0(WVJTLg%j{925i1v zJfeo%|6~S%utz-eV=4tr?F|Wm1*KD3T6-xeDX(0;>Zyp%vS+l;u4Y}-M-->F+&UMb!Uqxi-NC~3@TeV_H^(JjCp&{_ z5Vavc_$#Ny{idxs11uYl9_b=H7Vo=BBp^($~D^FU$iRHdTxiKdlZ4?22Wk z?Df;5=4ltm-?zw38eGCMUMd{0+}|&c-u1A#vWUr02t;+jTd(aQq7@jh0&shE8#X?o zt4$Jp$~bkebZiZZD+#0ly8O7lA}+Y?){EI3sM%hA!*ou(X{Wl4>&h8Mkfi=@PzMct0RH_?kU_FPa z&1#Ihch?5vCOAmTdwu%*<^%SCTDsXf7l<`!q?NIJ6HTn@hKT`4kSC?qD)smK{3+u# zv&T~JRns9VDvh+ymI=fHtGM6LCSY8{YeQmWh&EDEwB?C(5`z;*?}BXQI_aHeX&3a` zc(PSyZMVx8N_}Y;-1~PCLX|D;FT&j94nKbZ%5cF&lBKxB|4X@okH7*tJ{Cs`-CL=* zJ0aH*A!Va&$(ZsUMjJy~#tBDEBk28^4ADZeq)acZVeh%Y5>P*qVzvv3p2Zi)oM3QO z4Rnzx%mDIOaPQyehvn|p>i}*b310aCBEgpfxv((u#Hd_O%zL$#X!{rH=I zRjY(}(r^n7->YmxM3hz)2W z1^``IaO-*Q0ob)U(g+yGy7amZZ3n5KI#6tvUXb>fPYviOlph!^D8Ulr0KFKN+;1gMbK zsCyaS1|>_WO-TN|bMt#Hw&VhYM-m__LTa@xLWf8i{5FY~&v$(jtj(#|c^dEs=b6 zp<|{^>+dZtUS)fQV1^Rznz zoczguH{QVbCWrT%{axkh+d6v0g+@uIdy(VOys-|&;g|L%P>g?xA%%vCu4lv9l&@Z8F{!&hnjCA;GqnuB$z5n`jDRM809C~HK}x&qLq|ua=lF>a;SK1; zS}90k=7^pJP-i=h`w;)(26=r5Phb&JQ%2!AQb^RD+0U*B)dg%O&ngh057oX z{PLo}m!|?FRl`w-#wufbXXgTx2jaf#%gg2VGL4X9U&}I5E{Q~cCd`omTlB+T z9(8R4ybUjkbDhb2^X4U};F_@hBdZm2Me8IgtxJX9f^k9z(zZ=NM=`v}?*{NfHcJfq zMhF*VfS8k0`}NPP`f4c$T9?qMZ?BD8OF7*8gK;=9Ks(%S z-Ml$Se01?3OW0h4;bwM?!#@*hhN~!{PJ0vnDc}$kVohMztrwtN0Jxi%(HP$OW3!YA zugZf4Ul;*!J85$wL+Hf|WAIL~uBqa2cnJ*X278g54=_ngd-=`If6XQ?s*P~?|47Bw z6K=ON1^VYi5!}lzZglcbDfV_!oW)-iMlnf+Ascgre6LYYu4Ny*90I+@Zyj>$VE`GE z{~=;SWEKx%E)m^=h?#G`Yc?6h6NeEogY=dAcccg;+Hb=IZSYjG?fC6Ni z=KxfRck%7z1*5wE7U8mlm>=7uT>n2989mV1QagYJNji>s6h#dURT$cZ4159pO!L zD|B}G{Kc*A*mBM8yLTA%FAY2(bYd^lBmVmRzgj=andG}x!~a?96N#jl)RywETEC4X z(ZDAWSO9jcTB_)%X~+X+f%C5iIk9G1EwK?W%@eEqGTr3S-zbsvI}o+5f#Tl|6#skv ze)iHo1^-dl%LAZWucOoHKa!GYtd9Y%UHzA&WL1jf0Tpdb`MG-g#4TNm=pHftO@3Pb zA@|2u|9z52(8K-2ZG8YlTgUxvoWpGc#Dxx!mVn~_R%kC`eKNpX$9kZGMG+!S0m)~#ntSt6FMaa&G`b3&{Ad5)F|cE>>YbFWwyJf|nYDS5 z5|^KnQ;Fm$Bb2?;S1DqXF8u|@@B;s=njU{6EimrMXOfc6(_ZArJ7at-DWSm&aK~?7 zGgsLT;gp_~XH5_R;1mhi0k4wTG_E0v{$I_#cRZH;|2M9yk_M8I5t0$1vSo&dipVBp z?~%O~ip-2CGm$;AHz8#2dD?rQ_IA2oM_u3h@%`M7`~E%d-|w$qkFFfoc{tDWINtBq zK3=cq^G_`}G>P?xJfADll?^B)6w*cyD*v`#g%))dU;fH_B_nF09}<`zm%m$Qe0kP; zG87ulf|n-}4}bOdsQ>#qvnvxt19aCN%8~u5;9lbXdl}tII1n`4l02)K;Zxm5SN5&< zuV+olDu7X^I9R5acrbWaApP%x;8uOY_qz3i;gWC$6gtz|{**+eP&fIn^dMnTj@KUi z^1oq9L12S^-I+hlbpO`fLW|`7v)BLozbT~M+y4NcDEeFR4K4dUfguaMStsNp=F)_l{E>1gtwtS3GV5Q{^@0ecbGX7=wTtrlVIol zw1ni4l$3jVYa7ouw*%gBW?QacZm(khy9YW*N(J5Lrsp%48{SLJq7~WpmY;8qB|bgl zi0*j$uS+VX-uErla`7vCn*M>yXF`Q2Jwjn? zK1aB|+$PetgU}%i3KBOF2T~~q2^p*BmQsywpOy99mAHeUVD;*n6+4^OEWZ0_egV-Nu>d{AP#fq#GyUKQBQlIs>I@7 zowBf&<-QStds#SjZdZ9=(^mc%zM)x8nCO!mW2#G$g{?th7eY*C5drb9ZnciZOS#B>xN zeBOSuB|Zb~y+Cwh)cz1Hn!|d{N1&%B_led^G0g4>mSjuNM~xUM33t9P=gIU)lES{k z%Seb|e>qsxBi8>IK}ZuyF!`oMVsqx*Wt5=7pXqjZ+T1IB`j1A(AMr}-@Z+w>dH2Dm z^E!M$;7T9!YXo1o336jl*1cn1i;lyzk+SlClz0O-n{1o$Z72t-bu~X4~kG&iN@= z2`ZVl?@>hmXWaBC61r39cF5q7-1{X7lY!olat-0ykegO+$2qes9@=&`3uc7{Mc?97 zbOWZTgg9|x?c^{=%MOmGxj|y{+QMX%__0spHANPmW=yvjb3_~RyG_nuCjq1WZKrnrjo>Aml=I5fuBSQi>rFk(X{;zKs(FycZ#y-^eYzO*Rd(whqjdkx z$?13tZd)aH6}TSpa^g-E3Uj>Z8mCxQak3dA!w?SMlJABo1WkVDMlGt#O^Ykm{tUu= zuBL*~`cvk&tiOvXFTE2bLd%t`UU>3nh6}o~lhUfv`t)U&$ebUtO>W<`y^EP{bUp5v zZA;+zyl9qb?kBv> z-bdBXBJDq)s^Xf*O4WU3BxZ|sHOa5 zrGQ5i)jV~af)o#(OO50M%9`hX4yB89X5U_WNJsn6Pt$5=ABWS5@L?{yUPW#*>i}A` zByBnGWgPPJS+0edZ6^tmsZIxG&e3Gu2^WaMcvyS_JZr8%ms`kGSL!mF8v5?rNoA=yIbtBMR%9V_{}t;e>P(cCAt}hfG)GidGA^ZK5x?I36NjeT8N6Zc zXT5BAK^j9NVkPMESHH_0K3N#Kwn+0?^_*djw@2?!Cc7WcuX8=$c_{I0ki4v*g!8X zxoPxNtdVI87{!PQrwL-0u(&W#jOn2-{*LpL^psSl3xjWGu3Qo|)X*0bh)JG(#ffFU(dK#lgL21>Q7X& zl!IlRZcz7w^sBq%Mgaq9G z@{X*gGzJVV$k3N~0<TZv%La{H_c!2nBAfK?b&Hq3Kd8YtHn-5k5^QNpf1%he%6ze|*fLu}`B3 zC0|e8Ej0(K z-7nUsq$=P3&NYK~QPj{t8`}vr%c*rszi0gm*Uhki3eH=q1P#Yl_;@9@bfB2gHiF;H z+3pbjMZ^ehnMk0yx|lfr2YG>R$5(|#LRXs5_(6!{!povp#2K3R@Y`q2E=JF?&fE3d z)Q(p@0zWLT5zaGL(c!bjhZoDNmEr5t?oK~Mv>Nf;V419aZvBg5xX9T0jl4@7zIyMY z#pX4mZPPzFcNbvRXPoy_3Eb7shh2sg2A+Gnyydb~W`9*IbVvy){k8Pm><^&*+Z3T- zWT{V0A24e&nXaj!Dl&^oz0Bp!!!3_@o<3r) z1g0U&hc?q+UrCuu*i5uieUv)wm=6hwm!YG@iCwiz{}ieycP^Ra=MJ%zGVu)*KK6D^ zLH`9UYjl@v&u>rF)7jC|rw7La?`=9kQ6g3&q0h;@GWn3PaJFVezbpG-Lq8LJI!hQ) zS>iX$)dmvOVn&fpafTNYQa6>bRVnOI``82Rn4CX#Qn=BnTHta_89J}bWZpBqGfHe?NC+!C1OJfFc1Yt|K!{r0SXn%q_)zZ|M zd*giXG5juPATuTM<*rZ77_?#vr#ZUbC^nD6cmH*}BioFtPW8E)qS$e+mfQN(TVw

$!4xJGZ@N}fc_;JUWk-nvwcGG zNc4U_PW#I90Q=2M5-6wD_wz8X?51sYnxPNv`(GXLuG3?Cs_fOA?j9QAg1@*0FwE6Qw-(!& zvxVH;iK&Z=E4Z(GaazpO(zuS+RA(>q&BTyx%!xdxC)2}6?ucRNEIZ0Joy+!#x+S{x zl@mI#uZCrbI^R>K+U*^nPiML(dZrjw3}a&Dd?j=%?8beN|FBjtr}lb#@{b?lqzh%w z#gDtB)#;+$mvD9;7+%K$qt>CDB9PzoS(djXc_90C@T*q*y_-ayJF`0i&Qm?!(Owpe zRL*tYwKNhp*u33R*09gDgr081UXN-tCkmyd!A7h9iVG9EaIX4I{Arg5&y9QC+$`7E z!W-v!MAZYs5ktN#duK!a{U0r0X6l)zX=C zQC&NfnONS_BHwQ85a^+fxM5Pg1-!(^N=)M zg7Ec%&PUacGV&Vtf20XLY5&Ti)1_i%>c`bli(PD_8?ckHgq5l)hg!?k?Yha^uh=Vp zP{a3T&cSk-FY|%Nkvr_qKW`50aKkZ%(muKr{aoyh<7coQQGBa7nRrYY#7f5T#*=`; zbLMjX_~6WSd;hmC*R4AhkFH*Nhx2X{_KnHCy|n>*Meb*$hY&VSgOGD~Po~x=W|?{9 zL9nj7$9+!fy?ZGFb!E>@xuat72rr3^t-HI<7Hb7`h@QF(wUup-f8u@D1MXZVptrZb~W`10re52UaG~J3^=0{=hv;&K5IN5p%JpL zujT5^O!pVIT*jjE^JXLyyovE?D%0oc%`v?aM400swyJursX3`YB);2BZbQq zSfekiX7C_7vSZDzzkQ?gAU=9*>ZF=Q|0K%!8*Vh_MF&L$q1KQBMuu45KVx_#K7#Or z!*}zO{mE%;`2zJb|1${nj}iHjG@nG+*fiZbd{4=16*gUXZrzj8hUOBR&abGOmX3IV zT+)x!-|a*MFP?O#W*8aCKW1co#6s>Bh;jE7*Ui*WBRs9BN`Kq1BfaXeT1(Skp-Oh@ z+DAdWVdKja!F7`ZR7L2pk-d3b1GP2?;WMZuC*~l!`s8byuKMMacced#-WN}3Vir#s z-Abo`nvBWrz&`$qm zYG)vNFJA5Hvv;~Fbu~%d(>ep|_txk~Hy)D}qf_Hz z@j}I+&*RmJ@qrsaIGkk4rqS%WR*@2PYiy3y|;ZELJ%yj3=`Gzg7>oC zMI1YAT(h8uf&g+ltTOOOS6UwR={##r+r(YFCwaE%mYJr07us$0zcgKfEp!@%xkiO}=;QgHUeJ zAt_4mCi`T%#Hw+mgR0l8bL@m)*j_;{rBP7Mz%0o*lYuH_4}e zRR`nmp6zP5`J<6smy=84gE);Kzi8$`?zH82d~z9MZZe~En{FatAL6o!8q;)J->TUX z*L9sNFYlBcEurastSe$=>1Up2=9rRLoLE$G7pJ>zo~roVx}-BIN55&|%rjJsp;k(+a9p#`gz8fA3dPd7g(VAVObIPUD$QwCQWD6C`4;Rqcbv1^v>2HH2i ztF>AWuKpSH81LOx*Ui=^apg;eMIvQ=EXNC54*t~yxz=)I_eS>(qQ7kS2cu?xQIfhZ zyu!L8{Ibyl?QWSkLG5=he|&91Bz)z1rdq11V#`smTlZ3+XVIAoqXAbxdt6UZF+1At z_i~I0m(&MhIqoxK8bk|dn#;O(C>q}L2zW4F2?@Xnxf0o&k+rs_Ky4oILVe8Sy^XZs za*G$S2&5C+Su02u96(UrnfBf9ILUza@{U9_v{ zu?TOGc%3y|tH)el9Wv+_>?fifzUmqWbrV_MD_x}JvFx4%kFQ)b7>(AcF>~XT$YjIW z`*Px?s;YB;`{&ykyf$OvkH&;QVL<2MImThG_}E}nwi6S-`B_K#fL71#{lS$6>9abvb-TaBS7{s*$5Z)xzs1RWL*s^Aawf=R-G2F zjF{F%TSG`E!qPwYa(AENAF|2)0bEbAa#^D~wxiIjRRt|&)#q*L!?=+m##}9`<;g*H z9%a;%+xNQ~7@uqIU!rbb-e+gzmmwv`kCo2CoL<27^lV8u#}T_&fGI3rmg4_`V&aE- zPIN1Vg0HV=uY9PJX)%8VTDM(HgW5eKz^#PLQQH2RT z&P-s!Y08Rh;rS)m68JHKp!FxdaD_KSG7XW97tX{w{_YsP8*L>)s?&M8!=3-6{{e>PfE~grs z``vB2o~Mr!u5Kj@Pzw)u=$_}_oo3#ndd7IgTU228G%jIj8aLyz+J%XVRcqeegx57H zqOI|V*JjZwvbD@KrnEI&tf>6?C zozi@DW8}bv>Ai#9yBoRj0_CB0EhgN2DeiSF$GbkbK^>Ax71a??6!xZ_lnyGL8UJ44 zjG6+Mq6|UR;~ndUxML(6t-KL9zD1 zyARo^@DM~^fsyE&V{q-GNSYnh1gli11lQ{)A$)ZFRWtkfvm7g5+v9!nP9mT1ab*LZ zE^QF$=FnLl4sH@tie4It$@wi_^O|4#FB}JdysSzSl3={SLUWsh7K%N()O?&cx7+g3 zH7s^lmpH6@B+-#jNuiA)n3^!%HMU!GVR2t`$z+qTf8GDSR`ka}cr1@1n{dF?57?tgXjbrTPyb6 zzWeiNj4@LNMty8erMBQe$aQr9EqnN)alXJ~2jAyo1le0z-$;+ceuK#6;@c$WzvW8b z{g4L*_6?g~v}6R`Ha)}d+agwvZEulj*Dh*z=hX&aFctx^x!1`~hV9coCF#i{6A-VI z9vs`7-%nHv#S8^MRRm(mehjMDFXO)f$?#XR0OHP#7I%2FL4;x=w;m;*ajEa;!Te0=~TJw0CiGx`IQ$vk%uwTa$q=3of<|KWL>lwj= z^)0Xqm$ILKK_NaQz8!D+X;jBz>#N^`XY_~-ut$wKM3W59bHq^a;DshBkObBw5w9x= z-UvTm{QXs365yksHMxyEMp<&s>aa<18ajqNdm?^(bw6s9(B0-$dF&E>TCqzxRh24v zjQLi+4lmt22X&|dv^BcA$iXboBP;WzIR?2!ZCJ`8urE^~@7m@EipVM6PgQb{r)h>d z=Z~^ac+d3{3`B~F-HSEggi*Vsq^|BXp`xy9TKs)auf-_ioYz+AKUbX&541+>=&NEU zuEC^*Gs1oem2K3jg5|?cy#sZmmNNXOK7z%LUDb3&dQLl0RR zYEIoEO7lA=8e9xFey?zl9W3R)thf_lO~bXA?ez!G3A$QfR2C0m0)WZST7>;zs@|WB z)2Nf-52h2I;I=G6cZ9G50qH~sLVf_fDnO%2hlMmfBV(5UtgVlr#v?RwaDE;@hi)-5 zFLRhaDO>*P{$H#*6XonAsP)$!m6MrUuY6*!X#mlrdi(h6&|YI{HeR$a^?H`@Si=H7 z=BYg6BRUd)57z@57n^~L^RH3v`~*_#`bmHi3~e?+Fo(>h+h7H}HfOE|N&wLkFEWz^ ztUS>H!ay{cmYqEZ@bCU;euPs4*eQ|ePPjB!3kd_eW;i5Pl-2l$gyg zT!qKFRnYzeKucJYT$+8_?+H$&$`W($*>HE% zF>B7e{}{*Hjl7>IH2WY++O4j^RXRJ)E=arYfNf;vZPY_TRqT}`w>-_wC5jv;=Eyla zudChUHISbsp^DtCmRNN=HSc*H4F~S0<_Wu15|r@5>TC7C2VJjG2jq6!C&l!~WCZJm zk6PZktQbD(4^$@5%ymV%H=0|&^pH5$xMTRp3J%P6OQbLywbisnTO3n6$((*U)d7^s z_h`G@_f+K>TYc)qRNb0_hnQ``%3XSg3r!KkSRszD$vdy4JJ$NfyikzDcj5oofj_#k9}%o>-TEJJubRP#?x$^q znqYIOLYq`#Tc#OwYr`D*^CnHG8{q%o;@UL7`a zk{Io0IWR8trWuB^@*|W!(T<&Z1-p-A20dq&($l-_>eLRV5pxA)`P-R62?S=jsiHFLxq9Gkd}Buf~LbkhqLoN}3uu1Abngfn{DJR^zS~X3rt`>}Q>wYct2uMm zgYjKmXSMJOPxAaSV9l!Upz)XQoKW7Disel8pnA}!N*U)BrSbXkm<&I|*SsP%ndoB{ zsls18|5u|0)i6f+0-CQ3p221Tz=e)a<1^>+c)arSlz!9b&H~pFH$AIr0N(lywxd9N z^X_MvzU-Qgw&c0^NLK0$drGOX^JzOa9E)Z9NJkz*S%MHn==_TU25dw7XQ2_08{h~K zW|sdNaIeufXb7Zegn5F-uE*4E2*m(2|CKlC8z6Kv+>u`npaUzqEb`0SS59>vaX#gi zK7Gsyj#p!L1W9c=-)qf4OV}-sMyc+I5A{aQi%#U|s@PU8<}`}?z6JSJkM&Mx4oZgr zSWe-oD@}=6Yr0|vLIMe-HTu1&a;?!k_r_+70MEj^j)K7*pKsyjTJ@}9PtT^9-jl|{hW z&;HS%gsUOBT6CN5Cgu$cE}f1%D& z{uI;3CPoe>h(7;6?hjRMhx;yvVwRd>rSs06W!X3E^@VS`buuS3C1Il-abWVOGf%&z zneWQi*4M0G3rLwuu3v+x6NeP6iKFYp#PpVy=sdi$j5aSXGqN^ZT6=eHhpl0h32RpI z$rC@dLK8S|shFdwA?UKJAS2UGJK6|AKyTt>{PWn@%{sY8z@Jv%AI-$pD(x2*ex`6tK+PFM` z`1q=%EVb@P>_4)a`g(edLPDA@yDQ*+%PdCAzJLBq3PgV->K?GyWp>LEVg~?VU<+^? zI>j)$uHfic0vf8Wa|6KCdl$MA0n98I ze0vr!cfvFsC(ly~Iu{HczPvnG?NJSYLa9KaG?GuHdtRpHClg%B=e5!D=qN5zaw(Y6 z=EAcBQVU&AFRwt@FXPd&!l8199I;q)RM8h0Us}B2ONvz`9C=rRJ@lD`#QVB3AY~$? zqOx$_S<<%{uQF#Aem&)V5eMhKeDbq{_T8t4{HQWJQxFx);+&s9ABKg7>L>?S7w*%* zcJ?7)KX|jSD~ycy6A}^_1O-PQNk~Ki!aI?AaPB{b4Oh~`4zu|cV9nO)O6^yp=$Zxw z2DD>APPr{cQeiG^5zyR2`b_#@ZVy_MZ||%O$pfvs$5%J^tu~(K=H?f+wgsbA-x3o) zefe_m>cT$)-f+EHD!HP-h2ZDwYo*dr_-23K@nq({l$FQuRCuoyMX%rbR! zb)UWz25eDWDghNhPYI`ERr&Fdg4?VUA&sj9s!U;p&sgh~`D$6@53G|Qeo28QXkzu- z_wUQ97h5R$;8AWv%*xEcA>Y;26$NDIXVH70yMX-g;^D(L8cy(!OboBKdQebM|74wy zqKZl?U~ZlOIVBUf6Bbo3$XT+lFV1L%ll-SUiruh9y+DOPzu9&2_OI_06pbCK_V$HL9?U>h>qooC-|7EbuN?B^(OGk}_+o(#3STArKHSZaJNoU8AF;GXf%~;Ue>BFe+=R zd+?Ry?0UY=+Y1R4JQhaam+%WM0VtysU`$FTc3;r&U6{UH z0v@Ka*VFIYWBD5s39*`Sbpx(lyH;S(Ms7Y@rU)Evm4+vvQK_&*K-}2_z2b%XEhJel zOJ6|myW0fm$mnR_H}T8nLwWT|28C+KNle_gXR29BZa~6XpFOSS$Zoebq6(N=Um$%l z7iLv2QmA%636G6sRaRE^F(+lVQWBU_$9wH?>F4xaPPMi ztiJMqN#PxCZl#)<8nsgE?*M!SJAL+hN(yY74ES=T-28tAaa45d^zm;>VL*Hd76ARX=~icR-D+>1H-^z3-?MM4Hf_*lE8Uc}Z59WKzCk5_3R zlsS}3h!j;+R#J|2K~wrSyegZ(dMv8hyNohsV9Pw$?B{K5n}l{&swsD&@)i2c=1EU;Hw zE~ew8iNOE;8%*0`I|bHHr;lI%!Jle2J|}ei4uX$e01-;y^R3qDY&35HI*^&#)Hj}qKjD1uR-|p z^X%64b}z8u+QPhX9^P!o0RW9rIif(&(%g=AFX7=S6`J%>X)DZ*gHct;H;^tgM=5cc z^nL^$PO(^@MHj4})5zki{{*wDm?(k!Jt-+%#Smg$yx{Wo&un5eG&DuC{K1h`C%dRi zI5@IkyTW5)GEv2rrT}-lxw8W?%*O~8)u~PlV7c@bnX5ZFJA>*=H2?nnL;V!yz?ng2 z;a!N8JlsR)fQAnCKNc5fqM;FivDxtW_;|2VYAdf*vXtm=-)3fHl%%4fG8ryNgW(Rd zWmZ`9ygc|y7XSKhQeh0lsCJO<-jdh4PEJl~;P3r{f|Rti6X=Y=crJB+_lKDjg;HyM z#57LSc-f=WSx8u4mdK8lJ1D=qL`+0Nk_?j>u>wvn~tWK7L=Osywizy+^#NDUeJ*fy{CMVhP1U6UFoA z&KUtY*Bus?Uhwm?tE*Yye_;Sxnx0BaK_R?qf9i4|IoA^s|9Xpl4+xEyIupEr8(0D8 z>FF65hTB8v+M;=$gUdza5mp)T-u&%=3Dy?#pr_ve4C@CrEUX(Lh#-E>$jCq@KR|!g z;iFtqi;65p(}8Ei6vCt^Zu2Mz>Ut|(9FX|TWpAwyn0J$*7{a%LfE$x@7zE%^@+E;A z+ga!m({exfPPYgn8#zFZmjqTD2~&V3qz8};`%<1$mvfH+r+sO8Ijp3H8ch7;Zon1E zLrE$d2w>7-^Hbr>;o@_TbcCuoGzp02xXcD+0h$bWAmgCSwA?8H2Zy_>86sZTi!eQe z*aA)04RJDEIw`0P0K{4kc!NU24yt$W-=~A0zQf4)!_*K6kevaw4h(k|z|cs*OiLaR zc&CE_U4TnuZ(yXMsj-L#*s>)U*y)D|4GIp)5P%pD{?Mk63l0w_0@MHOG6_p3Ot*u! zFrEOO&yP_oM~FiJjE~KHxIn5gn0f%_-Dl_Lm378PrPj7KHw%Cu?%ELsAbNt~Gn2vb zE&>KQ#0pgabCo%MvgUv{-wH%m5N`Isi5;N-%5XrBnV^cY@Tde*A!^(~k8AN*j4*O1 zgU3Wvp{c0}u>-IQNtTAr2yi-pv_Ivup7DiIv9wrzhvCC5WYwQNQ?Rzqv$nQI?gRqf z;UJD%w?rYPC@NGfw_m+>M2aPQUw?m&dll=RYz>FK8<_j3MWVo zdbJr;SRW9!4b<`Q@p%9&oW2P7#PsRDfZIfm#IrR3cO)5v^!XN}eCl85I9^XZLRlLa zB!}q1nwl}ISGksMY;PB^-lnG~11D{>Hu6Ay2yp5GAgpX^Y2j!XjPHo%v5dMzeCIRR z095@J__(MlwVNf&oq^}a&H5W-ZF?b{)hx%V$Du% zo}RLRMM!-;-B6?tcLc6n8Y1*O)ZJURYIn=QZmSiU8T(Iz03p%X9mRCLBPT$SqH9_s z7z7lg5so52RE!n&(1c7UpV@LCd(@5622u__hqX+oS|AdqR$vq|dQ^V>o@OuDNMdsG zbckeI8XF%YVaXQ`!Amq;xHYvh+qBWw4y(h8N*Rhsj08&nE1d~E&`(Z| z_6C5eQDusS6>9?Xz#a0>H%Gm>x{vMP*P)Eq3C?zac4AAL2ckjv|W)F%jX%iE#oE#k)VOJ)nMI828VjpFffhY#Ikd6tTvyV zoY+m)o-YS_8w~Yl$Vqcg+>dt6A&G>{6F5~WoNOS2Q~cM-Z4w<5F;kLryt*A(pBE zBnAK{olu()6wXXdeLLJ)=I=G{{Q4Gd-gd5)%*Va_DE5hmhX+8BECMTXJ`5u!2xB&a z@hRtHgM~%~HNov7c{`YNLE9q-8wUqvIk^xGRUn%}%&pIKHe4%2p7d_~^3;%=0J7!d z$3ZvbASeU(rKS^&^`=`F$`9+3oE9T05Igk%^505x;+IJDL|Mh0FRjt*dUDj{OZ6gteu7$g#5b5Z0H-xKLoOHNR+QWR!|z zY=ve+FF=pTc`RbUg|Fp^J(++S1O&Fyv3!bf0x{(ALT(BWiTRX`jg67>+h;-^N}th} zzPpNAhO`v^M!LGX0^Mo~07O1TvMR6}JD_i-aN|YOj->FvJ-~y(>AG)4Pe;di`}Sin ztK?8N7^R&E7L}CrwO<)bK#)r|*VjKn_yy2=T4@l@K9Q8{1a`@%Fd!ob(SSS@GoX5q z2&@gufZkHfXTOpPp_d6{g?VaOMURB(=pMoSDZ(az5u(%58h=d1gC)?u?|%`?Q7<$s zjFKwt3M?<+#Bsv7=Q|%C)A1^|diTj)k?+aLceuC|CnqO|OKnmRctX^G9=g?;gqWC# zfk7gWf~OyejllLE$&gv=BB3gRy{UWJMZ2}$q(#8@PVgBn0GvWIWq zz70)+H8g@C9x3y{By_>6ntxces$L>$Mi)rQuaupgZ2}qv5hpx_z{VPhu0KZmi$J+8 z7a2Cs(kR~z5mLj&`nmU(?0+qjQf>TOFE#l8mi+v0^QFmCELJ9opvLT^Kbe)3xXhz$ I(N~`T1F0$3Qvd(} literal 38406 zcmbTe1yodR)ISQ6(jqAc21rOLT_P3|0+P}tDKXNW0xAkRQj!KWASEeC3x< zJR+ha1(f7)W$(?ai||X<^ZFf6T{k;VA1ilTqFYv;C}%fMXGiN(-nQ-@j&82vA~GTu zgibkldZIk!L`7Zx&jTWE?)IWR?~W_LAV*O*jXa2m=&g_+;yk5XMy_XQ$4dPWrhSsIWx5)j6|tiM45ZY-=ZYd|X?I zCFZm$nnzWKg4$<;ln43i5t4l5w}2{}HZSsTRcxpr@>`9HTo3uJqa*f84Su81;l%pL z?|3F1IsYT+$`U7RvEgJtfBj;lij?!0LvHn9K3QLAZ*L#E`{EX5w21|utZ`g^W8Blj^L0>Z+!_{OkD&iyAy z=8PRi3#(M(xDMxHtTpcSIg2n&bXJz-EXn_Qz(!_qq)ODt$cTf9 zDvS15OiSLocXwAOTZlH6$3yCtI|#eub&-~q_7MtK>$4o25qr(f?i^7Jt7wkfc>R1` zZ82ejI()spUmXn$3@Ey<8Dmyw?q7|4By~86_}Wdum*p+pZ~tdQY4VWW`=1rnlt!_A z)TQm#Ck>JMgxgxxRNU0N@>+Ycr`E@<^(jXi1$W>xw%(0-0RaJ;6A}-;BRG}GIw?@#3w z6in@JjobHRsou4>UyrfaI}-XfR_-wlXUygQ`?S<}pa+Yv@uwKk`p-St>ZytY6@%s- z?DlEjolRU_UH>Y|x-byVtB@8oX_j(}n=YoSr2IlcKYP?gZI|n| za;mG7F9q!qJFViXQq3k+S$QmCrpZDGDH}uKQ zOGr&kt>)%c@>xZMqbBqYP5zsEJ_2r`97)Aonx}_Y&fYN+cDqyiH^!yW6+1mWt+4z1 zEzL=}@_vt+;6KCmA2)i`pPZ1S3QbGnba!`8zF>2s>_>3_PNa1y?auugBz;#bSwu{et8cw+__x2jP`5SavhuZGPhBbL>422( zhj2uL9pB>I8upVF1Ek9AyMGl{jae@Ym2!H1Qx073lzw!fYSf(?xdCT6^U^+JqOAMU zRMrbkwZQ$nx3Sis*$Vp`y-zr#W0Nd`U#5HG9y#{rNCv!%5vk!{z4J85%zN0@Mp3`; zY@G7pMnBOmL4T04({J`uuMZeqBrDNv^@;1CEc`Jg)!x-*_xs!HNAp|bAxeIJexp9) zL3?XS4W!{Vx*ToJAEp!I6A~_1HIWAIbXc6Lw7+{7g%6`}M}DRg4A+{u51thi*QdZf zO5PtQBO~kNQvcG)j94cOHDzS@59h&O?*r_<4U8BU(Gc&S!B$s%X!s^a-q%0Fb%v8p zS6{z>F8L1z_v=R&&KtaY1@^;1qJ1Vaqze)4m5JtIr-H&eHJ$=( zoE|i}>E0(sT&hlf`0(N5dYAmD@6=Py;O&V{u7Y>(gka;|zkk1wsH#KWr}^$Q`Eq|F znwmlw15GhPj(3fJE|&2ADXKbO@GMq$qPo|C$np@@H8Vfpo# z;`4dw+A0}(MsUYWorkp6`A%yB?g_7Iy2e$ZJF+f|S?xp(MqE!`Aoi>4Qz-7sN5kI0 zsxkeR(Cf5V88{-6j@E^72rk9>f~L> zLM+-Gj{?0DpVwuUh1B6S)dX(gNE5@x^#rkEI@kI63mA9;jn0H6-I-ENXtSjVxiR^7 zPji8|YBOwsAy9|nI7?G*#YuTXWDdI`u%+{Q=Hr#!tUcaE1gQaOVBg5TO*CnqOHo5wLRvVRxK z*d-hoW@l%aSXeH4FWfN?+28z>jE$g>t}Slu*c`MN|JA)XU)b1Sv=htK$} z;NVN(FzJ=W#M)&^duDU#Z#8g*KxO>I76wIfl zK|@UDcj&kjlEKLA$hXmQ%9IS->}}*K*@8uPtX!;~ik*5_)@5Dw!+UC@S4(U3PYbKX z&!yUBJ6yTrU0Yk;%1khlLZ;Qvw3PPaJ49-q6cp7w7SPRkmYCT3>Cy3*a$a*z>knJ3 zHBzOXzRgv%R@m)~3P1!PcXVVI;D9E6pz@@39bpEy4F2T1-zT zS=ep-{!ZjvIc&F3IpSKNXbzroG8m`J!|3=&MpjlfD=Vvfdx&0Ph3KqG?A`WwfizUp z(KK(Iqeh0pOU13xvf=7?@7{e{7>sncD-Av8-W6_>s`yiTk_@si;{m}(?7YG z`%N>~@6Hw25&P<_PBg z&M#y>6gVP#{B`-=&C-xStMugqaD%7$_$WgEZ#R8aW;Af$x#_{tYiEwl&Cg>nn2Bds z=_cNHh>)BD6$h7y_-HZPb|yFsz8i5|ovUr!-QFWEgA2hTAAT|xRZl*)8#y@GYAD+p z3n*S69Rb+%q8k3b12(%o)vaFD-+$N1W~pXgWU1j_u+zPJn1X_{XU|5!5h|^2_G&4m zQ;U9lHsV_Q6aWc8>+LD-f1h2depI%$1%rc>0Zj1d+LFJ%{USB;vxD02rwzgKiT>m#E;S@6q%ehvU|BtYxW?0P<40BoAUy(uc0AW^hU#rPo zFyI}u(xcxdFQm*DR8}S;rU@4J{QFxKj{zh5`=3uomrN&`NO2^=f60Hj4^}9m=uWnS z;p+lKN(5k#0zs6zxti1Ey_z<2eHhMwh0;e1`wL~==TZX2#l?wz7fRdmii%wS1X`D} zeRqflobUwv2VbQ$qTV!lKlEJLmKG@*%*n-1bi8nyz>PhdsHp+pJCpGIgZI=K0R}pX z+Vvtq&M1BFdDHp7X7sPMAEIP5^!rod99>5HJ#S4_j``oS`l8R_OuZ=U7as&noNHTADNF2#Iz(LFvBZo#)9hXU z|77C&!S-pD;`&$d9XKc7IZQ6&2!tHm$k76{`wB+Q;NB5er#}nBUsEJw;MAi*vEL8d zf&o(4_;$5#aFDN6`hY{CuH615npi*W8;R>Y$?)lIA@ht4)xVi<5tMe)v8;1qM!LC0 zDSB*Gw{~OcxM{<$U*7U9G>!kE$=UG+rMEYpP9oF%4^g^Exq@MW2siVV^pE(X$Iq2? zN{y^+HT+Be->?!e3_ZA@pY7+1e?AfK!pF)lIe04>ntAC@uAUHOwFtaltJolkn8|ou zO)D5O@ZaBYE$3x;W7T-DyrJoRvdrLJ$AYTm{sLAoRu>0NJ!rpg&-w5(O(KH4vo?*m zwR?ekpu?dMv(&Uijh~H`32%vET}NcQQW9DID8QQe-SRsq+1c4Yr>Af0 z=v;~8QUo$$(au#kO_zrHM7T$m`3N=L*QMV^AQO)I{r&x4Uy4Vcz8dxH`Sa2VpF1Yh zWd|hk%XFBGN#%L_TS`gyQZc5=`c1DSd_O8JB-2S=sJ<(pVN|;2c?U6FRXhn^o`Ci_puIp=AQ!)6n9SCUWaXCejKhUxCa>c<)JEL5IDwi3n zB&3B*telu8&)6+OCpC%BtdeQT)XEQefqnVL3$%C06K($T)(*)*(`JBo>c++=%IrFw zyhp&Jy$laOg2YZTn|->+tJH7ZviG(|q@0MStcQAlyAU1_4;!O{meA_@jSX_QgiK^w;q zN%R@>`w?XClgIvCjekf%oP-q;{kHo?{3WM>FXCt#UWT}$SV4_ zw)VF<(@g(40f1{9H=eLzpRkJ?b9yXR3`(W`1C%Vg{Bd0hFV6#$zQaSRG*6q<+VSE* zpDdSfbnzRBA-CI~oVEBBlRHDa(qi%J!qjKOI|tVtYZc6`tgI%{Nl7aFOiq=;2oeE{ z5xKVJUR1y91n@(4I$l=>?11c2^;F6a3x9t(m_8EXtxmOx0|v?nIq)L_Aaqk-pBe0} zUfBpD>qz_#I3nn&M-W(~WSRSCj`L~$1l#0rUjuMv*$yiU3pzc$u6~@$>asqEoD}O4 z;Dn$tkh9B2@BJPf`}ko4gu3mA)!uA zs%tx#n|*`jd5Bf-{`&e7acIa7f({VIqA=EQM0NJ}(Y$-?2}c`5A9y^r3RX<3q%4}H zo!UDEg6#O#*EhGJVz=U!%9hQ7Vr|*aX6C)W@3)LOkKcQE?B2swTteAwojw=Y*>&RW zX5wz$y1-3c>9m6{6D}8*^%ood9dHJ1eAmdll+Kso8$MPSP%QQ95D`Z2?)pO*M;YBb zdcW=D`5EusS%gRV&yX<0wD|sh9W4WggK(Y&0V`Mv+25}seh-)N5!tlG+JbjB_2`uB zY&CQL!fSfJg}JkGe}6f|9vH5%Q2VjE58?Sz(qhb9q7Txird5+fBjpoKkWegM$ltB( zqHpCnUimA_E^AU<4~)e^4gx_sWr0ON_%9RAvhm=*7Xtn`j{#iMl$~Ze2NA$+m6HkE zyKumtkzMV>=o0&`wy?gG_YnaHd;|}W=?ouVG{7-LfQbNHA=3xBu$~M?P;|Lt@539Z ztc9kY->-koP^=xc1+vGncloN%3(xa;h|+*#K7RfBb?1itKZqqpVwS?#khL#-AJ*E> z?*QY-F6GQ7J&Gbx+Q!l|T8N5@&LE6l>l1b%vzmCYy{LnonJV1x?8@iIqXdE`qNZ2c z+hq&5Hls9@Se}E>N%M8fRreQ1o_US$)_#~SI`lXs?Lt|9>EE$(>et%*_xFcb z>78p;iy{$zBi(20W#;~ZJ*O`|3^~OoT#7Zr$qNh4;999j3o=IB8WbUXx;(kvgOd3Q zL3{gEdc{wO^@8mg2AXULM2xul-@)JGylUXSi1q+xTORD~6r5bfef!pku$f^LMSGW+ zn3#CDEL_fF-ZTMT!~Xp8;seMh0%Va_Ag2vfv2bk2)KlqXF{>j8q=94Rnre%)-`idd z+@6Sjbm0Y`)~^pU8B++Jn2J;S#iz7$bS5J}1R%mjtH1FN10K?(En}mM4fl@wWNA09klo(Q?e)xmqwhE!0kr`Q8vpug^!s7E zRAOb>9tdR`aP7b0*SM1r8mFm4);E6erz#CX9*q=?=zJ+r}M$9F%~7gn(~q(%X^^qcmxn248RH=yZ2i~$r^}>85jb0N2_2&9&FAN zusO#>wRSTJUh!o9eP+qZ_E}<^+e16yg(-y@t{M=M&?0*$-LP}(jKmnKnfAez(-3C& zNRItUwuwE>_y{$V?sKk^mi^)bU^O$j_kXKo<>q?)e6CXI|95iI`e1jk!M$A|R}9z? zyCej2vy0o6I1j)7wEh15MetcEW@_pqxx^o8Z>EGAo0xReF4uPe-ew$Wnn2=Kt6yIe zeH4>rJ?zR>88{n9J@=4M6l`nf-p=}?7VABT=@7QV#O9vity{DJN;*YwVzstSHjyQc zRPP>=PpgKw?URThUYC^Q&s_6F$cfGgEy)jijuIsGgSl6K9gk^|0orxgCQfntdt7k* zP)0&R3n*kY;9@_3rN(tZYHC!7ut<;j+LZMVAOYfZN0LX=Q9b}P-{%&&gSV~TmzBxl zLrDz&;)p3YFGF%7?$WM<^@zTq*>xZjQ_V!`wwmh%}YB!4QAXsB?nhPumUR5i?U4?Esa+ul>)aUt9LIvT%v|et?1Di* z*PEzC%l%Uk(g%%3f3h9>=*Mxt)yzbbZE1oMe#D!038_f#z+sfM7~tYt&;D z3|SytMLZ5dK&L_QK?Da7frOUdud}YMb%-Ll3dHGxNB(+Dh4cIA?%SP#R2m2<6#D@9HR32bdU5=+6XtQJ`8KQ8N%yZ2T}slvIp@72UsZp(@{?Vhth z;B9K9t||n?I^IHOE$bb@{hGPpXdL)r7$>Fa*evl0pEJD@y@ubt#Evo}zI(1;t^s7H z?Vf`J9#rlvq~11`e$>9rJxg5TIjh4WYW@|Nd7wr*>nkf?3Stbj`|GY>K{<-DIUz8% z=fw3h#~}M>^wIYMLmHn1ll!2!*ONO!H-J-wOx`&qrH~3#jY!}~ah8Xt2#qGK_l}E@ z)~*@%(15iqKm58+1 z3`mdYxH~#HyaGb@ZSHGV5lKm}r{{B*CJQv(E(+vo_7Y%W#{*`Pd{gJQOPg{Or84*I6qv=cVYoUYDd-Fs(W^7EgQWLi1p z<2iYMJ6IkX2jO9Q>+KIHAB*3|qKYS{RsR*v5@H}#r}N}`UV`%WjW&^DVq|J>R+_J` zRIL%_iO#CDysV#FrmDuEbLZ146y2QnnNK~RTG38 z91{$tL)1lcWSB;dez8(Ymc#H2NlDkFugWU>>6o+C7eyaG45*L{`j4JicIsP=qX=X7+_1Ww zU~s!y&9A4T125fiI6qt}vA&bCjbG0v_`J37SLv)ZhvuLI`F*=ksmoecz@V#PUBmUhTziw z#t(wYN`1SN;pzTjEz9G-sTNX`>?W&WC4s2FB^Sa$2T=Z|@8|Z$O*oK)6wU0;d0*GmT_xDjk1?%b(iBd8qyqK6=&++X&kSKW=Wquk}M|dlkggMHWR@D`%em&gn z6KO5lc7)MuF2HM*Vfw+t)IFh9V2#%2y90a+q1iJH8UeD82(G9>x&S#<4D6fnCJme$8U+8$mPgX^Cv zRikJ34HNnHtJw|?tw9YxT>rUyEd>~h2F~C^&8Pu_qwlChB40WSz{|q}m_x`Brl;fIQS-31{NvPOgVJ-a*;iNw(6=h22z2Y#u%w=mqRsx+y>D%+F>o7{%uv zp7e0rj)I_zSUZCh?!a|vg0SiEfrQsQE9|v8bjfpBFlAOs|JmSjPZQ??ij)r zss+OfsnzJQZdCXuFzrl1{JR!yf}2C5li|?cfJn)Q*n*nEU1`Ex1XPh%x;jfK46*u0 zTZJ7CWDNsx3<;j(TBdK-d5zdpUq_X0B(dt$6)Na;oD7x{&*O2~+J^&4U4+t+o~tNb;xu5rQf?F53rC@&4%w}m<8bd3 zzm}Xhx2uD3h90Q}!SrN3{S+#Qd3nJ|OxQf5yoC513s!@$>E*|u;Hl8A!_)VTk~54Z zCu*L-v|f!=6;zxh${ur<4eNkI4MC5QlT0(_9+?4z+5|HBZ*4p&=gj{ zo3kXTBJnDIVDN8H+6^{7IFoEcSUL{&zsJ~7NK26N>TMG6O>P7Oo+Wknazgn)RBrQz zJ{Tmo!)G7DvvTmPoY-;e#?JHjnM1LmMJ8HS&R}XmWDjOAqbQVHIGmYq&yfVVm!wVE z^*JIH9PjdA6F|oV!i0^rV8R@C|A9lv{M^2lHF#d$-vEws?g^9|Ne!)dCYw{9)p;#Q zJ|h~YLO9SKIS^2%qUmrghMH2Mjbj5V|93m ziy%`tw-h+EL*HHq^kT|fYv4_CwtA6m?}C(YT6ShgpdR;?-u zEjSc`RbW_d^u{5$d_|9c*>k;b}x7|E_RjQRoxp*D_`Ti`Y*P zAMk5^#8KHWs0r*<@F9Ev1)e(v%c|gh;sO}AUxzSejX2Dc?!}34i>)Yb#J?CERVqiE zK4t{=VNUxsLs|w!!_y?b{VJAoOxUD~lZxVS*TorTuWIGVqA*Iod&BZR3E-{+f~nD| z0+o%Ih|0kt;9`z#Z=5liU}ANuU|R8dV8mL%$GMsi8xrhvpD>&rZ+aiYUcPi1;!r9X zH3=vM(;@y!O-&6Z04A%Q1{)2-i4u-z?mcV}8uwesHwzT;3t>CGjF1VrtxLdxjv&6t zn6PRcLmSu&fuAaPY%oe24($(PwY5Os2_0U@Vbj3UHP1?tHZ0K2AWL^eBv2;_=HG{T za0TVWHOdIa(n6S%AeuT!P;1vGu-KcWfRO>K@R)E0>42|vax0wtdVcb*ygIxDI8Y~d z;7-Oy1RUK--W74ePRk(@p(zTl`%TOGlVV!6TffOM#_~|H($#v%`s9~Cz5vem#q;Ob zyxVVmArUzsbATi#K0Q2k_wHSUHeLh%zewsA!kCma)14I+jRSrM$qXZ*h`E-s4h3Z- zKAsD8kNYzfR;5DB>U7}Ys&b#}5pO=?%dlMg`NcG7vmeQ=Kv0>J8ocLw2@>_6l0_T#&~<-sF~`o{Sb+#<9ZSKDf=C<<>4VaY#H^I*O%eBQQvsOAJPbzFRP?YeGCn^3 z+gp{m%^-iY)EhLpOat423CF^p08Os6fwOlUA=>C^)i*X)GdCaevCGdgQZ6hkoQ6sg zTZqdZxd07x!KPKrFVi~x2_`fksm*%L48XGR2Z%TiSPnR?3|5LKpUF-W%qwDg^Ds*9FGXp zyNop2^I^_rMd5MgU{cw(Rd~}32tHcpy&7=9<+%o(F5Qh4F$)CJ|IpO;Gi?c5hG55Tq0R zfM`8F^5#1~QYM3tDKS+Dmy`08!WSsd<5S3EP$;tliG|dsND^?!xvUen&3;qO`)Ut< z^~#V4t&=tCJ7aYNDLPkB6XqD8o^KY&re+}615cB z^ihv)-p9{C0o7$bx_|fie`5nU?|(W5C1;WIMYXX|+>i-*VRUYW|6|ZCgbh&ra$1sf z@K2N#W~G)H^A(FIR zUU~SYO?VTAZ2X>1M!5u4?xAI00yEwBSij?ih$+?9;U!nNR8FqggbGoTQIM~`luas9 zN?3pyc!62@tOxkHv6bFE{Pp!nu$_#A>EhyHQUg7Y6!Cv9Jv#}Ihk$c+Qo%p<$PGcf z*w+AVfSTY2Dvly^eA@{yKpx^F} zT>kMr-;Y1bDzc2z*bY*X$z@}aAU%(1_)TW>oQAVn zvsgY_koXir1b1Dnf_rx-ljcwmImkXlIo9;m+&Dl{Z5?l5oG!@%iLW8*(# zEb9XBHH)qUlGetQGeUH++_Hs~!DAe)c0P!@=&0qclJ{9g23^X2qb1UE38svQdi@5BeZ$L~{=e#oQXpKywi9${>}4 z!UNC2jZ?`>sbr2nc#@?+VRR^B9^mcktQ=14*~#t|P=UAhLH1oINq>}xKCv;g{k2HF zOSG?;;;FK~!P<)^+^TAfZPQKoc>IQV<{)F`dTc9XA6Qvu=b+)g{_I>Jp zRDa9(Tl?RAq0b9B*m8*Z(df^4pb@8`0%3hVVm;lgm!lP71axu@SRz%_CQ2{nJ)!8e z!k{$hIOA!De<&Qz56zxT702471xE@=KvAcOwjD&V`-b&yOsrn?t!8SU#CoErIA2gx z*el1~Z0iyo2FoFEbQ-kX^$uN#P&7pczF_y20;YC(_bg=UwNF0%M<*J|{M~XSM*w>v zC)!@QUiIDeU=!%}04~%|6p+Ru&Jr|1q)3f`>9^s_b>+ z_{6=RRVrxoXesCmby6d%m)L7cs5==UY+g@Z9Clm~KgM{6jXtNY8Fg0^HEX|Sd_Fjp z2XlO=Fkvk#0`ZcVtJiH-y48|(j(E&Rxa?TTC{V<Zl@ZWsJPND}&*XQ3McHz;_2Ucnp)%Rr;Ab{I_ zLsxXZ1T1RS)6*;w()knM!m6c)5}Csz$|9yTqO)-|4X2S$eL)C(z{9Q6E6YwYvgR2- zSA`+y%k+Wm^}dBtR3x2xAMWweHNj5Ig}OfBd6wo}vME~{6)Q_~5-=e*5Oc1Ry8DV8 zyoYo_#5|@k%n18<_RlPrQ*R<+T8k;A5WS4}%lts>3hpak1!{}RSCUHuQ7bqId3(|T zNu-8@7xQ97f|=|510*j3Q;IR(zF(jDTMb=)sXjkK;5<^$}D;>^A$e$>l+B z0QFfSr}$`mq!FagvhasMmE3bPKRK#ot^%xsT`YT@y0in~{$0!||wr0QI__ZP}obwz||YQB#065UqTMCvTFVyoT| za|uSyPHP{hu5?LYNfWViPK<8zgt7=8uiGR#6RYr^5lK|b#qBqAU7bkS)2Enled4>0 z?>ibnI0*+Q1`YalI=Pd5rO2K}+D1BElH1?vG``D0eIu^rLh>Dqy~iA3GeV*ldcZTNB1O9^e4(MPC#Our*nX_4OCL1+5LOqEs_hD$a=ve{ft?M_T-pq{H_9ETeD1i6T>SFfcm=b(hO^pvfqH0DgLY*V4qCjjo%{;1)%W z_rhNJA7mqFVI#UOq1M-4S^t}OZ&@`yPkpKbnIYe?80>j{l%eW3J^E+I!>@Ya^PGni z3T+#L7MMR-_U;9j9H|kRG{{ED$c4S!3REY>j zdw3B~sqPJw>6~ngm8)V}DP_?DSu|oO)ENI2hSjR$mHM%pdX^dr$*!5MaaRl>F6JRF zQEdkhAYCw#4>CcvbI_B-utM0x$ zkU2oO@~o!|1vRe{wszX_{**)V;`~ZD#p61(IcA7&?$dy@1ac}Sbj60vs;g@}-Q0Yt zPHy7^6f+lsDv!J&#d>bh$ef|L!J$#BFz$2{ZR~kX#2HXQ3WU3k0f^2lzRKfT5{+z# zzj`%rq-z#i^zpA9neENFT{w^|g9^P2&+DQx2z{l)VbnvUtB#MGW>88H7|F(d|A4xD z?ymnsRfHPgDZC9hAyPg3*Qa}lWPDfusUi$})+VAVA`!E;+9#pN2~)(stFdMwLgVb)!V+x9yqR#}8y~q6da!!3mTh=HVSHClX!@6p64%tc_Vv z#Y|Ov3_6RtOUL<~Hb~=)QT8NH3@Q2y{33Ho`E6s zqZnrft;%#`V_$4~rW}IK9U~rGUFpqGCYkc;Fi7P4;RuuSqAq3ItEB=v-95>7vGXWd zi;Buj<1a_B4_+emUe9!#PP|_Q>gdrTe3-Lny_wV8_ zcq;6I6~R=66ofhijx4cb{WMfKH2Px^3HPoFBG-Vr@gOsLdy%M21j?w|-&R!6rV0^> zj@qtF?*&!ee;ny@*R^;aME8M1|Pq?D`ao<5(4fSN!YWSJGm_7xNZ)mx%-s~&Br_;)0 zWVGg9#!Rebpsu+ho~mJ6 zXSyly&sDf4pyc`9i!UHn^}zxw4yOY}&pJHWYjLl3WS97aU_~@@@~Dx+td+L`!Oe88M0~46Zh_t6IT>t^;8||NajRCcGPn; zUN!}7{ZIjd$@=eB{gxuMR`#EJ@q)*T8#0Soe5NDRI$_fH!q>9g=8<@=&+nSeN+2(1 zEklvfUE-ASAj#Z zu2?Lt`*Q;Lj2-e@YUsW?mn7m|YO9-6@hvbdr35eN#}e52WW8c1nf9JCScmgL?-K?v zKwEzzV**ZS_J4Q>ZVZ}Fv1F{KjlhW9zChY4pvdLD@C?7|T+}Wor-;!J zNL-61HM4qwAz?V`1>6H>s?LzsC!w)cnVH71ack;)&PWznwC2t9PJfC%q^||aJCGt9 zC>ua(qoKJAsc27wDmfQf6w6wI!6q6o)VPRe%KGA4K zf2isB-V4xU)@>TKcrlNJJf|@|$V!)kpV#Yb=3rAiF4siHOL!|W`D=Wq?Dbwm?u9#NB5NtwJd)FI+I80EG8O2t7qtf}) zkchz4yxJUV@c}}~*}JZ&C|1_v*E2M_iN(bE zdv;gkoJc)7-ZcLWY8H);ry^>bZbZ_%b7xovn@O@)X51YVm^Wf)0Y?9|SFS1cntOl? zVjV}?Yg#B2q2^e2^5NNmEmvOET}^wtyMGVj@y^FBgHOki*#0iWM?t2t}uC zGxmHgKb6dt%>40>s@V_nB%Z=KC_)vD=JMya2-){C8FPttCxduyungRuad=Ob{9nZ7 zKut$sT@Sy4DOFsOvi@HB&WfJQIaa#%a3NS)=u-o9c|IHwF!;D#n1|DMdN6FPOwCoB zDC_6Q45HT@7}U50BG-Jyeke%F#LX%jeLLGzy8c403B(GTeF}#+?+CR*F|i*MugO3$ zsg$oZoK@lTS+P2XE`cb~c@Y1Y0P+HQbi8x^8>ox1^ch3@{{7w(NTeSalTAczzTJx?9+8e^`GDdzE_>%U!%BoZLBc*`eF*cS`T2Ai!<#7V0IyF zS)ZJVnPrb!l||`EIZxh0m#279R`Fv@^{-WEU-$gLj35o45Tt!07AW_uU_2$C1 zA@iu&5sQAZ5&s7fQ|fVF!?5JK82x!BZ4Hj?E@%o7Dm=aiVNDSt(iOd~s z^G;78RaNC-i2xA1#Jr-akZc!?$1mVzdS5%9lvBj$I;^k1^1hx3U~b0XB=E*f4F%!z zDl??Q4IqV1=iT(1&CcT^aCrY4{4)AqZ_AeG8>6*Ixxg@7vdO`6L_;_o-5w z{}Z%7*1Yx+hH&vSlJ`cx-B;K%W>AGlR*(S z`n-;2fqEPZ?SK9E$_)e%4#yKX9O7dUm~!)hzaCT6BGsW#e_P_aY7HgC+vEQZ+F*D$ zVBT5HgLkH-(%wLWoV}@(!Z&G$p1sP`{9676NRb1kZ2Jw1h)~p{>&h~;B!6wmbE|i4 z-G+F3QGzZHH_esPWj)S`)@?9C{XWzILbYVTVg)NS7M_GI=>ua{Xh$zEb*Y0wk+_(N zrVLaXD1q^XDiIm8uO0~uBv%@@F5(|@0)eYTo2`?2XE_vVZZEsKuB3i^^(qv;KLY86 zLaI_%p`o#Im=sisKIqKKO{HpQfsZ<5(n9o22+T+^)~4S|XcTAu=1Vl<$_@tNt@!EA zL2AscLZ8bgW!-t8i|f+WC>krsY#_}$&=-3jJnH+MU#V5ooG>UWyVbS}@u>b0`go{a z@R-9_!5RH9zpprIfgqjT?aGtA5tcO}b}PH5F^e#0-Q?r*P+m)fhu+F*XbiN1;c|SI z#}uHK4ROwBoGw49QdjhA465^@Zxy-b9ZDZy54_YnI4q3?_Fi*3P4d}rzGO+um}?aJ zERn3Xn18D~qQ-gnqW_}!lVwKKMWH2UkgaqKkX`*KuZx4$#(x+uTwSJq(106-HkYic-mFl(zJ>0#; z77dlvCP1b(86XuS+pE^w3J{F-1}5X}6LoqXx8Sn{fd;b}ARBSNigM8W_Emn!Qjj;B zR`Bb=V8cNRpcUnY;C-ZfW)|A~kY+fj@pm!l)B=7^n;|Tk+NuGx{+>WsS^ofSbR_i$%@rmDpZbW}?W8uXFo8bH1+AQ9a|r8ZCzdOv1r+;@uhoJMjZ z(m@@tT-Ua}I>oLOtN_*36HYe&ph_5uoA;t`NeyS+`URoi*o~~_jRP?SWjeb^ z95R!7(R&kbtYuzPnitTGeOpRBTJH~Ja*A!)N#-@U?WtJ#SZGYnfNyU2R0;Xq^poC0VNie1Q`woRlzIE@ zjn%l2y$B@hm$~H7qvYIv)5=;|<3F5ldweczY!Yk({_#;=Ic z`ZDFvS(4cHu)2%;N_@O!6`gvj`m@^qkHzmVg~#lmGpDnaS)$2qAp?8Fjk;y3B?5UE5w#J5+yx= zc%*sGHxptJh!Nf*hfz^s3x%y6FgZWKv9xYM&uS{)^N-dYp)(_jizjRIp;wRW@NZHK zvI?ZTdqN{y#HCIhjRc&~_6l9FzSbr}EK^XtP8P1)@GcHytrRfoedypI!LGiIAg7&# zJg`dz59a-Qbi=`B@go-~I_E>a1w}VU!wSCg0luK2WY`4?4LT5cf##DT_YUC(4^04B z=m8ZMU^-g1spckzky3&lC&9NXzU+XlZC8DAB6P#olezwLQmP!TF5>#_yO$abOk7%E z?WtsaU=NUQVS%i8WxY=a^y45+azoIvGz3lZ)tdt*n7lkoXhbDSgQ|EMHnC91KhuRG zI0z|-N4nI&1BeIhdO}^s$)&n2b0YXEk6X)Qb*YLsoSX!q!R{WjCal{ph>H_cnub1u6cv_ra9HZvjspz$(=i?3UP$#oL=S`-E;JbMc^G?<(hayQIq>=2S#`55En z27vEv_E*EOdUKTn0j%S#&ywLwF@TWx0)_mSuU;jAt`L4`4wQvpD%hz5Pq045>GT8&xBT;!|X5KmS!8vs`dIs;;94IRrL zA-aHevDD!*`}Lif%;Qv%Lr^m@1br09cNPu751X{>sK3(lyU6!;RV3Kbu1vM8IGUll z`o8R-uDF);2zu#%XWJ`d%!zLtMW}C?JHm>B6jEMpM=%}twnA~}xjCnUzvKU;sEfc3 zpN6l`a43lW%>XW2$0YwLmRTK-B+jjdk)oqMvKH$VcS3~lsrzUe2SSH`KBU9>9H(ZV zh2r!PcGX3gCE~9d`1XgyBe_`Npi|>(JYK|*xxIaov^UNv!o}z{elJ^Pnlv}|elam7 zz;TPk0{Kzx_sLNp5z(JN*5DO#AgjcWokjmoT1iR!dASwgMb9A!fnHIwQl?A5 zo2pt{0a8AqWq27_auGs+ZcD~paxDp5j(9$^XY_nV8Cg#)uahX~QT2AbKF8ubA}9=j!w>;5J5eBei@wuM zsWHzAtaKTbs~KQHGhlylszyv)!jWz52u~iJLyp~e<^1_VvYL|$;UlI{WC(erA7)2@ zD1&N~Y%K=M>`HCs$XVMJZT9#Z5iY6Ojo)Qa4pJK{_P2U&AiIP)4kcztFGCRtZLgFjC$Z^0BqpCR#&e%cB&!Ro;&(i|#;bzP(!ARsX6jV^8L8MDU5fG8?7U}N3bMgJ|Ip@Y0_xy41 z{p;-U4fK<}*Iw&==R12o53dIzE{Eeq<+CbA${qsyYGM#m{F5@5<)=@__d_LfWMA6v zhO#ZYAa}ku)Zn-^yTzfnT0-7Xd7H91*nW-wY3Gxx?r-bY2v|L?m>&dFjkv=B={(0`!4@5*zVBM9;! z6c}+XaD2{mF&nl6N*l_45*=TW!1~zKGssFeyG4@OB?iOLhR~>E zLnLF32c@GsmHcd^*PD=Y;UIW^Cr^&yhK1Co))L)(u~BzG-ak-lKktvifCA{pWLXdH zL1AX{*j9WE+UGX>iM`*TJ3wWTO??!It@!L=K^DoQHdve086_mJuOlXDa8Yfh;nDM3kXD~E{N4W8DWMA690JnCkHSz&c%x63 zmkFz6pOG8g&_nJPfXy8>u(=z9o)s;|OnbPmp{^}5(~eYq4E)gv=5kg2iHa&JZH&HRl{%KgOpo&@>h4j{$lVS!1VF{ zX`LGNeKHhjK`?I#wui!Mdsv3Mg@r@QFUlxHD@SqSvqD9~q^6F|!izDxq2B zd_w3L?EH#pUsjmz4SrLPl@bf53?$cvjIY~{BI2DO*AhPL}2#NcQY;TX(kxi zAa}&0ir-LL3yHxIJ# z3xqlM1X+l);r??h7D*5-VE+bA^zb-8H@ScL#nU^W(k9F5epf?NT;h$dO*Y_5>b3+q z8-HvRI4>dL!Sdce|6J|s-b-PbjUUt|XR07A8Oy7irpo~KVlrO)6Ra(awvhKQ-jj8q z#G6Uz?fT~ajHSjD-ErA63`6FRaCt&m(H627x z1shd-dY;7Icb;LriOn5@*>f5X$>%iuTE78Es{Tqgf<gFT8_E z^g;5Ur(V(xN~&D^!s20z2th9|Mj>?EPic$hGW;6+F{=W;)!j>v3j&ezLCqw}!DS#o zAKzcu_L?P|3#q$hdiGq!gE1#_p5S`juP3J(WqCpoXg^`o) zOh)Sa^)EE@uzivD?w%`c;9RNCLF`5P&qab`9X!Y?>=01yf8F6x$)J`dd3dOFQg@tAT3E0 z<4T)&LHY03`PSv;?TongX&3*q29|*eF9>=zx9753{bdGzQRZmsK^x*%HHB z@Xwh+S_&jSV&>Nz**d?z$flw_a=u^$P$R!_gWSdN0-tU}jiQ^0iyPg-bXcPGk<#S* zG+C@SdN`U%^6K3C!~fJeF29;0@a6=uA&G)gQ*4^TXRiObs>G7r{>tz&fU`!edFdx$ zG;7+lAr%f0(RBMHWDSRh?{gyXncCqaS4kNbaa(weyt(bw9G)}~iU{BTCSpQ`F!@}Csl2n`c|2e` z@&Ldjk*YR)Hg-YQ*wxWC0{gzkqQ!lCju07xK0;VT2hPO}V-(!3w%8Ti-HwnwhoI@qpnaFxg4e3r1LxbO!cG!o zdR^QHdKO|jOyRu=EdLoKWJE%sCF6gEB1X>se_aCBhUFSe=>ET73pqek{ZG!2u+{15 z>$k8bn>0dZQO(m+IMwMhHiAWkOTlfomUWJgZG@>psg>?Ejm-v~_khvZk!M&k2v8@; zYy=E4xI8$fb**U#!6rq}8j!L)6(k1%e1gq8pN>V{sWj2x$fA{eG1rgNZ|qj z4|4vQb-osd1n&&EDVF9{ZU{N_av(!2kQE?6gTVnLdk%B^GXR)k>U<2DKxJt3ha~WA zs}ThK4Vl4zaZSev^%U^5QpY?;VxTl022i8YEd`9C;SI^AsuQu z;B|8SgOTND`%yKAycf`#5iA9OWO+VFK@bk<1w23naM}K090^(EGEabYfNM~ z@#*Ok(*uS7G0ArH93WbtAo(1|0@RYY-@SYH#Q)?_Xk@(5Tn2D7jB3>H-02dJDJ&@X zo1n&P3HW9CY^*i6)y`x27&TZLQ4WNtEioz0y7i; zsfmnK%GdzMp)sXH)X2FlTKZ0hLkd_7QyRsoh@BVe>tnZ|hsn7TW$a-`2|q zf4I2M-hT;3MmIo{wge7i`<>2J9?$;J=SbC8;ihr=2c9iJY?EC2Xlpd~&D(Qr5RTA5 zcx3Ur)|3KUjUjgq0OGbgJAmxEkJs75Wa;U}yRk#ncO; zsb05r+qO2Da#1H8B{~VJz?=_4KacwY^l3>o@K2Y^-T8z^>Sc(Q9gbT`%|(t5+eSiL z>0c@~2p^y+&{~nz*FSYreW}%Rq=Ena<5$T80d*yhNr{7mnGC12r5vU|RJxUl z0JFvB>Ms@Nw|m0gWKVzEE+})6mgf^IU5YTAd#nb1{Kh5mjyCX<}2QdMyOQ_0QH$ zP`+|gM8$S5TJ}!a(cay%E48Ry821}G(w88?!JOJzm^sBSHejX-PkG8WD4tFqP-8Rw zV7z8Z{=G-nT{#baVcX~2WulLIng_)?JF?zAaC$yTuYn(*^jx*!$8qyucO`lA`{JY~ zABUH>QY3h8!K391y!E^e?HvCGXeKaG?df~?bXi5-@6xqb*D~*axXG&vS$q0yX!o7B13}hP^^i2I6wl-pw43l`97^s_lq}Ac z=H@>O*Om*pYUxAJsh(#xkkm(u=0jB zUv?Pbp!`Cg%L^*j#nojt`uS;&j6pg!vzwWK4A0Q;eqKWQ8u2+8j590;fXF{Fn_- z>}Aov>DE|T=u=0q^0wpc(R#E!6;*ztYM2Qr&jEpc`ptxYvj`uri4EmyVs0nqXdTyr zw>=u_u*KD2UFiY;$55@>v4y5vorK?cQNGw}GMx5xOWuoZeQWBw%koAVMbTadL8_b- zcgy$p;gnO?c9U`qcZE^CBZ}!7g`W|w9@prXY65pdj%WUD;|}QMZ2e0&#KIczK~v!RFZc_eXC+pbx>jc5*K)~&sK(kufMzixq*3-Ii$6fUPCQLXs8WcC?N=tX6ietvl~0{!;QXL}S^LnY ziZ{t%j6mcht>sEJ|MQv-cO#Q)afff)Z>XG{thV+B@lV=0;z-Q(W1fdUxUuR8 zOJ_ZFc?(=N_SfB1BixKa+*l6GF~JiXF+Nnmu2ufyxA&FB=H|-Ny3?o&XEni1RiJ{4E#@y1OupK|{hd%+=(fH}TYha>?MSvnFHP@2eOj`M92AEql4_})!@%6V(q zL3%Aw5p_H`kROX5D&OEWIigRwvAQO0@3CA!>C$l@bDNzk?BML$-}(mFWAdZ^;*>n3lW`9s6ZEwpu2BM9ZTx zYyjA@ue?_WY={qZ{-k*#1edGE)Xrz$+#+oC}bz?h~!+X@Do>HTzweRW4 zRUte0qw2FRDYgC91FTwwOM`ckW1R$?THXsp#P7R@mxLAXsHB3j>DC%}CaP5ZPFVE| zld8+vZRUk*K%9iJJQhCs#4s{(&Cc&R`N|_$Y4xXwd)^({20j9=A%0r_#XsY$svI=VI`qp|r zYpNQ2R^&xflQC)t5{WXVr&Wo2Ms5yWFn6ifG!OFniksqSUJRyYI9amtz1j23wGO8j zdqy818Kfnu(3jwlCjECJH^$y%j6vA{O0{_%&pZC!#DOhv77Tf=gip6Ta;?%ghhrd$ z)>Xy9XMVieHj|}qc(N+Q%tzdNLHhNsO%c1igI8%$TAxU;zr>ElQ&UM_!{4vRGjHZ^ z2w!_eeBGzu_%WP%XEt*+)7h9L7H2$gcxFT0CsdD5&%oU=kn|M;wYDU_V)GIY^x6E;QsI7R0>fWQvZ=iaK9f7`Hz3nomod zNgWp^bD4#SrI_&XhA5(R6c*#Jum*X{!(ADr-xbMelX$ z+95rzXJo8eJ76r!Uec2YtA0RUW3NRRF8_zH!}(!AhkjdAJikzT@ZIH{>6D~&UzA7n z$4uU?+h#i2Y6n3{YOQG9pLIxb$9DSge;ynK>9y=m)CQ()yk!7P+pR-FWBQTDEoP{- zl$9%F%w%DBhox=A*D;69$| zpyI*2kHOX1F!=g{;qpdF;;h};*v_>+HOJ|xnga(nV&EakkEDhrnD-_d1uea~6y-XCJf9O@ij}xr7ht!( zS127kVS;;tGc{~HT@JuO`b|OJ`2i8Xy(ZM_>-H|VO*S<6ahu~jKBKsP-ExzhYi_&O zS~k#p=QQO+sv9*@lyA}5)v)5|IHehP*<8klSz+4s=EMQv&$Evz>#mmmxzb9q>5~)L zT_djO0WRf&nJxN>6ewJ^X#KM*Ok_s0!C`ESlK1Z2Oi#@J$!&VE`K_{aCPqt{w$7y; zkNf~W5MWZniN2MZj)!%=TB9F*cTJaygLk=1avuOh^3ZbNX-C;ND=z)w)T9ry_^p=H zBbb+Sdp53&X;p8oU9%_d_Q@oPmQ(c%ISD9Nt5M)Fi=}X7kLzzqNz4en%2X!hY!|IQ z15{>}!6_&O;$Zc?)e);;Z}9ZvK*!yG7?>x$aHChj*x*_m2~NBn8>U^vTF|(*pts^3 z@^)#L@!MvlnX_NhB=~cOqSkCRJDhiJSQ+{W&I^9Fojx=cIf+XsY%``yO-pWLid%a# zkL`8P_?Y9=LNVIPI;p zSFCj(Btk?|W7uWFjl*i5yfxQke!r*o@VEPZ+q0?}F=IA8z53I+i&1CQHQx>{I-O-q zMb1pjo#sY>r7sir{FC`Ek|D&^-1KLVi19?VMJfQm(UlcX%6vl|4NvQ}xOf~-Hk+|U z-{+Z4O^!06ub#b=${MS~2ky1|>Cj;~w>%;3t-^g^#c5$h9hCRS4NM%ry%1?Vix{#w z!M~;Ap6f49x5t?F>CHAh#L`bUQXy`k8;d)w#$eP=?kM~-(=zu(+_PtGNBxC>9&f?l zrto?v52v#+9I6V<^%V2knlM6!{r7#vC!WiRUbWdgh1R=c`D+VZwj-#pr?hA{{nRg& zxHz8F>J$=7QTf=d2k;IP&44S}yEq7b3bp^AHvaY94#vyA%U|BMymeBd6A^vj*YBLJ zW!|%iX(o0eIOH?kCSP%1^Weqs=cI|fdlZ=^E3hg{jFRi#({4$3Kg?wnpHMfE49KA7 z)i^2j%SDBSBtq#s4ZVl!;uunU79BNNcz*t(bV{r^ZDp+cxV;ob(Lxe7#yiUPU)u?A8w9c7wehH>)_4{;WNqoyDgE?zk#*}2*K-Q!ckA{=FC?C*`SMJ0 z?TZ;p<;sG5>+;w>O>x9!!DLvY)aN3aFWh+dH3cS4eeny4+4E2_96pb)xtlwk2wClS z1%E1Znw&_k9he@V4H!5+>fW0d`_dx564@W0aQ!VbhrJnn)T55zo}BECxI^n(3ADhK ziX#|B=WGaoYjYpKPe-9K@puwb<`zndBKiSLgSkWFV6oLVoVvZ*wFdz5Bj_|(q_{1x(ltbw~C4DrtOW> z($}Mjd&R9Ei$?Y=)+xBk6&s713UWsa7EVMe3qQuiCzd|!6BXpb>aN8JA|F!nJCyVD z+ZxIDIqSN6YNm6EYno4&{DZ88y(=zgiSh!&1F1E?=JFMcoDfiBP@0n-OOXYs z1<)N!n0ZU#(a|{_jig(C-xiwC)z5lpoa&xjWL~i{%*ZO{N zhyKg}S+Bh1kDqvH?imvkgzj~L8!b&g=!2Zo14w?BFEC)o>`_MMy>=8GJucRe@|~^k zay$!itqXdi+zv5IsOpslmPSTy;m}st&YDQ&yU=* zS+9Ot>l#-I8QLw(GM{D7p0QTzJEF(gU0iW9v6zeB`&P7AUfZ#;V^kkc==I(e{xW!b ze0$I-kjYx)-N($b){TA^z4D%iDRC=8HJJ8d*^z}JV~LVH5+4kij5tWxSh>2nd)ezK zK6(p!KM*Rl;SqTr-dMC9z%_9bk!eNOQU-$Hbw(p+ojj)RHTo2SYl(@js~F2eBE;hL z`%C4hlCbX5MpGOTSC0C_k#f|*?WMwo%U699B(4mSTKsa~I#|xG%#VdHS1x*dd3{HQ za&yBvAF~9E!+h=Cb-%;IgHV)c>5fH`&dXPWr2(sIipP7W{lSJx{xn^~lY0| zR$Y-pjCDI9&9nWYw?5wZXQuKm=^x#+WX9^f+h6!#IdE-9rDhzGM~-yH6>4kE;g``E zHBN%;{Ms*+T8tc@|G)IHO>Vf&HeFikei7Pa0AWC%!~C)Uhs1{E1@v!E$n%#UB$&Qz z2xPN$*}r!<@ZzWatbE?_7v!Vqr&Eqee%iy+gD-yGDj{T-@pa(+wpLC@Aa6M+d1`s# z>s&xuOJlhaAqoj8ZaJ*GA3y?bf48sy(!@vKLR8HDrmLfW%)E@ltYhgHD|@(zTon#F6B@C*-VHac)8HfV}f*!;@YR8HUC(EFKhSvsJ8g)FMe*NdVyb@_7Q zasuyLY3NBuD7~Pq8>qNAka`2sG@F&~uR2ke8}RuI0l5M~B&6Y)Kywc>SZK{o> zJ0V7c9U>G2r1)7{wL1ik0pY1}SiI`9e;VpAod*@l#|0{GB*x>gpV~F8KCU(mZqM;Q z+?wn(cy4|%CcqW%LoKYz-PEpKrT->WO$??gQfTXb*$!mj3%`+B;hIk{PjC7lsGg#LFv{(7TqW#AyS7#@e^}G6PisWdek*HpHd)V~(dEjZHkpJJqd)QC_#1}L1<3!M(HS`K z=jzO1P9m*oQ1x9f)V8fvTv_$iDTi2Qpx;LAN7Y)HN8LmY;|XI|BZv|6P9Nnh-vzNn zPin;#%a#jFp9)xx24swvj-tN>`|d2vk{cej=H1nP-_3qw1`@s*dZSl7ACSaS26Z1^>?WgSE}UgwUR zQ6C@eVG3iDjy>Y<>d^C#AUbdphKZJ>+D-Kpif|rwU9<6fX+&x$!bJ{qQNfpw@yf)c z@a_?{w=t#Y-@HM?YBX~5lN~YSq`nC$Zk*)^V5B|MIBVL3w5T}^jhw<#u*g;y2kK~L z?q-A?w?aQJzlEK2aoCkd!l%^vaoWe7mA(DkRx67r$M><+styC)7{OE!QPIfo_tem)MjAsVjEak1ZZ+7}!PfhnMi0qZVL7Q4`E8aEy zg`(x-4xR{YYPB(qVINO@qUHjzy|A!v7Fl<=ZKw$ zqS@l97g{C7*~Z`J`$}euLs9}58|7)|6Z_f>EXIQ>LumHcXiPKV3gcLEV3rriC}(d6Oo-`tOnHcu`2sfel{kvBX(qng4Ou zefzWNr9ugR%YwYTox2vg&f9A+?{F(A>MtqLe>eI=p_l0%zmHz~k z*i%(nyFJZ-cB^*_Oe8S@Wsg27OglE$Qy6>KZv2igxOAi0!25@s{JO2EnGXdcqfznG zr{N!qyj(B}J7k4^7`el3a8UjEeUR3y z(W*;7M}l15K-cbk^-WqB=oqqYM9)~`skG?GSf?@WG~fJE963yroAJ?s zIif;O=PE`|U?lD;jkVCnJGb)(EAC)(>Y*zTshil9l9Vz#_=jCEVg7k=V);_^6}62H z@8O9gAt8*DygnND?W9lJQq0=Q+?&C;7Osz&*iH+|NckX=QXUTm4Gn!iE0jWh<318e2>#pSg;{f-_gcOg{HQg?M_1twX8nnvo^8#9)O zh>3+TtIsg{@~tXLZ-q_;GG5F#I%d4bJAU)UgH2V1?Vk@HqI0&t{VWi_Z)9*u)%R=5 zTx-h?u95Q!iMz_!^wRP&UZqJa$V>1h{HUl(@qhCqH+M;XY2dg(Emc85p;y7mR`%}z z@h@SK$-7 z{kp&ZY=}mdJdEGT$=xPAU?d^2(qcpd1kIftKNM;bhAy;}bNiS@L^OjlBLoOP$zg~|)N`2%_(Mq1_RO6aDJjDVrT5Y5>go;$ zepXagS^{&7dT9zg?Y-FBo@Y|SPsRd+=&pP^>g;qSCXO%8n)lUth`s03rt0N} z1_xgPa?VV#TO`EDD?X%8I4hx7@DqFtUfau7LC6*0mGBikG2;Bi@&udn{LREF7fE%Q z&tD1XZ2$TQ3-)cT$n*EzB6<1tUsq+}mu3CujVc!ZKQ7qtIs1|wK?o5VTE5;$b3Di~ zyo6+gDs|OeYzRnujX3!DFwwp^kCa7TWjenxhdN+@otm7q@T|Kn$r;Kz|47`V^5Ny( z-Q8!c_tfcQFXZb*mpPA212w!BXQDbi0r8!Z-}%NOz}_e1L8YJ`+j6lF<49$Tx$lHE z(&h>5!d*~P`HvgNNNpfljYP&|8wn)`%#&A0MbJr1RAZf-XX4PV{seDTji z^d#xgd@KFU%QGrseghsbxVF|$CtSAo z4?L4|apCVKep$b$jb$=oA^ph6$oc+!+U1p%t||{lJO)WBFfK7wPvyf2kcmY%clY4i zY)!HB61V$}D<87f)Ye)$JI5rO`Cu!@F*x^%MljspS?rtd%_e=J$_oF<$;lPLw7QZh zMqFr?rnWZ8z3bG|)6+Dirf|a`b^qK|O772}w-uC?uL2<*%oJ8UUSoi*)-p7-|Lm`) zM**ZOwz~d@+x9P#l2VRu!|CaD5Yj6!u@{cbH!imV^0SDzIAv(xf`7)qqY88!DCl$j z7P0uFsp*o6ipr19&K3Y-{$1{BUIR$5q8^JcS`Q^DK(Gkmor<7I7>wflLRr+FvDnO^oh2xw#cZ#KsC6B&DXN-nxDJ z#;2AwBcB91dirk=fH~;?vPRgALkkNFZ)s{$Ld%;K;7PMB6&F5xv4NALAhn1`-l;*{ zRg#&Phle)#=g++xosEqbeRr1|08d%~!Z|n#uVn%l09*OnWJ9n3pfCIIYyl6c0&sjc zHZ|cVkuxyFE-x=1=40Kt1Z0UaFA$aiM!91|i ziF+>FeU42{rQKbdhy$X#85kT@fJR8TiDI9fMIXMs?=iH%9UG?l;W~$Ywyr3wl)t#7 zBptiPYXs>=Qc`lgy#A!)-sVkRbENkU1j%jg7yaPS5R;G)`RVB?+tQ|im*W7u1c16$5ZEuzEC+GK7MPNOvJy(dx z$U>T%6+oVE_f)V10lL3WZ`YI)lxa2X_)C?u-16 zJOK^eVyQnL09|})t&!U}H{#c~ZD4->%y$HvC~+8~XoYsmObHC~4KxA@!qh05WO#tzJ0HX0c9nlM|Hg-2?f_>VP`6%J$8r#}b z(J?Wj0b41ofZyM$jKDU`};J;|6}rn2>#t6p!=5m|I~93QUi2v zFw-C%PK#RGaQD%mMVf|(X`VcJqE4^z2B5`hf-wpGomOy}_yHgvsOeQ)>cQK2g!m=z zeW;~;Zh#4a=nJpy@$%q>SGW5W?g-`Y?|Tgn55urC7RV>~0GR;1VhImFSn5a#7)ifD z{eL9DhV8zkq2bai+|<}eL`gaD$r+TE8shrgsWmhedItSr{qENc_lJpe&O8hTI2yG1~goV zb~m;K!Z@Y!YBqNErjZe28B=%Pg>XiHtVGpNfXrZKV!Ckm?p;u)7$6>#Q&UesuBb`_ zc9#vI(f3k+fB*bo@l_a+$Nw7u#ej&XPeb0kq1WXkSBj;J1U}jMx$w|XCOFBUa@{;V zzXx8pbh{uN+-y0yi=chpYH<+#%P~d0x(#3&C>9o$n{3Z5;hxw=hRU32FJ8Q8VQn3( zmv6)b_Y7tLEwH9W5*V5pfBpJ}crV~NFJC>|My^Z zR4gPkw4uMBLds|RD*#@^>^2OSI(C&g8-KCuy4VzkFAwfdE0trvh=2gGw6t_laq$zQ z{O{nKZEv}b*F*yN#@BD(E(;3_ukY*#RR#ne9X*CI`UY0ZLeLFxFJp??w1a z0lj%KaJ>1Yg1p|hzQW9Gjrhu+#{WDN1I`9{Zu2_2WIl5jE#srTwU$IKeYg4FOx$1~ z!MCG=#(1#k@u{iN&_GX1%66OI=odu(`~d4fC*x1Y#Kc4efC_bIr@m-kf!Qz+G~9bQ z=161$E!$c~Mp2ecVbotXhHTRt+S+h{zTTkZeoX6r60d0#bf;Sa`>?3@CJW-}AP{}~ zz;kd34f^P1!wKk-FM;%f1yBkrIU|4BU!S6ai2?{jg5g|EgFOf*x`?J_W<~(fQ&Tu0 z;&MU!6A=|9=j~l7D*=7pEkKW7} zzMBPM9i$R}!~qC(PeA)Z%wzHAM?4t0q}G>Zt`h`=goGgMfMJLZmquGPU+{xL35333 z63`n4t30^C8OWPRYl)?ocXHw;At8bMO9+H;+Y3F)^=ZfkiMYJ3>i|hj8T$^wU=RpE z4rYwfRWsieA*K+bvFgW^K*UNehZUca!pU&FN5aU+*XvN)V4KWs$PC&7Zx{g!0mE_l z8T5NJI6zBTz&{<5pPxVY*(RDuE&|A)!Na_EO~rf;ehY4qJhws7O)REnP&tYU3Ly=j z`An-=&?4TyXNE5XR}c}AI1_Ub5s?irU_);~=3T6&ngsBLaTXSIaGxNWQhJak@tC08WlRp3Qt`{ifF^T$WCf-xbMvd)@3*^9=%zbjDS^w z1}@TffN;V8YiM9F?`oOO*PQxx`@QSW!RIUJe{fe<*8;*ngCdJ3T{RFK z&7YN(mgak;;xi?;BTgE8hs8vlpFtf;44Fk@5)q*Uh5y^`#{TKi8lp(S>5+Y>b%lkc z*>3$UCQ!CB+veo)jx5TOlar$b!g-=)DMbU5g@y*P#y*T871?$&0JCle@Vr38gy0k| zeaSm?Ia1z9K6D9&RR=bm3&q97N?YLFS=!iyf*zog^ddUiU1=JvbQb_pa0vL{fwSXb zPRz`F{VNw_J$gC7aVT=1)3|4AOZ%d_qGA%%5Qd6_b=@UFc6Q~n$G~b1jGa?+bC_uJ z-5+paPcOT=x_)sS_%)fu8yT;i9ReW@z}n%pm3;m@xwdAWWL{8YcQnRv}=BDnMm=Cj-%K7@S36HpAaeLH)5;d1Z3 zLjE|WY$Ui-x2mGzW=7W}!kLor{P_ly{%?r>N|8-xSmpyeP*h$HA%=4BNB~eGlfwze zZ>xH=5Y&^UNt^!|Vg(Buo6D1@iHGa!ZYY2WM65(qbaZjRnSTkmI(Jq!kW7P6RA3<5 zQ!0Ur?MXa>9E4y?ca{b=V1mf<$1|o|YHCfOkKXBW(%MwQ-G&qv@*z>dy;hRZ8gEii zdY924P`3sR4az|D{;${A?Ck8|mJ>j3Z67#iKp-4zU&FB16=`XPPMI@FkmzE|CJb=c zrvYsAlLu{OW#x|_KW-{0pc|FD#Eg!bKq}2NUF+!Za2iNklm`k--$4j%{T**`aIn`o z_$4G5@WEDv;!?^%j!;;b0z8Z0+}zwdroO(uFb9Po06hV>2jJ+mAZp9Y>CMI-7Wln~3nM|-2 zI$0VBc{35(5@f8Nfbd)P<=nl$)R`{B2-cecGOBPg!huTZa`of2 zu(&wFz$1Me+s?EYc0kuC5|6a4drq4m=3r1%dUT09>!0$+CcJ z;P--8g|HPt40Lhwv?L$gynQhJF(7#vVCG%|k31yh(9n2{%bMYsbV253|KPx~BSi?T zCoZD!(I7Y#2WJd|M7W66_Ax)0hu61{HyglIGyCKKWEP%W4{< j{(Jh<>+=8QjOqFrlgQ7Xy+KSkXz)@|)KDmpvk3ZcSczb$ diff --git a/api/_images/tutorials_nihcxr_monitor_api_8_0.png b/api/_images/tutorials_nihcxr_monitor_api_8_0.png index 550075ae55fe5bab275cca04474599f0c457a205..bd274124f6e05a1bcdc03dc993116c520b0829e5 100644 GIT binary patch literal 52711 zcmb@u1yEPv*Di`6pdg?kT?#59-3v!3;={YF;$F%A|f777Xqj<}e}Qxp`mL=+U%lnWT} z&cU}>Hu#6v=8=+(yt%%Oy|$Geij=mEg^9V1iJ{JQJ3T9FLvu5BCLShMhU+hFY%Hw# zn3+xg^93ezD+A`XRD1!r$VCe=Wor}^JZv^ZQ>ll-Q2_96rekh^rwoM<{c3rZL>83!Pa20ACv*C++{qGglWMqeO z<=;!z^Dgzti|GM+^1qJ@&J!g5dvENjLahJ4Hzoe-i}(NQi`+SAxfr;9-Vgn7N0*m_ zYIIon-<^D4ECuez>$Gu)m6cT~jnfGsyyD(SbH8{R za`VmqZhV3FO-1dBqx$+(a&%uua@yP5n{Y++vYz}tO3t(IQlvC(VPWAlBBBV2M{&L9 z(b2CE5d6qB9@Tz$_*brcT`EInYbE{iLtKuHNmEi#P*AWs^?T)NYASc-81swzr4$^e8bEPF(%WsA@OhOu@e#8gxtIGfJj@GbsaMqcY>@`fr+` z$Q2E4^Pzwmof|YXXdVFpmlz1KBe>0lMvs`6S6ld(O{{L843#$;OMxh}2=z9FR|Iag z_p91&ale3ZMmi>@cW_ZzWo2de)Z}FU{9(5USWJxRrT+Y&b7&avKYy;}UoLs*hF>qx zEO%QNEDqIc{LE_F$AJRV7jk-eu07ve^Xb#44l`f< z!i3%34tIrwghU=aI``-6LrmXGBo9KF)C)#^$qMF@Q;7NPOb!e0-@m^({qti>6hCZ! z*(apZ7v;NeW=Ni78-WzYV(;CqU0t6 zg~K)|%j{|-FZMQOo1z6H&@gd{yLYC@J~Jp+g>xFuwTeqfRL|P9p>)3CdAK-t6Qz^($mkjC&+xyxN$PXgap*QC~Q1DgSI&FlC3^t zo+#N<9}_1=X<)b$Oy%#=E**roI@E+U%mge)Gn#V-o|1^jEriG3nt^kl+@v zda<1z>|Fvwyt^5!PaVN@U6IIJ#6yU!!)Zn>VGuQ*nl(xF>c^ILAF|f|)0$$r+9Uc6s^o&UkI$_$wlfmn`GV_sq3ao&$4eTj{Lx=qsm9AOXpP?cVe-#ca3-R6if~~MkeM`f z8GjvpAzt^S)Y&U=U4_H1xfV=wK3`^HcRI$PCsSK8jK#B#(m5b5?&eSP;TEtO2@?~B zAmJki?{)gScYilG|42`Nx3FL`uT<*9nU$3lSTy|mx0rr&c#Y=qUbkoz^U0o1 z`>M!Fan;r-J-K~AWUK9yrWYEv`@_Qn1r-%lde5cq9Yt@ZHd=jsy_#*OVq9FDMY|L? ztJB8Iu5@(?F)=akbxpTjy>H*Y!|5GeYh*TnA26sFeI(Lw7%ebvjpPlPnVG=|nvQl( zujHi>4Tv=#F53(`I^0JSy;0)4ZDwR_+&bg7TsTd6aB$Ev!+A0$rnGpBE;mCL(;o~i zQ(?RDf%J@ww^&%-fB5iW+`k|>`R>;8u*}n^S2Z*OiSIaF1)rSki^}iQ8=GO!m>=mM z`NaCr1hF|WY->L4L+(rq%4<^(mCiSn5MV@gZ&-RXFDP(!widp?o-1)&7n79y)!6v9 z(i=0!?Qkz7y4a+b4dW8=Jz3eyWo2a>v+aJ|Lk{07dD-=wDs-|q93&%ovVNG42lOzo zRAArUBh^%lJc-c14fPhhdF`t;sXS?fn=4ep%ol{MxXF7A^o!W1tkCD$en@=bG$yp3 zYSIR~+E^Nl06VkTSsBHTrn-8y3UO3@dB(e|byQz?t#5jz|k5I{khornwOTTxxKYZL0$UXGC=?nX8R~i{O z^@_SWzgO5q(JKdX-$gBZ^+NyV89ztP%lJF~na&g-QRS$l1yJyR2LBYjwJDtt z(wXu+2X<97fcWo7A*XTI?OiWI4@$X3Fyn{h2>s1Iyl3kH!`i?Zvek7#PSaDT&$GY$#8j1ludD&Gwp= zLBho7vo-S9IRQH*w1nHw^mCi3H#FK;#t4ig(28w)qPRO?$>YWw>mnAD3_ zrXtMQZ08hEOt{E|k9KI@5;4aY6oiF^5!VJ$wSEs0O16wYvC=j^Mh%pjN0%uthH9dj z34gMCC>ptE%hd9tXoqsWc=+%gL|0jL_2wemd13(vi$iPUuGG=IZjF>-_l2xFF$sz9 z+1Vce_^d4E4|fqIpbQNSrK%Nv02C=NFaJQ`$DD27eU$iF5eFuyP zm=QT`fq|1BB$%{&v-RpqyR+8ac9pVUT+}*n1n=$t_HFB&n}mdfBjBEywjbCU8XACl zSnU>+04@2hC%g)H97tLd1x{hWSkrlt)62_?bRp(WPG~3*3LGQtYG2FU$x!YBX>sw3 zmX?+R8-E_6ym;|~!@(7aYjr^e0AMyVc6Yberh{UR3l9$*?%hLy1)A{26XKbi4-%B- zl2%0yk6Om5_*t z-K2*_13VTS^ybm8#~Y zipSyo=H*fE-(Q|;`qDn4663Z<2aXll;_PfTrjnH^4D{Ws<;hkm8Np2jZ)5U(O0%9! z&-E7mAo}zIuQb*CY?I#Xz3x=a^0LbP$%%=`m4|4ETd>sr^l4>`y>=@znB|+P)ZUzx zx=VjlfNSQ8W6$dM)r%MIX$u`}UYQwc46{vng~7Ew-yH;y8m`6`FBO4Nk*(MGIw**i zjxMRP5HTXKm{gTKEOT>nl(F&g+5UWHa7oApZjQU1b8&H*GtgN2^A+u(@1?I2p-cl7 z)i_9K1~>fkXdpH=R=%ap-cTwesOlI$q%nN-iFkIj@^E) z;|*<$%Limhu$c-xHs`x@UesSLJ3ew25FmYrc>xFK*4?}QaL%LM_6#A-5a>!%eJ(7z zH$B`K!n-9H;O{^7_c7Jv@zL_}&cS-??%}e#rn@xky7xBV?kmC1W)`1c7sm5?IJ#z- zW|ul!pNO7!OHncUXw_Y&BHgrhw@yVe$aSy~C)yR&jhANiO?tb?|A@S`4}BEs$a$@N zKG8q7norAz6Iq9x07w`s$id9S{(JFSKmIgB&6-Ze!U< z%JJ!GzX;Vv7isJL#r*bSdvmwLc};5oFsp#q;Q!0=Wm7%d`SEWCOXlb15ZHL`9la0Y z$KpQq7ZN;kd1<2Q#(48))ZW1}F~&qj!@XMu+fIIH*=!@Ly(`n@$IClu?O!*D2A>{p z8iow%{6q1@WzKWp5vo7jl2FRgmpbG%G&BSxU1YcDRAp?l*!St%H|n+Zb;w+KW}TJO zp7Ghv*{HEPHgk4s<@A!0_d{T{91M_wlj8?SaeQgXt!f$@3+v9^yWe2H6G{myu$fCL z=rc;%MwHam2QAZ5!R~iV}3V5NO`Kd4rfzV37f0*M{guMp{S1fwigU9*%nb zETn#e)nUgZAP|WJ<38hzQ5(K59EMl5wY6ylwrv>W0^yA;^7)2?5QAvP`1_%nBR*+S zv}`Z`T(?{7vu)Vs$A@i6iTO1X28rM5FMJseo+${)aE8gq_x0x4h#A`;Z&?^Fj{&fI z6(2u{AA!e8Y0nxO8^xui^&y?WxxLCK7q2P3X1m~AU_LAa;FjrVHOT$))vIlZ&L_G2 zvyoEnQCY$rOk#W*$LL*_ysmrbMiNfz-`iu>D@@-5~x?P6@Bkz`@W6Y7ZHQK!R5pn9X@m{e*Wol}A_)9>Th?KOU zz;fJS^c4|l(+>9gh=@k;gEbvV@NR}KX>h)s`i%a$rYk3s;{Z#< zx3mjRac*ud{LmGWkT6zVjQjyB?C+0*rT{GI9qw&1C}oZmSdWj5iHVEzYFqYQ14!}B z{rE`WXlK0HN)Rz1%X6KI7VS|iOFB6rxpxQ>_4g0a{`~OEa!sw^-^w$_8{Z|=&*??7 zJbt?c9y5j+)>h$TfzHlOBqd@lKllJF3gWzB4zB|P1=ER>6BDmtCZqWj+s<*_^`cSv=Gb0N4>u7)x7Aqr_Aw$FCLBi5%YUJLS zcvG9*nn<=1_v1&F#pr{*twjlC~WVj#FdwO~%lx*YE zL5{`8w^uL@L2+TIG{SLxDhr4x7nh@Lyx->T`>Fsuo(*^AXT5V}b~mf?xtOYyH5Qlg z1@aTX+sL*<2*nO`V?NpX8@-q#L#hGd!A#Mp^%Tw09b^Atw=X9{_KShRYe}Quf7&OAXY`0+Atay+z2aLBh4*=eU zEN=!src5eNkBA_HXfa^ht^V=TCr+N_{PIIau82VQqxG1CQc=itAlDy3G7QL93f9}( z+mWOesOAb_J%Q;+FPtLfGU@pbI?={ngAK>!J~)bp!}Mn@3>lvRfhg zSw^EeG>7}?bLH-_WfCHyIta#zsi~>L&lDAF0P{!zj`FtNUhJ>)IEMz%e;knX4MD*u zbZo**r%fYYT#5$Z{756+#{;=PgoIQNl{z~vmu}BMLXCJy?m?S&OI|`o6%lD^Y45sL z?A)n8rOx(NR#uR|jxf9LVneQQ)qdF3{%{@WY6KMTFBJzNN%$J+moHyjAW*A0PJU{N z;txfj`o_%Py>(cRdvLCM0kbie?NEb97&+V?PJl>(Gqf%Vw8Lt_@?Y>YX!jt0(ya}+ zaq}huj-OsEjk^sq(f=Z6*B~}&=N&Dx#|pXbAt@IJU3o&nw0QaBVV89rKuINQ z4fF+v92z(1=-&MOe!P7#GA2gz@Mp7r_3&_cP5CskSXNm5T-C`zfs1tA5B$!{j~8I& z#r}-#^Dhb!noC|pi7Sn%#|(9^{F{mui92p9jrmdkbI!pUbI+z3hOOdOyGDKz!u-RI zD3q5&T+wfd>>Y`OL?_c~@`+jLX4l@>Mi{_qfc~{W30d+*CAee&n-M)SGJ}*rxvZ}c+A-E^t!2w?wwCfwl`9Z*LP3DLn91~MEl|en&RZrB zMo@^;EG0fOXg7y*ZcalW1q3+Tmp6Yg17VmTH2!XFrKP4Gi(A&qQwalU|HXP<4w1QGY;T^IPs7R*!-*CDw_ZDP22DV(eD8<`vpVY zt#al;KQSO7o$hq?1VM9zkKNtX&hH0iSsO@of#Z^_u8yi#*k4$*9~`=B+WdV4kg$9- zr&UN7Y}mj?#$Zp7?{Dd_`|)AVB93bFW8isXu{rO7$3ENw?9u|RcxNG}RVm+$0+_v# zH?+|sjm+h7z&#s$6h~&HqGZbW@$Fz3^WpZgEs^b|AXEhkxR{BlsWA&4 zV0T}D7ZBL$(M32t=jGCTq3&;w-a<`|VLHZL2v2b1vU-utSKttXg!W!5raXh>Q!~=C z1#*n>vd48@x`#XCLCTQ3Bk?tg&$epTW(^32Rj8zKgrP_vrY*^(b-`twH&Pg5>}s?0 z_y>j9B9ETYQMDqIn+GmC-_RcvV?^g%I(IHXqa_~lClg?Ac&(=_Iu)N=PW-;|?c297 z0Y^6A-wjzPuZ~QHYEHplEs)E9{>biaFSmj>mg#x46Pkm8hQwt|N{3iC_x~PJhxDUg zXJ!s^Ki(fkNUl0TpnVG$vKtW!VII3z~;B z$jIub+#|`%OM<<;P@#H)RODKP_7_N|&x7rt|NZ+H=bi1+z!&70K-m@0N&x_f`i6!o zz)wh|YoO0qnb$ln5?=-fOHIvKG3wF3^ePP30+;lg3e8*j`KOW33=Qc3+kgD{k^K2@ zAZD`MkKG_h1Dax^`zp5H-ue?Mk+9S8V{P%>`HdMtcJp>b)J!D5qSU4}srNroLfca- z+$zTQk-*SOGe4i3IrxPfX8@J4a?}Ie-LC=bHy?@|>s+5R=@~**shX3~+9$Nw_MmIO zJ~GhE+OCpx?;lNVX!dG%Wly4Z%SV%heW$@N>7MEBaN{R^q=%A7uFDbJZkTGTqI_;u z++vnMOL4Z7c#kRS7N`a)l(yyL7kq172x=mkexIG5l~7@dHY40gdiePjI;!y6uAVNwzaam} zl=0}HeZ{O#B5@9Wp3~Wuh3hPa%BmVmzPlExWf#tM|Lg|gI&G7eFP|TD_Dl%vHSGJ3 zF2x`@9rua<*XP1wvoGNL56`|&+GyryPgwbmD)2B27jj?SvlNJ<>+!MI_K?@EJ6Z%z ziEEQ|M||R$O$0pb&9uqN5;Q955->e?HY91NIjKk)8^`KCFPLG=RBDp$oI3jnZPj`>rH+?tH%rfCa45oRRj)|rN-3HkUvuG~KQ?bnNdY-72u^d^&i*M*G z>OW~Il5{@Zi2AoOykD4)up`Pbxw#8;_|Bt8L?ud{t)>-q&7;hhWm$q-)WkeZ0|JX4 zXPbiWILUiQ7>m`?Vz#rkD534!*<26WpcZ4VNjff-5s5o`MW5D)=)XSl&8zJW9@m-? zv(Cw-G1JF9fo4}Mc|$UMdmM!eu|E5rh)PzUHtIM4xp{TOT z=Q7GK7#0T{?uf{b=RQ7LGL#`V0-*!i5-zHPgUZ3`1(C&fXF3)S&*~cjS8Juce!t9V z&y^ruL=r1%YSfW=Z2QA=S3fjKx0#(D(%`MMl1q0R0!@Y8S2ozVW%%QnP82lMZElMa z-Vqs|K}YD)w7+av_~nYHKA``f)KH;92oNC*lshG*r6dp&6c2ijRM8W*8u?&P*55NA&k({CJ}=3aF(c)R#pwT7dN3E zN9(E%<8*U#1C+vI*mg78d5ISYT1?sFBKE?mh29(}MI^bu(9?@*HvOmjqE}u$x6rHI z)WxqC&T5@e;KP;G6i{9+3=*Yy2=-7AW;gC)fE=2H(?}sCeR_8GO+tdfy6?3Um$yDS zS<#(pV~ET<<5b6>Mz|D0E5kLiVC)cBsFyd@&; zA7}PGXOwF7i0OH(bQIsGg98^zw;gRze?T&ZNB=A}F=pZpJ3Ib-YxwB@s)E|FXT4Os zECg(N;cR@w9VRAyU{ip^Lxq*Lc60w{mR`@Jz5T6b-lK#{qenC^h*+UA<>MyP8!dzj z{yU}LxKdv|kMT1+#`6v0;+HCJ?+I_1R5>kbhkt6nSoxJ@KB#s=Y%KfK>526#s-XU; zskIXeE7~gJ2@S7#js$R#xZZ;miUB@~u7mC#JRElJpvcds-pVkdOa({rlWZ8?sYEe&egy{a!gZxWLhN;nYtC|4b=RS5esrpG1CtVc$N$Vj#?s7so&Iz+Lmhjn`fC|NgLV zu=)NrBUk0@PPPra7nT{=e$uMrmhOc|JZ?D?DjK?y!A7L|L0!dd^dy_JjU^Mn{x@U$)=Y6TL$}Bm8SXpv`2U3HSQRK3j=05JLSP zb||3qLaLFyG5rQD-N`3u5{_T~`uCZ$oc9Zl5)BVNyA8z?{{Us@9JYYNU)SWv#n%5b z(dv}-kNaJ74401X5O9Qlo&KVGXU;wpmO|dnG+M@~yD~1i+ud?ww+uutpuvzxdZV$m7+p z-H!BWuZ9$Sp}2Rl%zeBG_*dmeqIuu9)h}@9obk>&xC!`xPc723s7P?0*{+$iZY2B@ zicRf|m0Rp@W;%LjQC)rs1Bf~u0Pl9B^o|KSK;&-^5MyUCIAmCYrFW#_ss1yrlfih#c=-g3-nrNW?>I3 zfD+V+1-GpYIT2vtJ`}qnSx7h_*d%?EN$hmNa#JZ(wQDeIw*YF#yfCA*R6aX-lM2tP zy~;`Y(fleCFHTKe2|e2|m6q}$kB7Y@R4;R*ot(hT)XvPzkYvAY#M?e_u`%7ZqXqd* z!l^ZfYpPR}tZ?v<|49)JDDDAYf^}*#!Bg9nPk;Ad3zb>a*sN@E@dxLko(;jVcX4Hr zsCFwO-6vhJshK9tH=_64zcUk<)jLwlKT=1fHTFX*D-3M?V%|UDxY+t#I#hdmVjIex z-H0erl`H>w|2O~nVOJb=XVSDpaI>@@o{2L4TOX^fNNJ^&OC_sUT{f6szdoPRfWyna z_vXZ#1W&PQ5$|ADt^BQh9?Twhh71LYZ2T~fE+wfqNmHkNJlz^Yz6AW_lVR(_2Yw|NuRDihm_&P5-5R{cr>imn4wk|t4+PTy-9<#dM2YpGoEeS&-Gr(AV%DAFN-*#l6kL69yGqO8cV#5+pUmp~R<^Hks`|!S;r# z$thZu!-0#H)!H2n;GiPL|MzOZa;Ul?^%0@t18YQO3FS%<>`cRr|9dr{Sbx?F)(J|l zitAx)6aoTZ&ZYr1vo?IqxU1Gs=hPpm@DzY?qVSO80*zh(e8q_#VBe{DP#VgBNX@ld z-JU`#Hx|@2IWD_vqI!wx>G4HHMQ-J}xgQG(cmUd7xNw1IJ>n{21BQ!jc9q`cm{`9GH z<7`GIT)Mnp-m~cH++;RCxre@;$JE9|h)gz!V!Be5y+cEvAFifkloh!Z1J}AS*ZKD2 z$7}FGHI&BR6~9YJppA}>p1%1{Yusqf_jMa(<}VSS9V>ret~OJr*M9?Qcl#1z+`Z!0)eLe!pur|$ zx(Ow@fdMsuprEKkL&SkV`h_l+?Z1N_1q53E2-QF^J0cF8q&zuxYSDwZF=-xEE<8^! zTtr-sUBzVW{|e9Y&;g!J*>tzvgo+aI=cE4g=`Ss!fYDolt_YCI?0{5Oxx|4LWG%mb z{bF%DaG-SEkPBo#Nu7B~B5>TCX%AMSvf=`Ywi{A;DtAk(sxRd;!0^fK`a_?f|JAiD7JTIDy#+N~b!KvcyE@-w8d zGAF>Jg7ud|Ypt`Ep^SR^G-?EInH_SkERsU8_*450fi{Q@(x-UIu(hEPD(Wbr|A-@+ z#fX1CD|l;Rljv*WpRla$Y~uakVUx(?lQeu>*W6B18}Jk zmKpZTeD>`8Z+>4qTct*F+{6^`)JwX;OqIm$cgMU=p<*1P>h6uEJ@@xn-FGBi4`DH^ zo}R{ozU1n{l_~o7&KIn*Z?M)Zh)^e-<`8j=R(ydZ&M7GYdU{M{sHuCKnrabl4^GUv z?;B@|RwLfX6b8f!+05QIBGMB7;+UAKyv=!y2y>I5;-0Y5=Wzt5y<2TvAdS7l?A>#! z5um+lc!qFH>-(6s2fJ$>+JVnhDu9cTN}XNIGPmQUAUZMUIp23I+(ExdP7!X~Ghlk2 z_}`!gjX-VKb@4cYQ--LG&_oSS^MHtf@Vl|OLI7N=<;=Re(z8)DoN9Z7%sC>3`vwH4 zrOqarXKn3wgXX%xRltf%l(77US8bpCV=NaVrFq;hT_Qubd;>da$aWfE(-frwS*JMY zs}Zoq`R;e`)6;$Fnj5UKXq9>&bx}y@B)tmG`F6VdU0`-ysa|8$cNl$VPB!^0kgL#` zo9`T&?5tuE^8+HKZhmk|Dyn>^K_8jNq^TpTNfslEJ-g7&c@**p8(Hmd}N56^ys;pjIK^{93$ zuJNnAyY>3(+%pi7-ZJa6+j>umGtS2AE%Wnk4a1Pr-xL&e9($TbR18wYOL}`;&%u9_ zd*O6t(o-{02$@-a)*UwxJKt>+JvB{BMG%P`xC4D>`G#fpNoH@8^sP3Xv&$u$cUAc2 ziOM+v&1nJ`mwNrZ<^CxWf{(kE+0a~bfT6$?4 z(#VIQBWk@d=I;2^1|BTwl8HBWS6>nj1o*!4+ZM*m4**gHE(8tY%^6YsyFi?6-H z8ghyf!)8nKM?CwlZ(nwB^bF01Nl1SGho65jknC&q_GbzYhLO{84Z%G?19MWa(7`CC zm=ZR1SsWs}tp>jPO8e>3vsTwFR}Kk^hC;c(Gb0AM*eMvFP;0FB1tm~Fk&Gv$t5hJ( z*xl0|iIl*_Y&z!e=(=Y_6lPP%`ZnYB>H6{}9POL;tkM)X6RSHPqJb+JV>|m1J-Xj$ zb0};U^D8&+=4P6)vki{KhTY#`PQBN+Vi5bBD z3%H!%cN@Zs4h66SYNz-*`191HUI2Gspm)7|B~&$nUrSiA^Lrqh zEEX|sL)uv1(fPn34z^hBv&7HXmI&^kU%y03N=iWe&NAPfAv{|MB0DyuI#*d)32h(j zb_+e@E%tm-0tYMAP~I3{Tx{;i(uE#0<9}E-cq_fAPicEY_Gea1TQ4{drj|*pjvo@C zY(Vh=`C1KB;VdXKAmop%j8@YMxI;-$&AOQr(YvIo7k>sUiHP=rVV!SvoJ&gBsS`e` z^g_o*%GprgrNZ#XNL_Y8gE=fPV{%$N@zXfM1P z8P&EU4Sx1j%GS#r%GF416+m}oV`EBv_v*&RulDvFl90UAD)n1Fb{9GLeG$V!iCgr_ zetO{o+ZK&3(6Mddz;qgcnhT^|U^p0c>uYPT{r&kSjX^zci0BEQrKvp1&?ub?qHmZdnjRX1J&-g(Gl$P2lJ{P)athxxu}qK-W+5f8Xjt z>pCbeBUl5?9S!~j^u#P$_q?ZpAcb2SSv0q`J%ysReS>jP(YKAKpEb*TH}C?N>OjGi z1v;ENPnbD*5zbqTe`_ehf(8EoHMaHMiiuN(Q1I68|9hZY@n5v<>Zl)8w(a~gL{b8Y z2UM4{N%9@K+J;&uyc^3$UOq#Y_Ooo7^=NCd5-K>rZu@KyPKGoj#R>Ms;4U+>{)ZNd zBd{uDO@!9MTf)LINPz@!HE7AJVeWIZybVoFzl;tw)dfM&4dR7@F@JheHBg1}3atI6 zK^Xv*%*W7BMAa^*rq%?tWPWNqV$3tt)@`sn~@HbDyQ>N z{T3&CqIkwan|B@dD-PX#DWRlybL^?gBwwPH6G#w`>}>=sEwM&?zU4kGJF3=y zxA4~if!D!=_AJ;#u7f>g6Ie4t{oq5=!mv7?-LZ4v(H8W|JXn)yMdgyAZ{eeL9%_8C zJJHG;u5R{36#1nc6r6Wu9-1=R%wZ6zW6aguZhLW8R`qMh&u@I%3nlj@9rP}+KCF68 zLMm-*$%x+XpL93*_WHV-5q<8pK*S(&ly`3|^x;xQBhcU-G3%Jvww6a2=ds;|w-y|FH6Qm6fp^xn_zz z57CfIO;6cNwha=ChW1Aj8w#;MpTY`cn%z$jsB3N%6`Q^XUF$!-=%9* z>L@%?_8nYueefV$59edKyy(-s`vw}U>FbZCSiVM~ozso#%%JR(6dBfXQj2*Yn~kxD zWS8XA6+!^M|5#jjI-m4=mg8sqQ*0ytX|hSFX}XIQGBtCdj@K6He!P^SD-NZ+zExu3 z)FgQe{$U7bQ-@pk6-&*Z!#+<;wUoj`V5nih`C%V&ZltdQX-Wq&19b&@(pMn2=a%5% z&3E};GHauUI!<`$wvp@|rI8Wt-P8kjW5?xht^eeBb~(BT;S@Ih@*?7VR3GQq`ke~r(~AqBKVfBi z+W#!36d zPn&a+_me_s*IF};Y9eC_O^H2=pt;yBZOLoTxYLf2`lqR+Y1&^ECzi&Z<(?WigQiN* zJPM*j=*$Y@KZ4~AiA+7(G5utpNDHTO<>EGVw&oo|ZtPuE|DA<*%Z~O7?!84UQFCqZ zR0m{%Ibyn}sw0cP&Rp2R^eFZNbk&!7nE(pcG!8%3hxWjIUBXz*BEI3k7Q;J_zMcq1odw(?1c4TQjUe5@2G0rwA-FMfW{U>HL=J(o&h{tgh zFV}90*Ma=kdW6o7IKqfe021FzS&^Q7F(MrY`KoF z51Q5vp5vM7AGY()*qL5c&k+B`-_$sfimFXvt9 zM=im(^J9;8Tit~w*P)%#A_TRNIxjXlD*2m{o6D`J4ZQ3`29~bIydq_>=xY+KWPDfK zl!xVEV3s%X@+^+i-WO6i;dwYudF1E!CW)xz)pjWuc6N1TgH#B#d(hf}^eRgg zrb>W@MSwgHcZ;F%MV;zCU7tMGy`Xvd8T-dX1FpG$@?et+Ub~lFl+Z+@(hNJ~v02o% zqYi$SQB%BQ)|Wf$V-7-{OH9QJ*5_=Brn!EVotiyrErdsKisre+QeTu;ndJHMK0$s<=?G-dWM z$P2m&l0^D^VCGU9n42$v=e$ElXSme(giOyi|7shZ$NO~8xPxRgH`bvJ#h%_W2dd?F z#~)?PRUa?;J_z5nMz%S4+;y!?F4D=V^5ZP*isT=#&0_$zqzn8}(x3=;010^kbVjuD zh2=7Hanrk+FGQOJc0O2plyy_{n#9phou4HI zeyPlB7nWvZ00NX$3tFz*Rm)9R@c(LGD1b}1J=@uNu&p7h0_^QMP#%a-FFwr)x^McH z1EW)o09{dms8cJ$4kdGb@DgB_U?*|RBF&fwVzh?{top6Yr-J2Y9e7KhgY|=0j`6Cp z%cB;87#3!isuGktttoLlhj-qQVj|JI)%lAE-o@|JO$vOGRGu}-GW-ytCN3#F_bx7$ zi$t|q&@rP7wp$8Nku_)z@0`Ith8{xmr`Mmy5h`>e53kv2*8W-cq2=o)x)w+3)yvBg z84-MKyZ+~`(U7g2AF-(lara4n66V5rGvR?&CbE@rgogJ8|Mn%&>d3{o8s3M{iCaxG z%Odb$>`>3d(UO}a#p+Ho11+EeICbMh^Jy^;VGDWl7SJ*s(MEjytq2mRneOSzlHF%a zOwWi<{cM`CcktKR z7`j|~wym#ugcQeBzNeze%HvetxP0{_0t0O!-j{Dq1y92ufv&L{aHgp(f?a8CX8GKk zZPW%e{J-#*FU#x=^j%D8ez5i2@tO&}e)FJkrjQH&V7f$n;2S$b);DGEH;- zs?4pnf3O8}RTB+~_^?zkjtlUb$7P2FI`B+}%c79(E8vgeNi^a50e9Lsf?XdFbGx%V zcjbGR4)EuaO#*efKaP8UzCvSR_y0cczX{Uihdt7j0$Nw(@V)Yd!CV+j9=@(|G+6MghFH|3+( zVok@#POF!uLZt72Y;41YniM&m&xq^{dxesYs0fU{c&BgC?%?q7+y!jxaZq!>b5Fkb z_?)*}9vU<`_bB{rbG2v?Ns>*u(5vKcqz!nAUifyUA(e>B*7`sts2~4+FNJ5IghSj5 zOe!MB7T;y>O_pno&FerAB)le1s7E&nq7>}O*29J-r%RLqVIVES0v(Bl)9ft}wM4Lg z7t6_3V%Qv4Smd+=>+k`1u?bfkkXbnJQ8PMM)E+aEN_Ldo%n+2gaFxzJKDTvm+rdo_ho5%XM6hk{Q zZMFFfmks1B3$Re$Ha}?lMcm^4joB>PNDg>!!%mF|JWwyB+V1($-k>`<+6}y_`cu>I z$ax=FSXdlNmYKf7>e#B*w*OEj5JF+Tlwe_Su`&vkcvVCbHRQlz+ZLWT^RqC<92^^$ zc`L5N46g2A`RBMLZMNUddAF0Erxu|8I`Q?BwFM*ojeFanBKRy~hZnt7< zi+_Z3;RiT=9~<0?DZN|kIciVX8kA3wKwi+1*sLep3E23Z#NdpXjpq?l&dT~BbSm_+ zrJfX%?E3mT(uszMwV(_EjoLqWt=|+}f=B}?&tB_XgGX`k7}fMc^&e3b=8MxY_|J3Z zrj~g&qCO`f5s~+VPy(5T{8xEyp#Odwau(h@g!X~o_4OwO4^ZR_Lf7MW=j|l~AR?{w zx*}J)N0t^vm&y1oCzG=RcFR3Qwy@99zDTRrtvObes6Vng2|B-75k4|^HP6|c*gXrd zQQVbq(+_dT6J4Mgo{&jROhtthD2QfD<_amhk0>+wXAk?OQ5^gnkpn={ z5>$Zz0UxlU#g2DWqruJW?0n}gsLrzWu*xe~D_`9oi5%iyT}_I+{IjTvJ* zQh+eG?N`x}{_a9}w$7V?fEVz@tMlj2uR!S~Br0l9ZC6AE9b%8xH!8r17TZ}@2I{FE zM}=%mDkBVlyUcMoTFm4~rg3C4L=N8IEFzt8?Tzz)u3A#3AxF2iw$=)y*|*_=9=V3? zh?4{mXR_qN1On6_bhuFE?h0)Wy!es4mbF}o>UIf-PwX{!>uOM*(ywum2~gZ)H6kehf{OpWqZ|Ad%8E&(PntrKgGSt>Jex$ zawq_Iw6CCn!HfAdp0sF_jX&`9fuyc+vi>e(!Ix*rR}8sJyaZ=#9-)@+bzitzE2_Jh zY4yT@PIDkX_}2I5S&o%v$^J%7??AHC#@Es5*?zImFTgS(3Yx#fM8Xr5KYzIr9Di~7 zN>k4?rd+UQO%QWJ@R1ys;;YVsl?5i3@1^2}Jh&-RgKiM9rDuC-V}Fv~mhvn(pK0iZ z8Qe9OiroRp*c#MSFH=$ukvl>f6l1~cE6@|-xou<6T}(oLu*Y)0{)oI+8MOj3&Xu6` zAJr=t7@iTNg86Qi?PHbgUrl|+vy3{^*$Vi>iV)H8+S4!UlN)_ftvE7TCbeL zB(JXX1P?J+8)P?DUEu;4n@EQu$mu8dm&*;dmj(|uGu$WJWrTmg!^p@595Q*?{c|NK zkCuEkFHm3q8}w`SFW^VO3e)|iu*fm()ZAO+ z0>i~{fwvj?`P`~MO}+w;vsnijKhnpGatwhlg7z!+ABM6qETaaa-l98Ex!Y`Xt!bzg zI(ZgHx~?-0jwSW8NchZZCL77ZgbJToG`cPm2N1fE58k$p^+PWeNL~j=_-QJSKMbGD{bGacw>->iBKPODL=9^NgtI;V8+r_6|W2b22H!Y+9E5pL;N+(sW*$sZ<0kIeI;eo(Z(3zZTzb_u)pDmT4dVlaa+J`- zhz$1k8v~gV2=c*$>D<*o|28r*0%#X7Z-q=j&yf-h7LW6tZeZw@&VR|9$5uF^J!QGK z=jAEPpZrlNO}UrFfii49t&Ww z4jWzmI8=qW=jJFZ<&rc(94QpOKBM$7cxi(2dg^Y4?Ba3rmGZq9{gis7lpnv%0@n`1K2q0h z8Vsz?P&Sf2c(Gg|w*glpdbRGNKAAD~vC4}f;rLpCi0I^Qw!LM&diS~(2SujBC=jHf zEEcbK3;9&!ot2s3_!nlRW=RfTyar?J4U8PFj=wDLf-dqVs~G;6#a0Pk}CTf zbcF=0V9(IM_T-TITPWMR7NSyhkU;7)YA)HYP5&sbPW znSl-)`G@0f=uqRCKBc^VrHHYTM6Onl3&zKR$LG0K6=`MYqcS>~5^9E=*R$bt3!aI7 zNcyEVH{!s~Cv77(61?Io)Vq=L4VaFL*p){G78* z0!NIJjSZWHg$2;c2Y{EHqQ}9-{%q6LLh%N0rVRf z!5>VMPJtxy4NwLE)GrUb5$!iM-oKB{$QVe{(EFte1ZyL^;QxF9?hQ3Qi@;CMMkiOT zvO#CtLmmf?)8t2@X=3$dLg1P;kLbdu^Q-QgzpFPN`Si$QLb4ivK_$d<)$I9}*L~l* z6FP;4WZp+on~Dd?pSo19_?Dh?fUYL)2-g=m zH4B(b42GXz5_mY6YIE`Nfg3Pr)_}g5=itsC5#^0tcBS5GSf+5#;9yi?VWH&a|BHcD zGhB`bRRpmfbr-v^u{)FJlluPMNvY9~)x$H7|g^Q?kF$C~WL}fK5`CxI+kU>{vQHkq~2fgg#Xqh)_kw zv~zcqwC@^)gg9og z-kST#4(u)NwiSI>0H`$s;T-rSW*u>YZ)gf0r}JAd-|On`=Hv~O_FP`xRan&FAKlzg z*we9(-H*7$p5_i(smX!6>Tz=fkUVVFsKUK|4$BQ2n{D*lwUWxSxM90#&TI;;5d~oQ zgJH`I@pi|*75bIGVXk}ch^!L<5LcvBHb206l`{%+L>85rPj~U1qH*dtaC_SE?LEGG z9sE|r^ZB%+CKd>K?Kh1ykdXuH4=DORX#dzh-@XBkgo6UmaUUIX>Z`$(2Wv}pA;-@yva7Pw$TR1EPxTP9MQE3!2 zpMg0q%$@e`z_rz~_7dje2PCO?HJ-%i7b*BW|oFAwH8{r{^Ew^%OObelp-+s~U(Fwy9jjz77Xp3Zt~cTxW9Zb*APz(@M!@(NgFuPyyhsS9P3n)?BO{?vJ?^B9n z0%Sh}hH>=^{#tvynbs#Y-7VQ(^U{B7twq`ml{$_%Z+|_7DD?%gB)z97JhTQnTi5nG zCUXCEzDNiXI58YKAo=I|#!Aebyo)wf8za9AJNhP29={X~k3@BaGeOzc6w3^zpTPSE z2;{PcfYrh~;Ajey({zX9o#WD)n3@^^=LCWYU?dF_X5ZYy$ceBY;Db>G7^!f8NceLj z%@PQGsRRTvmODdEf#U!+*+RnvA`a9NsKxCmAz{SWGRG}BFY*Zcd6P&>v+bnVEDvt| zL82bD)_&tNyg*Zc2T+}c?(@?}8!JpcOvz|iYm!l?P(P@|G-v9Ix7u$ z5(eAt-{2RFZVTK)_jUenH7l6U+dDv*y0`5d&J2)Yt^JGcTR7v6Jb>9jP8JnE#7e*o z2jjl$139;wAuOz?zA5OxzQEcSRG@6jI7hB`pM82r_-^{EZ1{-m^;xZRkP9Zn$LU4b zs_|3V3(HAeH)0)CAWenI9XCIB9(+8M(%N$~CP$u?+ldJ|fA$TuG;w;RN^Z+Tr7bmd z(6h?mLJ*mo#sF){tn}mAmikAO02L|h5gBs)u+SQd)LV)l>|N$%?odHk z1@V|Amdi9mbr?c<-aGGQgrL5=fHjp>n794X zlOH;4zRMG>Mi_jt_xSS=LL9p?{-K8qz{O%95$Q+EtPyI{40Aa4#7u#20ic= zM!BaW=kMmBIkifYi)jJLoZ(`5z{)J&LmGa!D7@L5XsM`Rj^GI+~ zUjhRc*Agy#Xi~G*jmp`4k}EVRz9~MXPj-3*9v`7Ny`4N~e1NSX`;vCOZzUhC;ncc0 zt-Lv-YSy)Qzz{ykC458<_1#%cZ7IgkEAJV4h!I-j{FQbrrg{k*Z+vJ(A@ld;*1GSV zQ0|$1gcWb!oepAow{k2iGHu?a4`7r^S%|Eb>uf*9+xJ*m=<_ZVgy7NHiDmLlInb5v ziV5qn7^Tey{^dcVs4)we5B{vj8hHyL_9o@l#wLlF&u50 z2WKIa7*A$yOIqOm{Hu#2jJ;W-qt5+0?p_qWkg44G@wXUA8cJG9gFEt4M^P8~z322! zX*e+Wf+er)x z>lweb^xI$&<>;A1LFaW`S4?znXQ;Hm-B{pnHNYl|bLpP%{j$LA{B1Idl(&K*BvR4w zsqArq`H(VPRm(sp%S`&3OeKS+g!rEx?yOGCMMBF=JvP#SP7r{s6PtS!KsN&RWP*vc zJtbvPNd;~O(c6$^?5<35k(Dd+yKmkD(F{>AiPj7?7(uTDy~LsIQqnLfa644CkhPpX zSs~jS$CwcQ@x^8|VcWqOvhX$2v=nDqmeAmAAz696kIkZY}Dfbbnu3)}tGQ@8e9 z1!MD`o&3+Y6XJkpTH|S>$JNn*qO7JOHffn4{rD=Pn3B`V z%Z4C*^N?nJ1;Z&TPSl*BtcU?JLKm^oK8*8EiNU3g8QNp42!}?qbJBu(T=mh z<-%bOh0t}AyOJmImL)x`iHrNJ;BB=p-FmXxsdKwL?!t;QMf)3N*nkO?a$kM-Wa^;5 zOnYBo+glS)bWCOib|Yv!5JA3yt5%lL+@suzU)0pNx5KarWlu+iGE9UrufY_zE8_>Y3Lm4KTvWCom*-UWqR%M4ApWRz zC(cExZiv= zOK?c}*bBk9;|@W59Hgkxc?HM>vLK`nMl(PhY>rdc|YC7{-`Gn^97O+PYYA5CkQ+|gn#RCF^ZqBdj=ntY<}Ct7+2H2i87~AJuWgW8$Mn0Q6!zHA`3YY{lnW6< zp~%*kO&m2}n_mwy_U@Rrv-E_3=|71JEhxCbP%R7u_LX{b2uje(MiFz9gAp*wc?z@k zFe`CeROVut>hyoy81oG$5vB>R9KswaZH0_@jE}ebeg>xxrtFDI$ptge``3}oP42{K zGB6rJY7ra{Y0uu}aSr7%+64!1QHl&`K!|^kR;m)t$=p$NhCZLg-!~bmdIy5CN_{g@ zNeG^+EwP#eXV4`Y7k_c6^eX8T%Djh&Q|YwK8j0i7mo=|sMbM^s^N=3cyi>s3q+Up0 zgxvPJ3lZf0`$ZZv@&8&o*iajc#su*77#vFAra&9j`%y^RtsFKxrMCaTq0U|Mi(W!p zVdd7ALI7>g8L;wUOrLniz0M+iaI6b`7Fi~GHOrkoaDdEK;a-Sd&H)C^*w_T7KeUce zPdjJ_B4)z*GB7F{v_NuA89JQt1Gi$nTrvL?4@^%zQb;w#*L*QdIv2^=(MD$vL;PV8 zovE~;=5wT4$QBPThG$eD7!f1jdebWi%kCXLU6GQ&aTR%?ck?Kl_J2~I19RfK`q8Q! zbnpJ^6=$C0B^@}Q2a|cMM+Y`QwvG)CWV~R0I)_Hu*bx{L*y_V=5kcaNf#GB6v^;pn zfdbxx0`r`z%J!)NBk3yfda!R(`G!iYq%z2O(yvzu);lXgJlT(04)(nG1Lx)5fDU$n zKwW$QX*W{dmGLQS!~IS&JT_Z*aZKdOSSM~iXbj9e!OKg6_0yWkO~EWc*LO~MfuNu> zEIsD=BSy>lBY7AHH;nVm+%w-FrN^B+;%JHn@DGu(GO1FAOX8iigq5#1IbgrUJIJ7b zQEHEr_@B5t0k=~;W6zcH?8R3=^H%*@_O;10b=Kse=T##%zd-!ea9meZco+LyUAMe- z7)RS)8N{O?wqdw2wORUU4auJ0B(fJt$LHkSr}v|?+Ya(L^WWt=Xggq3n2~(m|J%yr zsHCK=7{6v>KzaAoZAoY1rrOB$Z=`5b4UjTvS%)zX?G!;}8OK9G^r%UGJ`?9C3!CnP zN487tJ>F!+`8Wqi#^0*iwmeMi!92{6QP4COYeKMZ&JQxe<$bL0cEAF3!ma{O#iYPA zCvB_m00)p@j1GIX-s4ReoK~?NCw)B^bO2p61l;?IhF!#`P(9cY8+qc6><;eg!5OgJ z0t4Hs)v|k%X|>-AF;%~AzsB|pkwk&^(lnbyE?ChLAi?r-)|e$gWHS|rgf-XWEG~R9 zuV7 zN4O5>_Q@^wCtorsyS521uzC5*1yD?+C}=R4n~AK5ZWm@i%a=S|e+u!XT$%*NQ)-|0 zpz_H%j=E4M(6gt9g*xq@Ai9cUVsrvd4OPxF&mVz;hhzq)0fJU;rYNw9@BQSj|Mh6K z(+^t$4qG^S(gDcnpae&v05C`C=k!EDDQXlV1^AS)zwaynw7^c>QM@aZ251KSx4$WV zie1RC8xN%fNjrf533%17MfD(k6!PCyucwZCgj||_#(>AjS1>6XQPqE zNd~3WFHQGQ!9z3qqY?q&_*XwZFM8I-y229L!TlTkkah5cxh&!#4^&b)pazz~HIhlg zl53APs%4xK14wVKX`W6&INUXbwncdXWSVVNXKdbuEmS2nWPcH?`Sv{y2ZVI}xz4yR zd2mRsXsiuK3Xv4Ks(uYevL$&YrbHtB1ArN-tgIQ^ePWh<|jdVQ&%Nz`&0pG)S?3{|+Rn^23hC&G~0Iy}fXMK{v8VOhEn}{m9+_ z>a4ih-`h^GDYkG+yuu&X$6MsS)<8^f(g1a!Nhpp0s_0@99Af4l!!mczdbVQ*>{tr+ zl#tUm4h$ z{5=X|H4Lfh*P38r2T~u_2(ME0LwF5ArXCjIb5fjaM{eMNLk!9kbywp7b887w&jo%s zjH9q4h|NbTRO6gbGLrAV_H%WW{wue{XA;t?v};)wq{ibc`1J5G{korD_&CJ|u_=q6 zJy&jL7*WR~`P6}MbmW)&9{gq~ups?d$|nv|nq3EIeXbO;HB|21)1|jj3FGugERz;% zx#d}dU(Rpf+L3QTS0R@2{Kg}|!xPXPPmUZ54z0hy7cvy*?-@`B&&o~RSn$E10QmN> z2+Kq9Bt675>;)8e&&7`KYwnb$f@C)|!j3Ov&4!K&+zJ>$NjG@jt;1pfeF<;P-z*j- z@Zj*fJ6!HOpzz6-efMj{Z#TSsjFy;MS}=IIYOKeM4b=g&WRT3eb_^+e-o2RC-%zg4 z3F5qb@VnHn9R^5NH=kw&uT zAYPZ4>!VxgmBi*`eZj5hybKg+GicyVZ_$>Ly{k|6dyWe_-sgr(pQ3HQ=&N@REb1#a z>X-AJx*Zk)orLS<=`U6uhTH_L-a^ZQ0kHA4{Be6@Y%My5Y5UReKc611ulc3;tR8tV zb~gX}_TfFWxhCr_40KumJ;BX8LYrW0f(RF|6-F(ANWZU;;#6qZzdfYIs;wd%t?a6g z4duNc;s=Akirp{IEc$m}-p;*Zf+O&1~rrx`4caoL52vSP+LrP;gapfkVuG?y__%dE0+YQ7FOa)%!PV`lt zIz}wrTD)9;9@yL_hie@!jb80OCH=D=kyKK=!g^TmqA6Jhgl8Ww-Y;e7m+>4zpL|*m zMGfL%M0F|_lm(yvIP+u%78w&AfQ{6;{uJOc`>8L9q@}D4JK7XgicjrxARw9s0*Lc@ z6$c6d3!IQNNCMMrg?-|4jTt$-{){4sHAfnqd)YpnK(dE8VDRiIj0g`H^%CFG%_$?a z6&Bp$ax>sy3cDtZhSeA=&X>{q!KV4Fw)Xi)(9JiZLe zV9zRJ4OiuMHCCa*E1-R^`=N8e*DL|t?|`yy(A~SAqvLRMhBxbq zxjzA@8zZ@T(AmPm^z}j$1@L+u2aw?bks%z!cQ7lk=O_tC;s#{Mfrxr#Ft>=I`DVtd z?h3*T6wK5I`_$0Ks@0TG9_d4DioCYWhvCa|SogY>LU1!0l%!b)d z7ypLH=XXMr{5LGp@BGbiQNrHtAQtB&7 zceah6BIo4MYIth6!`$M=8xm<@J=wpZ!9Ux}5u>E?I=8s)+^MZfKjEO<)s47K`8{Mx zR`UHO{&uEH2^s7%s*Gi&Ndq94WLmXj_byv zmC|2z9VNw{<)Fi21CwAjpYy*g6MFl553S$ZNaug#*M)MFHx%)GT0Bd8yjdOu zpGEd0xDvoDQO(O&fLmLmJ`HyLJPQzmxr=k;Uv0!OfeDjxD|zAy*d)hMs`E;n+nEp- zN^c>OL{qJ8kWzOHH>LJG>wVh|gLFyo{Ev!8B>cp;iGwNFZiz8$PbTEMi$gQ0xmmao za3X)j%VH!h1CQYe-sxLqF3`lI0puw_;KA}0;g}eG-b8>6^dk-0h2NjJUb?7esIO^M zUglTMUlz>E0Gjn#69pa|D3BC`0H_lx z_!%F{!Tlp!HX_s^kQgCK>gW8{lRF7KtM36h3ORY_323V*mPd*Sj8R9Q>;?^3AZ8R` z+6IJ5ylHBGHV7^&z_1(eQdK;%GeGrd{0pTlf!d*INTdC$Rbg?!F+tt0l`+t6srZpn zv!1$le<@-i`*3;eZb$1IpmKkF>ua@zs!Oa{0schQ>i)BDC_xjC9X~GoeP9N!;3pC;Qr63IK|v3BzW~8=i(){Mz)D5aDN(OUv=u3ATmZxe?DGO zSG#;lIu~hQlH;9S(7Qcp1Nux!fOi{hnsmB2JE5Fvdlx`7$Lp8Lt}5L^ho2tOU?l$2m^Th|*vt3zC*kUK= zAp9UKdMn7U^`obL{D)da&XXOVix07Qk{-nD2$&ZLEay$waWo85dIO)4J^OATn4VFH z00K0~12Xh@m|IBggZ>{0qW#A5SNVuz69F+S;&lsPCR>ounH~hD z8Ky;oi+Sq`(P2O z+fYkSM?ToTyD>hP@(DKnoU~OzJutt!wLY&WAX;yv2j@KhFPgF^uvCAAqB`%4wFA;v<>EG~a zi1sI;vAUGI7&oSInL2h{4-mtE(ndMWu%^w*9f}D^_JHvBwKwtwpF;E`U+9QS({01? z(Rtu>j7TzY7T{w7F&GFaMv~2z4|XLlcU23Si`%!IsJKbQJ(V9}(_b0WwWEz&fI7dIJzE zu{!2!_~RDPSR9Cv*7@(Eb83iu8LqmK$Gg)+R1>}pJFjeW2d9ek6=)#y~RPDxg2xB#+@OpI<iHI#-E7itMeUPX!t^-ZkYSI*hTg-&f|ct`Ge!+7;w@Q-C2 zWL()fXCu|l?Z@=sl*Fxf=v}; zB@{rp0uJl$KsXO?$3p@*DfVEQ&}kbYX2!`6*yauQ%`dPYGw;Ej9gE_UlHE(NEe`Bz z9(_5cPF0Q}bPb)`skOLrpABj4)--cYjHx^*F7H35#KP7v01T_sFVBDuLPSPV>;5>! zaQQ4FRdny@adE-BS3`~bf!udK&eM^d(ElAyexKw;dTY6g3-X%mp1V%2m1y1jPuBKvun;W%_Z zm+qNx+mbboqw`epEoD^KW>#DO=&J!_S3$V@C&+n34-jE=+H%8Qg4?58*#fQ_v3{~a zX;OT}-P43nnW!;O$z1FbS7W7!@Nmr^7I?rVlX=m!ZWj28z5qK2cyl&0z#a*h>#O39 z5H&{^zoAzt{k6}PK0M=D2NBDfc7C3-y1zT(89Mi>dWc7MFb&#^I2DZK!0)Rw!|M&T zd)gIQwhxu5k$53fjaP8)o@n(~UmQ8(B9JD(A|7q@Z=9rLiDbc>ogJWKxP_S;PEa!a zW?C+Y;=S^Q|E3Bt=M?at*rXn*GE*gCzIVinn?XH{6gJ=ry3DpV1c;9EK|SCvJ`S94Z?FFkAb5oWwdJ2A_SK>w6n`@Pow)7jn~ z#NpGF6_-j#cLE<{W~cB*#YONS2b4hmVL|ld65j~3?sS#bbIZxu60$1T{{1@#&ExG$ zH1t-+|u9&)wHR>5zbD5 zzrrLPoHlB?%GJ}>UAdA7v5f_O8()lhYbeseKjs#+5#{>8HE2I&l<4DkM z68_4T?BjKyt|c~VEthe8{a%jYhqDPR?Yv%N#~Gdqp$K-mFi%C5!&&00bjk16PH?R`+GC4A5@ukE^nhA+N-{3JM>E+_o1;BoCc)tSwA zI|hg|^G9tZc;MsT1zVm1EMtL|1-92^ZF7?y7-zx3EDS&_ge_7upb?p=FciC92m7Ha zfOHG^@0tTWbJ-tyl>|+c4|vwH%5WP59ZjN|>%n61no8#3q@xJ@bH>`5s+|G4j@YQ5 zgBAv5+=_VJ36V=Zk5POwek7-;$B`_gg}k1TaVn7ppYu0u5;iaWYy8eL+H809`rSv7 zYSqITVmgcpOGBD;v%Qa#ckfmjI8Bxwcc1tb6s1#OUQ*e=B^myO4NwWBKvx=hO#g0$ zfP}~H-?|TAI0oAb1MG?WX?bVBKCuf~TsYWK32_37s1P6niR zwW@PVT9px9{dS;!Tuo?78Nt#!|L(jZRTJtKw2d}5Z8Bkj7uQ40KoQW6d7iuIt;^dq zT_cXS{<-3`|JlYuOU4=n(>7O&U>M@cnW4Ty25m=8nhQV5jI%(VD(Q_-`XIYY)%ohY zTQvjz$Jf8w1Xf{9 z`Oo>FaVN~P=P1cSA>ka_Eqjob>t6hc=9-^gItdrUPQ;7RwFIEcZb^tyl;_<@u}d3j zjrNPSwWCb~vvfHG)8(_iD>o|T`kb3eNN>U$4l<3z2Ba|Q`C{vQmA7Tc$nT4y#C+I) zjX+pRFa7IA_+NLJ_EclU_)(CBPQ;SNNpAnmx0-0aLge2xS-MOuubGqY0I`L*Vg4_f zMvbUHiNq_o?(PcDke>?&rP_;Q`fFyJ$*ELl*3qvSBIo9>t?u2pclD>=i7xVJKaVIl z-xB|ZL#d#;E+PIxX*UsUK&P{X+rV#24$hZ5T9%bB!N^W-{N~KbmdiI2(U-b3cmj(Z zQv!|z!6@E5lq4UnZeFFiT71*;&Eo^3Jyz^L+vxY7-fHXEk$Qen?yrIk`niUtx?{2q zdXjbDP43PPAFRB9llAh+VCEm>>)zp{g_wz3vnL4=MPxi#cB!ZPo#=<$-^AM37BntM zUD09odsWL$U9-D>yt-rHgc~wa5zOs8dU?QnmN^whE;J*vaDZUN#V>3<&|byJ)zlnS z6Bm|?0hU-wq^y6LG`Lmg$v_s9Bw^3M-@B|@U)8nBtc>W?aprTHI*$ka430jUtl=Hlmxp*dxwKY&aiRF42 zgmIv`d!lQe-qF+!F38zuYKe^#E@!V!aWs6G{JfRe_i9qis5L^uVfmy+V`wZ83K94p81&h{ zQ)3T9hR_ZC2`1bqz;ic>3Ucwh-zX)>#dj~DN8#w<*9TG7Rvx}6Ao~tT@_)Fyz*_O- z!n9dm8*tm?ygFh6q?6l6Br|6kTYUcGvi3L2|#ip$lq;U+?TbYT?VzO0AxO z>27EcKJpk}t{;P$woKc=6M=%Z(z>+m@`hHBSUn9igS7q?#6--m4JxfK^jbWPUn8S< zMP6BwTe+}Dv%0#%%g;zG+imNVJTbdfzq&75x>R)-kFvUaW^@{ui& z`reV{wRXsa)OL7!dd<{d!Ef#K;H>lKLBdjC5KoB+sg;~&@rkg_r|*K(Gpp(wiVyi- zuBU%0!Bdxgo+6%Bqe`HMT|~|iQ7(;WSS`X`M-SH+F0ZM(6MPtM;ELLmYAK7$|Li=a zZH9$JfT)gPBpZCTV-82$Bb~jpEdP0E=dCJsN!EPd41rJfJT<)&>14Di>A8u8cT!`c zA5+Yqj_P)aUMfuC^M-)JM4GPJD9Beu#}P^D_$d|)vwH18iCjZKMq>hGG*Pu$@&^q# zbacZqOf-h(^m(qAN_;lXg(zt|)sfPHt1M_0$BVPmSASeEY|AuNs4DdxZx$D$Hq3gT zRJy3>bYD|jJ$kW#kZ-hj5(w8-U-j}d-6&i#8re#mS_*67Y|1h#JT&Ny^D*p_s*t}x z9zc?FL^ntxz(8iWm}Z;z4e@+6k65H#CYmc!$rvFRfq68zSXbdX4ga())a)jHs+@OO zete(%y-BG+SN^4I#r;)~DnTn2G3ex`F-S4(?cNgDC>7*~TbJ9Nw!t&clSlOKd}J4gSWrS>EDA(R=&uR@ZI>&`#X`I`7*Xb%=KT_T6sn zdUdnx(O`OgfOYjH0#@qQSL<66KC_32zCwsq0$Gp{V!#J6?6`&;KW%Uv^IB%rk+SgH z-mrM-BP9`OKyA3I;W1C&F521AmxgmZ{cI9fSK!yFbDH9~`-ZVKc+iG&ze&77Z!!9_ zV7k%hizPF05G7`XX8Si%`L|sa%`(Vn{f#2Th%u^nOYU>?dlUHH_#cr^ww=)$UYXZ# z)EP{QBS1#%=&~m$kl#b4F|L=Zy{=}^cfFU&&In$0JPGWOHy~Z{f9cJIQ*>GC*FB-= zdOE)=>~J*Oxjvij8kRSEbx}i@5G44{_M!nFJV`npejv+L-bZ*}HRq$-&PK$;5+dC4 z;JkQGh=$Yhy*>L2{I?Da98jXt;)u`;{Qs^k5rb`8q}F}aUnf+d4@J;%_%jC}4P>|B zRCe@<81uZHyzgpA=BmCed56%wvFKaQ|7RmZhyTe>)8|s)3-9VL419h(fCzW$vUb zEmBAD^#G$UCFESy$CLu3tAS{ii?|0(+YZQ=APK%>GUg6aT*(BN;r8!F%{X+Z2Cix9 z=K3z!hcOQb`YvpS$_nu)byUu70%f0QvB-2f8Jo0(+Ywzmeo}rNdTTyPMv~^DD^5iA zUj&L8&WBVl>^QL8DLqSiRO;fFHA9MKEh{xdD}kKHn`piG=s_>A)mg=eub|ht%=D8A z(?$g3u>^tK;GQBf2>_EbB~U;{qz&Qv$bJ+2@PZ)4rip*!fReF8W|vJyye^#Q!trWi z(Xgj6b`I^~h^OlZk66rG@wEY1$}bSaE>f0CriV+VrYU8<=-?LWJL_z8&ljIw`Vd1{ z#|Ka;XQF)W0@!6QPU9B(?kF}(OWKW{V9H?V8{(dplV8e29Kalz7s7Jw+rv^%{7MIT ztulW`Fg?yoEW_(xUqq@24>zeY{&|WbXuBQSsn#$2Dft1xOK8ikwxcK%@NCQQfW_eZ zzRS){WYfWMPQ5Zz^$5He0+xCM_Emy&7zDU@xsJ9X-@?H06Psb&8 zUC~R!i0&Bi%P{}1WRKI z_a>zanc`9f01@Nv2Qpc z8ypFajWuHCh86?3tpW^5e!w)ttJREGwSA0+)g3505hVwTE*(!}pt}19pPoEStLL^q zy<+mYbK~4;$|^)rB73yrIZop8T;|S_!Q;?g;qMnV{;{ z*E>Ii)&DQ!HUZ`$mFM{$Md3a$_%C9CqVg5n7I=}Jul-VbLuOC4i{&7 zdVCLGxta;Vfk%nmNLxSS;O}kiuPR0i?_~MvXtt>gF0>0zt@}MmpDR0B`57r#={;c_ zZ@xf(apt7+@IZXksk?DvYZHRbTy}elg^jBGzps5(!Kk?(IE`E}g3d2nd|$;`L-E$vxNudek~9F zJiGNKz`5;#2cTH_gQn>3CASWU;wo5!E@5{mU*XCP1{JRN!ge89Ew{MXsBEy!8lstl zPntXB;ivwWU91=b_NkAwqv;3tO}Ul~$+n0wn1j{gVhyXO%?0_wCUO$!j<0!}I0+Cc z4%P?vZr&t-vnExb|KscExOJ$xy{V{H*wD})cR~Pb69n}Sdl~l23|*(``_2$d@2oyd z(wOB6H9dYpEf}t3y_iHRfIy_a;*V(q26kVnYoDzt(!>99O!9Bz!1iUD3XJ2oku+L3 zsJ!ZJM&s4Q*UN#VFUUA>8Nf}R(MyEk_t7TRJ!s=$0HU5yleymYm8PF5sj<1*OmLl6 z?-YCEyFW4M%Ppu_PurZi+lRjMIbJeBa3EvdbpT?9BPDagouV!Ei;hzBl#JA?q5SQ) zZa^sT1QJtGaZyy?57yPT0|SujUO$BxzRqnIWzk z@TZ5m63Pl}Wh1LHq;YRgvhjHYMXnH)Rg5~eFUtNl6U?1T9l8DS5)>B?c=r$9h6hFe zmu5g+F)tOVvyWxkQ;HGc7j2kNTp1elsaX!Q;^9zds&NgDwESHTK-Uml!TR)iI(o(; zd%|Qf;%cam%lX7adrUGy-gYw~(*15N=OjzjjZDqx?k1RScJQrp zNQZ5!{eY)~^yBx3ut9d$O6v)-@YB~VUoA$Mi58b3-{J+tX(ThInVY1lEm4{tSsbt9 z!G>fVyIo3%3MNn-!&DI}!XH1UR5VPXFJ5IAjp zq3_74ra7eGxsR)+%nG;<)`YK^rl4U8pUA=0x*XX!nU$(}R-on~0D`2<9(f46K-cG5 z_Xn92ZsI=&2$%P$-@XOvQewwtD-$fj@W0CA+O44i1tVS1I4tud{|QS)tuJ-{Arb1G zj|a5^P^Wg<6BHh0d-~~Wt8842&(ldO#7>qz=VHjcvVITA+&Ey@nZ~u>dNtri3>>o@ zZ;%_gAP|wfe>hHJr!F3j@uVYT#J+^^q4<_RB5be}=@AeDO({Ji zt}^uCqT)9U>K%AG*ZKS_YovT`rTGH&=lbvRJT=R9*A00|(|doLCYQ}f{>v5tQyTghQdn&$y4^fE}3B=$|v`1UmmwJLe;gJ zs%fjUmTKI`Mthm4+cG%V-)of)Hdt-BnvP!7SUj&=cs^WU+pK{d_X&VxaiSlIto8I0 ziB_#zEgL1GnyZ1GprO@5Z$o^>qH7DQ0W9W<`=D_Gxe`%jg(hVMAcY~7JN&@LMvYVc zyH8?1OECrhrN|ZVEATmP;Q?0ly zx#z6?7JYsDR^?O8Gtnr8whMBKO;+IkbXspPDJf3%(L6pEcFRZVfy2cIs0-+)c0|V) z-|B!KhXp~hR*9OpLZ*op$&C;(gRf|%$f-i**V*RDs_Y85i+#4q*)Mo=H=&_HFaLvW zkRxIrDshHU z;N=b}kRc|R+X$HT6Z1*=f~oIm_yrRKd8t!CRe|IevVqN4dW@xv5t+{;g0Z=+Es*D( zJ0=xJ=-9}++ekOKetCx`<1aCb^b)hD2-N*-?L z2zBR0Ss|q<&6j%1!W{(4lQGOk4`d8dzYQjXJx;8A`eyLalVBg6(C%~p3%>yzTy+A^ zWn%J=H_P(^s^6?kn|1)i_u*6lBWTglI?Lr##ewzL-`Vhx$=coXd=-| zcz`|#Ik=(+g%^I5$<4+88gZVxsm6I6k?D*;hl=B>>1bti!{L!4)<+K(Tt@u1R-;3u zu|OBSiVk$qEBeqKWqZp^uMEQ`6I(xuY*vJytIvYxQ2MCplJDbQa0*TS`Pe>&OB7fk z`3xD5?y;8tYjYcD9a+a|b(sFdti|vAWHc4~e6*Tk8kJI3N8Pi&{c8n-gQ?Z@Q*vK( zW_=&dntd$TlfuCYyJQr7rhzs#s&E&HZ3Wl)oag*mKOaoL(^tB@)NWX?c(gk*2ghJr z`NOjzVN`WEkBeYsf+vlVpxqt~E}67o>|Rj1k^HZV&PTK*aEf*V_u#xf7=+J0xt}+^ zPIJQKa7Jp}fIRPubT!y?35|SHeeuaN02bh$NP$C`n;GWZrZ$}a0vYsGKwHg%h2&YA zXgNJsc4LXroJFyE8x}7o(@OiQzg&4hv~GYdF?iuGQ?1Wf3!#S|H zh|kctkqvaP2N?WJ^sZX^kR~P_-a+;FC`RpKw0`&Gfy?LQBfPee(mz}Y3rq!Z+Dewd zWDTOSc)u1hbh2#8QhExSk@`L{&z}UR+m~#5{5vA=r|M811PFWXp7FVImlbHQ%80K8 z6(Iv}h~J!!ZJccRZiuYqa4n1+yJe>TPKir)@@%Az{N>yD2RUiu%i&qm!BGi)(Hr-F z@0u#)0q)ux&;?}u*9B}gRbK+_UtNUP-uVJ?$oriG9wnWSY~vK6bUDhie)|ox#da)Q z;<*O!Dg@9+Lx*V-qq;Z#E9a~jKK*`twL)qdkY|XUpTzmjP>rbJEnKZNTk>oTO5;r{ zC_x!v+c)EIC)$y50bG3ef1QkG*vVk+GDg^ag(<%6*vLWk8M(hD;B(l9#|OD!RqQx+ zz~_Ng5!leZlY70iCvo4&2c`RQnl2^B{WA!oo|Xwo<<`kYlr=`}BO8RggHI6ptO@(g`;E5uGm? z9ZV|-qdz*;59q|+BMJ-UV1OM7hY>5TtsO3814V%N!CYo3P|)W}bmx!^$8S#PKEkcP5V0*Ddk!JG99^qAaZ#MjQ>)A;*rBlm*8@Tp{8m$_GN&kOJSs(8iyz&ZFY&MwDgB&xZM> zGM^16C*u@nvgCGD@~hq0)XK|E4Y3rxP~fhS?FS6x3%>MY$BRdMSC-*)O#p@u~2?4QI3OLB28Os0vQ}EO!vCWb< zpQBF91C(9F7&gIbMV1SqZpY;tCv8rn&A{p}Koa($1B#>2Y3dCSjuI9Jp5FZ+n7Ce2 zf)o19-fbKxlDDcpbPj{e@eN0REGvW&(>MYvTM?39PjTX4L&shK>_GLA<9}!2$OL}i zb<9Q@Lb0j)?BM9%OIe$9MgM>`(a`w@ zPOw=0>~Jw_y+4`!^y+faHw)}SPd_@c0}B{?z_Rn=z1D}D-O6bzwcpp9yXh*}aW}<* z=rmlxb-2sbRP}=R9*u)H#i>4SESNUan3S%a_bAJ!UVZ3DjT1O3va$n6GMoBnX3qcO zRqp#f9-U$>~vdjKkdLN9hTq9R9G^JtX_6%I2z94I||ZM!!CUsgVpE%tG(|EifZfD1r!lcQ4x@= zh@eCP0m+I15Nwg0qvV`(5K#~%DmjTH$r78?w20C`lavgNhzLlMoYNhP{r~5ls&nf; zo%3+3?s}kVTfMvInq$lnzd1frt%jnzrh7XZIrgLV5*q|(qN60l+7(t`;paMhH%2t( zH<2b6wCGl#d-c|y;kqFa^yGd6Z}w3|iW#_p4+BNa3TJ+c#UTH{Jn513y3E**h|DF}byMO)gnA$pWaNg~H82#7iD+*S1?eI5`k@C7(Tf7yn zGfg@zmPhA1P*@@q*Qc4pTzb3|fueF?U|{)sUJT6~&DmW0WVf3lB+Qnl%c95HJ*vc7 z6+awZ^yQaGJEdXvsdN2vw-$Tz_MI7Pom}U$Q9qsT^rv>^xqh^U+X=GAbLFE?GfRYw zE^tUm)wiy1Zh8pY5j4kb1q1}FB&051&e+}Fno8>gE^idnb74*s7if_*t*!$xpaL4k z98|@pez&|yxM8WhwN{E;_{zoBR6#JTW6Z9lJ@@>S)WCSK|3uMs*k&bZvvX`ciSe>Ib2W_lTKuwT0C1fzTZ{J@CM4^^1#?{2+j6fGTEvO_bV zhke=eJ(fd54SSUZ@6`jB*4f+`HV(oC>j&YZ+y*OZmkO3{qllzEP41bQLc6bFDHI*aty0cI)+#qSwM%SBWSv*U?1kJ3j+h z>X#FZkJMCiHWg;SAg!HLwk8u8`zHPAkAfnF)vQ}XQ51~tz9;9Z>r}0aFu}thi&%S# zqa+9^7mTRs^GJff>Y~hsFnL~9lGzYus4n7DfE4YcI|h6sjNINlFXFahcS3pF7*bUK*(r;T|zcZ%J)xyF-v#$!^7QscSwYUl7`kcq4ZCx$dpKuY7(Duyr1b z4P-6N&F_FdtSwct)`vASMcm!Ec(r{BnIi(=9)y*x>R^9ox-0z%&~9bIq#cB_t*_Xi zbG8`U0q0%*!2{#fKi`nK|7+&S(@`YED&duUA`G$IHw3AfwRCx1iD}M?k{9Y-hiD@p zZFf;i3Nlk|mfiCK5zC581BQm+jW3Oz0k_}qW{s+DJ+Rv6$JZ`*B_xt&#Zd!A){FN; zMT5>wgtg&NnjWeNhd>SzW`Abw*zoR@1JMG5Q+vVjBubh@`LSw8hnpW<5+P(naL8A$VVn1$Z001TYn+e|I}XxL1D6sCVYxJ&h1m^LB;06+~?~<4C$WJ zWC1K9jek=jhiZ&vLT?eBSZ<%U*8C-VH?y7`-AMX4`zW{OU!gLR;$_HwR-9ufQzdNr z40$N>&4Z_F>$|O{WvEc|ZWp`@p*}4qnI53cGB}^z)6?E>7yRXk$MO~Dkp-4bHpNuVZ0nqQ(A%=C=m+;CACrhuG@fLB(z{ z@4s?YyH!OeFFi{&-#4&t6uRe>iJH5MSKe_yo|GI<4p`a?VVZkGgEOpzA zHk$VJe&~YGw3M39r_gGQ)@2E2Xlcv>_3`wvqn6$E+m&wSYJ0)@$|PU!DQQ|XRZYem z8>y2}IkBwBW$TjVI+6G_VR~2ROHzQY>QORE)wvDNhb>~NwYcOynq;Hv3xb=SSffRU zs%cbNVdhch`kYDi5qbqn3I~@0@(zfXZj;dxv}*3I{VT3bVjWlr-dI+AS>A9ag1q3F z#F;F4vq$aH2GR0VzAILV6>?%YQuT$Mh4wo`P zv6>E=HF?;w(MbFJI`&N8=0y&}8q$N}PrD|6sq8*m)!+yy)ThJ=vq}A= zQ%(Ey=c19+>#QhoB3mwvj9qkQD;WGWWvaZ-x(!9`)3nFq9m}Oy&U-ePiKJIt?Bp(a z6G!$V@Nx~i#_8Ia#$sB#9m&khMCZ-}f{VgmNur{f4jV4cKxst@KTJ4d+)mQ)I|a%z zdpx@!4QFBD^j}@G?qd$MT%-nJcxubnklyxC9B>^*@){$f*V@{SOSB!CzhSpFaDt-k zZXnr4W8~TEV}F~Lu#fL%GIz1bhdsxW9-;p>Kwrx=SM;5dF{Xx!iqdl4%00Z)vHI)R z>|v)tO#<{0OG8&F!RFba=u7@D@k*!;iA}3 zJv!3LQ=WP}BqVV4F*Oy6sY9SlRK(UyJNsUyzSEGAT+lV5(Je)dpVU$V+9yY88#e|Q zeT3OW4eth7YR!)w%lT}jW{{I-Evux%U= zxmNgLQ$d~s&!MwaO1;Lqb{;{Zrw#pIkatM2%x#wZ+Na_BKpzx=Gkaz*dYpEj5JVUe z|JfdQiJ!D-RC}#XwsKRQxijCfnw99w&7Z9nDxpU{exiWJdj;j`%`q;dypV*H7qm?@ z!??}_+{r5Yf({Y!SApSk`pUPca~C)x@N0K(DZZhSmL04jlosJ6w*#>kSThtoxUW53 z;S+rGn2F9VLWI|SO4yl2+9seEf60;ZB$JxssC^v_8D@I85{n`7*4|Kw_#Q_nh27-rE{#(dglRY?^+Y1t9#n6Ia2R@isU zbe3{)F2kWkv&=?Yxpm1N+}tGv$hh*t@oOGd`VT(1^023iIq4QYclGGSx5hJ?TyEHWvln zB#*r8tU!sgT_qGQb2fG=x{y&MwB#lVi>K$P{8lU-d}m&DjcE840`r=DzVOOWmb@<3 z_n1oxmx}4yk zBSowRXIaQa1;wj(tl7Xge95D2lTcb>OEg>=uRcr_<(EnqG3z38`>B@kRnDQF5}V53 zd}a;xlGN#yLjrfA=;OFJ3KEX^QJaMF5gE`xA`9REF6in!EIBe&W#nNwYo+YFp<-Jn^ro$cE&yrlb4UH7s8`$6bKxw?%@RQgP)Zfy!E zikI0ag+1N4I_^aIB$3?sQ&3lRS_1yrcdpn?&sjB1Y@Qb;T!?q0pu^$EJ!%}Uo`rUF ztxNIoN%Y@+h2Vr!9v(+mo$hE}-EB2LAk+8$;j)1J z%PyFn1eLAhhlO7i&$x;2vn3C?*gf(JMzmz5WkHOdo@OL@b-IH4!rX0h&SFMwSCmv$ zUH1m#H7yb}&$_+xG21C=nlRf_{iau%c{J5$KzDydFnb@BlMp|dUoFe>N~fE?nukhp zlSf6Q0FHJoaL;ekJ@s0Y@P%LePhCHfy$@W<#}g>* zu~xk3h2y!lflB1yarKbxlhLbitS+>YDpH7;8D{@s?-yGbr!!tf@DU_dGqMb^O;B?5 z_J65W)2MS?xR$Pw!r>-9S&$FCK0BT|LTy){Z~PgKRMNZM-*_|2GdWaJ2S?R;MZKCO zwTb$w2x8rz$@_7M(F?(RCyf05N!Ru@3`42@P}w0p#CH=3n|F=07JnJEi?!Q|f4V2# zPs_;4nzb9drQ_R0>3CWY9dP-)7bf{4Qde&JsoFFlwe)_=Qj1zI)_yNV>zOdxC3d2e zE|%g%p1aC=j6OwO8vpFFNWM|~GL^T@yf{q%NSb(_jPjVf?OdP4 zF5~lFbaKaD(f!ZmXN64@%qp2jc*6vc^d7V5nXY9o)M#JCxAwV*TTtB<9Ic+Mdrebe zN7AX$0)9!dru`Z>s$8hekvLQQe97HCo295gM(93&|NhZpeU3Xw16(*)XXjDfM|Z#8Rox4|^+3CQ+<_~2q*PhgrfK=_u!`fpeP8^Ux^Y}+-$->@ z!)|AU9$!wGvPW2;@chr%QMI`=p~fD^W(Nxz^GZ|m1e}taxVy(QrnuSi#>nF;MD;5P zj`>`^&=zPi9*95HX?`afDHu&YWwvwZ`>L|secJ=GijV##{p`n)nV*?3GJKRkQnhhW zQ`ScMr^ql%M83f#HDuWx1>>Lq41WI8=Pqa6?wu~sJhIV`6&i`n;3||%inL+x5iM2g z*AW{#A3r?#B#9)Oy3*zxX8`370TVZqB$)?!o{THf!H=X0ZZ_E!Ytmd5$eVO^8rS|5 zpQc7I+ler2EMI@opXMr2dss05VB5?7qx~2^53c^V7sOBUK$pw#rUxopw#YO=D1>4; zUCp{`?t$wp&DjQ*Szp$CubZT0?Z+e%OzW=~@QwIVg9c~rUt@@ybxL^oj#J@5uAfhB zS%7t(T^To(3?4TT8{X267XsfXT3I4%->ps0WKy)VXU15>@i|BjFVMfTq9_`v9eBjHhfw{EcJTdP7P9d?($bZ{ubG{9+cKv6Zt!c0V3R` zB>p@DHG1^6{L^c^@BFJQ^_XV(XUmzxMguFV?+s}1U8(#cI~=3Xw%{{YoNh^=^R{9A zew~zi(L^SBG>|B3A_VVe^byZI7N5{2ex!oQ`fB|MyqxhzYsff>mbqni+^@5gReY58_U?<`IlOq=l{BpU46)#}n$~rm zZs%e5x%mC7!>K-WHXL-B;pbXWoN~RTuG7sIRpX|_mgB7&W3(L;3c^mYqj^kwSkJYE7f?-9SU+r17EEtGII)Ha%|%VeL5ZcKMDezC=@jLXbf&bX04>!u!fD2 z$#vCPl_4(4qz@Ms5)l1;QQYIE%Z$2fK`~CHM*r{G!dl#gIEIOnCZ9Wt3`rtQ2d^a` z2+K3{N7HpP2CF%fNd!}0JagPZtw~-&+DSR@=n2$y7sl!Z5SNod;lhGyr+@N}v+9t+ zm0eY_4aXzOgN~|4-?uh28|91M61AbG8hZOYwe;~)I!z>76{B$3+cpeY`$D~w9FI30 zVWfOtG4im5%c`6`R7Ifg!`uE-0B9hMOTe4XPN*}-CB^AHZf%;_<`NSXt{}BYeETW= z7wYZqYBzuvj#b%IP$=ePB#lH(N&i@TgTc1mo@`dny4^^H$Wx=vnq5ms?7NMrwcOJ-K8E<{yP3Qxb5#VL1+ygDM8e+iIP~}-C=KFNgv{87Zt z%|cQd>eye6@}(787+>ve1_PH206R}J%%wT7SP!|8UQPRoo|{Un)Ekr@lS0~N$J(H~ z$?hl~{$HA#XDz!XCv|)<4*Vj%H&ebe?hN*4UMbe)f7)<|j9)-`TJ>(G)PG!(0NoeF z+cyjmSm*NN&i#=LNPWy(ksKP*V^YzsicENdR03!8><2&Z1!1_`gnV2M0dgP@8{6R< z!Aj-ikUk0WL`5F9nBae71w1_XF65Dc#2U9bR!L4{o%d95A|k!pQU@-8w;I4O@s7^pu6zi z6d&6gZcyjJuVLUT1VkSbz|}Mf{hG;AJg*5%rv?fN>Hr*ze=_`TY`=kj3J^;!221Zg z1)9Q-Mvcc{eb##D`C&8_6O*2K#6Mb)$=}@GUO4hpJ!HDSI8DgtbI|gvA9fVj=t{Fu zDca*pz$6mm`t2UA+F&2n-+y*8$-a^sUrO>cASN=>P!i~fCUz)Uq-?53>}H`imAjOz zU)o#9XME#$h7?rEgAHuagyVUy?{ozB1TE05JRnLcITR3ZvGwzo>X^Ez{ zFN43FxFfIW1haQHZHFtPqM{y8#19N;!e;pQIHUffxuce^;%o7bsyZ>kH*Ua~_02uM zU*qHXHW3jK=D-~YeG6#OG>r=i2()g**@_SG%O*;A3cO)|$casT^X5*zdLhsirTmNX zJ0$rXP~Up3{&6IX%W%GXaRNOYHauTciE*9ngGR&A^!xw(+L{Img(?iE$mOkvUI-M) z1q222Z93c9*e+d4ZyIJ}V`E&|EKTEZLLJKWtmq1STa7NS*T&y=LbWphWS- ze9rhKxz-)$f==xE-w_2Dmm9)KJOjPCtQ;J{&;~yZku-GMIl3B5x=Pl#}c7zHN1<_|0}!{XsndTvPEa zEtg=%{M_7JXIo8SIRo!=w~Y?1P%kR>0h1&^%9whiacy=a8Ku-5C31>P0r6L z=>yS+Ny4Uc10@Ybp>j&on2Qxz{h^Gn4nyB-NN>#(xGV$pPDQ=zhJ`5ipY~9u2USS+HNgD&Jjds=!-2CjgdFHD{y5 zVN3>@i4XLHaQ~n!S+uNaJo`}^3MgZN<1)wpV4vHdz792e$%&hj zAoTBGWYu#v(l=xpSN>!~7?%yk-*hxiN!5UbQJq&}xb7={g>|hL_~qlT8<8N4A<()6 z`W`{ARg2}76>AB`L8aD^0%H)v>GbUUE9DOV20c%i?*xD=n6$p#)B2V06S_FLnM<<|QA z;cywnM9J5LG^+rEGJ@vro!v$!B zDGR!_MN66(TKZz-HG1H{V4 z-ab+WVLPk(7RmR+8Cyg~eHvl+@Ctwqr~-}(&005})4>@-wqS#lvUuy)BI{GmMZK^C zvs$;eJ`9v>2baXeYUeStp^dGJY2uz)ITtwBIk0@vabg{<#eS#c6UBx4NX0yI;w-`+OA?a&P{EqL6)t7JQvP%#-u z!Fy3iChqRbn-y8WX)KMs8YG%qs!bl*;Cyf z8(<1*<|~I=i+A??xI{&(htB_iLfBa)6NJgeN@9PdQyP7Of+FA60OM6r0cZhw`xOv& zp9c$sDEUr=(fxH1E+L^_z;mc${q_p76yj268mV$C80@MV9w;c3>GH<)zQ0Fd{ku7; zZz|2-4-s&r08ZPisT4M@%e0IeFZSlCrd7_ei0V|b^J(Buy3rU+$#?K#29Ogb@YZ#! z-xVfCQF}Y12WIf2y-nGW$HCJ>cH+Y&D?rDbWRa>HT8FV0OF&#l6)=_R9nO*J5%{kQ z`vCP)IN0Coba?oWr>zR)C#(o$XiSF~M`eTv1_HVWscnmxd4OzuF)Jg@ zRc{aiY#Hzm4VGI{f##labCqd@(F9wdb#NYiKG*y1`~hwKn12_XT!OHzc1o)Az(*s+ z2HJpswEj^USWcosHO#o{$Y}d8UphtCnskJfvK$IWO^`jUf+l-OnxZ08>!j# zg8LNM-3h)gI9zw8JQcIwrV(TvRUjsdz5+V%Z*}WK*1a8A$MO5ePSM}>@VE(9*0dpz zRBhcK5G%S44Ww`x=`0INXGOn09*DT`8_U#*DS39M4<~~H&gUlh+dRF_lh9aq5J*)Qs z6mF8>-1!xLHcyQUNSVWzN6&tOWBw@kG}CcPN&vv6g42(c?tqC#i*16PZ_}Isz69h0 zAt9CQ1{r0?oF1E4LZ(R_WPfvbA6#sh`1$Jj- zVE}E<0&dj3!g+2O9g$yLp9n_jDJ1NvFrmYFYa-4>i-riI=+_J);ow3O!FGL5zeC1b zwIuAh%Pg7}e6% zWrQ-s6ez<~td89n;-0(S-3G-?{FWi>3?^JzNlD2hMQZ!cWhC&}919+VO#yixQB+t! z5RKFtx(&d(=edB{*aWV3d|D@LzY~theQ~jovdprZ9Y~_vK|%2>Q{ZQjKndSDn5UMX zA%z3#nj;Fp-^d30*HHsTng?H60DRt>A_RwLrdqK=CQT>vm$7j$$4e8!-49N~*!{I) zb!~0!7-t}B(DK7#eROc)Ooh&!lIUG8dHI*rbaa*&2oM3a+E-~i%>Bs=oHah;8ZU1p ztiAxp?A=z%jrRgBzyf$Zjp_w36j}iluu6O>HxgZnfd>iS@qj$2K>A>-Q>}7sez?D8 ztxpGEyz%E-W1@g*>*LN6NXaNZR@#sH5q7})EJLL0;!?f_Y{PN(M+(T8J>KnZ1Nanv z9YQEP8d;FKhlj`38uB8igByo1-tJqKAhx#B;rTw$H*S31_RgvoM*Z&HpbC$rUz}@O z?e=~qdcJGD$eUb=(=`rbk*-&dXe`Y;=-|npoZ8>tSwKTLWzg7bl zFgksam+n9j10!67Ssz-q1yPj|S+_)Aku6lw)=pgO$L?1Qnbbjum1navlV8kTJ7Pyo zL!%A!s_E2JR3;O@fA@HFtggDuc8D)X%=iMzzU1&G18UGDLb3_L_yKa&|N9hjNZh=? zVza<{01R5)Z)D7&tIpFIasYz~wpV}#;|LkDz_`UI4+z#On0n?p5u=g!dbGW*?Kd2R zOkn={($oaw-tOq@GlQusa7u+yX>kVO5fNk`mUSV+7+>>hX=%AO8k?B-0O})KYXECJ z2U$S5rAmdD9ni4`29m(L)p2%?Fxb~U-me>R!t>NYKD0VF_y&@xH~?7pZ+m{2Yo3B# z#+pNXs8&M&bZ zMn*L5_xf}wh-FfHSu*i|7ll?yZ1ka!ywyaH!&1;~TL z4mJ+*cZd|X7Db(?38)Cb#FKm5de}7?ta7#7)5Z6ovfyh-B|6P6nKIfKV z?!BS`nsQb0T-WMjli#xx@O*J^-+qJ>CgwVG^j5JxW)lii768GAK&V(5#dhKAmoJfT z-+p<2?^T|SLAk|Qh=HZjw})(m5&ln>gH2gTFP`BijKQc+Ox2EuiyvA)P*yv1ZEFxJ z$9SqE1*R^cceml!N`~iMz`YHXz_&EbyOlvCWYwuN!5;&T70GXQ!PXi>9D-nTb96gP z<>=9+&-COX-jXCse`yqsW zPd26Boif@8iBb}tz4IZ7!C*W*hT-7@XCHFsFPr>89 zk@DS+gd-}sL3oB67cJrVeHDtsbRu?)kEFKPfTR*p0A1H!H7I7PiVKU0B|=J+1i`{9 zNO{2!HFtEFLHPo7_PQP6CbQ4tZ76O&jN{dVy8u4REgTaOs3&c|Kg65|? zB{vw;e3r?j_ct$t=4V0e6R8E^xbwrQp)8Cymj)}`V&bgp&(@xBmzTRJ(3?yl(ocGcx~_b z-H%{?2(pa7>B#yp@rLMFmjn1e1PkuBQ9JsrP)7vufxxe70QFC$S!dXdk4QlY!h{a7 zS#G2_3ar!DkdgwCzVDhENcRsUuKoJnJnjTXGLVZzx)<|9u;kUChSlKA5phA0X$lU# z^vqI(#PV_f%|@1Zn2VMo=8ABJP9dD(u#o|l*OH--4WBjt)0GY-=pS%pL#4>v$w>e? z;9JWR$O|3pU=PMcuv@1nB^EzjOWTp7l-|8QjJD4K_gHT6jpVwC4lTFlC-~P-NXbHU zD!CEDP&sAgb42jIV;K=r#$Q4XBU=dCqJUUCm{+fc$YEo|eca(D!e$Dm>4UJJ=H0vD z?Pg4(*X6(j(!UL6_6kW5H1D(Qw}QS?H*(GH@cGaEqz|u(4^uU0JRw*3kmtXxSGDWE X`sM6doycTSB6whu=iMS1!@&Oqquu1O literal 54484 zcmcG$bySsa*DXwlh@?`YgkaDhB1j{Of=UTUNTZZ=H;AMlAOg}QNH+*5UD6;WjdXW6 zXWbj0_dVbFzBA7G=VOfDc*e8c``-6`UF%wF&bj8=A7rG&@GoAyh=zuS|5RL577YzE z6%7p|+htUHBhftH(-Ka;CagwptcCXp&l1W=5t~Mh4o~ZFDRw4NOfq*?8DE zSgz|^S(#b#v9lZh*BjVOE%eyCGKmG?A~7IZqqcZ_f6+N_WFwVxH=1;OYv0%X|itZmm89u8VcN!%!&pPUXiSpq0{`)T3clE3+h!DhFWp{YIPNUb-oE{7;mX-H*^Fn~V|p@` zHTOe^LJIQ|1?$WFDX01fxE|+2disO*XZ)edqHMk62q@uQn-;+qVAqnDV*9 z!>UClBhR$75_(^VHcRO1GXw<%rKnw)m;cXOu6x&tSXkV(DUAsazfx9qZ&6A$s&@Q3 zKYvuY<1PjfDe21v!?Xva$PJ`D*x%oOqo+qqMJ1`J8Q*Iz+AR9u0UDa)?#efZ?S*gD zD~lmCeG*aJ{{8(*N5{to-O2bZUs#ztH)lHH0^4*GRf$XQf)zrLRpw}TZZ+Y?J z#krBv`+>qIJk|?6j631A<6}Q&V<&^esK&Lb11=e~I3*f87v(EY{Jg>nZg;9;qGcmeEd7OeeH%DbadiRpYo1dx*V;GsoPJJ z>b6B%*E9qQu1aJ_golg6UnlGB+cOdxs7M$8!DLpok(kTS;>2pE6eB*h#QW0CAsOPg zHLG~EIa9gd0wE!L!D7G_j`v$zTVIFTWB6N^22o+G$IN)`=Zf3VZcQWRjA5VPjGg^c zaq%kM0`u7zTk75Z5!=81ZMrvTX%qU_WB6_FYF43rO-x+h-u`B@JUHxndQ8b<7T<4A z#b*Vd(JB~N+uTfi;(t}uvW<&HwPdYi)q1JybQEHPuxg^-FK@so>D#x^gYQB+{jcer zvN9C1YIFauMGd@1vzicBbC+9~cEh%~H z?%j=&&HJXKtwqK|B{PwRYdbr?hK8aPHJn2Og$^#5nwoN(j;d~zeO4!~>gWg@8ynNU zk2+a;pF;2nSG~)z>H}Aq?=-X&i2Hx|pmlPzPswYMG}qsmC}zLec0cW9hC-fYvC+Uo zi0Xk7^Bbn++hkGP#@aKj5jSt$>MSx=fqPS0I&#Cr{u~|MI@1R)Jur|EPBilEnaZ4KckkX+g0Oc# zkI%Fkb`y1^o)KVEvW~9}V_-}0oulVF?$1jh5VT7p()C(&Q%wfBsu_CJeN)}> z8qckjk!$Zfami&f6j&!FCVXQYcSmd|7Z+Q?G+dMm#dNb?eb*l?HoY$0lJoBUo4NzPWIGu$`#W@}4z=RbV-uy=T9 zx$$W8`vTKAxnFEf=cF0;Pd zDSd9UBF#lRhG%=8;*KVo_0VXLpo0ABb>_Rp<>LnZfRi-*OMb{ ztc73x*UWh+@0kqmdGzTImvDF!P-(+r$>*paC;e?{Y4JOcf0d+dUm#gAN4fvUHrfQN6~ykPwnlyGeY9tvU1N{S>s#nYPK_36F;DCjE6HPbK`R1tTj@ z4l?wauQ3WU$*8HBu(9lqI-x3WvF+pQ5*NMS)~9I7j+g{!Tv9rrShC@Vr+E$g*3gC} zsJqaUHZ?W%J57$h;`GGPW@WhP>tnyU{=6GpZ+npNu5a&XZ@+!(mM84PdJB8y9oYJn zvP~%nmpYv=HHD?&!oqv9va-G-`T6<2F`ErEuDP&GUxyZYGtiZaj41rCa%u0bT+Y6U z1(oT}n?@q2v$7Mj;`91GIT;o_ngh~z9IsOLV~_VHoT~jk_{yomtcuhy)pk<1-?V5h zEpEqHL?+%dw}xLOXP(2xj@wv={Vs6YxA^su;t?baUc0sHZ~(0q|M)|hm-+TARC~4~ zlFLuIKzDp`@p*6hOM}j@a5PzX#)-yX^E(}>Xlv6!DrEl&@qeftIJ9iDvANmQ-mY8g zg+Dbt9n;h@U5!oi1}+Z(VC!Qnz22`G2ET|F6Sf;S+&_IH>gw*6KJ-?iEi!f+kkeXT zO}=8ybF%NyzJF(oI#sPgx>@am<-h4o27vB)`#CWY2lxVpTJm={oYnE@@c%Cmm-@i^vAX(<4PB9(z-`ng zC+g&zO1>U?Jxa8cJgih{?q4<=awd&CgMw2mY4CyXi&c}-wY7nddf(0{g_@<3oZGiw zJ78g8$mLE%f!jukjUv8xA)njMXR*K6&C;A^|2^@r|2yWBQS57fs-AaL$0sPHke~`5 zBgc09Pd*Kel3c;Py@#rToJZu>=Pmb+FrO!WKwT>u!1GG7v13VEpg~6rx@%_sy#VAN zLK25nl{U)vU$tMpd^vZ(XxM%>ra{mK$_12az#t4ZP5^=NuH1PyH>dC9?3|`n%Dwy7 zRT!IqlEFqDk`{ahPUg|k5fp{TNr4 z-o1N;>n#a{U=38v#zygp$w}oBGg<=gM26k5YWG0L706FG`1q_gr=k(Z$H(Xl3=HuQ z>BDBV`1RSrv9VGT5_kYUFf;)!*2ikVk}wJWFJ5QjPHA;qEf)*EEjc$(Ko4c&(3}@w#v=<0i#&kQBh5?J z$=|+pW~=e5J8!>y^6^SFkc|D4!`1oDL~KIgqdW8S^LkEg0C6Von*ObzLMt6im(Aknni+i+9isv3x+2CkKn{fEfG&?(6@4 z2lat;+bI?&s?Dak760lz%^DA!VOV%om;GrLm7zma=4-Uggfk4D-;aUjHSi1?FSl1K#isK!XmD1HXDiMf)S4)R4&%I<> zY3`t*e(I5W)vQf2m%V;L6j>MxCb7VfrJbW-NF|%muLYAEDzXoWV;%F~^s#J5XbDfC>gN5^qah6N7 zQ7X+^qrmmbHkz5y8c1stWC+vwGhX4x#$l@57ty_aF6oh(Pj4D>0;WU{R4sS<7+5^Y zPa{UH6=@oIsz3GER$TYX84MFqDcCI}5$Ir6cM~ z{e#~P1Fz{i(Yd*~-81SZqM?Z+7OHSPbs?bQ6NMu!<;ePOzB^?T0)(9ZOI)0*D!ZYB z1D}Y9NPU1BkV2=E{n^L6#@yF9bz9?sYew6S+CynS3i->=%IZ%aYxh1r{yLx!=Vl2A zf9)4J_m4I?1uUj6z{1u2`qc%?d%1jOBMGB-#NJ-SNUgt!;$#ostm<)?a?CSi2~_2Q znamA-XSSSeuOB!2{oPQprnXkvZe`v<{CUl|nI=DX$i8WZ(4kQtZDkdXBfoSKAdF0n z%9D`4s}g`WOZ6`$zJ~ME7%WY;+LW#O<1VveHjB+tWqFIHLlPz?=D<&D=2DwwI&SWr z5=&SP@31g(Wo6}_G&ygmhoF6!H%pwlP@e2lm<;55VpH3_W0Xrq3h2KZC+=S!WAHGL zj*#w67ZW-D>`aH^2BcHlfzNG5*Gjee0)mCrmxV2{QYzICBVLQSm+l>cQ!WojA!CpPa^cAYk^R&6yJ25!zE~+8h#x6F8HE1rZiD7#H-{GPAtz}=;{^Ry z=|H)3#oo8Du=!|)ChLxeP=r7oL39LttytHLSKpba_-)=CY|Ymz9AN>G9{0aL8V?n| zfmHpJ%XCx#f~pQ)vQx0{@PJiDcpLm*P2l(qg0T@1PhDJGB3%D2Eg3=CyK+yTC``?U zBByNQA~3?&ke?f3t`QSI8u@80trY#`37`f9vP?DvvIj55;FG4t)|hyEQ+qpli+sDz zIi-k-o(|{Qgw7wy&Y4yGJKxuT%&c4J77r=I5*zkq3!1Raae#nvi=N(FDu!?Uc=vCC z<*XENMA3!-Dj-O|%n;GIC%!F#cAcC1OH(lY=2|UboRvsQFfURxmI2nLIJHAz zwqLI&m)^HbyKr@4@hJvIysmNoQP{wZZSR{UdmFANBE$#^nN=($5IDJabimmfd;V}Y zvYrEb7(Z+9Wxr!7)Gs+9^-33r7L9f&Rdb`|{J`06-o5+TWaK9Yr2oko{`UVJNIcEH ziuWlzT*>G~!p`y#x#O@&ad2FmG%VOPZlmk$?5jxw8BhWt5FzaoU%78WIaF*)5By-W zoj))o*1`AFCr%B!dw>>GQ&T4c=;`STv}(`8q4))Q1@I{rhou1i6-^+{j~_WdU+C}H z_{(R#PzS(U>L41(05Lgv!`}L2gpjkthe}1|0^Vlrnf$1h#>VS6Z+d{*(tSev^PD$k zth5JBrCZd&gN}0<#0c!N`_mnCh``8u99h-y| zCU+5ONWUo%alf5>JbEp6%F%EW0cPU!dj~b1%P*sShh*Fq(y|xME2`=^$Z3S9@}?oD zgif0m;?QW!`S%)SW1HLh4e2ts0_1}};#h!kn##(x_LMH<5O@=W(`}Ok*PrQ)&A}Jt zr4@P4J-PKhPS|J^t(!hds}glNI#LO&^am2gcA6o|0`uNC_vWb19>T{5Th@)~NlVf1 z#nt1aQ9BA36Dzs8LlvJ(6l;&MvsB0zgt`ekBGS|i!YKR|`zsR* z)j>DznB1J2RXIzvq5>Wlw{G=c~Ly&TYWWxF|RCaB}lH|Ftec z5PZZY^j( zF_i}0w?XlcZj0nv-`u>x#ufniF3)LyLp$f#oluBp=W$@F8a^yu&rf;?-2bQAI8nRoY3X*vIyW0G_2;>pRvv!=#2isqCkorqFkb8J*RE3G#LN1sa16@CL_N92 z8z8-9rzeN^-u9&S?+Oru_$aiZxAjNG6g}7UuTXZ$#6<+!l503s15OO*)FbHZ?0lo6 zvp(idNam;xOHILVW0d!Ly1sNcniN8xSz z20eGaHfBl9+J{+P|FKf}n8jhm|D|U36p_aP9elOloaxC@34@Fa)b``oO(^OgK7KqG z58|z=-MA+_h!0@B-{p?Bz-;{5@qx+k6_?pLI+8mFQVTkOB3LIz<6H+))rBhl)v`yx z3$6$`@xWs(4gUxZ4-XGkzrn{BiR7&SDt-_@cxM#3maIWhcE`TrAPHQ-( zqG4=mzUtk8A(RSq@gI2;uqs4TBTD2G-sf~sH;#^+MnRkIKDnQ&zaSDSx4H4YI#E-D zX=?DKP7=zi`WMW3@AdknI zvL*E=82Zr5}&C}wOpR&_SXSi4M&_?dUDJ(96zU%$S$z!0?@dU~ype3PkuB-P= zS`!|5_ZOSe^kygu&+l$*Y`Bl4Y(yzs`MH^JC>)Cvq}eL75oOl`40?=w%QVMkL_ z0>Fv-0OyS+`g#Wu^d|w7O~6lotkvLB@LJp~9=5=R)JPBQh#A1qDZm&ZcZM*C*}rgO zN|~iW2htp*#DD0d0_p?Wtpju% zx@13XmY><#?csE=`i=5>*P5$#?k*K{kX_rr)xBW+6p?(l7yIIN%0St62M`Vo7ueZv zaHA42e57~Ee}Rg|gCd#yA!k4*yjw@!qV@@>3xj$D6G&~Z1P-MeM zuRX*^An(^5sJIj$EdO=d#D5;frUR%Tqq z!nutH%>(-~6bYfQK$era!Mpy0WDe6~t)wtl+_DEVkgl`evS!-SVD zrMCuw88{86*F$5AZ@D8CSn{ybW*hP!@{9;E1~A5HI$G8}!@$0P5zI-vyUV`sZCbml zp%R6Z@;d*$a}IG^Gt0XjpW3gIE8aL7mN7cDr#Ibvzqa`>&01OXL$)I~lo<&V6E=H$ zd!V=TB@OTZ&j4^DKqimW6&++k5H0TmWo$6;u5FLH9|*_H9A1fiIoh=b{U3Nvs7hp{ zDQI!dI~3l8G&7)JyaomDadGjegCBGlVr?9wVDk&~JHLMI1LDpZdC#B*5|N~q*0}j> zT$>HAUJVpvSl7>?p)YCwuD1=@g|rVa%Xrcc>62g#f17} z{}$`O=GSM^DD&I6MxaOrec4nHNZQad00}Qox9uvm!yGMCj%o-LznHj~7|CbPE&|&{ z5H#e)IE0(PK_pdCBa`U-f^_GUrkg|4;c);kM@n8t(ADzXf8la(r zjP;A6at8!sPtd#(`B}Rm3Z4m*P@w9XX<0Qi%kUq#xCos=Xp6BbbYR1+kfHS<9TN&} z$-KzswVVNV+i@#QwFa)H-;;VNA|k@+XuZK{e>%(wq&2;0PI~&;lDN*iVT2K z(61QQP?kj>Kh`Q90>G2-H25~s{D6HJpPg0Q8U_g;B^3wKbX2)v4ph1dzj*PY(6BE6 zj^fHkOAP3q_y9=PZn(;A)Cjt=0W{q}Fu;#l#-g@yGTbmFL^X&Ax5p zMvE8u6Fz>#g9;)pEiJrE^R=O|*~5FqqnuHult3c&4-uw<*3?RGRVq+t4 zb#={{^a+Xh2f``k8DpM_tTmpyaN*suie~eI<*bhUc%_TH^zP0 za)o=(L?)^E{)&VjKYozWUt&}l7#KiOt9)j{l+%~IkF5)p<9+ky@x1XMjID5u2f z`0_Gz_^%)CEY~(PV6(GtQ+zPAzHFiTPD^b#>?t zs!%pmDfDGH$x7WT=)Z1{QLdQ5TgVrCmk z0ilzE1rMq0|GCyexYqOfj;&X(0m2$Y>z=~q`MxM1BO$AqrFqabtB``)g-i6X4NSkj zQH>8qNjm=7%yseqZjbuJu;f|4#`=Yna=g_4>Ve>&{{i}T5~K@Q2H7;(ThK54Wtda0 zuoUg#an6WaB~JyEik3s2M%QhM3vI7NT!bVj@v(PQ&R9&{_WzJ#mwE1bG`P#TiJase6p187#UYe!5k)9-*r`h`WgX0`HE3Ywnte=CJSJ$#(EiDY=t zk~^0{|4a7?yKy=*jrEAeGd0qThbs2Ud0yVLHNIr7HdIsIDz!5L8gozIGQEkjTi#X6t8o?Fhf zj8a~mt}H9New!@TCGD#mRZ0?9sN8n^%*;$aARz=U2S9SU1c~$Wt>;pQPT*&OwmA^| zc;~~NdTNz2I}QL?DNu6puHN&(#3qQ|;sfUO=FJ$wWHFAT_Os?7YRVOxs3A3k zR8iG@cpGT}Kp^<8=)HN9D$Yt6lf(6TqVnKevLIF`7j1Uzzr&#FZQ0f@U?|n=ewCU! zV8n!;i|c#;dQXo$-HjX42Lh0hfn16e=(b(qvtqbEVnqxaN-tOmH{jvzT>#-lEVKg2 z6t*odDkOMl#q-y!hzWrJ@8$fvS^rj#uZu9|2y(lnC9PEGpZ~TrSY_tseo9KZIS4+9 ziAB(nK3n?sYS}Ii)`MTd$JduHqfGYvk_{)#cZZv*RuRhP5~zbEW!h`ObCk1f5x^?o zuw*!CIbQLZ_1+>&w299uJn&p!4h^eH5hAGyfL8)oUT3ANE84-%@^fex`8tS$O9EQ+ zx8UCq6%7jH$3AsOe+o`rv`-NcO_PDb?I7?WWez+LGvnSg$pBv93^nEVF`mluUWtvv z=Pwdbj~$@-{n3!b{KH#-+oB*-#(cZB1vwOe7yHrF;re>=Z<7&PJW=f$7sqDIi1(afjMsLf=n%?`7Sf7VK zIaV;4(=4-jUUQ7vi8jd9{r)d;GYvMZR%I^}k>Cj)K9bSNAP&7onmTa=-M%lzZ2~<{ zU$-{vpo(+sM6+Q$bV7d+-V^FuxHtU_E1gG}o&Acy<+p#lG9~P^uTb)8pKV5vZyr18 z&ux#rYz2BoTPB%$u08CkRQk4Duc?tc`{oQRg?ynXjIeKpG|qJoAHQp^9-GxONb-%x zc&RG({lXOvf~C=12i~%i&u6Vh(dGuir@9V9TTRKYlO2+JKQMt9X3mNqRYm14d6;Oc zwXXQ(7ivEl$vr)FE4xb$h!i^(?vXyhN-v3R;jeu;BH=j0nQLDD%^Y>EnpLxS?8Yt? zBzhJX_Zl!koi&#{K3{F$)<&K7A@G4i14h#F`z^?Jcy2_64y|{ zJtr>0_Nsc@f~eFZ*rA+jCT=!ik4VPowAmAz0~x*UWF;KwSOMU~cc? zX@@Yf^K!r+U%{4i?DSsiO*zvkFLeajU-{+#&U@v~P)kpyjx}A%H;k784Yw4ltOX?w zr^z)(;{Nl_Tvv7yvT!chuZHjADtkXff4L~X&QgAg-KO$Lq#`2F!3@^R6bH=6J1vq&BQg1l9)7z%*Gu!BNhPN7TWSb--cVbL3cB0O2~DMldiM7S z)B%|*% z#J&D&SC?Iilvrg$-Y8&EI-xBUfZAmvPIfi`z&LCN{(P&>inaN5U3#E&@$X58+}WT zJ#3|zU(2c3FQ+8Vz4ZEtFLAi0wYRPJucK7IXV1|ZgHAy)Q^Cj7?0Hc>s4JBedvms` zu2a`q1KCD%4X||hbyU-@R_D{SIf^in!!AApCi?adcgu&A+fjnKs4zPQI@R;^Q>ek{ zsdYtr8F`3B0&gnaH|xb^Gm&elByV=A__()FZPDQdz11k=^Uh9?Oy&J@`GQpB2-C$4 z2A0iEu!xkJhBXfPr>2ymo+6iRZV$*>`_+;>vVE4-sKNT*IN+PE<+U#qccH@{+q?Fk z*P>{{LJJuBszIXV*w2+@_lM1)@HF`{yjKXQ?qnRWh3i?P4Enq(o3jxHs-f=zir81u zPfKB?i!1Zw@NQKO75;U^{NiMK*2!Wl=gJsQES5a{r7||G`{mdAO?d9+XJLzDz8S4V zf5~r0N)MwR{QDc7$XyEp>_Q`4MRiQ>sNOUIFXWr=tqJMd5lqcg?FD^`)jg}Dyu>*Y zp2v;}&q|cP_X$@mh*CpGM_hSh$7}pGZQ0L=;Dae~&OCMGy3v0-{KgM+Bm)fsU5Hfr z;H_fFTQevz5-(SG&~Tq(b<-Q_pteYnhzjbpnX;Zfjj8q3z^M?d1<v zSt!#-!0BL)Ujx|N4cHyJVI9!Ad12L_^fWm9uFgg9NWB54jeNTN2jC&*TXUVh4$2cB zUa4OwKZx47#$MYT?D`uyO>|_<0(jot3Gr1V$-Q)tYx9fnFB^Ehw{kB4$?IC!nQn1~3CI3+3pgBPiK zIp+>#Nln{;LHhy@4zID~w7g&{2r`*UdGGi3Tz@$_{%aRe}?k2HoYk54r55ln*x80VeP8p_xkP*DA1i;tndI%4=Q0^z_36 zTK&;xyk*iB-d>`=Yinkp=%%Hm)d!>`CnF+K*DO%}7dh&Jh>QYegCFzBQQ{I3=NKGD zBh=-RRC}^9Y0B}zf5t8hkOWD|dd=H4q@<*; zufgqe=HVZ@tdWwNo2ws`2=;Pd#eQm>U;y~`JS?`8>v6M3@qPKgyUSEVt|+EwwXW=Q(0*w(JlT1Go3_Vbn6;{|z(M1fR8l z-5oe&iEtH=t=H!g124na4LJWY9U>;09Jal0&x)8a7!BcBUxTp@$OUzlM;n4HCtX|N zHWdV4-@=P0_5WKY>PLw%QT7~HK9_?0{F24&(*Ey;wfbRxki9RmcGBnEMH1c!#! zgFj5_)vK#;C^`JdSiyo>S)&nmL0$cK8CMeI_ToRMIC<9FO);>};`aO{G`d2DgH+ib z&nKmwE97}nhOm1nLajQegE)({8C#>Yyp97XO??%S!ole1>3PTHT&B9#Omx6AkA+vk z$zMyRgi`6KQ)EBQKULdiE?dt()8vNxz7k5BFDzpUUY3vMV}vrP@Yad|uk3H3u+z1Q z)4{WXx}ra8V`u!uz_y%vP}Rtonius(zshEb-`L^n_l#8kWp3NgVc2q)+hSAjBLPE;WK210d7@AoMiPjSRPwpGmyv$^=Q(==Q=lvDFZQkOr18i$Bd+nSCSnG|cULd-mz zmb6{nn!{$BjB!Yug^d0b9&^V^cCKYLbFnnsY&3x3DRZ*W_hX$nkRFDLt2RHxKQ2O; z$TNC=T;Rq555d@B_4Ch?Gn14gjG}RVNI#Q|UG~vOo&Qy?Y(`<4nj6VGLANpwB@thfE=RHO*1fk8gcrK%o;Fr9qHfb)l|r*lIorD+1VMhsydFb zW&FP3b3t4Z(&;65$O1GsU_S|PFHf5}S)r0i{BnjRqX&L%=Q?-}&?YzwM0fWrh+237 z^y4XLrkyF;XXkMsQONN~CjWQVd3%k~Y=zLUcOOOh0qyw~4{#v+dN%bn6vJWXM10yy1Y5>f(WTOmbyBTLVaPe(Y=;r$Hfi=Gn{*uBjh<3IYy&-vAda8 zf&Q~>7r*KyMRPftR5k2$1whx3hK;#d;ne24;FoQcF-mv~U1S}C6={F(wdY%MF$({c z#<^-&SGv7EJ|2s@K?&r9EAV~BXO}<|qmBMc*>0RoxTY2ji?1lhiV;BVrl|hzL*PRZ zx3f6ODk2ADL#dWch@{Ki3|bl05^ zA5=#jWLS|oeF*J5KF4y0@EztOB(d80KEl@e#hL7EAU5~Ab5KB57r9*ebN(72WjmR( zZ5Zgt4X(70znc#pH~XplV|S)vY|_x0iSY*D5LM+kx8G%<12(!7iDsJr3PW>W7)`Bd zOY0X$!OPd_x)wxbk=-e|3p&OIgJ`cuEyY^hokrfbsC^IG$aAD`b?huGwQ|R0&$|~8 zA_&`_&32s#Y^={jat*Ns_($=aQ3#NJfB(*{OBR;#>Nn>8)Iu??K2c_VPnLtPeTaZ5kKykijrH~@LW-6 z3Z>bFq@^m0HW|z_$TfFcXaF3Y>oUAS8Ue zriGgKYo8kF)7sP^BGN2s%RsVRnkGb%z=t>*BUQr1Qx9diGj6vLh;KMveqXXwg*Mvg~~!||P#nK<@}uGb%Ur;mJ6;iEf~6x|hj7IVLw;1nFD!%G|lR>IEKt7>P|omPd|<^3J3|qquvcK4(o!U*CefHV5)o1DK({|P?WY-hk0}L{SQuw(oO5% zMdjb^>kLw1fVQNJ)2h6>P*3Rf&NC!#7}hyJy!~(bK)ip9bc!D`npP$ zYkAFR1kcgt;qj9*@@w0>rV31NZ(l?|yw{-a19HJy6L0K>s(>sIgolbA7*U<|!b_W4 z+}#fo9BzV?W_{KC?$rrqy3-4p=lt8bmft%m?RqO~NyB4L8By_KOnQMYAnLG_t8Fxe z?i2{6XntX$Qtev1;aSVeHg^qQ={x022bL)fYIk^OVRbA7qVSK7+lZot6&|*~ zIAf?8r3(%v@%Y0%*l!z@W1d8Z%*6XPez2ZDFA_?detT&U-F&<1d7J@kr8py%0Gi+d za@3yIeV89f_K6N}JHI?hTNe4FQs>5hh@GlmEjn{pv9)3`4GJO!It+ zRZ3oV$oG)~V}Ji_eH7QX_12~s!Uac2GRAwM6CnkZ%_llGNBF4XGPm)&|A=p@A{!>* z{I!LK^^x-r=~5Elk)_yw-o~Rg@H%$cC3QN=MrHE42vU-&5Yd9)+A#-awXC`w)v&}CEKEr0j0Sb#Cg&d+YgNFMXf>hO0>n3T-5vI1-vnJg)j}guhTVe#lqNj%rn&x z$bP*1C=t#*hj6K17saU4^sx!6G#0B?@IhpkmxQ~-wQR<)9xOBfpUA}Osx*wz!jRd( z(~cM}L$WYc3mh<*gO3KK=5v3RgHM2T z-9l90(F3&TzTrYDg8tlJsA;_2V(Vb#tYT+@{$)5K)NXP2qxjP5a5&E(a|vA0Uc3rV4rnF z*CHwzE=iA@g<}PeI#KYc=?OhW62|VFET2s z#g~*B$T>UT%=GkQCntgDUsxDBxxj(Z)Y6g&M7utKUA-(E8hqU_kc$ldLE}xz!5^HK zV1e*80Z#kPQG_n`moBEMDUZcDh2x6@183{Ik!y@wCWNbQk6vWrQQ`nE-XAx%e&;#_ zMhuwQhlE1H58mEtWP;PmA9}5qsHoI38<&TFaNZv_!!$QHHySOAfC-$gZ_mkL&EFrN zt0nrcmL<)i2x-vex&B_3&oYU(Z?4`wt=+Il@2ElLDNq<%N~=!f_4}%w#93v}!{D%> z3RurIVLY2fz3d9i%zm8&pFYdmIIyrqyPoVLPD|Kg%X(5pN?R&nVPRmLOg9UBRDPBP zE5ALd65?e4roghN|HB?uwb)#frcMLP#YOidO`O6!-NgU@O*florD6plaENcOfvL^{ zTCZ^%!(j9#qNZ*KGk7~+flsuk{uNNz^j2#d53jR>5Cgc(qR7U?y|vbir*=3;d8mtL z!Ub-98#=}?3k+0~l!}>!<=^aA?3O(^I-yG*s|kI=LZg9=!oPaZIEMlHci?Kd+r&yo zKR%27-1T00D!W8aGh)8XW)Z}vcD>;B7vGy8l_%6yp{0fJ$w*WlVg8s7iY zKs5!2wrJ-*;=t_`qtV$}8i2D0&ZURYp#-B58gTWE-;W59;m}-|lY)OK0b^#WVh%FR znm@(mYxnW(rL{4APWI{9Rn3GVThI{ApAuk~?PW&P$j!Y=jhu1U54t;Jh4mIZtKkCn zcfrM;3=&c%%)X)KpQDlaXD|Z$wa0P1J`eK8uvNDtcz#GnZcE4Fy&Ex^1^?CTpkdB8 z@ckgakdO!;I|33KsmCOH2~dQJ>HXz>%dx&V$e*wTdMi7~It+5or6ypBeskg( z5lU@OO>*4vX?zOU(PtIvn|&H_ih8l(m zw0>z*SP){!T%D%X8{e??LMre>1@PQV%%I+igX8|r&Ot4e&C_12ajum(jC#B_e~9XB1Wis;dNLBX>Zfc*KI*$x_57QAi16{3 z590Nuxq`z^83r9u=#@Ezs3c6XJIK;sK+NR*Am>Deu@SzU7QWnv>*ucLAMyxKvLcha z%*P0_+;&kp?x|jZu3bVTEQ|6#nHwG z8(^=*DK-vjak50#>#{K7TtN*pdk+3=FOHu-wv<8k9>O zS&=OePw)vwa7eo`%x}!8qUJZ+R4L$Hj8xv3>Q2-IRPWwi`kfd@G0Hq~6Ip1>%^fc- zL^j@!n-9K0%iggdkK~SdXf%ecw(${`ADkAHNBz5Mj>Vmi&&~v2yv!&cw%U$!z8eMWolYvTO95p1Qoc1p^sW?2rJp#uvg#R5JLs7 zwtwnXXg@+rVf*T@U~qwXk#ka`rYUh1*Ff5xl7`C#Xh0ogPf~_>_b_nXOvhjoJ}g4Y%ik z*jX`Iyj`+MX6IVLC^NYLCo2i{TSA9FzT#TV>kfi5*MAY!y_d~KZ3)k3e3knT-xMmB zE7oDn-&YhJmaDlA5}R_l*?&uH%?(jG;oIcz-zVs~7Tk9C@dM$CZlwt&upK5Qr&O1W ze~JQO1GX>!yTe(Ve+62VfL9xpQSZ%=B@+020o^Uv8CT-zy-f>v?%`_a^m8{AvX`Bk z$jRpp6sJJW&I)V#Z2_KNt@ZoU*mk@4sC|wW1RyI&h)wvw&KmH&!V0OmITDe_T*m0d zqb7r<9qu~9s6#tt1f33HS3RM3%MoZ?hR|0}l0eqI!))8%OqqW3!)9c!jFLXm2np&M z2)kI29KJ)U2+<1t;3PbIXvK*pJp_^MP*Z>OBHh(tTHD;LJGy?}P3Fw-yzU zmM|9QztACs!x@LtJH(rksNU~yqI$|YD$vgh!Su%_y3`@BbfKyA`Y{nu;nb@rh{yZ= z_nkRc@}r6xl2r8t!^^vg$o1qhZ0@YNq{@=!7qrS~w2j00(JOMzQ5H^E|3M@_0Qr6T z;p#8Yp4IHR-cWn>yy>sNnpl|c)`y}fLE=C7GBCEiXFb)$eEu^fA z{#cYrwEW2(eIEnY6ZD(TD9gpVnZ5m(Syil>uCvD`J4pWGo($G*d?v#@@cU6s@RLgL zJ6w!>E}f6b^DL&D@8ZzY$tJKZU+5b(8Z3zQ-Zn(JePh#diGBro=rxF#u*u`}J=>h% zc%~L_(x2-Fqlz@P0x%(1SXfxlbdydyMhG)OnYm!OwN7ljN(dFODf?4`dz<(7ta08X zi71i6Yx3c;Zw*FYMd@-c#jV7Cp4|^Jd)E+=00*IVGh=Fei$@yd{`` z8(@kK+@GIdy1tl&)7MA7%!k2lj^oPVoy@&@r^t~*SJZvk?);%Fm{vwS3xAh-StqoN z;1^@8ai_rU36pX#QinLZVYpi-w9NoKoJ5x|KZI%T>gsBR254v(&fT!H_cah+yP(=r z-394tA{m6&K;bt}mbOZXK?p~2>5z!ef8_PbDZ{~TEE#!^cc{h3hbN`IuV#mJt(Sgn z=&t^ddTkb92qPVxnw}5IJjRgX?Z5lVtt)+FlYv19$L0o@8CDy7?&rf31`?x}B-m4n zOx`2K2q4AE8^ruT2%0lB&e$wsk7^0|`M?<_Q2a(ZT3TMiG#`w9ApT7RYX~jb%$eO< z8pRO{tSXX}N#s5oRKy}Bq>&Ot zP;#@uAOr!Wac`tVVhd7AoU!~r&-0!S?|IMpoe#GkZv8D-bIm#C7}vP2YhZ#z5^)S0 z_N|@0$VnEhOmmdkF!K7EkoD)9%Y7PGyF4=Jk%IY#!_tDZRZW!O`2-oaUT%vjyNg4` zmwpVFv4L}(8etbil!#kV7?^QLSl7lu>5O=D1g=fn{~ubwCJXE=s4uT5C)K%ELzwC4 zjzMYzRo6_pZ*y0L*MKZ(xj6#7nu=^H$eI=#hz5Qm_&)$sE+AdM0|6pp%3)o8)@S@x zK2U8Dy-`$0$GIz4t~5e8IHDf5Q)kv)!n|FJvnv05>orIGmGB+Q2lQIRO0tV_0s0xT%w)rnr!zsq%9tI+2K zZIC?F$?q{N$MtUYfkU4~h1KQdT_Cd~Zg?&qAF|pX2m8I|W>pX|lC^{K;o`-Mg6it6 zi`igW1CR+0Av#;-&Ckw0c=X8hrUux>nN{m(OL+ zp^Em%&YFCR+Lj}bfK@?1?tau!OZAd2ck^E=F#5TZ(mv|mn}o=Kg*U$P?(Env-ej~3 zzNbFPzKd%3)941GYDD`6HJw1@;ozD8bdoX8-@F265)ducF_5&xkgl+TQ`KD1UUeg zz0a6V)e|P&{slaDc;oJGO$Kt_32s=aZ zTi7FTC3_xR1o4rAk`gTU{wFqPOn9G@Dvc-T_NT{1m@(c0}vDJ`-C%Um{X2?fZet zqtPR67H6{lSB2kI1=btf{GrRINcchO3;t4#`&$zi_4U8cBul#i;NdQBWUf`noyAC% z5=Yo>|Kua%t7MQ#OZq3yPOGzkZHl zB`fW3XiXYl^eQ)L^Lh(<;ycO7SAms6K}A&yGBLzQ3vufKt-pS#H8grS9r!NXCvQ@$ za3HO2{g>js>;{(7%P%>JL(iJUrXHz~k|CY2f#@^W?RJ#_a1=l_Zw=zu*O2kbT12lb^dgMVgiuLyc3^UpM?yqBh3I4J9o>K}CYW^ub4y={LH z`V*Pi*P|!VC(M`lhY{yNh>;}k?(_9PPxIzc^CsUT@vDlIdrE zfl_mOT?D~s`{5JX^L~orZyUV5UJGoD1YSiOuV*e*Y-{c}fTHE`+#F=~iG5T*4@k1O z_Ubv0=KP}_iF#EV$ai@>@vrl&PBKlEwOA5tZI}wodi@A)rm}Yn*p*nqed_j!_Y!$P zqg=iEBZas>GEe@IfB)EP1oXEvfyfAokS(!+yJlcuFpx>zkLkSX;|9JoM{{^*Nq$;+)g+`mH&#g*eIda*4Q3O#O_Zk zMEo=2Z?*?nFM>S0hxzNlEggJ~>Dx2oHZ>T~1# z0+Am{N|!UYS*{*Pa;2WWd@@<+){nt>s4CLBinO#; zQ>vwb(=3<|+^3WG6Jp4ay8go*a4cz)jBRkss>JP)L-IFc(Oq~}vfvqb!KzwXnRD+J zj;Z*qtjUCyBQ^GH8|VNb4ulx^Eft6!LC@tG05-%TN`8x{-5!;>#U+4C%e6wlp@ZxG z8UU<%+-_tYcXWm}sp74#luO_h1RC5kK&%o^2L5Qy%0uxyTce?aAGS~!BGAfNXF-Ed zy3?pEr?FP&_sP>F?v68Bo@{LHzEzKjy7~L@6+0(L*Blt|A0&JGvJU^0*$@Vl&Mf znWBc|;u-lZVusrPYCsU-A?+HlO|)Ka3^}5$)ot9808AKQ18uw$5&nm85)Z?(}OM zW^eRs^YMW#6Yh0P!m~S=$4_ua@CzuFhK#@US2i{C zbdQK`n}=y@b&| z9HWmI;i^`Qo9@H;R?R_9vn7`;^(v3s_&13dqi_FCr8r<<|0qOu14nHfD}0)?vJsL9 z%WZ$>(8cMIS6q>#Z{8rl|MkFt;;bj3xN@)pqM<3U#zrMHnHjUv&BK2V zTlz&o=mE2ryGk#|@*}Vw4buIeN9&CT{o7F13trC%4+-N4H!{WUtUssLAIY1`?NGgxD0MG_S$RGYc+s2(2 zJuo1oR@vA{Brbt=;;KLb`Cnw+O@2*>^8vG&GElaSJl(ExepmIHrdBRFA7|)8|D)}pbMQHd$7)!Y$C>)?%Zghk0ncjuI+6H&peSoA zk@NZuWT&ZWYP|{$08K3LmiFEt0GVi{vX0=b6c5Xks3;PMWdDeLEWg+n6k-urKhzK8 z57v;)7256pk)0gkvN-Tu)%k+7XdWZ@Ka0`e+!;(;_p1^^IBQ7z%7mYn32<9Gu*HsYCX73`0=a-qh7mhq7J>Op=?CSI|gp~5VFu-@JTPPgETr5`VfyaCT?XHWg zxUkoMp#4YciGWEX?_{&qLYk$JUg;wBmO%{Iz`9y`ScJ2MzVgyn?UJa#@6~^0FD01@(X4w4n?KbA82%VcN!^%1YKXUBsw7W-%>Y8dJ8^54#vsG#V9N6= zUDZ-CYD~-SpPA|@ATVvzBfXqR8brwz=h|AI zE^O*HE;x@iW4-(Rf72jB2|ZA7c_ca^#Jpc~1No0&=@1O~*5!+1#9_hFztt>3Usj05 z+;;h?lIR->z{irD02ND3Xo;v=ZEO*9gVw~NK~_`QscJ@ zsfY-A*m1hb{+VRAK$H&|16Vj-UJe2ZD}XLVt-in|Nmsco1zhVZpqW7U|N2sI5ZCwI z-^x%*f^?pJ3ThO+{rw)B0F64EwI6|xb|rYK#u=}o+Fv)*-8qR~T~3nnH&-0W*+n?d zAQb#1qjSH#rpXDbS{LJY^AeJFH1d^*8ux%lj(y|qe3tUz-UfonA&xEJy4wsTx^Va> z0I9$mL;5W+IqJyRaxq39 zU?)Gy`TpM;bJ;g&=9BT~>kk>WD}577I-IRIte9y{Uu5uGQWK|G7IW$LP4G?LBEw>B zpm$pi4Dx5t($Wk$dY6ak%^L(?G4j{uYMej0IE`BRij)P9kHbrchleA^jDV|YzX#I- zKx>{uh2**w4*2p|bFeHRovwkG#O+vUaxdWYzYso_&;JzuJg<~~S$c&G|AZz;oK=dE z#1Efh7v!Wd`G7&d z0jh)esDLLJ;;9Mmto2VDuuYu@I3u{8JYU>HwqT`A7noRqBa$nm$B-J9TdggEBisi7 z65fMf@D5;IZ@_a1@UY)N>FIEEw62@TE7G`G<d^)Z)+=^e zlUjodGG25*IKRi?s*>rxk@ZliFv88tuGI)<5U zGQ`C>UCTp>YR{VSG6hAd5Brb+C$TE$hdBp}vhBwv0E&(+h}hjy``t9u8_UI#WcRpN%O7grkrp#y6Z>lg-Mr(GN zgFStBMOi1`FuaifWha^+h^$U^n(y_9Awtb|eB(P=l3q{e+n;^bJa9dXnJ z-YBo__C1`x7QNV=50RAS38-%gw<0^->5)sn%JX|j(1QHX>Q^?YYY5A>%pWXg;;w`{ zoogKHE_P=&d#$NQYH-Gd(=0QGikiN{P!w%=yn+shkXvHjVd}geUqk-Xm|39HJ22gG z?%FtO)skC6@EwfKXY|Dr_^M=~XLpv#f@ImI`{G(6xr$rc<)7fcI+e~{^-zVDUhtcm zt65;YL_R%@h|;;%2Lp(6!l0iZe9wzGjs(9WgXoJU#bhh~wwNE6`Rpl|cFsx>9XRcB z8P0EG1;BlTouy}Y=bYAKQL|h=cZ(TzDDOGi(r4K7LLHHnh1PU7OB3T;N~}sMF--p2 z5;YTk;`o3x2UTJFwoab${yI8Gy!5ohALgeAG)4@G%Mu7gA**i`d&DSft1AuX`V47O ze}&$05fBPakje;?Ii$$=sMLsYQLV*7NW&R?FwYm8$pCl^;aeU#dGFN31?c#v;Yek3 zqoKKfgi-BJOtr!lu3s*&wiWWfWLwGvw6OJ0+P_gvY!H6M4%|}g?Tf{@o#nb9Vu zes7?&(EYWx1W`7Fzn=t|BcDLt(fI}hmBoxe#J4+&3T%QBq%iwhs?bY=8opIj zthT(9uE;Pk;W$&!ii}+gHUAVU>qaGfX^!XNs&*q&uN-s8evTk;Lw3*COT{8SpD%Qk zVMxS`i+FcO^NeJ|xG9Y+;xDKhlZ0h5PMP9YTWa=7Ga{fotJwA#Xy$;F{eL==U#3IZ z9Ktx)*LyoS1@n>D5e9N?_p>y{GnO%m1^A++fpL^~`@;hNzYdGf$Q)hIM?=8eo(0z# z{`f_1XiZ*C)C49m)Uf7TMI93xNWO;4MJx=o&@)=#*%t5l10{PLzoLslkq9`2^D|7K zMpmL5P&gLJQlXg$GBQG{7I@(|-ENotE*EyL)6_gU%GNLOb=tWw%OR*w))gfmnvvNE zmF+F}B&NyYHzYpn{Z%|QN*_Y0x!uiN{6hr2>e}ZSv?o|6)4kb}w|$7DlpH>ONk=Xb z)==`Ez-iVJ!*E_?O*8J}xnLHp{n=lK#;orA1;OTYQv1O3Gn%7M{BG&7h{`U=#ZRot zLfkqvp$|8|RU6gTvRs!aK*XtRCMZwZQtJAdSrt6aAZSCzd%sDhp45`!?75n;0CTO$ z_Kt=;3yC;$`HlYO-@#=VTiCMs6JMvQK&y)L?lN)6daTTLkfiz-?z(E1fW3~{eIi|H^ z_`$R3JhU6-xUK^yYK!^ymcRIUmmMLt_1`%bowwr6Ne@Y^{;J%KAX$HUBe%{#il15&V-nMo9iNZ8RqZmi7)Y1HSf^|MIXs_4M@Tnh@hb+S zrcU?AqF;zmz7mZ>k5pc&|`sn}7!7A9ys~XctAs~RctDq(YA;4Y**&yy$hp1%3 z1VB#gulX<0>j9F9RDTbZeXLUidv7U~%g+Wc9g0hheE({w1&z}4QW;@vx%o+L2UPTzI7n) z4iaYO010TYnButr-{Z5440m~mW{6<#hp11XPJ^1G1y3Tiv-R!N8vPnU|8e9$`j5id z11pbKhhb8wHE$2-4qUS7YM^+PRQ>luK>Obe;#cRKbCF-HBGuz30qQ-9_ zm97->oaW*KnfkXs%vV@xA{0imsZ-!i-fHJL@}Lq{q=K;E$9aj4?w{q$DUo4;LX2s~ zF2i0kH)ks?;Y<6(1QOXg;2iE%K1JO{CH6nhyUk1yik&74I>UHoC7~?QsSRGJEQs*M zc~+?=6t~1dTuMgve`HgcBFN!h_{BVsLCV?WA-I(Dv>&RP-Y1{#jk8%ak-3t z64S5zu9FDbm+|h6Mb+YQ5{*J6f2hx!YP@)q6odgQnS63)YjOaYbId`vVusEU6{Zec z+i^F?ez*pAv&qTfSQ|31R=xU^H`?;Flj|pq_n$W7NwEX!B+cGmUDQm81Ec#GvuyJo!Uig@rv0vq@pUn@D*zO_qH@3E-CtmJKKqBC zpm~M;6c#jd%&wltt>k8u;(z&Hto;kwjtLWBNmjHDDRGwNxcCDn@~3m{c`e0O z_Kzud#muxnIh;KvvCq=FLj$gnM-cCp>(Z2z#11WhFu~}e*tR$EJQ_U*n3Art*D7l0 z1+GJ6k)5VBecw!nA9jB_ps(p5`>)hY2XKAr!|XY;%& z)GR4|9sZ9CcP%QS|K*t?OtQxqXUNI)t)J33zcy&zb{19s8kaZ2d_^~53OOEj#rjB*meJ4oqu60tmm>z#6{Mawz#+ACL!A=imzN-KM zjXZipuHPCv$=kSo^xvTthbcp3^%Ri$XxnCyOM}0P4u162@c8tAGM@U)YwpBocf(v ze1Cyp{^_`2EcRUbL#k)Dak7cWjiCv=1kI`hxI2e*+$mondocO4JBaq zdz1dx&}=07Fb**WIAlw*g+!=;oC zA)zAZub*pig3+)8g2-yQi61UOt%5dm06jJ@KB~?K&C6cg~}Kwx7x=;A=@_jW&6G{DgB# z^GII%D6C}G*Y_6$6@L-O-*GN}CPP!z3fg4!%vU*}Gn3Tm4l+I=Oo;?3@MiwW?0Vd) zOx94`5yigq3uAr6s`KjT3hegrwPvcULxhp5t&&YTbTVTrKJD!LDx?Fln+0Gw3Ys|_ECGzVauQ>y zk2Rn9y+|E#fFM7lu)0Bo0een*w}Le2s+f@6v?uWtlAG4Gc^1RfYUDrn#aNAX5QWf- z)4)_Gb$$Ch>)zfoYlgCa9$t{)79!|9%3_H6T>@_5^FYJtxFGDoxgaUVGiwP8C~PZo z2|OU4DY_&cBs^z6c33h(XyibflD z{(r@KKmEx>=k$(Hg~t*Ku5mk39{qEclz35LGMj9BIi5r33s%Ut^gnGk2N@K!-QW|> z5gy%!F=+Uo?g?8Kj6ku)e7FvhCHopDQZS)(1`FT{yEhMkGdKuS=3v}FXvaofU0oR% zdw?A4*y+=?234YHylbqKCeebuw}Ps256OH5;-f?Jjp&5_ReaZl!9gG`P%gJ!H4V%H z0o^EE=2Zj0`RX|Q1!(c17@ZZ$_7oTfOPT>_a~B&vqdV*DEC|{(WG>Uc!9D%=?%i{R zX;};~2(-5<_$~yv=u2;iSI&e*Qmh}STi}@XV+c!n_%$5oM z+1UDUH95=bfL_9pEZjFXuN!G;p}ybv`~P4lD)u|`zs*AL1icMuC7Q|aC>`}>h|yCR zwI?y+kC6(+cgg9B*PJQ(V7>k;ngG%uF@zjfaLiFW{tnM*8&^m9*^!?xj{{>0=->Ya z@Z|{U`@bvj{v4oJOW!KqEhlr-!tr65S1EtQ6R#wQnhEp9O@(MkS4jx5UpSE&90K%e zu3Vsn>i*b&L-+K6;)ln4>+8oXEW!(Nl;yG@_M!l$opuA*AKUOJS;Dv)k*IF<;z?wedDqwIzXv%~wLA2trAdvMy*Rg@g(dIW%jb;i{;2~D zdpy2!qEM*!FhV6W(`Gry({t$}*IBV@uRpuHh(&Yxn&^xNl%xT!jiNNIDr5nt0Uh1> zgLzX=j6J{(eEqgOBRF$fs+r;s1JoKd6Me>xJ|6|EI!91I`1o28W8s7C{{|NXx@1mH z?SJpg^1~uiJjDw%#be$Bg3R;U9g|A~pT6yp*P*Fb$EX3IcqH*5Ak%eBOE1qB)%bhu z7Q<`5&;0r`HgLC#e~A4G<3^YObrX}!LuqISzfS6Ggcmz$botIc1C+(ifM**jX71dFNxJh1*v$s&CUoi__&?uI$`CLl?jC9S_GnwKOe*+v?WO!#tcXUH^se?X>D zhU!n5PDY$q^@v?EotuuC{IgW!T7q<=>**jhVnaY5iCpp{? z=WzUESq?+(LhV6EDHhuD<2b^YOVDx3`}B$>dj}4riY~YvhMx3!XyXM&m%cDc3@u1t7FJEC5h%ufLko70*)|iapUL=& ztEQoLTb(RLO*|HVJ;-E=-}N8qGj`x#PAZiA>q8l~cR%>xZrk~kX-!ETEtg0U5F_ed ze2Mc}adJ4im&-G5EjWTQn#Ya$_#YaM&NBu+8Jv&TY4?#8M6*KEH*xJNe;F%pmo{-n zVq?K?;FN#Io%wgeXtd;GvT{sZp$L!N5&D1$T;KJ9&rGgV&6g=kykkAaYKqaL=6YFA zv*{G~hwK&_TuwFbn$(Cte7!iPBN$5kN*@L%eQDI!vQecpW1;n6qBp=KY?~4eC>G}^ zG>F!;*^g+`T(R3lN1GoW`|$-OmFb-mxh=or>ulVUsxUuMjh~S2LtXroL-A~Bl~Ec! zIEcJfveV0U3{B7pN(bE-LFajan%r(eH=m3ko4O=bbxb+$wX25mCFW$R5dsyCJd+`X zJ|Cu;`qi)GXhbmZ286-4WAQ-Km7)h{e$&SaKg3U&akG(1(N}D?Yuv!k`Vd1%AMeE4 z7rhcaRP6FLFulyQJxRA449Cc(Nm)AUr;*CdgrP$wCY>5_Ru&Id%C0-QE z=ArZzciF{9t8&+I;+}9P1`K0(ExH}SG~oGt73e*W8##l?ckl-l1!$PTYSUa4C* zUd!T}!!YMMZy{$|Tvkvnreu5q`om9& zyC;lIc1NT?(M6^t$UYae5tz7W+C2uds@sLvaPkra+;D{Dk|K_j@5Ukky(wv>mIT@m*m6=hzqYzWPlk_Sg!P)R{coDP3SDIp- zw@xMu3^zR*n8#2K(%ySLs<~fDJLJhu-g{6-UhF{Dr7d$sV(%Nf{3L5Cr@ko=skUOe z$O_N|4N;;UD+3cbJuzI_u9fdoUtE6@_C?BX7st_+c}_VJ$4IKSL)OU!VnENCrvsA$AQ$ePU`kiZ42S4fIInQ}db=sxan9<1kCJYWD&$%`f611Ycv3I8g*Ip1~n*z^4Vqh)x%Cdhz z^Vsfo61Q%xWumKL6aj*G`>tVWk!3y|ByMrN8SYnKO!;Xj9Bzek@B z?I?4P?&Dl8*V1C*MqcegQVsURsd>!O$}j&14EclnjPRyP-iIcn? z+s7pSv^_G1F;JUT4{R0SG;Q}jlc9b7CHu10I4AO$7MHqqkITeBx?aPmRwhd(XYWYHX*1^deT5{L_8VuN)uui`jW^L>7hYXu!qd4qcar`z9;Ie z_kL)x3E807@;!Awgx1^$mQLZQgT;_8+6SHcWQr=>s}{FJBzk#luHLv&tcl z>TCCj^_syCZOO=Uj!)zdM_JMnI(_^@6)Mb`SY)yYlL~Ad$9q?_`QN2H+@ zRK2Upl5n3UP#%rebUnqeFWx8&h7pL@MQ(1&M5S*Cx^{byD$Iebn!SDLsO=yFZEW(S zf1`d+-*|H_j3_D2nD}HDNzI_FFv{^Uy4IO*CyeT6 z?g0_-l?;nQqXZ`$)W}XvcNH@dKQ3(91iqNBrdD;-yqh%OBfG9%Jj>O34NtF`?W~{4 z8-ba8*`Zr-K+tGG?c=5Q@>t+Xr^3mMl(ZU?w0#|YIPcG8x0q1SF}&OGWh2D-yW{-s ztD6DhM?KyoB|H7ul-c24)Swwu$sB^HHBR#Hm+3%PggQHe zRDdg5M?m(q184@8y>ku;wmYuYa1{1`cd*SrJ-wkpRbmQ}tB@brc9LgvWr8GVr}g96 zjvwnKiwq{*f95}95mZl-w1=%S$&AO*2EQTxKJPYESkBZoSSxWr#ra85BRErr_Dmog z40xT3q;Mxt{=i2yu{!x4%@$xhW$|GPhYOYo6jyynuhNV>#;!VIptax)WuLubmSfS} zXa-}ys&|fnI^BJ~BS<_ymkx=NEGzf2R5>76$4)a8^AA2`=9{62T3Qh4V88cbl0vKt}vod$TpNr>XP~G_&^OA zCvx&+0!&Am^u1lv1L^7wjWlc>B{4kXhy^KAV0*l;l3)izJ!^;hA@|qH=v3izC9%B^ zgs_)w=)m71mw0o9e;E`8=Pq28eM07W9Lbq&Uw$TsoJm?AmYw9Hf|ABj!{iv6z9w3G zb1Y4szGc9(a$co3Dt#U;@JA1yO6++7c2N3wcoz@0IiS(310P8b^`hRC`TMdrR@O{W zqvo-YFa=4uyx8!&Mu$oayfgp$WXd%C?i*}X>52?P(2RQH)|H(A`ObIZfNd-vhZ~fo z?D!`pMfhYZge7j>mzpn0rP(_gD`k#TD?nCUG|a+74gAn=5wx;?L+575i)u&$=hGP< zPM#W&5*+1#Aa0d8GeMIHj%7a2`lH@-5j_PfDjAA7ovt;$F|4l^FP*!1$yO0}Hw*uJ zqgSeyPQR~zA-3MjspkT>dbhXD2{gL?8lxv0a(A9OLM0&;%SGp89lW{OlI@?$bDxp= z#ZfWJ+!1=7!_)mGg&DS=bvLZH6L;lBk37E`W1Ec8#S9*Wm+-g&*Ea`K{|OwAsEh>f za=Ragj69EFPt2O7LHYZ2E$aID~ZbYSxb-7fEIm>|MaX zM*P)O6IlPI1(Y1iipYYFNs9(Hw(#}p|4$yffJ?800`CKns;OI{d?NqBG;OyYVbwOT zRA!W;o~h^rakORr_31=Z!uNOSL-bl&E^SDJ(0zod#hSk)dW1HfVmdRL-y5Zv1htUA zm%`pE!z##33+0v2>haAU8A&1v)lBwy%3x_|Fg_fvq%=p>TXo`JMBmp}dKRl~#Z0%pB0 z#$~~b%AB8ent~6CO7J5bnvx}5rx=3PNkw`SU)@yNAPX?Ffh-*MsgF?M}iVVr(q+2G|*_ZtcJTy{z*nwZ}CzG6?w; zOsT!5)IA1;BsldehhQ>t<^~LB(LJs;ia)&4%ko8KhH#A9jAV@i=W#^l7WJMDWWu&b zEV&^?dp`Bx4dZGX+g_&Q)Uj$V{%5ota|4^k+#00buOW&;2^Vj7_8AOK1){4fOv;w9 zeSNnz{O{?I-`8IIeREj*^(}mx57D+E%Eq2FX?K_&eOEvu=Uc?z%CFa9ys03J0rwAq zaez#n5Zh8O)L1)(u{S>>OA$J!!NuJ^QY3SVUaB|FPY+w2pm(Xj9&OMxkzMtt=k(5O zi<2e$+v!~t%z^1Rj?cd6X6XWZPJt6gQ+eSqmKx;-lX($Pi)3d%0!AXWf3bAzlWdqY zS=a%(v9X<9?|Xqr-p17r$5RR&+agr=e-A||$7H6Zy$9!kfzqShJw2k*)dwG1VQ4wH zQU6OpSEf@eL8o)CzLqyfG-^#R-_zPtSOpTlMqPiK7#oM5#4qkOzeAPgBo>FecsU1SG}u($ zCZzHzDm=OUIyY|IsQmfp(W8&Oy%pQ);PVx#8UaXt^Ln?q1dzBvvGfu=-$5;vTpb;W zDFH(OAW`FA0he<>%oUt+s|R`g-Bs%H2Me!Z>N*THR5RTJ55h&bY9VK;rKG1%j1!X0 zR+r@obc5qQ@SugS_I1X>lrIem<*No)Z=BjFB`*z(R1Cz2fi&v}%qfLWA%m#Kj$gQ2 z8qnM`*D-g4?*l6&At=bBSg9>LJ8a`+N@!jO5j5iG)yoTx_x@;`dL=(MoqQ)AVv=85 zT>T3|w0rwelU!#3D-9{Qv|}y{<7(KB$*cXlMUDt=RvUq05oSDBR8-iEz_6v%hbD&+ zSAks}dP}uklbR0<@5n&cJaq^Z|JkS;R(RD0<<0G!K>t#lUBQ_KijyuKvnxc?BXJgq z@tpYOi_AQJRJGZB*s7C_Pb2&S*CeIl?mvUn8>5@WYC`(u$Ia7D?IfHMR?Ll`*0$@M zuw;m1`dT>h=g*+1-HipsAl3G#lC~efLLMe=dC+k|wD@!-`cx`0L`*e{BDSNQ4DPF* z*SI$s#Nbmw9A-SiCm3_WI6^jKW5Ptl7y`Aiva51R+gBiN`Crp@(3(9Y`KhV;VSpiL}Z}oo~Ao*%6uZ%cpZ41$kv{y2LL7=xgzGR)SERxR5cpXC7 z(T?T7fS^CWtRbJ zz(!XpfKMlRcSb7lzbKl@=Qmcp+>{tmiX*vVkWo?GLoTLQA%XOJl1Ha6#wW7nRkJZT zX^Lj&QgXRt8;X|pZ1rz4Oa@9fb~sHP4O)->x=XeHa*&~vq~sa-{(YK%=P&!;Lyr8b z!njQFUtE+(r1l}YfKl}y1GH6t6L;V3`;mt21lEXq+7uNL7hCY# z=MST00-JYjw6%n;AtgfLrKKM+I*;)CW=f)D9TGLu^h38h?${EZkcpTqI4WJC$-Wvm zxKO{~v}=T|ED>$lV|Ve5O;<{nq3t*x0~nHS7E&OfeQe&6y9u?Ic=&6|by^8dpz1c9 zdM$#4xB`P>?Oh){3uNMzpXBujTa+4otvt%H(w5sAD?OiiyqN9exsg?*?$JVk78cTD z@2E!JVIkifx6-ZCyhAF@)zRo9qegw;*%clW*mEWNg>Q_Mef}$o)wh&M$uag{T6=n6 z7}M!~6dx&02dWqr7TSMLD#Ln2(@zqek4|!+rugvW>S78br4B88PoLI*iqLGDyV+5> zoj&Az+XdUw5ZlkST)vg#+-{0Gr^#RVIKUmedd{N&hSC&8c)o!X0P1 ztfI7C{XYiQ{auS;CDs?^9pyqDHd6C4S#5gV+Makin{4FtW80}N>!+dVAhJT3;XGu8 zYN=y82pKNvkI0U9U`Z<~qIl|@_Y{Ikn7haI&KJeL#m;8s^^+`yD?NTf)%5&b&nTI+ znrn_gfEWNJNadr;$BDZZ@aXZD4Oo0Y^K^D$0S2Ro89=g;l;61S_?cTg zn~l<4`+S9D<0c=ot82}zN5QQdSSK%1=@55?$w=WH#`HkN&Ucj1%Scry0EC0Ip5@i>9WF(o+jO9;8DQo+8D>N$eSeR2Zb-S_ikprw5@GTMY zrC3K1F;NAti3~;y@!yLa%SoW*B}K|RGz`6umMtK(m<7p@hNxgk=F{4PGyFX`!z{=3 zR1R~_V3(IwT)1cFDVj3h>gf~a#R>UM`OOT2gMB^$T3SLv^;;ix;4##9yU5;arX1XiZLO@yGbNEULSSud?e0BLa`wt5k>S5aFI9LYo<8ekWoh1)H6=+pv~7>wNd(D{ok0^r2t-Y6)dw>N zD*84V4K*b~CxTxOdWTT~{(jedw{Q!S-$w5(_}jVkD`d==xTyO~JC>+lCZYF1O6EM3NHX_?e15}q+HLn@Kk7sIOL`YcV+ z&+gq;K0Uc&WLT1EL* zqrQ*guA+wZD=eW{f4c*#Kr!~ff8$kg2NW1SqI(XcBkt$lPA%_+UMW=mGmb7S!fg%_ za%`P{DH2z`{NH`cIt&h154u@=#1OSa6{%tgxLBt7=hv)s3LIIQb?xW1QybP_1P8av zt6>ai-^)0S>Hpl>&yWwIYZ+E7+{NK^UcS^(xgp6JvTxP?IY43f?Udf;?~w{JY2^gU zw_Oi&k4CE$#QizABU4e+Vk_a17-xKYQ|(_+q-B|UMl?pdgb>EUb}A?!BU^n&)Z)+P z@mXzH@};G}`G=2m!I4f{gE7D%;l91oz~{cd*=sFKkyQ#=@&Hl2yx#XW4BBwq3DG5^ z`r6L-j#)1X`uLM=`O6;l**hI8N#9`Vu!uEX%x`XwEh%01%1^s~sGPaD#j+!|ClMMU z8QJ=}6}u36^%}JT@4V2+mAM+b*n*AnEXJKmPBHY#V;$vE%*~pQzV3-%_Q-RuTdDT+ zt5Dd+@!7^P>NN6MK7NJ~QAzzAc<_|{LTy2eUDgxD>eU|62C1s;-AZtxxq`YdX4@^C z{V$3L3U@IzG{pYALYOPS+e-4X1oOTQV}Wprk0GQ^D#7UXhr@~_g( z#Yxrv%>~b(zvdfzJGA+AefKbOSuvNo*nOoGaBfa-y*Gb+unqm5bc&}?GW;foxTAea z$!IL0`mfb{4TT4bW&ydgoAjrxw^xg)a&P}}6UaiZ%-U4myy!nvVk*axdf&#mu6cc3 z;NoR=>%I(LuM0Pi1)N2H5>a9K%=8@X-8m}JIWG9sd2Y=@w>G0>_Epei!OV4Qr`uzL z?(IFXtRK$^J?*Ryj+QSai4b326-w)^@attjBt3F$Er$xFO8)uMWPg6eFo1O1=W|JA0{5bA zH^k8Q=C_XoC8^evyQU^Gy+3)iKI?emPxa}J*8;VDpZmJ6sy^|O5vOa}Tfu$zzo0@4 z-IIvCBJXwBRD@mlDTjViDkpoB)Ah;a%T@*EZ>M5dJl=D8P<8*!X7Rpv_hi2(Hr$1J z5PiJ2-8#7Gh-zO?7cF7O$E`)&Xt{TsO@-xZ9rIQB2G->IbIo6tr`3n)?!aQ4*DFuv z&PtY{SIS&8dfZ2*_|7)S+XQ7e?aKZITv~*;@CiZsx+{rqg*_h*(|Cfb3Oc`C2H#^6 zRMu`+VB?xc4-Hk#D&{`d-C(!x&nJ163aNX8xR)>O9NC2&c|jmng|m2yaf-?3?R!p^ z_UxlxWxuFTu2r8)di``bM~r7@$#qd}zec$)71wq9up@WP@15y#<@U?>%`y~e6MKa# zX$${XZEqP?)fzqeswk+0B8W5!D3a101`>iODj;0~(!J^=hNNI;&ER))K9-~(~_}aRj;DHM~@?fD&}p~91iiiLMZt4&CYup-Siyz ztU3MGD1c@n=c?faqpPPU?uuq>L(le?atiZNB2*fpoPJ?pU)HZY`aglf_c9r(inym7 zo^;Kv9KmNaX$)sa!-y-BuaS{bop`I~`vus5t6MhK`ORr4Z4}))*t!`l@AWsGw{0?@ znA<(H)~4DZ_`d2?+UBqBIxf?Z5gF`8VoyrE*EfmluSlJQ4i^<)pGn5(tZUX5%(t}S zCR?^{K04QB>fyfgjNet6M%Y||b?2f;h>S?cMJgQ2Iax;$TOyO0jYPB4?Drd4f1BUp zHCo)b@Rw*~h~qm+L!WU`VOPONBhT6q?EUQ`JzRN*>ASOe<2*G|bMggBehLq_d}^Kd z2wrOu^@|ssoNzoenR<1$3%+ccv|l< z>TP?^FVFwJBZp-fTC7!z<>=oxwpXdykdi4yL$WWAIHm)&D5=&bT zjw7)h=Ok5d+Yh{rs;*x%|ES0FNZq$*>HWxyheoDfAvs=Ba==r8sEp|>%DD~qNpi&f zs4FWS;QZ)3!QlV!^g)3^O1X+jy3dYVR=#ds*Ol0DUZLxEG(KCg+-gx7 z&(?UUTD{Y$vXVZz&g`Y{?qWbAR6D!cIftQM<~_nCAxrS=n8d8E7wu`+e%jYp@agEC zOyKb1OPm&AHF@_^J%&))m;LHpx9cbO?>`k`37b<0^ZGph{`+Kr^_Y!_Rip3+&_}d} z=!F9AsU7i%{@jv=>7A_2$Y`8d^sRz}EP=Ji3J-LX~0-%W8E* zE+ad5h*{sSqru@9NpQQB`c1$sm)>(+prBhuT*SRC?TxgmnCZRh*Pi+-3pWIJHd|_p z7AI)-SQmZ-mz3uuYz_RWnjiD`iqgE6IMLWuHk9!F!_aWKU0H6C(Gw#go}v zo4=3<<8i2vI-9)f8u04WVm(5UC&^bP6~eCmOVlt#l)$CXFp(h1=&x%#P$0xcEmGv6 z<6F$dLcpV8xYs&XUerJk*Dr4S#2hu>qD{^XTc(K`yF~;rrGX5ZrOkja@PmhCIoE$ZC-{i1q zxMP;*Mrf|Ksn!Y>$LtHIhiaV9sF6-Cmv2;w8B>~&!S<5Nd?T^3(Ju*SypZF$1k1j4 zQ(C`Li;2sovv0O|9-WKs^{5C=G`&ojQUB~O_EX(7VqS>3+YTE9|CMu5n&Ty4RyYm2C0n^+^Kx&=O&`5^RLGkaM{}74Fo^HID2C!;t(Yd-uB;Mx!0W);g%H z+{;OodCT%S)XVaPu^7JTAIwPB5j}lwOyfCe|M>Kt>uYx6Y%K4zS;i{N=H3eIzM#3` zCDh+&+#; zt+SR8EBkI!`KiM6Udn*K?Sw~2y^3yLwT9#7i^~Gh-G{Ea>k1W#1GlXD)hDuv(v@2| zRVnVGCrt8HRzz8XyBSE%m5QV+m+2*x=_Quw(MU4B)3<$HD4atr;G&cJXDGrIcS=Pe zKUb*a2aDOvURL_(%we{Oqkv!VuzY?=Y@6>V*7!?}gWk2~0mYjC-q8H#7loL_ixgUW z4&rchA790(&m8G}kZ@Xc4pu&BzbN=}F(oOia*l|Y`gEgGWZHN&a7R)4W=^62DqW_OVLe%kI?>re7`_nmK10*yi1%JO0aKt6}ClG1=_T zdDJU~&=Op%HMY1kCE5j@L6B&VwZUGDSBkbhE)eiZBtyk&Rm$zzJ@ry}C$88hgs+&PJES?%BmKE?T;uJYZ;4^gy0q$VuRhrN4*x z#bFn$huIra`5NM=)ARb6MUVbU-M!#C%H{>WNLp%QRA-1h0d?tKp7z}~<|{dEIhPZr z-_c$p3e=qn_gPnoF}+tCSK<3T@%py7wjD;MA}BBE+j90AUPET1MJAs!MeGZgYU|$c zuJx$>Ea`j0M7CSpO_g+uk)*+pVt38=;yd z=1*Gl(woO9RD?QX-|+N0D4WM$J7*av6aLS_H%|GN=A=Q3V|k+iUa=Sfk^qTA9Qt%cu6kA#)e@KA2VES64K&O!NkRj%_E_s-Z` z(cfA{f1gb|w`BcoSwk82vIh=pxHv7fo(R$}l}#kf+)eMIF3-s?d}bS>wUYY@S4wzM zW9Px~sv4S}RiqDF`hzFWCbXRt=FPj2GpKs0r)P&3^%8o1g+;Y;>bPI3(zuvya5BoPRvcq!1-B|7ez9Z5|-p_e8x10wInRk?Hp+f|@jyu?^|jll+lmuCo(Y?0L3U7Q)(B4UdAxdCoCJ&CI1y2s3y((pr7S+r0 zZ#l>R6l|c|l0mB0h_i&hM%nPo&I zT)v?pwX$?$U+?71W!6^Wt`aBz@70Wv#GCH)d8=pU?4J8v8P8tpNxDq+c7jA|V|@J# z2v%2t$!Ot2O=Z%!MNW}Wg-OIs+ud6yb&2uVzd|UkZLQ2~?33MVci`4z{EN&mw`7Mq z%gr(OkQSwNBL|f&R6(&^H=Wlngr%-87S8FTR#tE_eLXpf@%c*SVRmtyaz<_LKp4B? zta&1C7C(`fprx+8CtvXJ1tY(me8+P~2RvxoTEv`7z5Ry7Y3M%7Wzke3g|PzL$}`Wurv#Ns zwOd+InjI9%62x@ka8m8Lx~`m3<{0#bwOd+fhO`;vR?iwJ&B+ro?XRJ{?ue%eO$!ds z@ZZ_7suU8#S`dC{60aY#)ESI8sOXznM*m=5p}bXubx%}&3nD|+bda=LU5@cJZ)52{ zoBDkWM99^?)K^|8pxN{|7&p*T7>?_ZsrngtxJK%-7O@9E*P|R|7j8VmOujs0`*S^e zF=~u?eS$epG}3WBvWFlFw_uhu%-xI|=Nt9qZoZ_61LW z#HS>UN4_+>F8ugmGGtwX3}+wVrh6A3xE|rS9<`T|LGV#Ymn&0Slo@B>?DK;1nAOv5 z)0=OUFDN|wa6|n=vo@$0&2Jbf3lzn2-d@x+p{Qka;qnI=?ou-5mfV}B{q4A> zcKt1xYr>ohgc-Qw?KZ+mSQ?`U90z}y0`E56Mq-26pS_{C*qT1@G<{$g`Z3rf{-s-p zpOoCMT-nw^w`j)RrO5npOv*A>B`Dk~YRlXeo%jr*AN1x)|Fq8gb)`M#7Ius}1F5px zcGRBC5{a~{!)DiPRqf^d{aA@CoHt6Jb3|)8PVFcETuNMbIbPZmitcbIO4|6yBdq5T zYio~R8db2rn1dV2KCIQWF4Rbk$JT^t>b@AjK;zi3D>)$^&5JAow`(ia zPvMBx75us+$Uq~QvfP(KUG}x@_@0B7gwKA9AMaWYS;%sc_m+o3#x6FdJ=b9|)=f!G zKh^e`rdi9bje@3cT2rx_`mkb0mYeWPQ{Q&w?sQqnxDUwd{1WFTz|k(Rm2%99`>}w2 zIdS`o5y9X2urpI9s&xyc{MgH(Gb%i{)HxCG4&Hf`)KN-yQcxo$c{ z7pPu;n4OnRd4YYP<f_vY6&bFl^ez2m8> zO^Ll#^^c__dXwYbMQM}P~C~4bSKK{YX&r;dLe^qo)HG6j< zs8ktMVD2RG5PY(XK+AvWMEzoD&NZby99=F^F1CUwE(i0o{k1baah+p4iUcJS#sPE z89e^z9gEJdNYg6c>&+c0caQS%%-l>IlC`K9-C~`WT%dVMu4Ke5P#U7u7YLVZDI&=p9O{2! zu`I%BsZdxj{4llq9BAr4{yUY(#J_8~ZXPvuu~ffAeIaon4%}*=XHP6Y?W)Qv1PWE} z4!zyWA=hH}?V;UE{V7WLU(#?3fja(^u@jBH72Adfn1>vU*Xx3A=CXAJK$o6HDe*w*4H%pN=RR94#|Dih*fnf&*ZC|(tDPn7Z0rsjdPnsy_O#a zxPkemu0y%h+?(SyHZaQOTRuB?#cKN+nAN72z zrn=0D_Tz0@BU@GGmdwxezo}UQ<%yUwwG)K4`G%B*Sd0mCa)adg9_2S$d_k`zR)BUo1Xk+y!_nj7es+AtzBP;$jJ?H`!tu= z>Yw&oX+NBNn57#-=xyTHa-Zajb3?k(J#D#HZiC-mDU=6iQ_st15hQ`}A(^_42(36- zV-!W22W4XogARA`<`pk<1klJxFff0wkN z^E$;eyR=(+mq+A6h~{>a^Y^IboWH{*JIc3=+UY(t>ea7q7tJNt7FfGW`E70pL~gf$#XZwDL1{mVBR{p zOOdcsZ*`;vGtlA9EK#^zNkb@ZsZlz2zbif%pSvHtF5J-Ja&9`KVhUk%qHKzDrssdf zrG)eK#-!1OOD;W7gwT{Az4?rLxME1N7}K(E2|jv-Tlx;(v&F`bgNM9X*`^Qk`^0D& zu3f&i%z4LV_iRZ3p)I9(ka=`TVq`Q)?#yJ`+d)#|Ff!zEMKS+I>)SMlt}^Y7I; z*rW(0LWcwkCd^0|9jCOAg!rz1zv8*7jb(Jv!MCM&&VQl-^N~ z35Io@m7h__8kL)rnd_%}p7K%}O{9!`bcUL`FEW@ZW`>{b1`CDFK>_)-FNL-lpl32P zMCLPwdrIzHkPVyZ8a2pU9~$RL-&|?-b~@x5S33ktK@H;3#rNSrk#%#Nd0lspfc{g% zxl-f|Y-1=u*yX8nK(!>JpY_jf^f`>X>&WRZZEfGupZ=veJ587V(lAhLZ|T4?Ktm$h zxDpI_W@%CZDo^b}C!8!?SIAW`)#2^DzW8%Ba|Dw8o_kX;q8%v82?TZ%ir=Xg4z&Jp zY}Gt2D9;g0p?;kh>7p=@>t+7Jw${J-~Zi3Yuf`V2{L-=Hh-&1nhU#WVc#PrG6 zf89LNk^no$(o+3Fe|v!Q;`1-{wBfnZ8Y zHqXFW<#S!Cp>ZQOAezC`Y}TZIrBt_suWB~+y-XxA@r*L}jCe**FH?W3)c`fZYm}LT z=tckIHsh~;qc@EVYA6WgOza$T2_pW|(1X?JUw1sCSyd+0ms1gXr55vS;Ny9}Hp=G| zjD+H~6L_u$+m^euqr*>|$CuAVJDjNAcd|JC(gk5~(forSzDb2h?Co3KK!cetrt%y{ zm4+;&D(watmEhMzu#d}zh?aPi!8MrpWmv>Zoi%42zCO?O_nZ>z_YZwMW8FHcVUI{ zZR^XW+itI~VUCLE-1F%yV?$4q3JdCIpNfkn^>Oqp@)ku+jb*R(x|lg7`F~pOS!SLj z3Tc>K*S}KKJHJ91drf(q*6-70hMc+wK!+w&wJn&xH|H~!$OkLuAdEp zW=WwW#9`RSXG<<@MmVa9PTn{<(%~6aSgccY*s7mE~V><@1 zV})rV&8E2}K{7;WlcE?Jb#%_mR&O)s{0h11V$E^BFljd0o8ddR43;3mLS(04L5%5{ zlhJFRU`JG%aRG!<={w1MQE_3o(|PP;f!Xe6df)wtii-FtAuvNJ za7}%GHGd>eq$PGt>RjS>cX8583`2rSdFiOnpx(e!nzFn*p ziGy?G+2m^pri)F|@%PHlX4dNKB5Lee!l{{*bpBZXDpQKOH?>Kt@W_q2WZ zsBN63ofEn)czz9f;qHVo_rVyRM&0O>N);W|U^OmLHxU@fJfe&wqb*Bj7;1tze(%7Y zpJ22>%Ix%|XLiI%&uJJtGR`U$i;He=i1+j>{yAAWnZYp49T`%Ura??|Big>loM&nl8sKSv`sCaO&xwRbjza2 zgOk9hm_$02FdpsKqibxHWx6otYv|hZ@4I1@yt(fN{M<62xIm_BDl}3R-RaW@0B%P8 zBqS!AThtz-_|5w6ms$)XfL!S0i$7#Rj@y;~Y_{Jh`S!hgp(&x_ap_6U0T#m*H1DIk zQrXDxaq{NtjiT8s)?$c52^o)Lrs^&lJf-owE#UCs-)-p+8K=%IBna8Y2-~wflQ`x@ zGL!+BDk-qQvYW$D=2&vwOgp6!@wY9#r99u9+(=or)P5rp!p?vSf zBfQ8$A^n$s7D#~Z0p%B&KvuEFqr7GK=ktT6so&u^(Qe|&VNp?rtqDR!BanheG&rKyAt$u^Fvh^Z;D4tB8{+(t zWlFSzH~8N_j3pHI_xCH?d@3#NojsLay(+Mqe<2k@O;OfvQo?OBB|~;E&*RA=;B!oA zu5dy&Y2Er_Z$1+bPZ1Up(zuZB9rYL(ygTq8UN8NLXm)nffF}pnFIwMj($S?QXhcf) z`*%sN>>VbiBIoS|=hg7oSk={a$YS;y%+52Ni_wH6(qQO7g3AGn?LS{0LFq^?YGhF|+x#UzGex~PwoiGKb&KZ0%wu>6GyN9a( zHA%_b6^B+SnUG|Bw7-diaR7iwL_~xd2BAWruSoFj#r$_mo3VF8q@(cQ+}0D4A%YVZ z5gIqNvu5Vtm}$VjcYe$ppW`#oXkgw*JWcb;{Q#-G4#aR9SmPTr@s`k!`r66yst3+Y z&6i#+7k20gEC9e~d^4W#sHmpB^+}&??*AV4&5c_(o-+X+3))qeO@@g4g53eB@vZR! z_x?=1h5X>xxji_w(lqv@(EC9ch&fcHBhIYwU6asj_~Me+Wvi~I0*a7X574wHkb{e% zwj}_(^kB9aay$!Hs*@_1vEG`J8ULlhBV|oUcmTQj<)BXeRtXej|GNe_kOWEOx^(H^ zIT8%UwQK**dExhrj7VV!a>>a2JDh;eg?;>&4T%ietp{L&{<|I`|1vKBuYciE zJ;&$UoCG+Y-rn9fRsNg7&W%?FnOSB%S1)u!LLl4u&yW0x9_0P^fT`0gfcCy~=Ue?C zds7m9&e-l@{||GjzkmO}W{c8^eklhznKZ(7Ixvo9!z((`ko8AT0Pw|R_XFlWgZJkX z-EX9FZP|8y_g&a+;UqvhRLjYsP0StBGNqnV)ti)jN=l+#;zqSBqgY|cct5onc8$st zZ<5PDu`rx*bugT}dUB`}K}2?135iBvGNh+mM}l%ps#cH=Al;JU@Ex>ALy&<;$1f zfA|0m>?GbuFe8Hqjz2;0=O0!a(SeYtKWS6$t@+=C{Br+$@&61tQrC%G{~xpTMj`<< zVEnVO(YlGk=zJw<*yqkwZ{8?(bLB`am^oSn0Ow`#1f&wQ8d6ekliu#pwqtrX{V3q zfh!V6&u3%uYYv(P;T5mkZ-h!^qr;tLTpc!zvVwMV@#K!V!P0zWs>rqS1+0#tn|Scl z)Ej+lj;f36k>5!>5hd?0;JMr6&OVWo;{nL2>Z0IrZX^y!t9FDdu%MAYdV!gZjTi8E zhJgGVCFeJbK~PWKE(z|+j1k7?`6QR;Nm$&3Z_}I0y1R>?0j#9GMUh%=E5K}~TcU02 zFWi7lqFQP}0|h*ylbF!iZ}Aob>9aW*89Ja9p@`-?);9RRQkvC4eB%Bq;>n>1?`~p3 z4=J*kMICee0);2E{*%PiEq@^;`T8Y;9i1CDx2Z%>Z2FiG^R*p+TIcsjAAS6LRaZTM zhZF~FE?=mW@KU!ZpS~XnUfR-;y96RlrRm&wtDU#Ac4LZ*d25a~Wm2(n08E53BMc%m8WSa7f2&_O3ffhUclC0|Cgp0l&)U()BiP- z1p2a&`_(I{Xf{IiN=LM|yDXp#P%f@8FHl?b83?V=&0N7jwpJ4{YsC`)1)e^azAzk2q+LIL}^4&=XDmkGvyNm!x%yY zy&w4Ca=Gl71q24-ES^4&8w5@(Ijm^-SZYDRM?hXC!tLWa#1C`Y3lB8kRsy4RG3Re+ zP*AF7C2BiwxVIy~w^*l?I7%!fiGKt*zT9~g3t4pr$sI<>Lnz=|!b$nXjNL6jF=Abg zU?EvVL`7lC-9bb(!8%#2?oiQoQ(Co!2P(u`0}M3gZ=t?4dftu_`7#iLhsSPC^uZ{g z9aAI<+jA!MFA^7-$h6ET+ zTF&#g&(L}tS+CTdy2HAi@6D$}0DNGEi`PZ|r=@ra{~w!U;eYJH|68_%S}Jf3bP8X; zF4TKmAa@BKpAXhKBkZxQ#ol{;(@T;6;X?NeU0l(eWm}zcA3{T~l&>PSBSgq!_A`aw zdD@^?Xti3si>){T3#?AB@O)<0SR7E_fN273X+K!9=PMIFazjBE^8Vr{d-~km+yGfn zDUkaLimo+DtWuWFc5iK5!)3YT=>b@r=KoIPmWrTu6hNJiEi5bwa& zwQl9Y{DE~kP-5Eat5o6&cwz=VzQ~ji;edz;(j}BjqW;coHB_u&|CwMr{lCH(K=10p zx+bKxh24RTT@i*wD(tXAU8ccTy_Mv$a!W`kwy*ECVQY+6@8UFg6O7{GNn2ZXTCVGj z!lAVQe+v;_xZBXsfY2fEZ*b(;AA+!K>MPU-ZYw?fF@icZ*I6!V0?TW zxQZblo?mEa5Y&OQ_VW@`!hI+ML|hRNqX0kdsi>;9d5qdqfv5ub&#qES?Gdi@!UVI1_9n*Y)nEHczdnda;{pt%<2~GDJX{wi;HW9 zs#fpbMMBXLxN|vtvV3R26!@eJFf>q283lTeqiXFTYvesbk&llurz&H9PAA4<&_N?gsRJh$DHW*gJr|@v0$snF{`Lnh?xBjd%v z5klv_=LMyD3E)`fv~MEpAq|h?Z8q(i1VBGqftr9iRGj;W69G#8_;A+<$`HX33C+o2 zYZqS3Q43v%@1C?1RxN%@3^Qa`y)6dMBnpO{=vp1l5&RPItY0b!y^}aSBJm6gB5>YW z`VF;%&j9}+Fl6;85d-wVu>{-p@vng#dH@-5J>Kp;TDJ6n?8q}5o%ct zL34^9%rSs)#B5BrltUpc)sZ_mYT+tcPVW%A0=_*F<{+dNw1U@_Gf3zGnAgAISIq!) zL0CmHGBR)1sKCsnT2RJQN3!NRBWI0^&R z8^@Yg<_$39aAbSJqUAE_zS}Nw>I$yvLhgL^?g#@Ik`z3KAH%{Pz^LeiY=uzp_;o## zNJPLZpa|ENOGj}>I&RBFaT+v}!UnB}SOx4KS`4j=*_b^MSSes7F|NhH>VCT>Mg|3K zwTpv3tVFLCt^D5iK|#DDj+2BiDf-6;+qgPNXHPGEQQFY3q$CSKj|40&L!Un^UIapTKT&IZw|OD?s%YNV+Y~a$wK+wL|`z4 zcHo#BEeM+`7%a;I#e6j9f_n#H%E|5tRI~C`IILRi9iPoG05D#{eRXm$lUW5 z`3L=iaC@9ygEw!;JqsPzCvZ(c`G>DVu%Oo|I9kiuICt@6xAv4mIlJdBJ3HTq+pZ>h z8ASyxl(xlZ3Utvy5FGecKMO}R!(E7rwp0og-N-fqh-8+Vdr*>?i(ZNHX;DN%f;`k; z<3yYDQvpd>AMF2<6@fRuKGr!^4!09aQxj)Q!g~8>+_A8*SP5_ad34s~sTU2WPMw7* zc=kF#v88s~`dgAGaWI#%yTAuS9Zk$2^{3LovR!mj9;%T0)fOF!0PYN6;5lqA6$sX{ zVT*u(fWBhmm$?}5D4&hF0wVW*?k)>RF))R}0X^4iztk7Dvpk5$afO2WeC=oltj2}z za@c6Fq6No&NldC8@&N}w=2kfo!0HGd9-`$1hV4k84S{CLsDB*FZB+$Ip8=I^^0ZtG z9*&uXC5z8lYf~)apucZh?99SZ)zWW3Xtv7TtA4d;59De}xDO!Mh2ZPw0C|N+V|Nu^ zUOc~gN6jat7^*LK7f^Qr%GECin}Q7q#{qU7K%ALabLDJ4&UYmNn90mdaw7i}tN}>c zRWK!M|JuXkT7!_|F~#Nxm!^IDhTASJCB=Whwd>zzh**Bes&R$*6cU*{nxs1&17MqBT(zFTcrW+NuM@+gdmg zY3K0IW(20F$V!-n2VAettQS9Z+ zr{#Dv2+>_|b=z4L`W%QkZ=D%~f$>d^ z>eF>m$_E8Iml8UYe0szLts^k=b{pWd;?Y_*M=%Fb3539Movoyh-sALe^ib1CsVhBB;vVqR z=!J#jwzjs8-H+lD6qv-5^Rf0Y=z^>&c{!UEm8j)_uKDw=VFzFq*uZjH2jvBO3Kv|y z7F;?wrKNnvfMi-SA{{qCm17`AthRVCj`lCo#}KVlu8Ow{P7)xB0Azc>;IhT1StJOJ zEPfc4v2lO8I|2gHfgBYVJ%5KYZ2~OYrd?TD1PsPZmnP{JqE9!9>NgVISjZ*bgv=Em?9NS&&>P*QMHJ#aLyj=3CHao6`_gu z40rF|9YahlQBml%@DUdYd4QD+i{dQoG~je!HcGT7gC+>}A;BRbGXSg|t60oKukPA{ zFhV><2w+%M4kP1=)IT>#gsYdcmaWiH$IqAaFB=G50?>B z0W3>S!&Y+f{V9?PyZLi54DTQkn*xAlYL}(LJ~RFi2xT4TA;BReLV~D%h$Gp+5rHi@ z!M5-q%e(rkCI}p`ufPl3gc#@`U8gZv0j)fsJIWP^S3ChFSq|}D896zeoBaGy;0cF< z_nriIUIU9`6V?ebyJsxQ#&N;M^QS?P!(Ot-UV(-tE2=@7H*g^qFOzKp_VY$P9v$y| zw+Vz}XONz7|E~Xc1edo_<$p(J5!r!U|Gx!uPv|;z&grT&NYSource code for cyclops.report.report

     _raise_if_not_dict_with_str_keys,
     create_metric_cards,
     empty,
+    get_histories,
     get_names,
     get_passed,
-    get_plots,
     get_slices,
     get_thresholds,
+    get_timestamps,
     get_trends,
     regex_replace,
     regex_search,
@@ -1316,8 +1317,10 @@ 

Source code for cyclops.report.report

         # write to file
         if synthetic_timestamp is not None:
             today = synthetic_timestamp
+            today_now = synthetic_timestamp
         else:
             today = dt_date.today().strftime("%Y-%m-%d")
+            today_now = dt_datetime.now().strftime("%Y-%m-%d %H:%M:%S")
 
         current_report_metrics: List[List[PerformanceMetric]] = []
         sweep_metrics(self._model_card, current_report_metrics)
@@ -1348,6 +1351,7 @@ 

Source code for cyclops.report.report

             # compare tests
             metrics, tooltips, slices, values, metric_cards = create_metric_cards(
                 current_report_metrics_set,
+                today_now,
                 latest_report_metric_cards_set,
             )
             self._log_metric_card_collection(
@@ -1365,11 +1369,12 @@ 

Source code for cyclops.report.report

             "sweep_tests": sweep_tests,
             "sweep_graphics": sweep_graphics,
             "get_slices": get_slices,
-            "get_plots": get_plots,
             "get_thresholds": get_thresholds,
             "get_trends": get_trends,
             "get_passed": get_passed,
             "get_names": get_names,
+            "get_histories": get_histories,
+            "get_timestamps": get_timestamps,
         }
         template.globals.update(func_dict)
 
diff --git a/api/_sources/tutorials/kaggle/heart_failure_prediction.ipynb.txt b/api/_sources/tutorials/kaggle/heart_failure_prediction.ipynb.txt
index 1a35c1186..d415fbe56 100644
--- a/api/_sources/tutorials/kaggle/heart_failure_prediction.ipynb.txt
+++ b/api/_sources/tutorials/kaggle/heart_failure_prediction.ipynb.txt
@@ -570,7 +570,7 @@
    "source": [
     "## Task Creation\n",
     "\n",
-    "We use Cyclops tasks to define our model's task (in this case, MortalityPrediction), train the model, make predictions, and evaluate performance. Cyclops task classes encapsulate the entire ML pipeline into a single, cohesive structure, making the process smooth and easy to manage."
+    "We use Cyclops tasks to define our model's task (in this case, heart failure prediction), train the model, make predictions, and evaluate performance. Cyclops task classes encapsulate the entire ML pipeline into a single, cohesive structure, making the process smooth and easy to manage."
    ]
   },
   {
@@ -581,7 +581,7 @@
    },
    "outputs": [],
    "source": [
-    "mortality_task = BinaryTabularClassificationTask(\n",
+    "heart_failure_prediction_task = BinaryTabularClassificationTask(\n",
     "    {model_name: model},\n",
     "    task_features=features_list,\n",
     "    task_target=\"outcome\",\n",
@@ -596,7 +596,7 @@
    },
    "outputs": [],
    "source": [
-    "mortality_task.list_models()"
+    "heart_failure_prediction_task.list_models()"
    ]
   },
   {
@@ -626,7 +626,7 @@
     "    \"method\": \"grid\",\n",
     "}\n",
     "\n",
-    "mortality_task.train(\n",
+    "heart_failure_prediction_task.train(\n",
     "    dataset[\"train\"],\n",
     "    model_name=model_name,\n",
     "    transforms=preprocessor,\n",
@@ -640,7 +640,7 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "model_params = mortality_task.list_models_params()[model_name]\n",
+    "model_params = heart_failure_prediction_task.list_models_params()[model_name]\n",
     "print(model_params)"
    ]
   },
@@ -679,7 +679,7 @@
    },
    "outputs": [],
    "source": [
-    "y_pred = mortality_task.predict(\n",
+    "y_pred = heart_failure_prediction_task.predict(\n",
     "    dataset[\"test\"],\n",
     "    model_name=model_name,\n",
     "    transforms=preprocessor,\n",
@@ -836,9 +836,9 @@
    },
    "outputs": [],
    "source": [
-    "results, dataset_with_preds = mortality_task.evaluate(\n",
-    "    dataset[\"test\"],\n",
-    "    metric_collection,\n",
+    "results, dataset_with_preds = heart_failure_prediction_task.evaluate(\n",
+    "    dataset=dataset[\"test\"],\n",
+    "    metrics=metric_collection,\n",
     "    model_names=model_name,\n",
     "    transforms=preprocessor,\n",
     "    prediction_column_prefix=\"preds\",\n",
@@ -849,6 +849,25 @@
     ")"
    ]
   },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "results_female, _ = heart_failure_prediction_task.evaluate(\n",
+    "    dataset=dataset[\"test\"],\n",
+    "    metrics=MetricCollection(\n",
+    "        {\"BinaryAccuracy\": create_metric(metric_name=\"accuracy\", task=\"binary\")},\n",
+    "    ),\n",
+    "    model_names=model_name,\n",
+    "    transforms=preprocessor,\n",
+    "    prediction_column_prefix=\"preds\",\n",
+    "    slice_spec=SliceSpec([{\"Sex\": {\"value\": \"F\"}}], include_overall=False),\n",
+    "    batch_size=32,\n",
+    ")"
+   ]
+  },
   {
    "cell_type": "markdown",
    "metadata": {},
@@ -872,6 +891,30 @@
     "    model_name=model_name,\n",
     ")\n",
     "\n",
+    "results_female_flat = flatten_results_dict(\n",
+    "    results=results_female,\n",
+    "    model_name=model_name,\n",
+    ")\n",
+    "\n",
+    "for name, metric in results_female_flat.items():\n",
+    "    split, name = name.split(\"/\")  # noqa: PLW2901\n",
+    "    descriptions = {\n",
+    "        \"BinaryPrecision\": \"The proportion of predicted positive instances that are correctly predicted.\",\n",
+    "        \"BinaryRecall\": \"The proportion of actual positive instances that are correctly predicted. Also known as recall or true positive rate.\",\n",
+    "        \"BinaryAccuracy\": \"The proportion of all instances that are correctly predicted.\",\n",
+    "        \"BinaryAUROC\": \"The area under the receiver operating characteristic curve (AUROC) is a measure of the performance of a binary classification model.\",\n",
+    "        \"BinaryF1Score\": \"The harmonic mean of precision and recall.\",\n",
+    "    }\n",
+    "    report.log_quantitative_analysis(\n",
+    "        \"performance\",\n",
+    "        name=name,\n",
+    "        value=metric,\n",
+    "        description=descriptions[name],\n",
+    "        metric_slice=split,\n",
+    "        pass_fail_thresholds=0.7,\n",
+    "        pass_fail_threshold_fns=lambda x, threshold: bool(x >= threshold),\n",
+    "    )\n",
+    "\n",
     "for name, metric in results_flat.items():\n",
     "    split, name = name.split(\"/\")  # noqa: PLW2901\n",
     "    descriptions = {\n",
@@ -1174,9 +1217,20 @@
    },
    "outputs": [],
    "source": [
-    "report_path = report.export(output_filename=\"heart_failure_report_periodic.html\")\n",
+    "synthetic_timestamps = [\n",
+    "    \"2021-09-01\",\n",
+    "    \"2021-10-01\",\n",
+    "    \"2021-11-01\",\n",
+    "    \"2021-12-01\",\n",
+    "    \"2022-01-01\",\n",
+    "]\n",
+    "report._model_card.overview = None\n",
+    "report_path = report.export(\n",
+    "    output_filename=\"heart_failure_report_periodic.html\",\n",
+    "    synthetic_timestamp=synthetic_timestamps[0],\n",
+    ")\n",
     "shutil.copy(f\"{report_path}\", \".\")\n",
-    "for _ in range(5):\n",
+    "for i in range(4):\n",
     "    report._model_card.overview = None\n",
     "    report._model_card.quantitative_analysis = None\n",
     "    results_flat = flatten_results_dict(\n",
@@ -1185,6 +1239,25 @@
     "        model_name=model_name,\n",
     "    )\n",
     "\n",
+    "    for name, metric in results_female_flat.items():\n",
+    "        split, name = name.split(\"/\")  # noqa: PLW2901\n",
+    "        descriptions = {\n",
+    "            \"BinaryPrecision\": \"The proportion of predicted positive instances that are correctly predicted.\",\n",
+    "            \"BinaryRecall\": \"The proportion of actual positive instances that are correctly predicted. Also known as recall or true positive rate.\",\n",
+    "            \"BinaryAccuracy\": \"The proportion of all instances that are correctly predicted.\",\n",
+    "            \"BinaryAUROC\": \"The area under the receiver operating characteristic curve (AUROC) is a measure of the performance of a binary classification model.\",\n",
+    "            \"BinaryF1Score\": \"The harmonic mean of precision and recall.\",\n",
+    "        }\n",
+    "        report.log_quantitative_analysis(\n",
+    "            \"performance\",\n",
+    "            name=name,\n",
+    "            value=np.clip(metric + np.random.normal(0, 0.1), 0, 1),\n",
+    "            description=descriptions[name],\n",
+    "            metric_slice=split,\n",
+    "            pass_fail_thresholds=0.7,\n",
+    "            pass_fail_threshold_fns=lambda x, threshold: bool(x >= threshold),\n",
+    "        )\n",
+    "\n",
     "    for name, metric in results_flat.items():\n",
     "        split, name = name.split(\"/\")  # noqa: PLW2901\n",
     "        descriptions = {\n",
@@ -1203,8 +1276,12 @@
     "            pass_fail_thresholds=0.7,\n",
     "            pass_fail_threshold_fns=lambda x, threshold: bool(x >= threshold),\n",
     "        )\n",
-    "    report_path = report.export(output_filename=\"heart_failure_report_periodic.html\")\n",
-    "    shutil.copy(f\"{report_path}\", \".\")"
+    "    report_path = report.export(\n",
+    "        output_filename=\"heart_failure_report_periodic.html\",\n",
+    "        synthetic_timestamp=synthetic_timestamps[i + 1],\n",
+    "    )\n",
+    "    shutil.copy(f\"{report_path}\", \".\")\n",
+    "shutil.rmtree(\"./cyclops_reports\")"
    ]
   },
   {
diff --git a/api/searchindex.js b/api/searchindex.js
index f4beb9c2d..4296cf0dd 100644
--- a/api/searchindex.js
+++ b/api/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"docnames": ["api", "contributing", "index", "intro", "reference/api/_autosummary/cyclops.data.features.medical_image", "reference/api/_autosummary/cyclops.data.features.medical_image.MedicalImage", "reference/api/_autosummary/cyclops.data.slicer", "reference/api/_autosummary/cyclops.data.slicer.SliceSpec", "reference/api/_autosummary/cyclops.data.slicer.compound_filter", "reference/api/_autosummary/cyclops.data.slicer.filter_datetime", "reference/api/_autosummary/cyclops.data.slicer.filter_non_null", "reference/api/_autosummary/cyclops.data.slicer.filter_range", "reference/api/_autosummary/cyclops.data.slicer.filter_string_contains", "reference/api/_autosummary/cyclops.data.slicer.filter_value", "reference/api/_autosummary/cyclops.data.slicer.is_datetime", "reference/api/_autosummary/cyclops.data.slicer.overall", "reference/api/_autosummary/cyclops.evaluate.evaluator", "reference/api/_autosummary/cyclops.evaluate.evaluator.evaluate", "reference/api/_autosummary/cyclops.evaluate.fairness.config", "reference/api/_autosummary/cyclops.evaluate.fairness.config.FairnessConfig", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.evaluate_fairness", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.Accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.BinaryAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MulticlassAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MultilabelAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.AUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.BinaryAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MulticlassAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MultilabelAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.F1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.FbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.factory", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.create_metric", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.auroc", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.binary_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.stat_scores", "reference/api/_autosummary/cyclops.evaluate.metrics.metric", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.Metric", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.MetricCollection", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.OperatorMetric", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Precision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Recall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.BinaryROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MulticlassROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MultilabelROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.ROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.BinarySensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.Sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.BinarySpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MulticlassSpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MultilabelSpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.Specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.BinaryStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MulticlassStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MultilabelStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.StatScores", "reference/api/_autosummary/cyclops.monitor.clinical_applicator", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.ClinicalShiftApplicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.binary_noise_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_association_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_swap_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.gaussian_noise_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.knockout_shift", "reference/api/_autosummary/cyclops.report.report", "reference/api/_autosummary/cyclops.report.report.ModelCardReport", "reference/api/_autosummary/cyclops.tasks.classification", "reference/api/_autosummary/cyclops.tasks.classification.BinaryTabularClassificationTask", "reference/api/_autosummary/cyclops.tasks.classification.MultilabelImageClassificationTask", "reference/api/cyclops.data", "reference/api/cyclops.evaluate", "reference/api/cyclops.monitor", "reference/api/cyclops.report", "reference/api/cyclops.tasks", "tutorials", "tutorials/kaggle/heart_failure_prediction", "tutorials/nihcxr/cxr_classification", "tutorials/nihcxr/monitor_api", "tutorials/synthea/los_prediction", "tutorials_monitor", "tutorials_use_cases"], "filenames": ["api.rst", "contributing.rst", "index.rst", "intro.rst", "reference/api/_autosummary/cyclops.data.features.medical_image.rst", "reference/api/_autosummary/cyclops.data.features.medical_image.MedicalImage.rst", "reference/api/_autosummary/cyclops.data.slicer.rst", "reference/api/_autosummary/cyclops.data.slicer.SliceSpec.rst", "reference/api/_autosummary/cyclops.data.slicer.compound_filter.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_datetime.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_non_null.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_range.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_string_contains.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_value.rst", "reference/api/_autosummary/cyclops.data.slicer.is_datetime.rst", "reference/api/_autosummary/cyclops.data.slicer.overall.rst", "reference/api/_autosummary/cyclops.evaluate.evaluator.rst", "reference/api/_autosummary/cyclops.evaluate.evaluator.evaluate.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.config.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.config.FairnessConfig.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.evaluate_fairness.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.Accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.BinaryAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.AUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.BinaryAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MulticlassAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MultilabelAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.F1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.FbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.create_metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.auroc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.binary_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.stat_scores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.Metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.MetricCollection.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.OperatorMetric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.BinaryROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MulticlassROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MultilabelROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.ROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.BinarySensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.Sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.BinarySpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MulticlassSpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MultilabelSpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.Specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.BinaryStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.StatScores.rst", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.rst", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.binary_noise_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_association_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_swap_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.gaussian_noise_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.knockout_shift.rst", "reference/api/_autosummary/cyclops.report.report.rst", "reference/api/_autosummary/cyclops.report.report.ModelCardReport.rst", "reference/api/_autosummary/cyclops.tasks.classification.rst", "reference/api/_autosummary/cyclops.tasks.classification.BinaryTabularClassificationTask.rst", "reference/api/_autosummary/cyclops.tasks.classification.MultilabelImageClassificationTask.rst", "reference/api/cyclops.data.rst", "reference/api/cyclops.evaluate.rst", "reference/api/cyclops.monitor.rst", "reference/api/cyclops.report.rst", "reference/api/cyclops.tasks.rst", "tutorials.rst", "tutorials/kaggle/heart_failure_prediction.ipynb", "tutorials/nihcxr/cxr_classification.ipynb", "tutorials/nihcxr/monitor_api.ipynb", "tutorials/synthea/los_prediction.ipynb", "tutorials_monitor.rst", "tutorials_use_cases.rst"], "titles": ["API Reference", "Contributing to cyclops", "Welcome to cyclops\u2019s documentation!", "\ud83d\udc23 Getting Started", "cyclops.data.features.medical_image", "cyclops.data.features.medical_image.MedicalImage", "cyclops.data.slicer", "cyclops.data.slicer.SliceSpec", "cyclops.data.slicer.compound_filter", "cyclops.data.slicer.filter_datetime", "cyclops.data.slicer.filter_non_null", "cyclops.data.slicer.filter_range", "cyclops.data.slicer.filter_string_contains", "cyclops.data.slicer.filter_value", "cyclops.data.slicer.is_datetime", "cyclops.data.slicer.overall", "cyclops.evaluate.evaluator", "cyclops.evaluate.evaluator.evaluate", "cyclops.evaluate.fairness.config", "cyclops.evaluate.fairness.config.FairnessConfig", "cyclops.evaluate.fairness.evaluator", "cyclops.evaluate.fairness.evaluator.evaluate_fairness", "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values", "cyclops.evaluate.metrics.accuracy", "cyclops.evaluate.metrics.accuracy.Accuracy", "cyclops.evaluate.metrics.accuracy.BinaryAccuracy", "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy", "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy", "cyclops.evaluate.metrics.auroc", "cyclops.evaluate.metrics.auroc.AUROC", "cyclops.evaluate.metrics.auroc.BinaryAUROC", "cyclops.evaluate.metrics.auroc.MulticlassAUROC", "cyclops.evaluate.metrics.auroc.MultilabelAUROC", "cyclops.evaluate.metrics.f_beta", "cyclops.evaluate.metrics.f_beta.BinaryF1Score", "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore", "cyclops.evaluate.metrics.f_beta.F1Score", "cyclops.evaluate.metrics.f_beta.FbetaScore", "cyclops.evaluate.metrics.f_beta.MulticlassF1Score", "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore", "cyclops.evaluate.metrics.f_beta.MultilabelF1Score", "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore", "cyclops.evaluate.metrics.factory", "cyclops.evaluate.metrics.factory.create_metric", "cyclops.evaluate.metrics.functional.accuracy", "cyclops.evaluate.metrics.functional.auroc", "cyclops.evaluate.metrics.functional.f_beta", "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score", "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.f1_score", "cyclops.evaluate.metrics.functional.f_beta.fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score", "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score", "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score", "cyclops.evaluate.metrics.functional.precision_recall", "cyclops.evaluate.metrics.functional.precision_recall.binary_precision", "cyclops.evaluate.metrics.functional.precision_recall.binary_recall", "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision", "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall", "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision", "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall", "cyclops.evaluate.metrics.functional.precision_recall.precision", "cyclops.evaluate.metrics.functional.precision_recall.recall", "cyclops.evaluate.metrics.functional.precision_recall_curve", "cyclops.evaluate.metrics.functional.roc", "cyclops.evaluate.metrics.functional.roc.binary_roc_curve", "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve", "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve", "cyclops.evaluate.metrics.functional.roc.roc_curve", "cyclops.evaluate.metrics.functional.sensitivity", "cyclops.evaluate.metrics.functional.specificity", "cyclops.evaluate.metrics.functional.stat_scores", "cyclops.evaluate.metrics.metric", "cyclops.evaluate.metrics.metric.Metric", "cyclops.evaluate.metrics.metric.MetricCollection", "cyclops.evaluate.metrics.metric.OperatorMetric", "cyclops.evaluate.metrics.precision_recall", "cyclops.evaluate.metrics.precision_recall.BinaryPrecision", "cyclops.evaluate.metrics.precision_recall.BinaryRecall", "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision", "cyclops.evaluate.metrics.precision_recall.MulticlassRecall", "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision", "cyclops.evaluate.metrics.precision_recall.MultilabelRecall", "cyclops.evaluate.metrics.precision_recall.Precision", "cyclops.evaluate.metrics.precision_recall.Recall", "cyclops.evaluate.metrics.precision_recall_curve", "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve", "cyclops.evaluate.metrics.roc", "cyclops.evaluate.metrics.roc.BinaryROCCurve", "cyclops.evaluate.metrics.roc.MulticlassROCCurve", "cyclops.evaluate.metrics.roc.MultilabelROCCurve", "cyclops.evaluate.metrics.roc.ROCCurve", "cyclops.evaluate.metrics.sensitivity", "cyclops.evaluate.metrics.sensitivity.BinarySensitivity", "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity", "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity", "cyclops.evaluate.metrics.sensitivity.Sensitivity", "cyclops.evaluate.metrics.specificity", "cyclops.evaluate.metrics.specificity.BinarySpecificity", "cyclops.evaluate.metrics.specificity.MulticlassSpecificity", "cyclops.evaluate.metrics.specificity.MultilabelSpecificity", "cyclops.evaluate.metrics.specificity.Specificity", "cyclops.evaluate.metrics.stat_scores", "cyclops.evaluate.metrics.stat_scores.BinaryStatScores", "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores", "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores", "cyclops.evaluate.metrics.stat_scores.StatScores", "cyclops.monitor.clinical_applicator", "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator", "cyclops.monitor.synthetic_applicator", "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator", "cyclops.monitor.synthetic_applicator.binary_noise_shift", "cyclops.monitor.synthetic_applicator.feature_association_shift", "cyclops.monitor.synthetic_applicator.feature_swap_shift", "cyclops.monitor.synthetic_applicator.gaussian_noise_shift", "cyclops.monitor.synthetic_applicator.knockout_shift", "cyclops.report.report", "cyclops.report.report.ModelCardReport", "cyclops.tasks.classification", "cyclops.tasks.classification.BinaryTabularClassificationTask", "cyclops.tasks.classification.MultilabelImageClassificationTask", "cyclops.data", "cyclops.evaluate", "cyclops.monitor", "cyclops.report", "cyclops.tasks", "Tutorials", "Heart Failure Prediction", "Chest X-Ray Disease Classification", "NIHCXR Clinical Drift Experiments Tutorial", "Prolonged Length of Stay Prediction", "monitor API", "Example use cases"], "terms": {"cyclop": [0, 131, 132, 133, 134], "data": [0, 2, 3, 24, 26, 27, 49, 50, 52, 54, 69, 72, 89, 95, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 130, 132, 133, 135], "slicer": [0, 131, 132, 133, 134], "compound_filt": 0, "filter_datetim": 0, "filter_non_nul": 0, "filter_rang": 0, "filter_string_contain": 0, "filter_valu": [0, 132], "is_datetim": 0, "overal": [0, 7, 21, 121, 131, 132, 134], "slicespec": [0, 17, 112, 124, 131, 132, 133, 134], "spec_list": [0, 7, 131, 132, 133, 134], "include_overal": [0, 7], "valid": [0, 7, 9, 17, 121, 123, 124, 131, 132], "column_nam": [0, 7, 9, 10, 11, 12, 13, 132], "_registri": [0, 7], "add_slice_spec": [0, 7], "get_slic": [0, 7], "slice": [0, 3, 7, 8, 17, 21, 121, 123, 124, 131, 132, 134], "featur": [0, 7, 9, 10, 11, 12, 13, 15, 17, 112, 116, 117, 121, 123, 124, 130, 132, 136], "medical_imag": 0, "medicalimag": 0, "__call__": [0, 5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "cast_storag": [0, 5], "decode_exampl": [0, 5], "embed_storag": [0, 5], "encode_exampl": [0, 5], "flatten": [0, 5, 131, 132, 134], "task": [0, 2, 3, 24, 25, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 44, 47, 48, 49, 50, 51, 53, 54, 58, 60, 61, 62, 63, 66, 67, 68, 69, 78, 80, 81, 82, 83, 84, 85, 90, 92, 93, 94, 95, 98, 99, 100, 102, 103, 104, 105, 110, 130, 132, 136], "classif": [0, 3, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 44, 47, 48, 49, 50, 51, 53, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 78, 79, 80, 81, 82, 83, 84, 85, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 130, 131, 134], "binarytabularclassificationtask": [0, 131, 134], "__init__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 132], "add_model": [0, 123, 124], "data_typ": [0, 123, 124], "evalu": [0, 2, 3, 121, 123, 124, 130, 132, 136], "get_model": [0, 123, 124], "list_model": [0, 123, 124, 131, 134], "list_models_param": [0, 123, 124, 131, 134], "load_model": [0, 123, 124], "models_count": [0, 123, 124], "predict": [0, 3, 17, 19, 21, 24, 26, 27, 30, 31, 32, 34, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 67, 80, 81, 82, 84, 85, 87, 88, 89, 92, 93, 94, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 130, 132], "save_model": [0, 123, 124], "task_typ": [0, 123, 124, 131, 134], "train": [0, 3, 17, 121, 123, 124, 130, 132, 135, 136], "multilabelimageclassificationtask": 0, "metric": [0, 17, 19, 21, 121, 123, 124, 130, 131, 134, 136], "__add__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "__mul__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "add_stat": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "clone": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "comput": [0, 17, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 123, 124, 130, 132, 136], "reset_st": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "update_st": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "metriccollect": [0, 17, 21, 123, 124, 131, 134], "add_metr": [0, 75], "clear": [0, 75], "get": [0, 2, 75, 123, 124, 131, 134], "item": [0, 75, 131, 132, 133, 134], "kei": [0, 7, 17, 21, 75, 121, 131, 132, 133, 134], "pop": [0, 75, 131, 134], "popitem": [0, 75], "setdefault": [0, 75], "updat": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 133, 134], "valu": [0, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 130, 132, 133, 134, 136], "operatormetr": 0, "factori": [0, 7, 132], "create_metr": [0, 131, 132, 134], "accuraci": [0, 131, 134], "binaryaccuraci": [0, 131, 134], "multiclassaccuraci": 0, "multilabelaccuraci": 0, "auroc": [0, 130, 131, 134, 136], "binaryauroc": [0, 29, 131, 134], "multiclassauroc": [0, 29], "multilabelauroc": [0, 29], "precision_recal": 0, "binaryprecis": [0, 131, 134], "binaryrecal": [0, 97, 131, 134], "multiclassprecis": 0, "multiclassrecal": [0, 98], "multilabelprecis": 0, "multilabelrecal": [0, 99], "precis": [0, 24, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 60, 64, 66, 77, 78, 80, 82, 85, 86, 87, 88, 89, 90, 92, 100, 105, 131, 132, 134], "recal": [0, 24, 38, 51, 55, 57, 59, 61, 64, 66, 77, 79, 81, 83, 86, 87, 88, 89, 90, 92, 97, 98, 99, 105, 131, 132, 134], "precision_recall_curv": [0, 131, 134], "binaryprecisionrecallcurv": [0, 30, 92, 131, 134], "multiclassprecisionrecallcurv": [0, 31, 93], "multilabelprecisionrecallcurv": [0, 32, 94], "precisionrecallcurv": 0, "roc": [0, 28, 29, 30, 31, 32, 45, 131, 134], "binaryroccurv": [0, 131, 134], "multiclassroccurv": 0, "multilabelroccurv": 0, "roccurv": 0, "sensit": [0, 121, 130, 131, 132, 134, 135], "binarysensit": 0, "multiclasssensit": 0, "multilabelsensit": [0, 132], "specif": [0, 7, 17, 115, 118, 123, 124, 131, 132, 134], "binaryspecif": 0, "multiclassspecif": 0, "multilabelspecif": [0, 132], "f_beta": 0, "binaryf1scor": [0, 131, 134], "binaryfbetascor": [0, 34], "f1score": 0, "fbetascor": [0, 36], "multiclassf1scor": 0, "multiclassfbetascor": [0, 38], "multilabelf1scor": 0, "multilabelfbetascor": [0, 40], "stat_scor": [0, 132], "binarystatscor": [0, 25, 35, 78, 79, 102], "multiclassstatscor": [0, 26, 39, 80, 81, 103], "multilabelstatscor": [0, 27, 41, 82, 83, 104, 132], "statscor": 0, "function": [0, 3, 5, 6, 7, 8, 16, 17, 20, 21, 25, 35, 41, 42, 76, 93, 102, 104, 107, 109, 110, 113, 121, 131, 132, 134], "binary_precis": 0, "binary_recal": 0, "multiclass_precis": 0, "multiclass_recal": 0, "multilabel_precis": 0, "multilabel_recal": 0, "binary_roc_curv": 0, "multiclass_roc_curv": 0, "multilabel_roc_curv": 0, "roc_curv": [0, 131, 134], "binary_f1_scor": 0, "binary_fbeta_scor": 0, "f1_score": [0, 131, 134], "fbeta_scor": 0, "multiclass_f1_scor": 0, "multiclass_fbeta_scor": 0, "multilabel_f1_scor": 0, "multilabel_fbeta_scor": 0, "fair": [0, 17, 121, 123, 124, 131, 132, 134], "evaluate_fair": 0, "warn_too_many_unique_valu": 0, "config": [0, 123], "fairnessconfig": [0, 17, 123, 124, 131, 134], "monitor": [0, 2, 3, 130, 131, 133, 134], "clinical_appl": 0, "clinicalshiftappl": [0, 133], "ag": [0, 112, 130, 133, 136], "apply_shift": [0, 112, 114, 133], "custom": [0, 112, 121, 133], "hospital_typ": [0, 112], "month": [0, 7, 9, 112], "sex": [0, 112, 130, 133, 134, 136], "time": [0, 7, 75, 112, 121, 130, 132, 134, 135, 136], "synthetic_appl": 0, "binary_noise_shift": 0, "feature_association_shift": 0, "feature_swap_shift": 0, "gaussian_noise_shift": 0, "knockout_shift": 0, "syntheticshiftappl": [0, 113], "report": [0, 2, 3, 110, 130, 136], "modelcardreport": [0, 131, 132, 134], "export": [0, 121, 131, 132, 134], "from_json_fil": [0, 121], "log_cit": [0, 121, 132], "log_dataset": [0, 121, 131], "log_descriptor": [0, 121, 131, 132, 134], "log_fairness_assess": [0, 121, 131, 132, 134], "log_from_dict": [0, 121, 131, 132, 134], "log_imag": [0, 121], "log_licens": [0, 121, 131, 134], "log_model_paramet": [0, 121, 131, 134], "log_own": [0, 121, 131, 132, 134], "log_performance_metr": [0, 121, 131, 134], "log_plotly_figur": [0, 121, 131, 132, 134], "log_quantitative_analysi": [0, 121, 131, 132, 134], "log_refer": [0, 121, 131, 134], "log_regul": [0, 121], "log_risk": [0, 121, 131, 132, 134], "log_use_cas": [0, 121, 131, 132, 134], "log_us": [0, 121, 131, 132, 134], "log_vers": [0, 121, 131, 134], "thank": 1, "your": [1, 131], "interest": [1, 131, 134], "To": [1, 3, 5, 131, 134], "submit": 1, "pr": 1, "pleas": [1, 131, 132, 133, 134], "fill": 1, "out": [1, 121, 131, 134], "templat": [1, 121], "along": [1, 112, 131, 132, 134], "If": [1, 5, 7, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124, 131, 134], "fix": 1, "an": [1, 3, 5, 7, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 51, 60, 61, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 131, 132, 134], "issu": [1, 21], "don": 1, "t": [1, 5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121], "forget": 1, "link": [1, 121, 131, 132, 134], "onc": [1, 75, 131, 134], "python": [1, 3, 134], "virtual": [1, 3], "environ": [1, 3, 131, 134], "i": [1, 3, 5, 7, 9, 10, 11, 12, 13, 14, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 131, 132, 134, 136], "setup": [1, 134], "you": [1, 3, 5, 75, 131, 132, 134, 135], "can": [1, 3, 5, 7, 21, 25, 38, 51, 69, 75, 84, 85, 95, 100, 110, 121, 123, 124, 131, 132, 134, 135], "run": [1, 3, 131, 134], "us": [1, 2, 5, 7, 8, 17, 21, 24, 29, 30, 31, 32, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 62, 63, 66, 67, 68, 69, 75, 76, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 102, 105, 107, 110, 112, 114, 121, 123, 124, 130, 131, 132, 134, 135], "all": [1, 7, 8, 9, 10, 11, 12, 13, 15, 63, 73, 75, 108, 109, 110, 123, 131, 132, 133, 134], "file": [1, 5, 121, 131, 132, 134], "For": [1, 21, 76, 121, 131, 134], "style": 1, "we": [1, 3, 121, 131, 132, 134], "recommend": [1, 76], "googl": 1, "guid": 1, "appli": [1, 8, 25, 29, 59, 62, 63, 66, 67, 68, 75, 76, 93, 104, 109, 110, 112, 123, 124, 131, 134], "black": 1, "format": [1, 5, 7, 89, 121, 131, 134], "docstr": 1, "numpi": [1, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 116, 117, 118, 119, 124, 131, 132, 133, 134], "also": [1, 3, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 134, 136], "flake8": 1, "pylint": 1, "further": 1, "static": 1, "analysi": [1, 121, 131, 132, 134], "The": [1, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 60, 61, 63, 66, 68, 69, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 131, 132, 134, 135, 136], "show": [1, 131, 132, 134], "error": 1, "which": [1, 9, 10, 11, 12, 13, 21, 90, 121, 131, 132, 134, 136], "need": [1, 17, 21, 131, 134], "befor": [1, 17, 21, 22, 123, 131, 134], "last": 1, "least": 1, "type": [1, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 130, 132, 136], "hint": 1, "our": [1, 131, 134], "check": [1, 14, 89], "mypi": 1, "current": [1, 121, 131, 134], "ar": [1, 5, 7, 11, 12, 17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 97, 98, 99, 100, 103, 104, 105, 108, 109, 110, 112, 116, 121, 131, 132, 134], "strict": 1, "enforc": 1, "more": [1, 7, 16, 17, 123, 124, 131, 136], "api": [1, 2, 3, 130, 131, 136], "becom": 1, "stabl": [1, 131, 132, 133, 134], "start": [2, 17, 131, 134], "instal": [2, 131], "pip": [2, 131], "develop": [2, 131, 132, 134], "poetri": 2, "contribut": 2, "notebook": [2, 131, 132, 134], "citat": [2, 121, 131, 132, 134], "pre": [2, 131, 134], "commit": 2, "hook": 2, "code": [2, 131, 134], "guidelin": [2, 3], "tutori": [2, 131, 135, 136], "exampl": [2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 15, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 130, 131, 132, 134, 135], "case": [2, 3, 75, 115, 121, 130, 131, 134, 135], "refer": [2, 3, 121, 131, 132, 134], "toolkit": 3, "facilit": 3, "research": 3, "deploy": 3, "ml": [3, 131, 134], "model": [3, 16, 17, 21, 121, 123, 124, 130, 135, 136], "healthcar": 3, "It": [3, 38, 51, 75, 84, 85, 100, 105, 135], "provid": [3, 7, 9, 12, 17, 21, 69, 110, 121, 131, 132, 134], "few": 3, "high": [3, 131, 132, 134], "level": [3, 21, 131, 132, 134], "name": [3, 7, 8, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 124, 131, 132, 133, 134], "creat": [3, 6, 7, 21, 42, 43, 75, 84, 85, 100, 115, 118, 119, 121, 123, 124, 130, 132, 136], "dataset": [3, 6, 7, 16, 17, 19, 21, 26, 38, 39, 51, 52, 58, 61, 68, 69, 80, 81, 83, 88, 89, 90, 94, 95, 98, 99, 103, 104, 112, 114, 121, 123, 124, 125, 130, 135, 136], "infer": [3, 17], "popular": [3, 131], "effici": 3, "load": [3, 17, 121, 123, 124, 130, 134, 135, 136], "differ": [3, 24, 29, 36, 37, 46, 55, 62, 63, 64, 69, 70, 72, 84, 85, 90, 95, 100, 105, 130, 131, 132, 134, 135], "modal": 3, "common": [3, 131], "implement": [3, 136], "scikit": [3, 131], "learn": [3, 131, 132], "pytorch": 3, "canon": 3, "mortal": [3, 123], "chest": [3, 130], "x": [3, 114, 115, 116, 117, 118, 119, 123, 130, 131, 133, 134], "rai": [3, 130], "clinic": [3, 111, 112, 130, 135], "detect": [3, 132, 135], "shift": [3, 111, 112, 114, 116, 117, 130, 135], "relev": [3, 121, 131, 134, 135], "card": [3, 121, 130, 131, 134, 136], "librari": [3, 130, 135, 136], "end": [3, 131, 132, 134], "mimic": 3, "iii": 3, "iv": 3, "eicu": 3, "crd": 3, "python3": [3, 131, 132, 133, 134], "m": [3, 131, 132, 133, 134], "pycyclop": [3, 131, 132, 133, 134], "base": [3, 5, 7, 17, 19, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 130, 131, 136], "packag": [3, 125, 126, 127, 128, 129, 131, 132, 133, 134], "support": [3, 7, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 72, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 107, 108, 109, 135], "process": [3, 112, 131, 132, 134], "transform": [3, 17, 66, 67, 68, 93, 123, 124, 131, 132, 133, 134], "downstream": [3, 131, 134], "addit": [3, 75, 121, 123, 124, 131, 132, 134], "from": [3, 5, 7, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 119, 121, 123, 124, 131, 132, 133, 134], "other": [3, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131], "thei": [3, 69], "extra": [3, 121], "multipl": [3, 8, 17, 21, 75, 121], "could": [3, 131, 134], "combin": [3, 8, 131], "both": 3, "set": [3, 7, 17, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 131, 132, 134], "up": [3, 131, 132, 134], "henc": 3, "make": [3, 131, 134], "sure": [3, 131], "sourc": [3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 130, 135], "env": 3, "info": [3, 131, 134], "path": [3, 5, 112, 121, 123, 124, 131, 134], "bin": [3, 21], "activ": [3, 134], "In": [3, 75, 131, 134], "order": [3, 5, 17, 107, 108, 109], "depend": 3, "test": [3, 17, 121, 123, 124, 130, 131, 134, 135, 136], "codestyl": 3, "unit": 3, "integr": [3, 131], "built": 3, "sphinx": 3, "local": 3, "doc": 3, "cd": 3, "html": [3, 121, 131, 132, 133, 134], "sphinxopt": 3, "d": [3, 75, 112, 132], "nbsphinx_allow_error": 3, "true": [3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 24, 26, 27, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 112, 114, 116, 121, 123, 124, 131, 132, 133, 134], "welcom": 3, "see": [3, 7, 121, 131, 132, 133, 134], "jupyt": [3, 131, 132, 133, 134], "insid": 3, "ipython": 3, "kernel": 3, "after": [3, 17, 131, 134], "ipykernel": 3, "user": [3, 121, 131, 134], "name_of_kernel": 3, "now": 3, "navig": 3, "": [3, 7, 10, 14, 17, 21, 75, 121, 123, 124, 131, 132, 133, 134], "tab": [3, 131], "cite": 3, "when": [3, 5, 17, 21, 24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 75, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105, 123, 124, 131, 134], "project": 3, "paper": 3, "articl": 3, "krishnan2022": 3, "12": [3, 7, 131, 132, 134], "02": [3, 69], "22283021": 3, "author": [3, 131, 132], "krishnan": 3, "amrit": 3, "subasri": 3, "vallijah": 3, "mckeen": 3, "kaden": 3, "kore": 3, "ali": 3, "ogidi": 3, "franklin": 3, "alinoori": 3, "mahshid": 3, "lalani": 3, "nadim": 3, "dhalla": 3, "azra": 3, "verma": 3, "amol": 3, "razak": 3, "fahad": 3, "pandya": 3, "deval": 3, "dolatabadi": 3, "elham": 3, "titl": [3, 131, 132, 134], "cyclic": 3, "toward": 3, "operation": 3, "health": [3, 131, 134], "eloc": 3, "id": [3, 5, 112, 131, 132, 134], "2022": [3, 7, 132], "year": [3, 7, 9, 131, 132, 134], "doi": 3, "10": [3, 131, 132, 133, 134], "1101": 3, "publish": [3, 131], "cold": 3, "spring": 3, "harbor": 3, "laboratori": [3, 134], "press": 3, "url": [3, 132], "http": [3, 121, 131, 132, 133, 134], "www": [3, 131], "medrxiv": 3, "org": [3, 121, 131, 132, 134], "content": [3, 121], "earli": 3, "08": [3, 132], "journal": 3, "medic": [4, 5, 125, 132, 134, 136], "imag": [4, 5, 17, 21, 118, 121, 124, 125, 130, 132, 133], "class": [4, 5, 6, 7, 17, 18, 19, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 69, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 116, 117, 119, 120, 121, 122, 123, 124, 131, 132, 134], "decod": [5, 132], "none": [5, 7, 9, 17, 19, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 124, 131, 132, 133, 134], "reader": 5, "itkread": 5, "suffix": 5, "jpg": 5, "read": [5, 17], "paramet": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 131, 132, 134], "bool": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 75, 76, 108, 109, 110, 112, 116, 117, 121, 123, 124, 131, 132, 134], "option": [5, 7, 9, 10, 11, 12, 13, 17, 21, 24, 27, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 69, 75, 80, 81, 82, 83, 84, 85, 90, 95, 98, 99, 100, 103, 104, 105, 108, 112, 114, 121, 123, 124, 132], "default": [5, 7, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 124, 131, 134], "whether": [5, 7, 21, 75, 108, 109, 110, 112, 121, 134, 136], "fals": [5, 7, 9, 10, 11, 12, 13, 14, 19, 21, 29, 30, 40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105, 107, 108, 109, 110, 117, 118, 123, 124, 131, 132, 134], "return": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 132, 134], "dictionari": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 75, 121, 123, 124, 131, 134], "image_path": 5, "byte": 5, "image_byt": 5, "union": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124], "str": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 131, 134], "imageread": 5, "monai": [5, 132, 133], "method": [5, 7, 19, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 131, 134], "attribut": [5, 7, 19, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 131, 134], "call": [5, 121], "self": [5, 132], "storag": 5, "cast": [5, 131, 134], "arrow": 5, "arrai": [5, 24, 26, 27, 29, 30, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 63, 66, 67, 68, 69, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 119, 124, 132], "convert": [5, 25, 35, 41, 48, 61, 69, 95, 102, 104, 107, 131, 134], "pyarrow": 5, "rtype": 5, "structarrai": 5, "pa": 5, "string": [5, 7, 9, 12, 17, 21, 75, 121, 132], "must": [5, 9, 17, 21, 121], "contain": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 27, 103, 104, 121, 131, 132, 134, 136], "binari": [5, 24, 25, 29, 30, 34, 35, 36, 37, 47, 48, 49, 50, 56, 57, 60, 61, 62, 63, 66, 69, 72, 78, 79, 84, 85, 87, 90, 92, 95, 97, 100, 102, 104, 105, 107, 110, 115, 123, 124, 131, 134, 136], "struct": 5, "doesn": 5, "matter": 5, "list": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 115, 116, 117, 118, 119, 121, 123, 124, 131, 134], "arg": [5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "stringarrai": 5, "listarrai": 5, "token_per_repo_id": 5, "serial": 5, "version": [5, 121, 131, 132, 134], "dict": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 75, 121, 123, 124], "access": 5, "privat": 5, "repositori": [5, 131], "hub": 5, "pass": [5, 17, 43, 75, 112, 121, 123, 124, 131, 134], "repo_id": 5, "token": [5, 131], "deseri": 5, "np": [5, 11, 14, 21, 123, 124, 131, 132, 133, 134], "ndarrai": [5, 14, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 116, 117, 118, 119, 123, 124], "metadata": [5, 131, 132, 134], "emb": 5, "encod": 5, "input": [5, 24, 46, 55, 60, 61, 64, 69, 70, 72, 87, 89, 95, 115, 118, 123, 124], "state": [5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 132], "itself": 5, "otherwis": [5, 14, 24, 27, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110], "tupl": [5, 7, 66, 67, 68, 69, 75, 87, 88, 89, 92, 93, 94, 112, 123, 124], "classlabel": [5, 131, 134], "translat": 5, "translationvariablelanguag": 5, "sequenc": [5, 17, 75, 123, 124, 132], "array2d": 5, "array3d": 5, "array4d": 5, "array5d": 5, "audio": 5, "subset": 6, "hug": [6, 123, 124, 130, 136], "face": [6, 123, 124, 130, 136], "object": [7, 19, 21, 112, 114, 121, 123, 124, 131, 134], "ani": [7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124, 131, 132, 134], "A": [7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 25, 75, 76, 104, 109, 121, 131, 132, 134], "each": [7, 8, 17, 21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 69, 75, 76, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110, 131, 134], "map": [7, 8, 22, 75, 123, 124, 131, 132, 134], "column": [7, 8, 9, 10, 11, 12, 13, 17, 21, 112, 123, 124, 131, 132, 134], "one": [7, 16, 17, 21, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 69, 76, 80, 81, 82, 83, 84, 85, 95, 98, 99, 100, 105, 123, 124], "follow": [7, 17, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105, 121, 131, 132, 134], "exact": [7, 13], "select": [7, 112, 116, 131, 132, 134], "thi": [7, 17, 21, 24, 25, 26, 27, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105, 121, 123, 131, 132, 134, 136], "singl": [7, 75, 121, 123, 124, 131, 134], "row": [7, 131, 132], "where": [7, 8, 9, 10, 11, 12, 13, 60, 61, 63, 75, 121, 123, 124, 131, 134, 136], "e": [7, 9, 10, 17, 21, 75, 116, 117, 118, 121, 131, 134], "g": [7, 9, 17, 21, 116, 117, 118, 121, 131, 134], "2021": [7, 131], "01": [7, 29, 31, 32, 131, 132, 134], "00": [7, 131, 132, 133, 134], "min_valu": [7, 11, 131, 132, 133, 134], "minimum": [7, 11], "specifi": [7, 17, 75, 112, 121, 123, 124, 131, 134], "min_inclus": [7, 11, 131, 134], "indic": [7, 21, 27, 60, 61, 115, 118, 131, 132, 134], "includ": [7, 11, 21, 72, 112, 114, 131, 132, 134, 135], "rang": [7, 11, 29, 30, 66, 67, 68, 93, 131, 132, 134], "work": [7, 27, 103, 104, 121, 131, 132, 134], "numer": [7, 11, 131, 134], "datetim": [7, 9, 11, 14, 121, 131, 134], "inf": [7, 11, 131, 134], "max_valu": [7, 11, 131, 132, 133, 134], "boolean": [7, 8, 9, 10, 11, 12, 13, 15], "greater": [7, 22, 134], "than": [7, 11, 22, 48, 52, 54, 123, 124, 131, 134, 136], "equal": [7, 11, 21], "maximum": [7, 11, 22, 29, 30], "max_inclus": [7, 11, 131, 134], "less": [7, 11, 48, 52, 54, 134], "match": [7, 9, 12, 13, 17], "between": [7, 21, 38, 51, 69, 95], "1": [7, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 116, 117, 118, 119, 121, 130, 131, 132, 134, 135, 136], "dai": [7, 9, 134, 136], "31": [7, 131, 132, 133, 134], "hour": [7, 9], "0": [7, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 115, 116, 117, 118, 119, 121, 131, 132, 133, 134], "23": [7, 131, 134], "negat": [7, 9, 10, 11, 12, 13, 132], "flag": 7, "doe": [7, 9, 11, 12, 13, 17, 21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 121], "keep_nul": [7, 9, 11, 12, 13], "keep": [7, 17, 21, 134], "null": [7, 9, 10, 11, 12, 13, 134], "conjunct": [7, 132], "its": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 60, 61, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 134], "own": [7, 131, 134], "callabl": [7, 8, 17, 21, 76, 121], "import": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 130, 135, 136], "slice_spec": [7, 17, 123, 124, 131, 132, 134], "feature_1": 7, "feature_2": 7, "feature_3": 7, "value_1": 7, "value_2": 7, "2020": [7, 9, 132], "5": [7, 24, 25, 27, 29, 31, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 115, 118, 119, 130, 131, 132, 134, 135], "60": [7, 133], "6": [7, 24, 26, 35, 36, 38, 39, 49, 56, 59, 62, 63, 78, 79, 80, 81, 83, 84, 85, 87, 88, 90, 92, 93, 95, 97, 98, 99, 100, 104, 107, 108, 110, 131, 132, 133, 134], "7": [7, 29, 30, 31, 36, 39, 40, 69, 80, 81, 82, 84, 85, 87, 88, 89, 93, 98, 100, 105, 108, 109, 110, 131, 132, 134, 136], "8": [7, 24, 26, 27, 29, 30, 31, 34, 35, 36, 37, 38, 40, 41, 47, 49, 50, 53, 54, 56, 59, 60, 62, 66, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 105, 107, 109, 110, 131, 132, 134], "2000": 7, "2010": 7, "slice_nam": [7, 121, 131, 134], "slice_func": 7, "print": [7, 131, 132, 134], "do": [7, 17, 131, 132, 134], "someth": 7, "here": [7, 131, 134], "filter": [7, 9, 10, 11, 12, 13, 17, 21, 131, 132, 133, 134], "add": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124, 131, 134], "detail": [7, 131, 132, 134], "registri": [7, 131, 134], "gener": [7, 69, 95, 112, 121, 130, 135, 136], "slice_funct": 8, "result": [8, 17, 38, 51, 123, 124, 131, 133, 134], "bitwis": 8, "AND": 8, "signatur": 8, "should": [8, 21, 69, 76, 95, 117, 121, 123, 124, 131, 132, 134], "kwarg": [8, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 123, 124], "given": [9, 11, 12, 13, 14, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 75, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110, 121, 123, 124], "int": [9, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 116, 117, 118, 119, 121, 123, 124, 131, 132, 134], "compon": 9, "have": [9, 12, 13, 17, 114, 131, 136], "nan": [9, 10, 130, 136], "nat": 9, "rais": [9, 11, 12, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124], "typeerror": [9, 11, 12, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121], "float": [11, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 109, 110, 115, 116, 117, 118, 119, 121, 132], "valueerror": [11, 17, 21, 48, 50, 52, 54, 58, 59, 60, 61, 62, 63, 69, 121, 123, 124], "either": [11, 30, 31, 32, 75, 87, 88, 89, 92, 93, 94, 110, 121, 131, 134], "substr": 12, "ha": [13, 75, 121, 131, 132, 134], "find": [13, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 123, 132], "perform": [13, 26, 27, 31, 32, 121, 130, 134, 135, 136], "datetime64": 14, "target_column": [17, 19, 21, 131, 132, 134], "feature_column": [17, 132, 133], "prediction_column_prefix": [17, 123, 124, 131, 132, 134], "remove_column": [17, 19, 21, 123, 124, 132], "split": [17, 112, 121, 123, 124, 131, 132, 134], "batch_siz": [17, 19, 21, 112, 123, 124, 131, 134], "1000": [17, 19, 21, 112, 123, 131, 132], "fairness_config": [17, 123, 124, 131, 134], "override_fairness_metr": [17, 123, 124, 131, 134], "load_dataset_kwarg": 17, "datasetdict": [17, 123, 124], "load_dataset": 17, "argument": [17, 21, 43, 75, 123, 124, 131, 134], "target": [17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 116, 117, 123, 124, 130, 131, 134, 135, 136], "prefix": [17, 75], "ad": [17, 114, 121, 123, 124, 131, 134], "model_nam": [17, 123, 124, 131, 132, 133, 134], "remov": [17, 21, 75, 119, 123, 124, 131, 132, 134], "mai": [17, 21, 131, 132, 134], "expens": [17, 21], "memori": [17, 21], "wrappedmodel": [17, 123, 124], "entir": [17, 131, 134], "being": 17, "note": [17, 121, 131, 134], "chosen": 17, "avail": [17, 121, 131, 134, 136], "first": [17, 21, 25, 76, 104, 131, 134], "eval": 17, "val": 17, "dev": 17, "batch": [17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 123, 124, 132], "size": [17, 21, 112, 123, 124, 131, 132, 134], "neg": [17, 35, 48, 49, 50, 51, 52, 53, 54, 59, 61, 62, 63, 72, 81, 83, 85, 98, 99, 100, 105, 107, 108, 109, 132, 134], "integ": [17, 21, 121], "configur": [17, 18, 19, 123, 124, 131, 134], "overridden": [17, 123, 124], "prediction_column": [17, 19, 21], "keyword": [17, 21, 43, 75, 123, 124], "onli": [17, 21, 24, 27, 29, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 62, 63, 75, 80, 81, 82, 84, 85, 98, 100, 103, 104, 105, 108, 109, 110], "found": [17, 75, 121, 131, 132, 133, 134], "group": [19, 21, 22, 75, 121, 131, 134], "group_valu": [19, 21], "group_bin": [19, 21, 131, 134], "group_base_valu": [19, 21, 131, 134], "threshold": [19, 21, 24, 25, 27, 29, 30, 31, 32, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 53, 54, 56, 57, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 102, 104, 105, 107, 109, 110, 121, 130, 131, 134, 136], "compute_optimal_threshold": [19, 21], "metric_nam": [19, 21, 43, 121, 131, 132, 134], "metric_kwarg": [19, 21], "take": [21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 112, 131], "allow": [21, 22, 131, 134, 135], "intersect": 21, "treat": 21, "multilabel": [21, 24, 27, 29, 32, 36, 37, 40, 41, 49, 50, 53, 54, 60, 61, 62, 63, 68, 69, 72, 82, 83, 84, 85, 89, 90, 94, 95, 99, 100, 104, 105, 109, 110, 130, 136], "same": [21, 75, 116], "uniqu": [21, 22, 29, 30, 31, 32, 66, 67, 68, 69, 87, 88, 89, 92, 93, 94, 95, 132, 136], "limit": [21, 131, 132, 134], "number": [21, 22, 24, 26, 27, 29, 30, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 103, 104, 105, 108, 110, 112, 116, 117, 121, 123, 124, 134, 135], "continu": [21, 131, 132, 134], "veri": 21, "slow": 21, "larg": 21, "denomin": 21, "pariti": 21, "across": [21, 116, 135], "linspac": 21, "monoton": [21, 69, 95], "control": [21, 115], "usag": [21, 131, 134], "rel": 21, "small": 21, "32": [21, 131, 132, 134], "avoid": 21, "optim": [21, 131], "oper": [21, 65, 76, 131, 134], "necessari": 21, "nest": 21, "second": [21, 76], "third": 21, "omit": 21, "requir": [21, 24, 29, 36, 37, 49, 50, 69, 84, 85, 90, 95, 100, 105, 110, 121, 123, 124, 131, 134], "huggingfac": [21, 112, 123, 124], "runtimeerror": 21, "empti": [21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "encount": [21, 134], "unique_valu": 22, "max_unique_valu": 22, "50": [22, 131, 133, 134], "warn": [22, 24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 105], "score": [24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 66, 70, 72, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 132], "liter": [24, 25, 26, 27, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 69, 78, 79, 80, 81, 82, 83, 84, 85, 90, 95, 97, 98, 99, 100, 103, 104, 105, 110, 121], "multiclass": [24, 26, 29, 31, 36, 37, 38, 39, 49, 50, 51, 52, 58, 59, 62, 63, 67, 69, 72, 80, 81, 84, 85, 88, 90, 93, 95, 98, 100, 103, 105, 108, 110], "One": [24, 29, 31, 32, 35, 48, 59, 62, 63, 69, 95, 132, 134], "pos_label": [24, 25, 30, 34, 35, 36, 37, 47, 48, 49, 50, 56, 57, 62, 63, 66, 69, 78, 79, 84, 85, 87, 90, 92, 95, 97, 100, 102, 105, 107, 110], "label": [24, 25, 27, 29, 32, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 68, 69, 78, 79, 81, 82, 83, 84, 85, 87, 89, 90, 92, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 109, 110, 116, 117, 119, 123, 124, 130, 131, 132, 136], "consid": [24, 26, 27, 36, 37, 49, 50, 62, 63, 84, 85, 90, 95, 100, 103, 104, 105], "posit": [24, 25, 29, 30, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 90, 92, 95, 97, 98, 99, 100, 102, 105, 107, 108, 109, 110, 131, 132, 134], "num_class": [24, 26, 29, 31, 36, 37, 38, 39, 49, 50, 51, 52, 58, 59, 61, 62, 63, 67, 69, 80, 81, 84, 85, 88, 90, 93, 95, 98, 100, 103, 105, 108, 110, 131, 134], "decid": [24, 36, 37, 40, 41, 49, 50, 53, 54, 56, 57, 60, 61, 78, 79, 82, 83, 84, 85, 97, 99, 100, 105], "top_k": [24, 26, 27, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110, 132], "probabl": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 80, 81, 82, 84, 85, 93, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 131, 134], "logit": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 72, 80, 81, 82, 84, 85, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110], "top": [24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110], "k": [24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 75, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110, 133], "num_label": [24, 27, 29, 32, 36, 37, 40, 41, 49, 50, 53, 54, 60, 61, 62, 63, 68, 69, 82, 83, 84, 85, 89, 90, 94, 95, 99, 100, 104, 105, 109, 110, 132], "averag": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 131], "micro": [24, 26, 27, 29, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "macro": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "weight": [24, 26, 27, 29, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 132, 133, 134], "calcul": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "global": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "unweight": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "mean": [24, 26, 27, 29, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 131, 132, 133, 134], "imbal": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 119], "account": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 131, 132], "instanc": [24, 26, 27, 31, 32, 36, 37, 38, 39, 40, 41, 43, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 131, 132, 134], "alter": [24, 26, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105], "zero_divis": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 105], "zero": [24, 25, 26, 27, 34, 36, 37, 38, 39, 40, 41, 47, 49, 50, 51, 52, 53, 54, 56, 57, 58, 60, 61, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "divis": [24, 25, 26, 27, 34, 36, 37, 38, 39, 40, 41, 47, 49, 50, 51, 52, 53, 54, 56, 57, 58, 60, 61, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "act": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "pred": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 134], "75": [24, 25, 29, 30, 66, 67, 68, 90, 92, 95, 103, 104, 105, 131, 133, 134], "05": [24, 26, 27, 29, 31, 32, 36, 38, 39, 40, 49, 53, 62, 67, 68, 69, 80, 81, 84, 85, 88, 90, 93, 94, 95, 98, 100, 103, 104, 105, 108, 110], "95": [24, 26, 27, 36, 38, 49, 62, 69, 88, 90, 93, 94, 95, 131], "p": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 132], "zip": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "2": [24, 26, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 56, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 75, 78, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 92, 93, 95, 97, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 121, 130, 131, 132, 134, 135], "3": [24, 26, 27, 29, 31, 34, 35, 36, 37, 38, 39, 40, 47, 49, 50, 51, 52, 53, 56, 58, 59, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 130, 131, 132, 134, 135], "66666667": [24, 26, 36, 38, 49, 51, 61, 63, 81, 85, 87, 88, 90, 93, 94, 95, 98, 100, 104], "initi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 130, 131, 134, 136], "two": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "scalar": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "togeth": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "multipli": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "variabl": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 136], "attributeerror": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "alreadi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 134], "exist": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124], "copi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 134], "abstract": [24, 29, 36, 37, 73, 74, 84, 85, 90, 95, 100, 105, 110], "final": [24, 29, 36, 37, 74, 84, 85, 90, 95, 100, 105, 110, 132, 134], "reset": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "_update_count": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "_comput": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "sigmoid": [25, 35, 41, 66, 68, 69, 102, 104, 107, 109, 110], "them": [25, 104, 131, 134, 135], "875": 25, "problem": [26, 88, 108, 109, 110, 136], "highest": [26, 27, 62, 63, 103, 104], "determin": [26, 27, 29, 30, 31, 32, 66, 67, 68, 87, 88, 89, 90, 92, 93, 94], "dtype": [26, 27, 31, 32, 38, 39, 40, 41, 66, 67, 68, 69, 80, 81, 82, 83, 87, 88, 89, 92, 93, 94, 98, 99, 103, 104, 115, 116, 117, 118, 119, 131, 132], "float64": [26, 27, 31, 32, 38, 39, 40, 41, 66, 67, 68, 69, 80, 81, 82, 83, 87, 88, 89, 92, 93, 94, 98, 99, 103, 104, 115, 116, 117, 118, 119, 132], "binar": [27, 29, 30, 31, 32, 34, 47, 67, 68, 93, 94, 109, 110], "output": [27, 69, 121, 131, 134], "classifi": [27, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 102, 131, 134], "correct": [27, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102, 103, 104], "per": [27, 75, 134], "area": [28, 29, 30, 31, 32, 45, 131, 134], "under": [28, 29, 30, 31, 32, 45, 131, 134], "curv": [28, 29, 30, 31, 32, 45, 64, 65, 66, 67, 68, 69, 86, 87, 88, 89, 90, 92, 93, 94, 95, 131, 134], "max_fpr": [29, 30], "rate": [29, 30, 66, 67, 68, 69, 131, 132, 134], "partial": [29, 30, 132], "auc": 29, "automat": [29, 30, 31, 32, 66, 67, 68, 87, 88, 89, 90, 92, 93, 94], "applic": [29, 111, 112, 114], "4": [29, 30, 34, 35, 36, 37, 40, 47, 50, 59, 63, 69, 82, 83, 84, 85, 87, 88, 90, 92, 93, 94, 95, 99, 100, 105, 107, 108, 109, 110, 130, 131, 132, 134, 135], "35": [29, 30, 69, 87, 92, 95, 103, 104, 105, 131, 132, 133, 134], "9": [29, 30, 31, 32, 34, 36, 37, 38, 39, 40, 41, 49, 50, 53, 54, 56, 60, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 89, 90, 93, 94, 95, 97, 98, 99, 100, 103, 104, 105, 107, 109, 110, 131, 132, 134], "6111111111111112": [29, 30], "89": [29, 31, 32, 69], "06": [29, 31, 69, 131, 132, 134], "94": [29, 31], "22222222": [29, 31], "625": [29, 32, 35, 103], "aucroc": 30, "confus": [30, 31, 32, 87, 88, 89, 92, 93, 94], "matrix": [30, 31, 32, 87, 88, 89, 92, 93, 94, 115, 116, 117, 118, 119], "f": [33, 35, 37, 38, 39, 41, 46, 48, 50, 51, 52, 54, 75, 131, 132, 133, 134], "beta": [33, 35, 37, 39, 41, 46, 48, 50, 52, 54], "f1": [34, 36, 38, 40, 46, 47, 49, 51, 53], "form": [34, 47, 131, 134], "6666666666666666": [34, 36, 47, 56, 78, 84], "harmon": [35, 37, 39, 41, 48, 50, 52, 54, 131, 134], "8333333333333334": [35, 37, 50, 59, 62], "85714286": [36, 38], "9090909090909091": 37, "83333333": [37, 41, 50, 54], "55555556": [37, 50, 103], "90909091": [37, 39, 41], "85": [39, 80, 81, 84, 85, 98, 100, 131, 132, 134], "total": [40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 108, 134], "count": [40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 131, 132, 134], "predicit": 41, "constructor": 43, "arraylik": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 93, 102], "ground": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102], "truth": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102], "npt": [48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63], "7142857142857143": 48, "estim": [49, 50, 66, 67, 68, 69, 93, 102, 123], "shape": [49, 50, 51, 52, 53, 54, 60, 61, 108, 109, 132, 133], "expect": [60, 61, 131, 134], "like": [60, 61, 75, 131], "n": [60, 61, 131, 132], "l": [60, 61], "sampl": [60, 61, 63, 119], "presenc": [60, 61, 132], "absenc": [60, 61], "rest": 61, "ratio": [62, 63, 105, 134], "correctli": [62, 131, 132, 134], "observ": [62, 131, 134, 136], "precision_scor": 62, "tp": [63, 107, 108, 109, 132], "fn": [63, 107, 108, 109, 132], "intuit": 63, "abil": [63, 131, 134], "recall_scor": 63, "3333333333333333": 63, "receiv": [65, 131, 134], "characterist": [65, 131, 134], "decis": [66, 67, 68, 69, 93, 121, 131, 134], "fpr": [66, 67, 68, 69, 131, 134], "tpr": [66, 67, 68, 69], "25": [66, 67, 68, 88, 90, 92, 93, 95, 105, 116, 117, 131, 132, 133, 134], "softmax": [67, 69, 93], "1d": [67, 68, 69, 95], "33333333": [67, 85, 88, 90, 93, 94, 95, 100], "non": 69, "evenli": [69, 95], "space": [69, 95], "increas": [69, 95], "assertionerror": [69, 121], "03": 69, "stat": [72, 106, 107, 108, 109, 110], "abc": 74, "other_metr": 75, "postfix": 75, "userdict": 75, "collect": [75, 131], "want": 75, "behav": 75, "themselv": 75, "intern": 75, "similar": 75, "reduc": 75, "els": [75, 132, 133], "keep_bas": 75, "iter": 75, "underli": 75, "moduledict": 75, "hashabl": 75, "v": 75, "correspond": [75, 123, 124], "keyerror": [75, 121], "some": [75, 131, 134], "pair": 75, "present": 75, "lack": 75, "metric_a": 76, "metric_b": 76, "metric1": 76, "metric2": 76, "unari": 76, "appropri": [84, 85, 100, 131, 134], "375": [88, 90], "suniqu": 90, "45": [90, 105, 131, 132, 134], "42857143": 90, "15": [103, 104, 105, 131, 132, 134], "57142857": 103, "sum": [105, 108, 109, 110, 132, 134], "_abstractscor": [107, 108, 109], "fp": [107, 108, 109, 132], "tn": [107, 108, 109, 132], "classwis": [108, 110], "over": [108, 109, 110, 130, 132, 134, 136], "labelwis": [109, 110, 132], "prior": [110, 131], "modul": [111, 120, 121, 131, 134], "shift_typ": [112, 114], "shift_id": [112, 133], "induc": [112, 114], "synthet": [112, 114, 121, 130, 134, 135, 136], "categor": [112, 131, 134], "origin": 112, "util": [112, 131, 132, 134], "load_nih": 112, "mnt": [112, 132, 133], "nihcxr": [112, 130, 132, 135], "hospital_type_1": 112, "hospital_type_2": 112, "hospital_type_3": 112, "hospital_type_4": 112, "hospital_type_5": 112, "ds_sourc": [112, 133], "ds_target": [112, 133], "num_proc": [112, 133], "build": 112, "hospit": [112, 131, 134, 136], "drift_detect": 114, "experiment": 114, "sklearn": [114, 131, 134], "load_diabet": 114, "y": [114, 116, 117, 119, 123, 131, 132, 134], "return_x_i": 114, "x_tr": 114, "x_te": 114, "y_tr": 114, "y_te": 114, "train_test_split": [114, 131, 134], "test_siz": 114, "random_st": [114, 131, 134], "42": [114, 131, 134], "gn_shift": 114, "x_shift": 114, "x_train": [114, 123], "noise_amt": [114, 118], "delta": [114, 115, 118, 119], "ko_shift": 114, "cp_shift": 114, "mfa_shift": 114, "bn_shift": 114, "tolerance_shift": 114, "ds_shift": 114, "nois": [114, 115, 118], "prob": 115, "covari": [115, 116, 117, 118, 119], "proport": [115, 131, 132, 134], "fraction": [115, 118, 119, 134], "affect": [115, 118, 121, 131, 134], "n_shuffl": [116, 117], "keep_rows_const": 116, "repermute_each_column": 116, "multiwai": 116, "associ": [116, 131, 132, 134], "swap": [116, 117], "individu": [116, 131, 134], "within": 116, "cl": [116, 117], "etc": [116, 117, 131, 132, 134], "floatnumpi": 116, "shuffl": [116, 117, 131], "permut": 116, "placehold": 116, "shift_class": [117, 119], "rank": 117, "changepoint": 117, "axi": [117, 132, 133, 134], "x_ref": 117, "y_ref": 117, "normal": [118, 131, 134], "clip": [118, 131, 134], "gaussian": 118, "standard": [118, 131, 134], "deviat": 118, "divid": 118, "255": [118, 132, 133], "placehol": 119, "output_dir": [121, 131, 134], "serv": 121, "interfac": 121, "popul": [121, 130, 131, 134, 136], "modelcard": 121, "directori": [121, 131, 134], "save": [121, 123, 124, 131, 134], "output_filenam": [121, 131, 132, 134], "template_path": 121, "interact": [121, 134], "save_json": 121, "synthetic_timestamp": [121, 132], "date": [121, 131, 134], "jinja2": 121, "json": [121, 131, 134], "timestamp": [121, 130, 132, 135], "back": 121, "classmethod": 121, "cyclops_report": [121, 131, 134], "section_nam": [121, 131, 132, 134], "model_detail": [121, 131, 134], "section": [121, 131, 132, 134], "repres": [121, 132], "bibtex": 121, "entri": 121, "plain": 121, "text": [121, 132], "descript": [121, 131, 132, 134], "license_id": [121, 131], "sensitive_featur": [121, 131], "sensitive_feature_justif": [121, 131], "log": [121, 130, 131, 134, 136], "inform": [121, 131], "about": [121, 131, 132, 134], "resourc": [121, 131, 134], "context": 121, "homepag": 121, "spdx": [121, 131], "identifi": [121, 130, 132, 136], "licens": [121, 131, 132, 134], "apach": [121, 131, 134], "unknown": 121, "unlicens": 121, "proprietari": 121, "justif": [121, 131], "field": [121, 130, 131, 134, 136], "descriptor": 121, "new": [121, 131, 134], "pydant": 121, "basemodel": 121, "subclass": 121, "As": 121, "long": 121, "conflict": 121, "defin": [121, 131, 132, 134], "model_card": 121, "cylop": 121, "tradeoff": [121, 132], "trade": 121, "off": 121, "interpret": 121, "consider": [121, 131, 132, 134], "affected_group": [121, 131, 132, 134], "benefit": [121, 131, 132, 134], "harm": [121, 131, 132, 134], "mitigation_strategi": [121, 131, 132, 134], "assess": 121, "mitig": [121, 131, 132, 134], "strategi": [121, 131, 132, 134], "relat": 121, "img_path": 121, "caption": [121, 131, 132, 134], "full": 121, "whole": [121, 131, 134], "left": [121, 134], "blank": 121, "instead": 121, "param": [121, 131, 134], "contact": [121, 131, 132, 134], "role": 121, "owner": [121, 131, 132, 134], "quantit": [121, 131, 132, 134], "slash": 121, "fig": [121, 131, 132, 134], "plotli": [121, 131, 132, 134], "figur": [121, 131, 134], "plot": [121, 131, 132, 134], "analysis_typ": 121, "metric_slic": [121, 131, 132, 134], "decision_threshold": 121, "pass_fail_threshold": [121, 131, 132, 134], "pass_fail_threshold_fn": [121, 131, 132, 134], "explain": 121, "fail": 121, "regul": 121, "regulatori": [121, 131, 134], "compli": 121, "risk": [121, 131, 132, 134, 136], "kind": [121, 131, 132, 134], "primari": [121, 131, 132, 134], "scope": [121, 131, 134], "usecas": 121, "version_str": [121, 131, 134], "semant": 121, "v1": 121, "dt_date": 121, "dt_datetim": 121, "unix": 121, "yyyi": 121, "mm": 121, "dd": 121, "hh": 121, "ss": 121, "ffffff": 121, "z": 121, "summar": 121, "chang": [121, 131, 132, 134], "made": [121, 131, 134], "task_featur": [123, 124, 131, 134], "task_target": [123, 124, 131, 134], "basetask": [123, 124], "tabular": [123, 124, 130], "ptmodel": [123, 124, 132], "skmodel": [123, 124], "properti": [123, 124], "splits_map": [123, 124], "fit": [123, 131, 134], "columntransform": [123, 131, 134], "slicingconfig": 123, "default_max_batch_s": 123, "unnecessari": [123, 124], "filepath": [123, 124], "pretrain": [123, 124, 132], "proba": [123, 131, 134], "pd": 123, "datafram": [123, 131, 134], "notfittederror": 123, "destin": [123, 124], "parent": [123, 124], "dirctori": [123, 124], "best_model_param": [123, 131, 134], "y_train": 123, "seri": 123, "nonei": 123, "best": [123, 131, 134], "64": [124, 132, 134], "compos": [124, 131, 132, 133, 134], "pathologi": [124, 130, 131, 136], "represent": [124, 131, 134], "drift": [130, 135], "experi": [130, 135], "dimension": [130, 135], "reduct": [130, 135], "techniqu": [130, 135], "roll": [130, 135], "window": [130, 135], "biweekli": [130, 135], "kaggl": [130, 131], "heart": 130, "failur": 130, "constant": [130, 136], "distribut": [130, 132, 136], "outcom": [130, 136], "preprocessor": [130, 136], "creation": [130, 136], "synthea": [130, 134], "prolong": 130, "length": [130, 132], "stai": 130, "queri": [130, 136], "inspect": [130, 131, 136], "preprocess": [130, 131, 136], "drop": [130, 131, 136], "nan_threshold": [130, 131, 136], "gender": [130, 131, 132, 133, 136], "nih": [130, 132, 133], "diseas": [130, 131, 136], "histor": [130, 131, 136], "period": [130, 136], "w": [130, 136], "showcas": [131, 134, 136], "formul": [131, 134], "patient": [131, 132, 133, 134, 136], "shutil": [131, 132, 134], "express": [131, 132, 134], "px": [131, 132, 134], "kaggle_api_extend": 131, "kaggleapi": 131, "imput": [131, 134], "simpleimput": [131, 134], "pipelin": [131, 134], "minmaxscal": [131, 134], "onehotencod": [131, 134], "noqa": [131, 132, 134], "e402": [131, 132, 134], "catalog": [131, 134], "create_model": [131, 134], "tabularfeatur": [131, 134], "classificationplott": [131, 134], "flatten_results_dict": [131, 134], "join": [131, 134], "load_datafram": 131, "home": [131, 132, 133, 134], "amritk": [131, 132, 133, 134], "cach": [131, 132, 133, 134], "pypoetri": [131, 132, 133, 134], "virtualenv": [131, 132, 133, 134], "mhx6ujw0": [131, 132, 133, 134], "py3": [131, 132, 133, 134], "lib": [131, 132, 133, 134], "site": [131, 132, 133, 134], "tqdm": [131, 132, 133, 134], "auto": [131, 132, 133, 134], "py": [131, 132, 133, 134], "21": [131, 132, 133, 134], "tqdmwarn": [131, 132, 133, 134], "iprogress": [131, 132, 133, 134], "ipywidget": [131, 132, 133, 134], "readthedoc": [131, 132, 133, 134], "io": [131, 132, 133, 134], "en": [131, 132, 133, 134], "user_instal": [131, 132, 133, 134], "autonotebook": [131, 132, 133, 134], "notebook_tqdm": [131, 132, 133, 134], "offer": [131, 132, 134], "document": [131, 132, 134], "through": [131, 132, 134], "overview": [131, 132, 134], "how": [131, 132, 134], "quick": [131, 132, 134], "glanc": [131, 132, 134], "sever": [131, 132, 134], "subgroup": [131, 132, 134], "statist": [131, 132, 134, 135], "subpopul": [131, 132, 134], "technic": [131, 132, 134], "architectur": [131, 132, 134], "involv": [131, 132, 134], "intend": [131, 132, 134], "go": [131, 132, 134], "tool": [131, 132, 134], "progress": [131, 132, 134], "subject": [131, 132, 134], "data_dir": [131, 132], "random_se": [131, 134], "train_siz": [131, 134], "sign": [131, 134], "com": [131, 132], "Then": 131, "profil": [131, 134], "usernam": 131, "trigger": 131, "download": 131, "credenti": 131, "place": 131, "locat": 131, "machin": [131, 132], "authent": 131, "dataset_download_fil": 131, "fedesoriano": 131, "unzip": 131, "df": 131, "csv": [131, 134], "file_format": 131, "reset_index": [131, 134], "index": [131, 132, 134], "2023": [131, 132, 134], "11": [131, 132, 134, 136], "20": [131, 132, 134], "461": 131, "chestpaintyp": 131, "restingbp": 131, "cholesterol": 131, "fastingb": 131, "restingecg": 131, "40": [131, 132, 134], "ata": 131, "140": 131, "289": 131, "49": [131, 134], "nap": 131, "160": 131, "180": 131, "37": [131, 132, 134], "130": 131, "283": 131, "st": 131, "48": [131, 132, 134], "asi": 131, "138": 131, "214": 131, "54": 131, "150": 131, "195": 131, "913": 131, "ta": 131, "110": 131, "264": 131, "914": 131, "68": [131, 132], "144": 131, "193": 131, "915": 131, "57": [131, 132, 133], "131": 131, "916": 131, "236": 131, "lvh": 131, "917": 131, "38": [131, 132, 134], "175": 131, "maxhr": 131, "exerciseangina": 131, "oldpeak": 131, "st_slope": 131, "heartdiseas": 131, "172": 131, "156": 131, "flat": 131, "98": [131, 134], "108": 131, "122": 131, "132": 131, "141": 131, "115": 131, "174": 131, "173": 131, "918": 131, "13": [131, 132, 134], "pie": [131, 132, 134], "update_layout": [131, 132, 134], "histogram": [131, 132, 134], "xaxis_titl": [131, 132, 134], "yaxis_titl": [131, 132, 134], "bargap": [131, 132, 134], "astyp": [131, 134], "update_trac": [131, 132, 134], "textinfo": [131, 134], "percent": [131, 134], "title_text": [131, 134], "hovertempl": [131, 134], "br": [131, 134], "class_count": [131, 134], "value_count": [131, 134], "class_ratio": [131, 134], "8070866141732284": 131, "14": [131, 132, 134, 136], "39": [131, 132, 134], "wa": [131, 132, 134], "li": 131, "et": 131, "al": 131, "most": 131, "features_list": [131, 134], "sort": [131, 134], "help": [131, 132, 134], "essenti": [131, 134], "step": [131, 134], "understand": [131, 134], "u": [131, 134], "16": [131, 132, 134], "tab_featur": [131, 134], "ordin": 131, "might": [131, 134], "17": [131, 132, 134], "numeric_transform": [131, 134], "scaler": [131, 134], "binary_transform": [131, 134], "most_frequ": [131, 134], "18": [131, 132, 133, 134], "numeric_featur": [131, 134], "features_by_typ": [131, 134], "numeric_indic": [131, 134], "get_loc": [131, 134], "19": [131, 132, 134], "binary_featur": [131, 134], "ordinal_featur": 131, "binary_indic": [131, 134], "ordinal_indic": 131, "num": [131, 134], "onehot": [131, 134], "handle_unknown": [131, 134], "ignor": [131, 132, 134], "remaind": [131, 134], "passthrough": [131, 134], "let": [131, 134], "done": [131, 134], "independ": 131, "everi": 131, "uci": 131, "archiv": 131, "ic": 131, "edu": 131, "databas": [131, 134], "cleandoc": 131, "misc": 131, "cc0": 131, "demograph": [131, 132], "often": 131, "strong": 131, "correl": 131, "older": [131, 134], "higher": 131, "panda": [131, 134], "power": [131, 134], "easi": [131, 134], "compat": [131, 134], "22": [131, 132, 134], "from_panda": [131, 134], "cleanup_cache_fil": [131, 134], "num_row": 131, "cast_column": [131, 134], "stratify_by_column": [131, 134], "seed": [131, 132, 134], "100": [131, 132, 133, 134], "lt": [131, 132, 133, 134], "164236": 131, "straightforward": [131, 134], "maintain": [131, 134], "instanti": [131, 134], "line": [131, 134], "sgd": [131, 134], "logisit": [131, 134], "regress": [131, 134], "sgdclassif": [131, 134], "24": [131, 132, 134], "sgd_classifi": 131, "123": [131, 134], "verbos": [131, 134], "class_weight": 131, "balanc": 131, "mortalitypredict": [131, 134], "encapsul": [131, 134], "cohes": [131, 134], "structur": [131, 134], "smooth": [131, 134], "manag": [131, 134], "mortality_task": 131, "26": [131, 132, 134], "hyperparamet": [131, 134], "search": [131, 134], "grid": [131, 134], "27": [131, 134], "alpha": 131, "0001": 131, "001": 131, "learning_r": [131, 134], "invscal": 131, "adapt": 131, "eta0": 131, "roc_auc": 131, "651": 131, "wrapper": [131, 132, 134], "sk_model": [131, 134], "652": 131, "653": 131, "sgdclassifi": 131, "x27": [131, 134], "early_stop": 131, "loss": 131, "log_loss": 131, "rerun": [131, 134], "cell": [131, 134], "trust": [131, 134], "On": [131, 132, 134], "github": [131, 132, 134], "unabl": [131, 134], "render": [131, 134], "try": [131, 134], "page": [131, 134], "nbviewer": [131, 134], "sgdclassifiersgdclassifi": 131, "28": [131, 132, 134], "model_param": [131, 134], "epsilon": 131, "fit_intercept": 131, "l1_ratio": 131, "max_it": 131, "n_iter_no_chang": 131, "n_job": [131, 134], "penalti": 131, "l2": 131, "power_t": 131, "tol": 131, "validation_fract": 131, "warm_start": 131, "29": [131, 132, 134], "30": [131, 132, 134, 136], "y_pred": [131, 134], "only_predict": [131, 134], "len": [131, 132, 134], "184": 131, "7042": 131, "variou": [131, 134], "perspect": [131, 134], "metric_collect": [131, 134], "certain": [131, 134], "70": 131, "33": [131, 133, 134], "fnr": [131, 134], "ber": [131, 134], "fairness_metric_collect": [131, 134], "34": [131, 134], "dataset_with_pr": [131, 134], "6821": 131, "7724": 131, "38775": 131, "66": [131, 132], "gt": [131, 132, 134], "18211": 131, "22521": 131, "72": 131, "23947": 131, "21669": 131, "21417": 131, "92": [131, 132, 134], "22517": 131, "78": [131, 132, 133], "right": [131, 134], "36": [131, 132, 134], "results_flat": [131, 132, 134], "remove_metr": [131, 134], "plw2901": [131, 132, 134], "actual": [131, 132, 134], "known": [131, 132, 134], "measur": [131, 134], "lambda": [131, 132, 133, 134], "plotter": [131, 133, 134], "class_nam": [131, 134], "set_templ": [131, 134], "plotly_whit": [131, 134], "extract": [131, 134], "slice_result": [131, 134], "dict_kei": [131, 134], "roc_plot": [131, 134], "roc_curve_comparison": [131, 134], "femal": [131, 132, 133, 134], "overall_perform": [131, 134], "metric_valu": [131, 134], "41": [131, 134], "overall_performance_plot": [131, 134], "metrics_valu": [131, 134], "slice_metr": [131, 134], "43": [131, 132, 134], "slice_metrics_plot": [131, 134], "metrics_comparison_bar": [131, 134], "comparison": [131, 132, 134], "44": [131, 132, 134], "reform": [131, 134], "fairness_result": [131, 134], "deepcopi": [131, 134], "fairness_metr": [131, 134], "group_siz": [131, 134], "fairness_plot": [131, 134], "metrics_comparison_scatt": [131, 134], "leverag": 131, "get_metrics_trend": 131, "gather": 131, "merg": [131, 134], "recent": 131, "wish": 131, "metrics_trend": 131, "purpos": 131, "three": 131, "dummi": 131, "demonstr": [131, 136], "trend": 131, "audienc": [131, 134], "organ": [131, 134], "store": [131, 134], "regulatory_requir": [131, 134], "46": [131, 132, 134], "todai": [131, 134], "releas": [131, 134], "team": [131, 134], "vectorinstitut": [131, 134], "email": [131, 132, 134], "ai": [131, 134], "linear_model": 131, "e501": [131, 134], "next": [131, 134], "use_cas": [131, 134], "These": [131, 134], "fairness_assess": [131, 134], "well": [131, 132, 134], "taken": [131, 134], "ethical_consider": [131, 134], "47": [131, 132, 134], "clinician": [131, 134], "engin": [131, 134], "condit": 131, "improv": [131, 134], "bias": [131, 132, 134], "lead": [131, 134], "wors": [131, 134], "retrain": [131, 134], "below": [131, 134], "By": [131, 134], "folder": [131, 134], "report_path": [131, 132, 134], "heart_failure_report_period": 131, "_": [131, 134], "_model_card": [131, 134], "quantitative_analysi": [131, 134], "random": [131, 134], "view": [131, 132, 134, 136], "torchxrayvis": [132, 133], "functool": 132, "lambdad": [132, 133], "resiz": [132, 133], "densenet": [132, 133], "loader": [132, 133], "load_nihcxr": [132, 133], "apply_transform": 132, "generate_nihcxr_report": 132, "59": 132, "77": 132, "504123": 132, "201107": 132, "79": 132, "400": 132, "1509": 132, "41562": 132, "74": 132, "41742": 132, "43866": 132, "42852": 132, "65": [132, 133], "43904": 132, "43300": 132, "51": 132, "amp": [132, 134], "31870": 132, "493157": 132, "226633": 132, "396": 132, "1859": 132, "42283": 132, "42090": 132, "43437": 132, "41593": 132, "42478": 132, "42016": 132, "43402": 132, "96": 132, "530119": 132, "224702": 132, "88": 132, "383": 132, "1797": 132, "40789": 132, "30004": 132, "42906": 132, "43211": 132, "44180": 132, "42533": 132, "45386": 132, "55": 132, "290665": 132, "56": 132, "105820": 132, "411": 132, "1763": 132, "37239": 132, "61": 132, "38503": 132, "28800": 132, "34093": 132, "29990": 132, "33812": 132, "42585": 132, "clinical_dataset": [132, 133], "nih_d": [132, 133], "spatial_s": [132, 133], "224": [132, 133], "allow_missing_kei": [132, 133], "func": [132, 133], "1024": [132, 133], "newaxi": [132, 133], "densenet121": [132, 133], "res224": [132, 133], "No": 132, "adjust": 132, "79064": 132, "71": 132, "661": 132, "1251": 132, "int64": 132, "originalimag": 132, "width": [132, 134], "height": [132, 134], "originalimagepixelspac": 132, "unnam": 132, "atelectasi": 132, "float32": 132, "cardiomegali": 132, "consolid": 132, "edema": 132, "effus": 132, "emphysema": 132, "fibrosi": 132, "hernia": 132, "infiltr": 132, "mass": [132, 134], "nodul": 132, "pleural_thicken": 132, "pneumonia": 132, "pneumothorax": 132, "__index_level_0__": 132, "multilabelpositivepredictivevalu": 132, "registry_kei": 132, "positive_predictive_valu": 132, "def": [132, 134], "super": 132, "overrid": 132, "_final_st": 132, "multilabelnegativepredictivevalu": 132, "negative_predictive_valu": 132, "ppv": 132, "npv": 132, "nih_eval_results_gend": 132, "45281": 132, "99": [132, 134], "45183": 132, "84": 132, "46246": 132, "nih_eval_results_ag": 132, "47232": 132, "44932": 132, "44363": 132, "42913": 132, "63": 132, "37359": 132, "45026": 132, "07": 132, "42832": 132, "42517": 132, "44203": 132, "41788": 132, "male": [132, 133], "1200": 132, "600": [132, 134], "showlegend": 132, "bar": [132, 134], "slice_": 132, "itr": 132, "enumer": 132, "among": 132, "multi": 132, "112": [132, 136], "120": [132, 134, 136], "frontal": [132, 136], "805": [132, 136], "fourteen": 132, "mine": 132, "radiolog": 132, "pleural": 132, "thicken": 132, "80": [132, 134], "remain": 132, "arxiv": 132, "ab": 132, "2111": 132, "00595": 132, "inproceed": 132, "cohen2022xrv": 132, "cohen": 132, "joseph": 132, "paul": 132, "viviano": 132, "bertin": 132, "morrison": 132, "torabian": 132, "parsa": 132, "guarrera": 132, "matteo": 132, "lungren": 132, "matthew": 132, "chaudhari": 132, "akshai": 132, "brook": 132, "rupert": 132, "hashir": 132, "mohammad": 132, "bertrand": 132, "hadrien": 132, "booktitl": 132, "deep": 132, "mlmed": 132, "arxivid": 132, "cohen2020limit": 132, "cross": 132, "domain": 132, "autom": [132, 134], "2002": 132, "02497": 132, "medicin": 132, "lab": 132, "josephpcohen": 132, "radiologist": 132, "scientist": 132, "inabl": 132, "addition": 132, "poor": 132, "qualiti": 132, "artifact": 132, "geograph": 132, "region": 132, "ethic": 132, "ensur": 132, "divers": 132, "regularli": 132, "human": 132, "expertis": 132, "address": 132, "rare": 132, "nihcxr_report_period": 132, "detector": 133, "reductor": 133, "tstester": 133, "plot_drift_experi": 133, "plot_drift_timeseri": 133, "shifter": 133, "source_d": 133, "target_d": 133, "25596": 133, "63023": 133, "dr_method": 133, "bbse": 133, "soft": 133, "txrv": 133, "ae": 133, "sensitivity_test": 133, "tester": 133, "tester_method": 133, "source_sample_s": 133, "target_sample_s": 133, "num_run": 133, "detect_shift": 133, "chexpert": 133, "chex": 133, "padchest": 133, "pc": 133, "source_slic": 133, "target_slic": 133, "54022": 133, "54644": 133, "52234": 133, "53716": 133, "90": 133, "52668": 133, "54344": 133, "52590": 133, "81": 133, "52909": 133, "58": 133, "rolling_window_drift": 133, "timestamp_column": 133, "window_s": 133, "4w": 133, "longer": 134, "v3": 134, "instruct": 134, "etl": 134, "postgr": 134, "cycqueri": 134, "op": 134, "qo": 134, "graph_object": 134, "datasetqueri": 134, "num_dai": 134, "querier": 134, "dbm": 134, "postgresql": 134, "port": 134, "5432": 134, "host": 134, "localhost": 134, "synthea_demo": 134, "password": 134, "pwd": 134, "get_encount": 134, "nativ": 134, "sequenti": 134, "renam": 134, "patient_id": 134, "birthdat": 134, "race": 134, "ethnic": 134, "patient_encount": 134, "isout": 134, "encounter_id": 134, "extracttimestampcompon": 134, "start_year": 134, "birthdate_year": 134, "addcolumn": 134, "new_col_label": 134, "stop": 134, "lo": 134, "conditiongreaterthan": 134, "conditionlessthan": 134, "get_observ": 134, "cohort": 134, "conditionin": 134, "categori": 134, "vital": 134, "conditionequ": 134, "groupby_op": 134, "groupbyaggreg": 134, "n_ob": 134, "observations_count": 134, "observations_stat": 134, "pivot_t": 134, "aggfunc": 134, "max": 134, "add_prefix": 134, "obs_": 134, "get_med": 134, "n_med": 134, "get_procedur": 134, "procedur": [134, 136], "n_procedur": 134, "run_queri": 134, "cohort_queri": 134, "to_merg": 134, "extend": 134, "append": 134, "to_merge_df": 134, "463": 134, "orm": 134, "readi": 134, "609": 134, "successfulli": 134, "610": 134, "finish": 134, "execut": 134, "522007": 134, "455": 134, "457": 134, "845816": 134, "745": 134, "746": 134, "357999": 134, "189": 134, "190": 134, "439785": 134, "277": 134, "278": 134, "087144": 134, "list_column": 134, "payer": 134, "encounterclass": 134, "base_encounter_cost": 134, "total_claim_cost": 134, "payer_coverag": 134, "reasoncod": 134, "reasondescript": 134, "null_count": 134, "isnul": 134, "respect": 134, "larger": 134, "thresh_nan": 134, "dropna": 134, "thresh": 134, "length_of_stai": 134, "length_of_stay_count": 134, "length_of_stay_kei": 134, "5573997233748271": 134, "obs_alanin": 134, "aminotransferas": 134, "enzymat": 134, "volum": 134, "serum": 134, "plasma": 134, "obs_albumin": 134, "obs_alkalin": 134, "phosphatas": 134, "obs_aspart": 134, "obs_bilirubin": 134, "obs_bodi": 134, "obs_calcium": 134, "obs_carbon": 134, "dioxid": 134, "mole": 134, "obs_chlorid": 134, "obs_creatinin": 134, "obs_diastol": 134, "blood": 134, "pressur": 134, "obs_erythrocyt": 134, "obs_ferritin": 134, "obs_glomerular": 134, "filtrat": 134, "73": 134, "sq": 134, "obs_glucos": 134, "obs_hematocrit": 134, "obs_hemoglobin": 134, "obs_leukocyt": 134, "obs_mch": 134, "entit": 134, "obs_mchc": 134, "obs_mcv": 134, "obs_oxygen": 134, "satur": 134, "arteri": 134, "obs_platelet": 134, "obs_potassium": 134, "obs_protein": 134, "obs_sodium": 134, "obs_systol": 134, "obs_troponin": 134, "cardiac": 134, "obs_urea": 134, "nitrogen": 134, "1126": 134, "167796": 134, "sllearn": 134, "xgb_classifi": 134, "los_task": 134, "n_estim": 134, "250": 134, "500": 134, "max_depth": 134, "reg_lambda": 134, "colsample_bytre": 134, "gamma": 134, "118": 134, "119": 134, "121": 134, "xgbclassifi": 134, "base_scor": 134, "booster": 134, "callback": 134, "colsample_bylevel": 134, "colsample_bynod": 134, "early_stopping_round": 134, "enable_categor": 134, "eval_metr": 134, "logloss": 134, "feature_typ": 134, "gpu_id": 134, "grow_polici": 134, "importance_typ": 134, "interaction_constraint": 134, "max_bin": 134, "max_cat_threshold": 134, "max_cat_to_onehot": 134, "max_delta_step": 134, "max_leav": 134, "min_child_weight": 134, "miss": 134, "monotone_constraint": 134, "num_parallel_tre": 134, "predictor": 134, "xgbclassifierxgbclassifi": 134, "logist": 134, "use_label_encod": 134, "reg_alpha": 134, "sampling_method": 134, "scale_pos_weight": 134, "subsampl": 134, "tree_method": 134, "validate_paramet": 134, "226": 134, "4167": 134, "09": 134, "4029": 134, "83": 134, "3824": 134, "63122": 134, "8510": 134, "8756": 134, "8537": 134, "8490": 134, "7807": 134, "7159": 134, "6553": 134, "6292": 134, "7521": 134, "7235": 134, "7418": 134, "8861788617886179": 134, "8108108108108109": 134, "8955223880597015": 134, "9474627688913404": 134, "851063829787234": 134, "9473684210526315": 134, "8372093023255814": 134, "9067028985507246": 134, "905982905982906": 134, "8571428571428571": 134, "9230769230769231": 134, "9670454545454545": 134, "8440366972477065": 134, "9322033898305084": 134, "8088235294117647": 134, "8661417322834646": 134, "9142754662840745": 134, "8761061946902655": 134, "968": 134, "8344827586206897": 134, "8962962962962963": 134, "9409961685823756": 134, "xgboost": 134, "python_api": 134, "length_of_stay_report_period": 134, "goal": 136}, "objects": {"cyclops": [[125, 0, 0, "-", "data"], [126, 0, 0, "-", "evaluate"], [127, 0, 0, "-", "monitor"], [128, 0, 0, "-", "report"], [129, 0, 0, "-", "tasks"]], "cyclops.data": [[125, 0, 0, "-", "features"], [6, 0, 0, "-", "slicer"]], "cyclops.data.features": [[4, 0, 0, "-", "medical_image"]], "cyclops.data.features.medical_image": [[5, 1, 1, "", "MedicalImage"]], "cyclops.data.features.medical_image.MedicalImage": [[5, 2, 1, "", "__call__"], [5, 2, 1, "", "cast_storage"], [5, 2, 1, "", "decode_example"], [5, 2, 1, "", "embed_storage"], [5, 2, 1, "", "encode_example"], [5, 2, 1, "", "flatten"]], "cyclops.data.slicer": [[7, 1, 1, "", "SliceSpec"], [8, 4, 1, "", "compound_filter"], [9, 4, 1, "", "filter_datetime"], [10, 4, 1, "", "filter_non_null"], [11, 4, 1, "", "filter_range"], [12, 4, 1, "", "filter_string_contains"], [13, 4, 1, "", "filter_value"], [14, 4, 1, "", "is_datetime"], [15, 4, 1, "", "overall"]], "cyclops.data.slicer.SliceSpec": [[7, 3, 1, "", "_registry"], [7, 2, 1, "", "add_slice_spec"], [7, 3, 1, "", "column_names"], [7, 2, 1, "", "get_slices"], [7, 3, 1, "", "include_overall"], [7, 2, 1, "", "slices"], [7, 3, 1, "", "spec_list"], [7, 3, 1, "", "validate"]], "cyclops.evaluate": [[16, 0, 0, "-", "evaluator"], [126, 0, 0, "-", "fairness"], [126, 0, 0, "-", "metrics"]], "cyclops.evaluate.evaluator": [[17, 4, 1, "", "evaluate"]], "cyclops.evaluate.fairness": [[18, 0, 0, "-", "config"], [20, 0, 0, "-", "evaluator"]], "cyclops.evaluate.fairness.config": [[19, 1, 1, "", "FairnessConfig"]], "cyclops.evaluate.fairness.evaluator": [[21, 4, 1, "", "evaluate_fairness"], [22, 4, 1, "", "warn_too_many_unique_values"]], "cyclops.evaluate.metrics": [[23, 0, 0, "-", "accuracy"], [28, 0, 0, "-", "auroc"], [33, 0, 0, "-", "f_beta"], [42, 0, 0, "-", "factory"], [126, 0, 0, "-", "functional"], [73, 0, 0, "-", "metric"], [77, 0, 0, "-", "precision_recall"], [86, 0, 0, "-", "precision_recall_curve"], [91, 0, 0, "-", "roc"], [96, 0, 0, "-", "sensitivity"], [101, 0, 0, "-", "specificity"], [106, 0, 0, "-", "stat_scores"]], "cyclops.evaluate.metrics.accuracy": [[24, 1, 1, "", "Accuracy"], [25, 1, 1, "", "BinaryAccuracy"], [26, 1, 1, "", "MulticlassAccuracy"], [27, 1, 1, "", "MultilabelAccuracy"]], "cyclops.evaluate.metrics.accuracy.Accuracy": [[24, 2, 1, "", "__add__"], [24, 2, 1, "", "__call__"], [24, 2, 1, "", "__init__"], [24, 2, 1, "", "__mul__"], [24, 2, 1, "", "add_state"], [24, 2, 1, "", "clone"], [24, 2, 1, "", "compute"], [24, 2, 1, "", "reset_state"], [24, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.BinaryAccuracy": [[25, 2, 1, "", "__add__"], [25, 2, 1, "", "__call__"], [25, 2, 1, "", "__init__"], [25, 2, 1, "", "__mul__"], [25, 2, 1, "", "add_state"], [25, 2, 1, "", "clone"], [25, 2, 1, "", "compute"], [25, 2, 1, "", "reset_state"], [25, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy": [[26, 2, 1, "", "__add__"], [26, 2, 1, "", "__call__"], [26, 2, 1, "", "__init__"], [26, 2, 1, "", "__mul__"], [26, 2, 1, "", "add_state"], [26, 2, 1, "", "clone"], [26, 2, 1, "", "compute"], [26, 2, 1, "", "reset_state"], [26, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy": [[27, 2, 1, "", "__add__"], [27, 2, 1, "", "__call__"], [27, 2, 1, "", "__init__"], [27, 2, 1, "", "__mul__"], [27, 2, 1, "", "add_state"], [27, 2, 1, "", "clone"], [27, 2, 1, "", "compute"], [27, 2, 1, "", "reset_state"], [27, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc": [[29, 1, 1, "", "AUROC"], [30, 1, 1, "", "BinaryAUROC"], [31, 1, 1, "", "MulticlassAUROC"], [32, 1, 1, "", "MultilabelAUROC"]], "cyclops.evaluate.metrics.auroc.AUROC": [[29, 2, 1, "", "__add__"], [29, 2, 1, "", "__call__"], [29, 2, 1, "", "__init__"], [29, 2, 1, "", "__mul__"], [29, 2, 1, "", "add_state"], [29, 2, 1, "", "clone"], [29, 2, 1, "", "compute"], [29, 2, 1, "", "reset_state"], [29, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.BinaryAUROC": [[30, 2, 1, "", "__add__"], [30, 2, 1, "", "__call__"], [30, 2, 1, "", "__init__"], [30, 2, 1, "", "__mul__"], [30, 2, 1, "", "add_state"], [30, 2, 1, "", "clone"], [30, 2, 1, "", "compute"], [30, 2, 1, "", "reset_state"], [30, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.MulticlassAUROC": [[31, 2, 1, "", "__add__"], [31, 2, 1, "", "__call__"], [31, 2, 1, "", "__init__"], [31, 2, 1, "", "__mul__"], [31, 2, 1, "", "add_state"], [31, 2, 1, "", "clone"], [31, 2, 1, "", "compute"], [31, 2, 1, "", "reset_state"], [31, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.MultilabelAUROC": [[32, 2, 1, "", "__add__"], [32, 2, 1, "", "__call__"], [32, 2, 1, "", "__init__"], [32, 2, 1, "", "__mul__"], [32, 2, 1, "", "add_state"], [32, 2, 1, "", "clone"], [32, 2, 1, "", "compute"], [32, 2, 1, "", "reset_state"], [32, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta": [[34, 1, 1, "", "BinaryF1Score"], [35, 1, 1, "", "BinaryFbetaScore"], [36, 1, 1, "", "F1Score"], [37, 1, 1, "", "FbetaScore"], [38, 1, 1, "", "MulticlassF1Score"], [39, 1, 1, "", "MulticlassFbetaScore"], [40, 1, 1, "", "MultilabelF1Score"], [41, 1, 1, "", "MultilabelFbetaScore"]], "cyclops.evaluate.metrics.f_beta.BinaryF1Score": [[34, 2, 1, "", "__add__"], [34, 2, 1, "", "__call__"], [34, 2, 1, "", "__init__"], [34, 2, 1, "", "__mul__"], [34, 2, 1, "", "add_state"], [34, 2, 1, "", "clone"], [34, 2, 1, "", "compute"], [34, 2, 1, "", "reset_state"], [34, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore": [[35, 2, 1, "", "__add__"], [35, 2, 1, "", "__call__"], [35, 2, 1, "", "__init__"], [35, 2, 1, "", "__mul__"], [35, 2, 1, "", "add_state"], [35, 2, 1, "", "clone"], [35, 2, 1, "", "compute"], [35, 2, 1, "", "reset_state"], [35, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.F1Score": [[36, 2, 1, "", "__add__"], [36, 2, 1, "", "__call__"], [36, 2, 1, "", "__init__"], [36, 2, 1, "", "__mul__"], [36, 2, 1, "", "add_state"], [36, 2, 1, "", "clone"], [36, 2, 1, "", "compute"], [36, 2, 1, "", "reset_state"], [36, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.FbetaScore": [[37, 2, 1, "", "__add__"], [37, 2, 1, "", "__call__"], [37, 2, 1, "", "__init__"], [37, 2, 1, "", "__mul__"], [37, 2, 1, "", "add_state"], [37, 2, 1, "", "clone"], [37, 2, 1, "", "compute"], [37, 2, 1, "", "reset_state"], [37, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MulticlassF1Score": [[38, 2, 1, "", "__add__"], [38, 2, 1, "", "__call__"], [38, 2, 1, "", "__init__"], [38, 2, 1, "", "__mul__"], [38, 2, 1, "", "add_state"], [38, 2, 1, "", "clone"], [38, 2, 1, "", "compute"], [38, 2, 1, "", "reset_state"], [38, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore": [[39, 2, 1, "", "__add__"], [39, 2, 1, "", "__call__"], [39, 2, 1, "", "__init__"], [39, 2, 1, "", "__mul__"], [39, 2, 1, "", "add_state"], [39, 2, 1, "", "clone"], [39, 2, 1, "", "compute"], [39, 2, 1, "", "reset_state"], [39, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MultilabelF1Score": [[40, 2, 1, "", "__add__"], [40, 2, 1, "", "__call__"], [40, 2, 1, "", "__init__"], [40, 2, 1, "", "__mul__"], [40, 2, 1, "", "add_state"], [40, 2, 1, "", "clone"], [40, 2, 1, "", "compute"], [40, 2, 1, "", "reset_state"], [40, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore": [[41, 2, 1, "", "__add__"], [41, 2, 1, "", "__call__"], [41, 2, 1, "", "__init__"], [41, 2, 1, "", "__mul__"], [41, 2, 1, "", "add_state"], [41, 2, 1, "", "clone"], [41, 2, 1, "", "compute"], [41, 2, 1, "", "reset_state"], [41, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.factory": [[43, 4, 1, "", "create_metric"]], "cyclops.evaluate.metrics.functional": [[44, 0, 0, "-", "accuracy"], [45, 0, 0, "-", "auroc"], [46, 0, 0, "-", "f_beta"], [55, 0, 0, "-", "precision_recall"], [64, 0, 0, "-", "precision_recall_curve"], [65, 0, 0, "-", "roc"], [70, 0, 0, "-", "sensitivity"], [71, 0, 0, "-", "specificity"], [72, 0, 0, "-", "stat_scores"]], "cyclops.evaluate.metrics.functional.f_beta": [[47, 4, 1, "", "binary_f1_score"], [48, 4, 1, "", "binary_fbeta_score"], [49, 4, 1, "", "f1_score"], [50, 4, 1, "", "fbeta_score"], [51, 4, 1, "", "multiclass_f1_score"], [52, 4, 1, "", "multiclass_fbeta_score"], [53, 4, 1, "", "multilabel_f1_score"], [54, 4, 1, "", "multilabel_fbeta_score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[56, 4, 1, "", "binary_precision"], [57, 4, 1, "", "binary_recall"], [58, 4, 1, "", "multiclass_precision"], [59, 4, 1, "", "multiclass_recall"], [60, 4, 1, "", "multilabel_precision"], [61, 4, 1, "", "multilabel_recall"], [62, 4, 1, "", "precision"], [63, 4, 1, "", "recall"]], "cyclops.evaluate.metrics.functional.roc": [[66, 4, 1, "", "binary_roc_curve"], [67, 4, 1, "", "multiclass_roc_curve"], [68, 4, 1, "", "multilabel_roc_curve"], [69, 4, 1, "", "roc_curve"]], "cyclops.evaluate.metrics.metric": [[74, 1, 1, "", "Metric"], [75, 1, 1, "", "MetricCollection"], [76, 1, 1, "", "OperatorMetric"]], "cyclops.evaluate.metrics.metric.Metric": [[74, 2, 1, "", "__add__"], [74, 2, 1, "", "__call__"], [74, 2, 1, "", "__init__"], [74, 2, 1, "", "__mul__"], [74, 2, 1, "", "add_state"], [74, 2, 1, "", "clone"], [74, 2, 1, "", "compute"], [74, 2, 1, "", "reset_state"], [74, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.metric.MetricCollection": [[75, 2, 1, "", "__call__"], [75, 2, 1, "", "__init__"], [75, 2, 1, "", "add_metrics"], [75, 2, 1, "", "clear"], [75, 2, 1, "", "clone"], [75, 2, 1, "", "compute"], [75, 2, 1, "", "get"], [75, 2, 1, "", "items"], [75, 2, 1, "", "keys"], [75, 2, 1, "", "pop"], [75, 2, 1, "", "popitem"], [75, 2, 1, "", "reset_state"], [75, 2, 1, "", "setdefault"], [75, 2, 1, "", "update"], [75, 2, 1, "", "update_state"], [75, 2, 1, "", "values"]], "cyclops.evaluate.metrics.metric.OperatorMetric": [[76, 2, 1, "", "__add__"], [76, 2, 1, "", "__call__"], [76, 2, 1, "", "__init__"], [76, 2, 1, "", "__mul__"], [76, 2, 1, "", "add_state"], [76, 2, 1, "", "clone"], [76, 2, 1, "", "compute"], [76, 2, 1, "", "reset_state"], [76, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall": [[78, 1, 1, "", "BinaryPrecision"], [79, 1, 1, "", "BinaryRecall"], [80, 1, 1, "", "MulticlassPrecision"], [81, 1, 1, "", "MulticlassRecall"], [82, 1, 1, "", "MultilabelPrecision"], [83, 1, 1, "", "MultilabelRecall"], [84, 1, 1, "", "Precision"], [85, 1, 1, "", "Recall"]], "cyclops.evaluate.metrics.precision_recall.BinaryPrecision": [[78, 2, 1, "", "__add__"], [78, 2, 1, "", "__call__"], [78, 2, 1, "", "__init__"], [78, 2, 1, "", "__mul__"], [78, 2, 1, "", "add_state"], [78, 2, 1, "", "clone"], [78, 2, 1, "", "compute"], [78, 2, 1, "", "reset_state"], [78, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.BinaryRecall": [[79, 2, 1, "", "__add__"], [79, 2, 1, "", "__call__"], [79, 2, 1, "", "__init__"], [79, 2, 1, "", "__mul__"], [79, 2, 1, "", "add_state"], [79, 2, 1, "", "clone"], [79, 2, 1, "", "compute"], [79, 2, 1, "", "reset_state"], [79, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision": [[80, 2, 1, "", "__add__"], [80, 2, 1, "", "__call__"], [80, 2, 1, "", "__init__"], [80, 2, 1, "", "__mul__"], [80, 2, 1, "", "add_state"], [80, 2, 1, "", "clone"], [80, 2, 1, "", "compute"], [80, 2, 1, "", "reset_state"], [80, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MulticlassRecall": [[81, 2, 1, "", "__add__"], [81, 2, 1, "", "__call__"], [81, 2, 1, "", "__init__"], [81, 2, 1, "", "__mul__"], [81, 2, 1, "", "add_state"], [81, 2, 1, "", "clone"], [81, 2, 1, "", "compute"], [81, 2, 1, "", "reset_state"], [81, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision": [[82, 2, 1, "", "__add__"], [82, 2, 1, "", "__call__"], [82, 2, 1, "", "__init__"], [82, 2, 1, "", "__mul__"], [82, 2, 1, "", "add_state"], [82, 2, 1, "", "clone"], [82, 2, 1, "", "compute"], [82, 2, 1, "", "reset_state"], [82, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MultilabelRecall": [[83, 2, 1, "", "__add__"], [83, 2, 1, "", "__call__"], [83, 2, 1, "", "__init__"], [83, 2, 1, "", "__mul__"], [83, 2, 1, "", "add_state"], [83, 2, 1, "", "clone"], [83, 2, 1, "", "compute"], [83, 2, 1, "", "reset_state"], [83, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.Precision": [[84, 2, 1, "", "__add__"], [84, 2, 1, "", "__call__"], [84, 2, 1, "", "__init__"], [84, 2, 1, "", "__mul__"], [84, 2, 1, "", "add_state"], [84, 2, 1, "", "clone"], [84, 2, 1, "", "compute"], [84, 2, 1, "", "reset_state"], [84, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.Recall": [[85, 2, 1, "", "__add__"], [85, 2, 1, "", "__call__"], [85, 2, 1, "", "__init__"], [85, 2, 1, "", "__mul__"], [85, 2, 1, "", "add_state"], [85, 2, 1, "", "clone"], [85, 2, 1, "", "compute"], [85, 2, 1, "", "reset_state"], [85, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve": [[87, 1, 1, "", "BinaryPrecisionRecallCurve"], [88, 1, 1, "", "MulticlassPrecisionRecallCurve"], [89, 1, 1, "", "MultilabelPrecisionRecallCurve"], [90, 1, 1, "", "PrecisionRecallCurve"]], "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve": [[87, 2, 1, "", "__add__"], [87, 2, 1, "", "__call__"], [87, 2, 1, "", "__init__"], [87, 2, 1, "", "__mul__"], [87, 2, 1, "", "add_state"], [87, 2, 1, "", "clone"], [87, 2, 1, "", "compute"], [87, 2, 1, "", "reset_state"], [87, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve": [[88, 2, 1, "", "__add__"], [88, 2, 1, "", "__call__"], [88, 2, 1, "", "__init__"], [88, 2, 1, "", "__mul__"], [88, 2, 1, "", "add_state"], [88, 2, 1, "", "clone"], [88, 2, 1, "", "compute"], [88, 2, 1, "", "reset_state"], [88, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve": [[89, 2, 1, "", "__add__"], [89, 2, 1, "", "__call__"], [89, 2, 1, "", "__init__"], [89, 2, 1, "", "__mul__"], [89, 2, 1, "", "add_state"], [89, 2, 1, "", "clone"], [89, 2, 1, "", "compute"], [89, 2, 1, "", "reset_state"], [89, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve": [[90, 2, 1, "", "__add__"], [90, 2, 1, "", "__call__"], [90, 2, 1, "", "__init__"], [90, 2, 1, "", "__mul__"], [90, 2, 1, "", "add_state"], [90, 2, 1, "", "clone"], [90, 2, 1, "", "compute"], [90, 2, 1, "", "reset_state"], [90, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc": [[92, 1, 1, "", "BinaryROCCurve"], [93, 1, 1, "", "MulticlassROCCurve"], [94, 1, 1, "", "MultilabelROCCurve"], [95, 1, 1, "", "ROCCurve"]], "cyclops.evaluate.metrics.roc.BinaryROCCurve": [[92, 2, 1, "", "__add__"], [92, 2, 1, "", "__call__"], [92, 2, 1, "", "__init__"], [92, 2, 1, "", "__mul__"], [92, 2, 1, "", "add_state"], [92, 2, 1, "", "clone"], [92, 2, 1, "", "compute"], [92, 2, 1, "", "reset_state"], [92, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.MulticlassROCCurve": [[93, 2, 1, "", "__add__"], [93, 2, 1, "", "__call__"], [93, 2, 1, "", "__init__"], [93, 2, 1, "", "__mul__"], [93, 2, 1, "", "add_state"], [93, 2, 1, "", "clone"], [93, 2, 1, "", "compute"], [93, 2, 1, "", "reset_state"], [93, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.MultilabelROCCurve": [[94, 2, 1, "", "__add__"], [94, 2, 1, "", "__call__"], [94, 2, 1, "", "__init__"], [94, 2, 1, "", "__mul__"], [94, 2, 1, "", "add_state"], [94, 2, 1, "", "clone"], [94, 2, 1, "", "compute"], [94, 2, 1, "", "reset_state"], [94, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.ROCCurve": [[95, 2, 1, "", "__add__"], [95, 2, 1, "", "__call__"], [95, 2, 1, "", "__init__"], [95, 2, 1, "", "__mul__"], [95, 2, 1, "", "add_state"], [95, 2, 1, "", "clone"], [95, 2, 1, "", "compute"], [95, 2, 1, "", "reset_state"], [95, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity": [[97, 1, 1, "", "BinarySensitivity"], [98, 1, 1, "", "MulticlassSensitivity"], [99, 1, 1, "", "MultilabelSensitivity"], [100, 1, 1, "", "Sensitivity"]], "cyclops.evaluate.metrics.sensitivity.BinarySensitivity": [[97, 2, 1, "", "__add__"], [97, 2, 1, "", "__call__"], [97, 2, 1, "", "__init__"], [97, 2, 1, "", "__mul__"], [97, 2, 1, "", "add_state"], [97, 2, 1, "", "clone"], [97, 2, 1, "", "compute"], [97, 2, 1, "", "reset_state"], [97, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity": [[98, 2, 1, "", "__add__"], [98, 2, 1, "", "__call__"], [98, 2, 1, "", "__init__"], [98, 2, 1, "", "__mul__"], [98, 2, 1, "", "add_state"], [98, 2, 1, "", "clone"], [98, 2, 1, "", "compute"], [98, 2, 1, "", "reset_state"], [98, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity": [[99, 2, 1, "", "__add__"], [99, 2, 1, "", "__call__"], [99, 2, 1, "", "__init__"], [99, 2, 1, "", "__mul__"], [99, 2, 1, "", "add_state"], [99, 2, 1, "", "clone"], [99, 2, 1, "", "compute"], [99, 2, 1, "", "reset_state"], [99, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.Sensitivity": [[100, 2, 1, "", "__add__"], [100, 2, 1, "", "__call__"], [100, 2, 1, "", "__init__"], [100, 2, 1, "", "__mul__"], [100, 2, 1, "", "add_state"], [100, 2, 1, "", "clone"], [100, 2, 1, "", "compute"], [100, 2, 1, "", "reset_state"], [100, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity": [[102, 1, 1, "", "BinarySpecificity"], [103, 1, 1, "", "MulticlassSpecificity"], [104, 1, 1, "", "MultilabelSpecificity"], [105, 1, 1, "", "Specificity"]], "cyclops.evaluate.metrics.specificity.BinarySpecificity": [[102, 2, 1, "", "__add__"], [102, 2, 1, "", "__call__"], [102, 2, 1, "", "__init__"], [102, 2, 1, "", "__mul__"], [102, 2, 1, "", "add_state"], [102, 2, 1, "", "clone"], [102, 2, 1, "", "compute"], [102, 2, 1, "", "reset_state"], [102, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.MulticlassSpecificity": [[103, 2, 1, "", "__add__"], [103, 2, 1, "", "__call__"], [103, 2, 1, "", "__init__"], [103, 2, 1, "", "__mul__"], [103, 2, 1, "", "add_state"], [103, 2, 1, "", "clone"], [103, 2, 1, "", "compute"], [103, 2, 1, "", "reset_state"], [103, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.MultilabelSpecificity": [[104, 2, 1, "", "__add__"], [104, 2, 1, "", "__call__"], [104, 2, 1, "", "__init__"], [104, 2, 1, "", "__mul__"], [104, 2, 1, "", "add_state"], [104, 2, 1, "", "clone"], [104, 2, 1, "", "compute"], [104, 2, 1, "", "reset_state"], [104, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.Specificity": [[105, 2, 1, "", "__add__"], [105, 2, 1, "", "__call__"], [105, 2, 1, "", "__init__"], [105, 2, 1, "", "__mul__"], [105, 2, 1, "", "add_state"], [105, 2, 1, "", "clone"], [105, 2, 1, "", "compute"], [105, 2, 1, "", "reset_state"], [105, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores": [[107, 1, 1, "", "BinaryStatScores"], [108, 1, 1, "", "MulticlassStatScores"], [109, 1, 1, "", "MultilabelStatScores"], [110, 1, 1, "", "StatScores"]], "cyclops.evaluate.metrics.stat_scores.BinaryStatScores": [[107, 2, 1, "", "__add__"], [107, 2, 1, "", "__call__"], [107, 2, 1, "", "__init__"], [107, 2, 1, "", "__mul__"], [107, 2, 1, "", "add_state"], [107, 2, 1, "", "clone"], [107, 2, 1, "", "compute"], [107, 2, 1, "", "reset_state"], [107, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores": [[108, 2, 1, "", "__add__"], [108, 2, 1, "", "__call__"], [108, 2, 1, "", "__init__"], [108, 2, 1, "", "__mul__"], [108, 2, 1, "", "add_state"], [108, 2, 1, "", "clone"], [108, 2, 1, "", "compute"], [108, 2, 1, "", "reset_state"], [108, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores": [[109, 2, 1, "", "__add__"], [109, 2, 1, "", "__call__"], [109, 2, 1, "", "__init__"], [109, 2, 1, "", "__mul__"], [109, 2, 1, "", "add_state"], [109, 2, 1, "", "clone"], [109, 2, 1, "", "compute"], [109, 2, 1, "", "reset_state"], [109, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.StatScores": [[110, 2, 1, "", "__add__"], [110, 2, 1, "", "__call__"], [110, 2, 1, "", "__init__"], [110, 2, 1, "", "__mul__"], [110, 2, 1, "", "add_state"], [110, 2, 1, "", "clone"], [110, 2, 1, "", "compute"], [110, 2, 1, "", "reset_state"], [110, 2, 1, "", "update_state"]], "cyclops.monitor": [[111, 0, 0, "-", "clinical_applicator"], [113, 0, 0, "-", "synthetic_applicator"]], "cyclops.monitor.clinical_applicator": [[112, 1, 1, "", "ClinicalShiftApplicator"]], "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator": [[112, 2, 1, "", "age"], [112, 2, 1, "", "apply_shift"], [112, 2, 1, "", "custom"], [112, 2, 1, "", "hospital_type"], [112, 2, 1, "", "month"], [112, 2, 1, "", "sex"], [112, 2, 1, "", "time"]], "cyclops.monitor.synthetic_applicator": [[114, 1, 1, "", "SyntheticShiftApplicator"], [115, 4, 1, "", "binary_noise_shift"], [116, 4, 1, "", "feature_association_shift"], [117, 4, 1, "", "feature_swap_shift"], [118, 4, 1, "", "gaussian_noise_shift"], [119, 4, 1, "", "knockout_shift"]], "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator": [[114, 2, 1, "", "apply_shift"]], "cyclops.report": [[120, 0, 0, "-", "report"]], "cyclops.report.report": [[121, 1, 1, "", "ModelCardReport"]], "cyclops.report.report.ModelCardReport": [[121, 2, 1, "", "export"], [121, 2, 1, "", "from_json_file"], [121, 2, 1, "", "log_citation"], [121, 2, 1, "", "log_dataset"], [121, 2, 1, "", "log_descriptor"], [121, 2, 1, "", "log_fairness_assessment"], [121, 2, 1, "", "log_from_dict"], [121, 2, 1, "", "log_image"], [121, 2, 1, "", "log_license"], [121, 2, 1, "", "log_model_parameters"], [121, 2, 1, "", "log_owner"], [121, 2, 1, "", "log_performance_metrics"], [121, 2, 1, "", "log_plotly_figure"], [121, 2, 1, "", "log_quantitative_analysis"], [121, 2, 1, "", "log_reference"], [121, 2, 1, "", "log_regulation"], [121, 2, 1, "", "log_risk"], [121, 2, 1, "", "log_use_case"], [121, 2, 1, "", "log_user"], [121, 2, 1, "", "log_version"]], "cyclops.tasks": [[122, 0, 0, "-", "classification"]], "cyclops.tasks.classification": [[123, 1, 1, "", "BinaryTabularClassificationTask"], [124, 1, 1, "", "MultilabelImageClassificationTask"]], "cyclops.tasks.classification.BinaryTabularClassificationTask": [[123, 2, 1, "", "__init__"], [123, 2, 1, "", "add_model"], [123, 5, 1, "", "data_type"], [123, 2, 1, "", "evaluate"], [123, 2, 1, "", "get_model"], [123, 2, 1, "", "list_models"], [123, 2, 1, "", "list_models_params"], [123, 2, 1, "", "load_model"], [123, 5, 1, "", "models_count"], [123, 2, 1, "", "predict"], [123, 2, 1, "", "save_model"], [123, 5, 1, "", "task_type"], [123, 2, 1, "", "train"]], "cyclops.tasks.classification.MultilabelImageClassificationTask": [[124, 2, 1, "", "__init__"], [124, 2, 1, "", "add_model"], [124, 5, 1, "", "data_type"], [124, 2, 1, "", "evaluate"], [124, 2, 1, "", "get_model"], [124, 2, 1, "", "list_models"], [124, 2, 1, "", "list_models_params"], [124, 2, 1, "", "load_model"], [124, 5, 1, "", "models_count"], [124, 2, 1, "", "predict"], [124, 2, 1, "", "save_model"], [124, 5, 1, "", "task_type"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:attribute", "4": "py:function", "5": "py:property"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "attribute", "Python attribute"], "4": ["py", "function", "Python function"], "5": ["py", "property", "Python property"]}, "titleterms": {"api": [0, 135], "refer": 0, "contribut": [1, 3], "cyclop": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129], "pre": 1, "commit": 1, "hook": 1, "code": 1, "guidelin": 1, "welcom": 2, "": 2, "document": [2, 3], "content": 2, "get": 3, "start": 3, "instal": 3, "us": [3, 133, 136], "pip": 3, "develop": 3, "poetri": 3, "notebook": 3, "citat": 3, "data": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 125, 131, 134, 136], "featur": [4, 5, 125, 131, 134], "medical_imag": [4, 5], "medicalimag": 5, "slicer": [6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "slicespec": 7, "compound_filt": 8, "filter_datetim": 9, "filter_non_nul": 10, "filter_rang": 11, "filter_string_contain": 12, "filter_valu": 13, "is_datetim": 14, "overal": 15, "evalu": [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 126, 131, 134], "fair": [18, 19, 20, 21, 22, 126], "config": [18, 19], "fairnessconfig": 19, "evaluate_fair": 21, "warn_too_many_unique_valu": 22, "metric": [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 126, 132], "accuraci": [23, 24, 25, 26, 27, 44], "binaryaccuraci": 25, "multiclassaccuraci": 26, "multilabelaccuraci": 27, "auroc": [28, 29, 30, 31, 32, 45, 132], "binaryauroc": 30, "multiclassauroc": 31, "multilabelauroc": 32, "f_beta": [33, 34, 35, 36, 37, 38, 39, 40, 41, 46, 47, 48, 49, 50, 51, 52, 53, 54], "binaryf1scor": 34, "binaryfbetascor": 35, "f1score": 36, "fbetascor": 37, "multiclassf1scor": 38, "multiclassfbetascor": 39, "multilabelf1scor": 40, "multilabelfbetascor": 41, "factori": [42, 43], "create_metr": 43, "function": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 126], "binary_f1_scor": 47, "binary_fbeta_scor": 48, "f1_score": 49, "fbeta_scor": 50, "multiclass_f1_scor": 51, "multiclass_fbeta_scor": 52, "multilabel_f1_scor": 53, "multilabel_fbeta_scor": 54, "precision_recal": [55, 56, 57, 58, 59, 60, 61, 62, 63, 77, 78, 79, 80, 81, 82, 83, 84, 85], "binary_precis": 56, "binary_recal": 57, "multiclass_precis": 58, "multiclass_recal": 59, "multilabel_precis": 60, "multilabel_recal": 61, "precis": [62, 84], "recal": [63, 85], "precision_recall_curv": [64, 86, 87, 88, 89, 90], "roc": [65, 66, 67, 68, 69, 91, 92, 93, 94, 95], "binary_roc_curv": 66, "multiclass_roc_curv": 67, "multilabel_roc_curv": 68, "roc_curv": 69, "sensit": [70, 96, 97, 98, 99, 100, 133], "specif": [71, 101, 102, 103, 104, 105], "stat_scor": [72, 106, 107, 108, 109, 110], "metriccollect": 75, "operatormetr": 76, "binaryprecis": 78, "binaryrecal": 79, "multiclassprecis": 80, "multiclassrecal": 81, "multilabelprecis": 82, "multilabelrecal": 83, "binaryprecisionrecallcurv": 87, "multiclassprecisionrecallcurv": 88, "multilabelprecisionrecallcurv": 89, "precisionrecallcurv": 90, "binaryroccurv": 92, "multiclassroccurv": 93, "multilabelroccurv": 94, "roccurv": 95, "binarysensit": 97, "multiclasssensit": 98, "multilabelsensit": 99, "binaryspecif": 102, "multiclassspecif": 103, "multilabelspecif": 104, "binarystatscor": 107, "multiclassstatscor": 108, "multilabelstatscor": 109, "statscor": 110, "monitor": [111, 112, 113, 114, 115, 116, 117, 118, 119, 127, 135], "clinical_appl": [111, 112], "clinicalshiftappl": 112, "synthetic_appl": [113, 114, 115, 116, 117, 118, 119], "syntheticshiftappl": 114, "binary_noise_shift": 115, "feature_association_shift": 116, "feature_swap_shift": 117, "gaussian_noise_shift": 118, "knockout_shift": 119, "report": [120, 121, 128, 131, 132, 134], "modelcardreport": 121, "task": [122, 123, 124, 129, 131, 134], "classif": [122, 123, 124, 132, 136], "binarytabularclassificationtask": 123, "multilabelimageclassificationtask": 124, "tutori": [130, 133], "heart": [131, 136], "failur": [131, 136], "predict": [131, 134, 136], "import": [131, 132, 133, 134], "librari": [131, 132, 133, 134], "constant": [131, 134], "load": [131, 132, 133], "sex": [131, 132], "valu": 131, "ag": [131, 132, 134], "distribut": [131, 134], "outcom": [131, 134], "identifi": [131, 134], "type": [131, 134], "creat": [131, 134], "preprocessor": [131, 134], "hug": [131, 134], "face": [131, 134], "dataset": [131, 132, 133, 134], "model": [131, 132, 133, 134], "creation": [131, 132, 134], "train": [131, 133, 134], "perform": [131, 132], "over": 131, "time": 131, "gener": [131, 132, 133, 134], "chest": [132, 136], "x": [132, 136], "rai": [132, 136], "diseas": 132, "histor": 132, "initi": 132, "period": 132, "multilabel": 132, "pathologi": 132, "log": 132, "test": [132, 133], "w": 132, "threshold": 132, "popul": 132, "card": 132, "field": 132, "nihcxr": 133, "clinic": 133, "drift": 133, "experi": 133, "exampl": [133, 136], "1": 133, "sourc": 133, "target": 133, "2": 133, "3": 133, "dimension": 133, "reduct": 133, "techniqu": 133, "differ": 133, "4": 133, "shift": 133, "5": 133, "roll": 133, "window": 133, "synthet": 133, "timestamp": 133, "biweekli": 133, "prolong": [134, 136], "length": [134, 136], "stai": [134, 136], "queri": 134, "comput": 134, "label": 134, "inspect": 134, "preprocess": 134, "drop": 134, "nan": 134, "base": 134, "nan_threshold": 134, "gender": 134, "case": 136, "tabular": 136, "kaggl": 136, "synthea": 136, "imag": 136, "nih": 136}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1, "sphinx.ext.intersphinx": 1, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"API Reference": [[0, "api-reference"]], "Contributing to cyclops": [[1, "contributing-to-cyclops"]], "Pre-commit hooks": [[1, "pre-commit-hooks"]], "Coding guidelines": [[1, "coding-guidelines"]], "Welcome to cyclops\u2019s documentation!": [[2, "welcome-to-cyclops-s-documentation"]], "Contents:": [[2, null]], "\ud83d\udc23 Getting Started": [[3, "getting-started"]], "Installing cyclops using pip": [[3, "installing-cyclops-using-pip"]], "\ud83e\uddd1\ud83c\udfff\u200d\ud83d\udcbb Developing": [[3, "developing"]], "Using poetry": [[3, "using-poetry"]], "Contributing": [[3, "contributing"]], "\ud83d\udcda Documentation": [[3, "documentation"]], "\ud83d\udcd3 Notebooks": [[3, "notebooks"]], "\ud83c\udf93 Citation": [[3, "citation"]], "cyclops.data.features.medical_image": [[4, "module-cyclops.data.features.medical_image"]], "cyclops.data.features.medical_image.MedicalImage": [[5, "cyclops-data-features-medical-image-medicalimage"]], "cyclops.data.slicer": [[6, "module-cyclops.data.slicer"]], "cyclops.data.slicer.SliceSpec": [[7, "cyclops-data-slicer-slicespec"]], "cyclops.data.slicer.compound_filter": [[8, "cyclops-data-slicer-compound-filter"]], "cyclops.data.slicer.filter_datetime": [[9, "cyclops-data-slicer-filter-datetime"]], "cyclops.data.slicer.filter_non_null": [[10, "cyclops-data-slicer-filter-non-null"]], "cyclops.data.slicer.filter_range": [[11, "cyclops-data-slicer-filter-range"]], "cyclops.data.slicer.filter_string_contains": [[12, "cyclops-data-slicer-filter-string-contains"]], "cyclops.data.slicer.filter_value": [[13, "cyclops-data-slicer-filter-value"]], "cyclops.data.slicer.is_datetime": [[14, "cyclops-data-slicer-is-datetime"]], "cyclops.data.slicer.overall": [[15, "cyclops-data-slicer-overall"]], "cyclops.evaluate.evaluator": [[16, "module-cyclops.evaluate.evaluator"]], "cyclops.evaluate.evaluator.evaluate": [[17, "cyclops-evaluate-evaluator-evaluate"]], "cyclops.evaluate.fairness.config": [[18, "module-cyclops.evaluate.fairness.config"]], "cyclops.evaluate.fairness.config.FairnessConfig": [[19, "cyclops-evaluate-fairness-config-fairnessconfig"]], "cyclops.evaluate.fairness.evaluator": [[20, "module-cyclops.evaluate.fairness.evaluator"]], "cyclops.evaluate.fairness.evaluator.evaluate_fairness": [[21, "cyclops-evaluate-fairness-evaluator-evaluate-fairness"]], "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values": [[22, "cyclops-evaluate-fairness-evaluator-warn-too-many-unique-values"]], "cyclops.evaluate.metrics.accuracy": [[23, "module-cyclops.evaluate.metrics.accuracy"]], "cyclops.evaluate.metrics.accuracy.Accuracy": [[24, "cyclops-evaluate-metrics-accuracy-accuracy"]], "cyclops.evaluate.metrics.accuracy.BinaryAccuracy": [[25, "cyclops-evaluate-metrics-accuracy-binaryaccuracy"]], "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy": [[26, "cyclops-evaluate-metrics-accuracy-multiclassaccuracy"]], "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy": [[27, "cyclops-evaluate-metrics-accuracy-multilabelaccuracy"]], "cyclops.evaluate.metrics.auroc": [[28, "module-cyclops.evaluate.metrics.auroc"]], "cyclops.evaluate.metrics.auroc.AUROC": [[29, "cyclops-evaluate-metrics-auroc-auroc"]], "cyclops.evaluate.metrics.auroc.BinaryAUROC": [[30, "cyclops-evaluate-metrics-auroc-binaryauroc"]], "cyclops.evaluate.metrics.auroc.MulticlassAUROC": [[31, "cyclops-evaluate-metrics-auroc-multiclassauroc"]], "cyclops.evaluate.metrics.auroc.MultilabelAUROC": [[32, "cyclops-evaluate-metrics-auroc-multilabelauroc"]], "cyclops.evaluate.metrics.f_beta": [[33, "module-cyclops.evaluate.metrics.f_beta"]], "cyclops.evaluate.metrics.f_beta.BinaryF1Score": [[34, "cyclops-evaluate-metrics-f-beta-binaryf1score"]], "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore": [[35, "cyclops-evaluate-metrics-f-beta-binaryfbetascore"]], "cyclops.evaluate.metrics.f_beta.F1Score": [[36, "cyclops-evaluate-metrics-f-beta-f1score"]], "cyclops.evaluate.metrics.f_beta.FbetaScore": [[37, "cyclops-evaluate-metrics-f-beta-fbetascore"]], "cyclops.evaluate.metrics.f_beta.MulticlassF1Score": [[38, "cyclops-evaluate-metrics-f-beta-multiclassf1score"]], "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore": [[39, "cyclops-evaluate-metrics-f-beta-multiclassfbetascore"]], "cyclops.evaluate.metrics.f_beta.MultilabelF1Score": [[40, "cyclops-evaluate-metrics-f-beta-multilabelf1score"]], "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore": [[41, "cyclops-evaluate-metrics-f-beta-multilabelfbetascore"]], "cyclops.evaluate.metrics.factory": [[42, "module-cyclops.evaluate.metrics.factory"]], "cyclops.evaluate.metrics.factory.create_metric": [[43, "cyclops-evaluate-metrics-factory-create-metric"]], "cyclops.evaluate.metrics.functional.accuracy": [[44, "module-cyclops.evaluate.metrics.functional.accuracy"]], "cyclops.evaluate.metrics.functional.auroc": [[45, "module-cyclops.evaluate.metrics.functional.auroc"]], "cyclops.evaluate.metrics.functional.f_beta": [[46, "module-cyclops.evaluate.metrics.functional.f_beta"]], "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score": [[47, "cyclops-evaluate-metrics-functional-f-beta-binary-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score": [[48, "cyclops-evaluate-metrics-functional-f-beta-binary-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.f1_score": [[49, "cyclops-evaluate-metrics-functional-f-beta-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.fbeta_score": [[50, "cyclops-evaluate-metrics-functional-f-beta-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score": [[51, "cyclops-evaluate-metrics-functional-f-beta-multiclass-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score": [[52, "cyclops-evaluate-metrics-functional-f-beta-multiclass-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score": [[53, "cyclops-evaluate-metrics-functional-f-beta-multilabel-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score": [[54, "cyclops-evaluate-metrics-functional-f-beta-multilabel-fbeta-score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[55, "module-cyclops.evaluate.metrics.functional.precision_recall"]], "cyclops.evaluate.metrics.functional.precision_recall.binary_precision": [[56, "cyclops-evaluate-metrics-functional-precision-recall-binary-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.binary_recall": [[57, "cyclops-evaluate-metrics-functional-precision-recall-binary-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision": [[58, "cyclops-evaluate-metrics-functional-precision-recall-multiclass-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall": [[59, "cyclops-evaluate-metrics-functional-precision-recall-multiclass-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision": [[60, "cyclops-evaluate-metrics-functional-precision-recall-multilabel-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall": [[61, "cyclops-evaluate-metrics-functional-precision-recall-multilabel-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.precision": [[62, "cyclops-evaluate-metrics-functional-precision-recall-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.recall": [[63, "cyclops-evaluate-metrics-functional-precision-recall-recall"]], "cyclops.evaluate.metrics.functional.precision_recall_curve": [[64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"]], "cyclops.evaluate.metrics.functional.roc": [[65, "module-cyclops.evaluate.metrics.functional.roc"]], "cyclops.evaluate.metrics.functional.roc.binary_roc_curve": [[66, "cyclops-evaluate-metrics-functional-roc-binary-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve": [[67, "cyclops-evaluate-metrics-functional-roc-multiclass-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve": [[68, "cyclops-evaluate-metrics-functional-roc-multilabel-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.roc_curve": [[69, "cyclops-evaluate-metrics-functional-roc-roc-curve"]], "cyclops.evaluate.metrics.functional.sensitivity": [[70, "module-cyclops.evaluate.metrics.functional.sensitivity"]], "cyclops.evaluate.metrics.functional.specificity": [[71, "module-cyclops.evaluate.metrics.functional.specificity"]], "cyclops.evaluate.metrics.functional.stat_scores": [[72, "module-cyclops.evaluate.metrics.functional.stat_scores"]], "cyclops.evaluate.metrics.metric": [[73, "module-cyclops.evaluate.metrics.metric"]], "cyclops.evaluate.metrics.metric.Metric": [[74, "cyclops-evaluate-metrics-metric-metric"]], "cyclops.evaluate.metrics.metric.MetricCollection": [[75, "cyclops-evaluate-metrics-metric-metriccollection"]], "cyclops.evaluate.metrics.metric.OperatorMetric": [[76, "cyclops-evaluate-metrics-metric-operatormetric"]], "cyclops.evaluate.metrics.precision_recall": [[77, "module-cyclops.evaluate.metrics.precision_recall"]], "cyclops.evaluate.metrics.precision_recall.BinaryPrecision": [[78, "cyclops-evaluate-metrics-precision-recall-binaryprecision"]], "cyclops.evaluate.metrics.precision_recall.BinaryRecall": [[79, "cyclops-evaluate-metrics-precision-recall-binaryrecall"]], "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision": [[80, "cyclops-evaluate-metrics-precision-recall-multiclassprecision"]], "cyclops.evaluate.metrics.precision_recall.MulticlassRecall": [[81, "cyclops-evaluate-metrics-precision-recall-multiclassrecall"]], "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision": [[82, "cyclops-evaluate-metrics-precision-recall-multilabelprecision"]], "cyclops.evaluate.metrics.precision_recall.MultilabelRecall": [[83, "cyclops-evaluate-metrics-precision-recall-multilabelrecall"]], "cyclops.evaluate.metrics.precision_recall.Precision": [[84, "cyclops-evaluate-metrics-precision-recall-precision"]], "cyclops.evaluate.metrics.precision_recall.Recall": [[85, "cyclops-evaluate-metrics-precision-recall-recall"]], "cyclops.evaluate.metrics.precision_recall_curve": [[86, "module-cyclops.evaluate.metrics.precision_recall_curve"]], "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve": [[87, "cyclops-evaluate-metrics-precision-recall-curve-binaryprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve": [[88, "cyclops-evaluate-metrics-precision-recall-curve-multiclassprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve": [[89, "cyclops-evaluate-metrics-precision-recall-curve-multilabelprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve": [[90, "cyclops-evaluate-metrics-precision-recall-curve-precisionrecallcurve"]], "cyclops.evaluate.metrics.roc": [[91, "module-cyclops.evaluate.metrics.roc"]], "cyclops.evaluate.metrics.roc.BinaryROCCurve": [[92, "cyclops-evaluate-metrics-roc-binaryroccurve"]], "cyclops.evaluate.metrics.roc.MulticlassROCCurve": [[93, "cyclops-evaluate-metrics-roc-multiclassroccurve"]], "cyclops.evaluate.metrics.roc.MultilabelROCCurve": [[94, "cyclops-evaluate-metrics-roc-multilabelroccurve"]], "cyclops.evaluate.metrics.roc.ROCCurve": [[95, "cyclops-evaluate-metrics-roc-roccurve"]], "cyclops.evaluate.metrics.sensitivity": [[96, "module-cyclops.evaluate.metrics.sensitivity"]], "cyclops.evaluate.metrics.sensitivity.BinarySensitivity": [[97, "cyclops-evaluate-metrics-sensitivity-binarysensitivity"]], "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity": [[98, "cyclops-evaluate-metrics-sensitivity-multiclasssensitivity"]], "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity": [[99, "cyclops-evaluate-metrics-sensitivity-multilabelsensitivity"]], "cyclops.evaluate.metrics.sensitivity.Sensitivity": [[100, "cyclops-evaluate-metrics-sensitivity-sensitivity"]], "cyclops.evaluate.metrics.specificity": [[101, "module-cyclops.evaluate.metrics.specificity"]], "cyclops.evaluate.metrics.specificity.BinarySpecificity": [[102, "cyclops-evaluate-metrics-specificity-binaryspecificity"]], "cyclops.evaluate.metrics.specificity.MulticlassSpecificity": [[103, "cyclops-evaluate-metrics-specificity-multiclassspecificity"]], "cyclops.evaluate.metrics.specificity.MultilabelSpecificity": [[104, "cyclops-evaluate-metrics-specificity-multilabelspecificity"]], "cyclops.evaluate.metrics.specificity.Specificity": [[105, "cyclops-evaluate-metrics-specificity-specificity"]], "cyclops.evaluate.metrics.stat_scores": [[106, "module-cyclops.evaluate.metrics.stat_scores"]], "cyclops.evaluate.metrics.stat_scores.BinaryStatScores": [[107, "cyclops-evaluate-metrics-stat-scores-binarystatscores"]], "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores": [[108, "cyclops-evaluate-metrics-stat-scores-multiclassstatscores"]], "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores": [[109, "cyclops-evaluate-metrics-stat-scores-multilabelstatscores"]], "cyclops.evaluate.metrics.stat_scores.StatScores": [[110, "cyclops-evaluate-metrics-stat-scores-statscores"]], "cyclops.monitor.clinical_applicator": [[111, "module-cyclops.monitor.clinical_applicator"]], "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator": [[112, "cyclops-monitor-clinical-applicator-clinicalshiftapplicator"]], "cyclops.monitor.synthetic_applicator": [[113, "module-cyclops.monitor.synthetic_applicator"]], "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator": [[114, "cyclops-monitor-synthetic-applicator-syntheticshiftapplicator"]], "cyclops.monitor.synthetic_applicator.binary_noise_shift": [[115, "cyclops-monitor-synthetic-applicator-binary-noise-shift"]], "cyclops.monitor.synthetic_applicator.feature_association_shift": [[116, "cyclops-monitor-synthetic-applicator-feature-association-shift"]], "cyclops.monitor.synthetic_applicator.feature_swap_shift": [[117, "cyclops-monitor-synthetic-applicator-feature-swap-shift"]], "cyclops.monitor.synthetic_applicator.gaussian_noise_shift": [[118, "cyclops-monitor-synthetic-applicator-gaussian-noise-shift"]], "cyclops.monitor.synthetic_applicator.knockout_shift": [[119, "cyclops-monitor-synthetic-applicator-knockout-shift"]], "cyclops.report.report": [[120, "module-cyclops.report.report"]], "cyclops.report.report.ModelCardReport": [[121, "cyclops-report-report-modelcardreport"]], "cyclops.tasks.classification": [[122, "module-cyclops.tasks.classification"]], "cyclops.tasks.classification.BinaryTabularClassificationTask": [[123, "cyclops-tasks-classification-binarytabularclassificationtask"]], "cyclops.tasks.classification.MultilabelImageClassificationTask": [[124, "cyclops-tasks-classification-multilabelimageclassificationtask"]], "cyclops.data": [[125, "module-cyclops.data"]], "cyclops.data.features": [[125, "module-cyclops.data.features"]], "cyclops.evaluate": [[126, "module-cyclops.evaluate"]], "cyclops.evaluate.metrics": [[126, "module-cyclops.evaluate.metrics"]], "cyclops.evaluate.metrics.functional": [[126, "module-cyclops.evaluate.metrics.functional"]], "cyclops.evaluate.fairness": [[126, "module-cyclops.evaluate.fairness"]], "cyclops.monitor": [[127, "module-cyclops.monitor"]], "cyclops.report": [[128, "module-cyclops.report"]], "cyclops.tasks": [[129, "module-cyclops.tasks"]], "Tutorials": [[130, "tutorials"]], "Heart Failure Prediction": [[131, "Heart-Failure-Prediction"]], "Import Libraries": [[131, "Import-Libraries"], [132, "Import-Libraries"], [134, "Import-Libraries"]], "Constants": [[131, "Constants"], [134, "Constants"]], "Data Loading": [[131, "Data-Loading"]], "Sex values": [[131, "Sex-values"]], "Age distribution": [[131, "Age-distribution"], [134, "Age-distribution"]], "Outcome distribution": [[131, "Outcome-distribution"], [134, "Outcome-distribution"]], "Identifying feature types": [[131, "Identifying-feature-types"], [134, "Identifying-feature-types"]], "Creating data preprocessors": [[131, "Creating-data-preprocessors"], [134, "Creating-data-preprocessors"]], "Creating Hugging Face Dataset": [[131, "Creating-Hugging-Face-Dataset"], [134, "Creating-Hugging-Face-Dataset"]], "Model Creation": [[131, "Model-Creation"], [132, "Model-Creation"], [134, "Model-Creation"]], "Task Creation": [[131, "Task-Creation"], [134, "Task-Creation"]], "Training": [[131, "Training"], [134, "Training"]], "Prediction": [[131, "Prediction"], [134, "Prediction"]], "Evaluation": [[131, "Evaluation"], [134, "Evaluation"]], "Performance over time": [[131, "Performance-over-time"]], "Report Generation": [[131, "Report-Generation"], [134, "Report-Generation"]], "Chest X-Ray Disease Classification": [[132, "Chest-X-Ray-Disease-Classification"]], "Generate Historical Reports": [[132, "Generate-Historical-Reports"]], "Initialize Periodic Report": [[132, "Initialize-Periodic-Report"]], "Load Dataset": [[132, "Load-Dataset"]], "Multilabel AUROC by Pathology and Sex": [[132, "Multilabel-AUROC-by-Pathology-and-Sex"]], "Multilabel AUROC by Pathology and Age": [[132, "Multilabel-AUROC-by-Pathology-and-Age"]], "Log Performance Metrics as Tests w/ Thresholds": [[132, "Log-Performance-Metrics-as-Tests-w/-Thresholds"]], "Populate Model Card Fields": [[132, "Populate-Model-Card-Fields"]], "NIHCXR Clinical Drift Experiments Tutorial": [[133, "NIHCXR-Clinical-Drift-Experiments-Tutorial"]], "Import Libraries and Load NIHCXR Dataset": [[133, "Import-Libraries-and-Load-NIHCXR-Dataset"]], "Example 1. Generate Source/Target Dataset for Experiments (1-2)": [[133, "Example-1.-Generate-Source/Target-Dataset-for-Experiments-(1-2)"]], "Example 2. Sensitivity test experiment with 3 dimensionality reduction techniques": [[133, "Example-2.-Sensitivity-test-experiment-with-3-dimensionality-reduction-techniques"]], "Example 3. Sensitivity test experiment with models trained on different datasets": [[133, "Example-3.-Sensitivity-test-experiment-with-models-trained-on-different-datasets"]], "Example 4. Sensitivity test experiment with different clinical shifts": [[133, "Example-4.-Sensitivity-test-experiment-with-different-clinical-shifts"]], "Example 5. Rolling window experiment with synthetic timestamps using biweekly window": [[133, "Example-5.-Rolling-window-experiment-with-synthetic-timestamps-using-biweekly-window"]], "Prolonged Length of Stay Prediction": [[134, "Prolonged-Length-of-Stay-Prediction"]], "Data Querying": [[134, "Data-Querying"]], "Compute length of stay (labels)": [[134, "Compute-length-of-stay-(labels)"]], "Data Inspection and Preprocessing": [[134, "Data-Inspection-and-Preprocessing"]], "Drop NaNs based on the NAN_THRESHOLD": [[134, "Drop-NaNs-based-on-the-NAN_THRESHOLD"]], "Length of stay distribution": [[134, "Length-of-stay-distribution"]], "Gender distribution": [[134, "Gender-distribution"]], "monitor API": [[135, "monitor-api"]], "Example use cases": [[136, "example-use-cases"]], "Tabular data": [[136, "tabular-data"]], "Kaggle Heart Failure Prediction": [[136, "kaggle-heart-failure-prediction"]], "Synthea Prolonged Length of Stay Prediction": [[136, "synthea-prolonged-length-of-stay-prediction"]], "Image data": [[136, "image-data"]], "NIH Chest X-ray classification": [[136, "nih-chest-x-ray-classification"]]}, "indexentries": {"cyclops.data.features.medical_image": [[4, "module-cyclops.data.features.medical_image"]], "module": [[4, "module-cyclops.data.features.medical_image"], [6, "module-cyclops.data.slicer"], [16, "module-cyclops.evaluate.evaluator"], [18, "module-cyclops.evaluate.fairness.config"], [20, "module-cyclops.evaluate.fairness.evaluator"], [23, "module-cyclops.evaluate.metrics.accuracy"], [28, "module-cyclops.evaluate.metrics.auroc"], [33, "module-cyclops.evaluate.metrics.f_beta"], [42, "module-cyclops.evaluate.metrics.factory"], [44, "module-cyclops.evaluate.metrics.functional.accuracy"], [45, "module-cyclops.evaluate.metrics.functional.auroc"], [46, "module-cyclops.evaluate.metrics.functional.f_beta"], [55, "module-cyclops.evaluate.metrics.functional.precision_recall"], [64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"], [65, "module-cyclops.evaluate.metrics.functional.roc"], [70, "module-cyclops.evaluate.metrics.functional.sensitivity"], [71, "module-cyclops.evaluate.metrics.functional.specificity"], [72, "module-cyclops.evaluate.metrics.functional.stat_scores"], [73, "module-cyclops.evaluate.metrics.metric"], [77, "module-cyclops.evaluate.metrics.precision_recall"], [86, "module-cyclops.evaluate.metrics.precision_recall_curve"], [91, "module-cyclops.evaluate.metrics.roc"], [96, "module-cyclops.evaluate.metrics.sensitivity"], [101, "module-cyclops.evaluate.metrics.specificity"], [106, "module-cyclops.evaluate.metrics.stat_scores"], [111, "module-cyclops.monitor.clinical_applicator"], [113, "module-cyclops.monitor.synthetic_applicator"], [120, "module-cyclops.report.report"], [122, "module-cyclops.tasks.classification"], [125, "module-cyclops.data"], [125, "module-cyclops.data.features"], [126, "module-cyclops.evaluate"], [126, "module-cyclops.evaluate.fairness"], [126, "module-cyclops.evaluate.metrics"], [126, "module-cyclops.evaluate.metrics.functional"], [127, "module-cyclops.monitor"], [128, "module-cyclops.report"], [129, "module-cyclops.tasks"]], "medicalimage (class in cyclops.data.features.medical_image)": [[5, "cyclops.data.features.medical_image.MedicalImage"]], "__call__() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.__call__"]], "cast_storage() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.cast_storage"]], "decode_example() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.decode_example"]], "embed_storage() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.embed_storage"]], "encode_example() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.encode_example"]], "flatten() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.flatten"]], "cyclops.data.slicer": [[6, "module-cyclops.data.slicer"]], "slicespec (class in cyclops.data.slicer)": [[7, "cyclops.data.slicer.SliceSpec"]], "_registry (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec._registry"]], "add_slice_spec() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.add_slice_spec"]], "column_names (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.column_names"]], "get_slices() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.get_slices"]], "include_overall (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.include_overall"]], "slices() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.slices"]], "spec_list (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.spec_list"]], "validate (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.validate"]], "compound_filter() (in module cyclops.data.slicer)": [[8, "cyclops.data.slicer.compound_filter"]], "filter_datetime() (in module cyclops.data.slicer)": [[9, "cyclops.data.slicer.filter_datetime"]], "filter_non_null() (in module cyclops.data.slicer)": [[10, "cyclops.data.slicer.filter_non_null"]], "filter_range() (in module cyclops.data.slicer)": [[11, "cyclops.data.slicer.filter_range"]], "filter_string_contains() (in module cyclops.data.slicer)": [[12, "cyclops.data.slicer.filter_string_contains"]], "filter_value() (in module cyclops.data.slicer)": [[13, "cyclops.data.slicer.filter_value"]], "is_datetime() (in module cyclops.data.slicer)": [[14, "cyclops.data.slicer.is_datetime"]], "overall() (in module cyclops.data.slicer)": [[15, "cyclops.data.slicer.overall"]], "cyclops.evaluate.evaluator": [[16, "module-cyclops.evaluate.evaluator"]], "evaluate() (in module cyclops.evaluate.evaluator)": [[17, "cyclops.evaluate.evaluator.evaluate"]], "cyclops.evaluate.fairness.config": [[18, "module-cyclops.evaluate.fairness.config"]], "fairnessconfig (class in cyclops.evaluate.fairness.config)": [[19, "cyclops.evaluate.fairness.config.FairnessConfig"]], "cyclops.evaluate.fairness.evaluator": [[20, "module-cyclops.evaluate.fairness.evaluator"]], "evaluate_fairness() (in module cyclops.evaluate.fairness.evaluator)": [[21, "cyclops.evaluate.fairness.evaluator.evaluate_fairness"]], "warn_too_many_unique_values() (in module cyclops.evaluate.fairness.evaluator)": [[22, "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values"]], "cyclops.evaluate.metrics.accuracy": [[23, "module-cyclops.evaluate.metrics.accuracy"]], "accuracy (class in cyclops.evaluate.metrics.accuracy)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy"]], "__add__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__add__"]], "__call__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__call__"]], "__init__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__init__"]], "__mul__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__mul__"]], "add_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.add_state"]], "clone() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.clone"]], "compute() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.compute"]], "reset_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.reset_state"]], "update_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.update_state"]], "binaryaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy"]], "__add__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__add__"]], "__call__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__call__"]], "__init__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__init__"]], "__mul__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__mul__"]], "add_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.add_state"]], "clone() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.clone"]], "compute() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.compute"]], "reset_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.reset_state"]], "update_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.update_state"]], "multiclassaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy"]], "__add__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__add__"]], "__call__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__call__"]], "__init__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__init__"]], "__mul__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__mul__"]], "add_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.add_state"]], "clone() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.clone"]], "compute() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.compute"]], "reset_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.reset_state"]], "update_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.update_state"]], "multilabelaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy"]], "__add__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__add__"]], "__call__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__call__"]], "__init__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__init__"]], "__mul__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__mul__"]], "add_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.add_state"]], "clone() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.clone"]], "compute() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.compute"]], "reset_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.reset_state"]], "update_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.update_state"]], "cyclops.evaluate.metrics.auroc": [[28, "module-cyclops.evaluate.metrics.auroc"]], "auroc (class in cyclops.evaluate.metrics.auroc)": [[29, "cyclops.evaluate.metrics.auroc.AUROC"]], "__add__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__add__"]], "__call__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__call__"]], "__init__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__init__"]], "__mul__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__mul__"]], "add_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.add_state"]], "clone() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.clone"]], "compute() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.compute"]], "reset_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.reset_state"]], "update_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.update_state"]], "binaryauroc (class in cyclops.evaluate.metrics.auroc)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC"]], "__add__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__add__"]], "__call__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__call__"]], "__init__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__init__"]], "__mul__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__mul__"]], "add_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.add_state"]], "clone() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.clone"]], "compute() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.compute"]], "reset_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.reset_state"]], "update_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.update_state"]], "multiclassauroc (class in cyclops.evaluate.metrics.auroc)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC"]], "__add__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__add__"]], "__call__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__call__"]], "__init__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__init__"]], "__mul__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__mul__"]], "add_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.add_state"]], "clone() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.clone"]], "compute() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.compute"]], "reset_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.reset_state"]], "update_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.update_state"]], "multilabelauroc (class in cyclops.evaluate.metrics.auroc)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC"]], "__add__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__add__"]], "__call__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__call__"]], "__init__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__init__"]], "__mul__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__mul__"]], "add_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.add_state"]], "clone() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.clone"]], "compute() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.compute"]], "reset_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.reset_state"]], "update_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.update_state"]], "cyclops.evaluate.metrics.f_beta": [[33, "module-cyclops.evaluate.metrics.f_beta"]], "binaryf1score (class in cyclops.evaluate.metrics.f_beta)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score"]], "__add__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__add__"]], "__call__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__call__"]], "__init__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__init__"]], "__mul__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__mul__"]], "add_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.add_state"]], "clone() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.clone"]], "compute() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.compute"]], "reset_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.reset_state"]], "update_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.update_state"]], "binaryfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore"]], "__add__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__add__"]], "__call__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__call__"]], "__init__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__init__"]], "__mul__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__mul__"]], "add_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.add_state"]], "clone() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.clone"]], "compute() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.compute"]], "reset_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.reset_state"]], "update_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.update_state"]], "f1score (class in cyclops.evaluate.metrics.f_beta)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score"]], "__add__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__add__"]], "__call__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__call__"]], "__init__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__init__"]], "__mul__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__mul__"]], "add_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.add_state"]], "clone() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.clone"]], "compute() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.compute"]], "reset_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.reset_state"]], "update_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.update_state"]], "fbetascore (class in cyclops.evaluate.metrics.f_beta)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore"]], "__add__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__add__"]], "__call__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__call__"]], "__init__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__init__"]], "__mul__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__mul__"]], "add_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.add_state"]], "clone() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.clone"]], "compute() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.compute"]], "reset_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.reset_state"]], "update_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.update_state"]], "multiclassf1score (class in cyclops.evaluate.metrics.f_beta)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score"]], "__add__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__add__"]], "__call__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__call__"]], "__init__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__init__"]], "__mul__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__mul__"]], "add_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.add_state"]], "clone() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.clone"]], "compute() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.compute"]], "reset_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.reset_state"]], "update_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.update_state"]], "multiclassfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore"]], "__add__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__add__"]], "__call__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__call__"]], "__init__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__init__"]], "__mul__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__mul__"]], "add_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.add_state"]], "clone() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.clone"]], "compute() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.compute"]], "reset_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.reset_state"]], "update_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.update_state"]], "multilabelf1score (class in cyclops.evaluate.metrics.f_beta)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score"]], "__add__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__add__"]], "__call__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__call__"]], "__init__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__init__"]], "__mul__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__mul__"]], "add_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.add_state"]], "clone() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.clone"]], "compute() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.compute"]], "reset_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.reset_state"]], "update_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.update_state"]], "multilabelfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore"]], "__add__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__add__"]], "__call__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__call__"]], "__init__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__init__"]], "__mul__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__mul__"]], "add_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.add_state"]], "clone() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.clone"]], "compute() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.compute"]], "reset_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.reset_state"]], "update_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.update_state"]], "cyclops.evaluate.metrics.factory": [[42, "module-cyclops.evaluate.metrics.factory"]], "create_metric() (in module cyclops.evaluate.metrics.factory)": [[43, "cyclops.evaluate.metrics.factory.create_metric"]], "cyclops.evaluate.metrics.functional.accuracy": [[44, "module-cyclops.evaluate.metrics.functional.accuracy"]], "cyclops.evaluate.metrics.functional.auroc": [[45, "module-cyclops.evaluate.metrics.functional.auroc"]], "cyclops.evaluate.metrics.functional.f_beta": [[46, "module-cyclops.evaluate.metrics.functional.f_beta"]], "binary_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[47, "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score"]], "binary_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[48, "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score"]], "f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[49, "cyclops.evaluate.metrics.functional.f_beta.f1_score"]], "fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[50, "cyclops.evaluate.metrics.functional.f_beta.fbeta_score"]], "multiclass_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[51, "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score"]], "multiclass_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[52, "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score"]], "multilabel_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[53, "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score"]], "multilabel_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[54, "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[55, "module-cyclops.evaluate.metrics.functional.precision_recall"]], "binary_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[56, "cyclops.evaluate.metrics.functional.precision_recall.binary_precision"]], "binary_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[57, "cyclops.evaluate.metrics.functional.precision_recall.binary_recall"]], "multiclass_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[58, "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision"]], "multiclass_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[59, "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall"]], "multilabel_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[60, "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision"]], "multilabel_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[61, "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall"]], "precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[62, "cyclops.evaluate.metrics.functional.precision_recall.precision"]], "recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[63, "cyclops.evaluate.metrics.functional.precision_recall.recall"]], "cyclops.evaluate.metrics.functional.precision_recall_curve": [[64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"]], "cyclops.evaluate.metrics.functional.roc": [[65, "module-cyclops.evaluate.metrics.functional.roc"]], "binary_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[66, "cyclops.evaluate.metrics.functional.roc.binary_roc_curve"]], "multiclass_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[67, "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve"]], "multilabel_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[68, "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve"]], "roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[69, "cyclops.evaluate.metrics.functional.roc.roc_curve"]], "cyclops.evaluate.metrics.functional.sensitivity": [[70, "module-cyclops.evaluate.metrics.functional.sensitivity"]], "cyclops.evaluate.metrics.functional.specificity": [[71, "module-cyclops.evaluate.metrics.functional.specificity"]], "cyclops.evaluate.metrics.functional.stat_scores": [[72, "module-cyclops.evaluate.metrics.functional.stat_scores"]], "cyclops.evaluate.metrics.metric": [[73, "module-cyclops.evaluate.metrics.metric"]], "metric (class in cyclops.evaluate.metrics.metric)": [[74, "cyclops.evaluate.metrics.metric.Metric"]], "__add__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__add__"]], "__call__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__call__"]], "__init__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__init__"]], "__mul__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__mul__"]], "add_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.add_state"]], "clone() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.clone"]], "compute() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.compute"]], "reset_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.reset_state"]], "update_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.update_state"]], "metriccollection (class in cyclops.evaluate.metrics.metric)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection"]], "__call__() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.__call__"]], "__init__() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.__init__"]], "add_metrics() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.add_metrics"]], "clear() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.clear"]], "clone() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.clone"]], "compute() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.compute"]], "get() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.get"]], "items() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.items"]], "keys() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.keys"]], "pop() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.pop"]], "popitem() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.popitem"]], "reset_state() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.reset_state"]], "setdefault() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.setdefault"]], "update() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.update"]], "update_state() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.update_state"]], "values() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.values"]], "operatormetric (class in cyclops.evaluate.metrics.metric)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric"]], "__add__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__add__"]], "__call__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__call__"]], "__init__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__init__"]], "__mul__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__mul__"]], "add_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.add_state"]], "clone() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.clone"]], "compute() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.compute"]], "reset_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.reset_state"]], "update_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.update_state"]], "cyclops.evaluate.metrics.precision_recall": [[77, "module-cyclops.evaluate.metrics.precision_recall"]], "binaryprecision (class in cyclops.evaluate.metrics.precision_recall)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision"]], "__add__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__add__"]], "__call__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__call__"]], "__init__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__init__"]], "__mul__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__mul__"]], "add_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.add_state"]], "clone() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.clone"]], "compute() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.compute"]], "reset_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.reset_state"]], "update_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.update_state"]], "binaryrecall (class in cyclops.evaluate.metrics.precision_recall)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall"]], "__add__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__add__"]], "__call__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__call__"]], "__init__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__init__"]], "__mul__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__mul__"]], "add_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.add_state"]], "clone() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.clone"]], "compute() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.compute"]], "reset_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.reset_state"]], "update_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.update_state"]], "multiclassprecision (class in cyclops.evaluate.metrics.precision_recall)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision"]], "__add__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__add__"]], "__call__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__call__"]], "__init__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__init__"]], "__mul__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__mul__"]], "add_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.add_state"]], "clone() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.clone"]], "compute() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.compute"]], "reset_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.reset_state"]], "update_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.update_state"]], "multiclassrecall (class in cyclops.evaluate.metrics.precision_recall)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall"]], "__add__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__add__"]], "__call__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__call__"]], "__init__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__init__"]], "__mul__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__mul__"]], "add_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.add_state"]], "clone() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.clone"]], "compute() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.compute"]], "reset_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.reset_state"]], "update_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.update_state"]], "multilabelprecision (class in cyclops.evaluate.metrics.precision_recall)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision"]], "__add__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__add__"]], "__call__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__call__"]], "__init__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__init__"]], "__mul__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__mul__"]], "add_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.add_state"]], "clone() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.clone"]], "compute() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.compute"]], "reset_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.reset_state"]], "update_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.update_state"]], "multilabelrecall (class in cyclops.evaluate.metrics.precision_recall)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall"]], "__add__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__add__"]], "__call__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__call__"]], "__init__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__init__"]], "__mul__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__mul__"]], "add_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.add_state"]], "clone() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.clone"]], "compute() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.compute"]], "reset_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.reset_state"]], "update_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.update_state"]], "precision (class in cyclops.evaluate.metrics.precision_recall)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision"]], "__add__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__add__"]], "__call__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__call__"]], "__init__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__init__"]], "__mul__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__mul__"]], "add_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.add_state"]], "clone() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.clone"]], "compute() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.compute"]], "reset_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.reset_state"]], "update_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.update_state"]], "recall (class in cyclops.evaluate.metrics.precision_recall)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall"]], "__add__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__add__"]], "__call__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__call__"]], "__init__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__init__"]], "__mul__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__mul__"]], "add_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.add_state"]], "clone() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.clone"]], "compute() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.compute"]], "reset_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.reset_state"]], "update_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.update_state"]], "cyclops.evaluate.metrics.precision_recall_curve": [[86, "module-cyclops.evaluate.metrics.precision_recall_curve"]], "binaryprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve"]], "__add__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__add__"]], "__call__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__call__"]], "__init__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__init__"]], "__mul__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__mul__"]], "add_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.add_state"]], "clone() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.clone"]], "compute() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.compute"]], "reset_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.reset_state"]], "update_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.update_state"]], "multiclassprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve"]], "__add__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__add__"]], "__call__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__call__"]], "__init__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__init__"]], "__mul__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__mul__"]], "add_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.add_state"]], "clone() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.clone"]], "compute() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.compute"]], "reset_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.reset_state"]], "update_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.update_state"]], "multilabelprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve"]], "__add__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__add__"]], "__call__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__call__"]], "__init__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__init__"]], "__mul__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__mul__"]], "add_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.add_state"]], "clone() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.clone"]], "compute() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.compute"]], "reset_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.reset_state"]], "update_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.update_state"]], "precisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve"]], "__add__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__add__"]], "__call__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__call__"]], "__init__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__init__"]], "__mul__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__mul__"]], "add_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.add_state"]], "clone() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.clone"]], "compute() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.compute"]], "reset_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.reset_state"]], "update_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.update_state"]], "cyclops.evaluate.metrics.roc": [[91, "module-cyclops.evaluate.metrics.roc"]], "binaryroccurve (class in cyclops.evaluate.metrics.roc)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve"]], "__add__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__add__"]], "__call__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__call__"]], "__init__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__init__"]], "__mul__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__mul__"]], "add_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.add_state"]], "clone() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.clone"]], "compute() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.compute"]], "reset_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.reset_state"]], "update_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.update_state"]], "multiclassroccurve (class in cyclops.evaluate.metrics.roc)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve"]], "__add__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__add__"]], "__call__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__call__"]], "__init__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__init__"]], "__mul__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__mul__"]], "add_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.add_state"]], "clone() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.clone"]], "compute() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.compute"]], "reset_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.reset_state"]], "update_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.update_state"]], "multilabelroccurve (class in cyclops.evaluate.metrics.roc)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve"]], "__add__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__add__"]], "__call__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__call__"]], "__init__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__init__"]], "__mul__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__mul__"]], "add_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.add_state"]], "clone() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.clone"]], "compute() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.compute"]], "reset_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.reset_state"]], "update_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.update_state"]], "roccurve (class in cyclops.evaluate.metrics.roc)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve"]], "__add__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__add__"]], "__call__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__call__"]], "__init__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__init__"]], "__mul__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__mul__"]], "add_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.add_state"]], "clone() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.clone"]], "compute() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.compute"]], "reset_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.reset_state"]], "update_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.update_state"]], "cyclops.evaluate.metrics.sensitivity": [[96, "module-cyclops.evaluate.metrics.sensitivity"]], "binarysensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity"]], "__add__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__add__"]], "__call__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__call__"]], "__init__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__init__"]], "__mul__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__mul__"]], "add_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.add_state"]], "clone() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.clone"]], "compute() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.compute"]], "reset_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.reset_state"]], "update_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.update_state"]], "multiclasssensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity"]], "__add__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__add__"]], "__call__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__call__"]], "__init__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__init__"]], "__mul__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__mul__"]], "add_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.add_state"]], "clone() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.clone"]], "compute() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.compute"]], "reset_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.reset_state"]], "update_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.update_state"]], "multilabelsensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity"]], "__add__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__add__"]], "__call__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__call__"]], "__init__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__init__"]], "__mul__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__mul__"]], "add_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.add_state"]], "clone() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.clone"]], "compute() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.compute"]], "reset_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.reset_state"]], "update_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.update_state"]], "sensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity"]], "__add__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__add__"]], "__call__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__call__"]], "__init__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__init__"]], "__mul__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__mul__"]], "add_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.add_state"]], "clone() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.clone"]], "compute() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.compute"]], "reset_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.reset_state"]], "update_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.update_state"]], "cyclops.evaluate.metrics.specificity": [[101, "module-cyclops.evaluate.metrics.specificity"]], "binaryspecificity (class in cyclops.evaluate.metrics.specificity)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity"]], "__add__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__add__"]], "__call__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__call__"]], "__init__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__init__"]], "__mul__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__mul__"]], "add_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.add_state"]], "clone() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.clone"]], "compute() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.compute"]], "reset_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.reset_state"]], "update_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.update_state"]], "multiclassspecificity (class in cyclops.evaluate.metrics.specificity)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity"]], "__add__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__add__"]], "__call__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__call__"]], "__init__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__init__"]], "__mul__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__mul__"]], "add_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.add_state"]], "clone() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.clone"]], "compute() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.compute"]], "reset_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.reset_state"]], "update_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.update_state"]], "multilabelspecificity (class in cyclops.evaluate.metrics.specificity)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity"]], "__add__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__add__"]], "__call__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__call__"]], "__init__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__init__"]], "__mul__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__mul__"]], "add_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.add_state"]], "clone() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.clone"]], "compute() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.compute"]], "reset_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.reset_state"]], "update_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.update_state"]], "specificity (class in cyclops.evaluate.metrics.specificity)": [[105, "cyclops.evaluate.metrics.specificity.Specificity"]], "__add__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__add__"]], "__call__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__call__"]], "__init__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__init__"]], "__mul__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__mul__"]], "add_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.add_state"]], "clone() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.clone"]], "compute() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.compute"]], "reset_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.reset_state"]], "update_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.update_state"]], "cyclops.evaluate.metrics.stat_scores": [[106, "module-cyclops.evaluate.metrics.stat_scores"]], "binarystatscores (class in cyclops.evaluate.metrics.stat_scores)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores"]], "__add__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__add__"]], "__call__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__call__"]], "__init__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__init__"]], "__mul__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__mul__"]], "add_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.add_state"]], "clone() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.clone"]], "compute() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.compute"]], "reset_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.reset_state"]], "update_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.update_state"]], "multiclassstatscores (class in cyclops.evaluate.metrics.stat_scores)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores"]], "__add__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__add__"]], "__call__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__call__"]], "__init__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__init__"]], "__mul__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__mul__"]], "add_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.add_state"]], "clone() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.clone"]], "compute() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.compute"]], "reset_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.reset_state"]], "update_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.update_state"]], "multilabelstatscores (class in cyclops.evaluate.metrics.stat_scores)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores"]], "__add__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__add__"]], "__call__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__call__"]], "__init__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__init__"]], "__mul__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__mul__"]], "add_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.add_state"]], "clone() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.clone"]], "compute() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.compute"]], "reset_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.reset_state"]], "update_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.update_state"]], "statscores (class in cyclops.evaluate.metrics.stat_scores)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores"]], "__add__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__add__"]], "__call__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__call__"]], "__init__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__init__"]], "__mul__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__mul__"]], "add_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.add_state"]], "clone() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.clone"]], "compute() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.compute"]], "reset_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.reset_state"]], "update_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.update_state"]], "cyclops.monitor.clinical_applicator": [[111, "module-cyclops.monitor.clinical_applicator"]], "clinicalshiftapplicator (class in cyclops.monitor.clinical_applicator)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator"]], "age() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.age"]], "apply_shift() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.apply_shift"]], "custom() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.custom"]], "hospital_type() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.hospital_type"]], "month() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.month"]], "sex() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.sex"]], "time() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.time"]], "cyclops.monitor.synthetic_applicator": [[113, "module-cyclops.monitor.synthetic_applicator"]], "syntheticshiftapplicator (class in cyclops.monitor.synthetic_applicator)": [[114, "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator"]], "apply_shift() (syntheticshiftapplicator method)": [[114, "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator.apply_shift"]], "binary_noise_shift() (in module cyclops.monitor.synthetic_applicator)": [[115, "cyclops.monitor.synthetic_applicator.binary_noise_shift"]], "feature_association_shift() (in module cyclops.monitor.synthetic_applicator)": [[116, "cyclops.monitor.synthetic_applicator.feature_association_shift"]], "feature_swap_shift() (in module cyclops.monitor.synthetic_applicator)": [[117, "cyclops.monitor.synthetic_applicator.feature_swap_shift"]], "gaussian_noise_shift() (in module cyclops.monitor.synthetic_applicator)": [[118, "cyclops.monitor.synthetic_applicator.gaussian_noise_shift"]], "knockout_shift() (in module cyclops.monitor.synthetic_applicator)": [[119, "cyclops.monitor.synthetic_applicator.knockout_shift"]], "cyclops.report.report": [[120, "module-cyclops.report.report"]], "modelcardreport (class in cyclops.report.report)": [[121, "cyclops.report.report.ModelCardReport"]], "export() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.export"]], "from_json_file() (modelcardreport class method)": [[121, "cyclops.report.report.ModelCardReport.from_json_file"]], "log_citation() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_citation"]], "log_dataset() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_dataset"]], "log_descriptor() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_descriptor"]], "log_fairness_assessment() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_fairness_assessment"]], "log_from_dict() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_from_dict"]], "log_image() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_image"]], "log_license() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_license"]], "log_model_parameters() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_model_parameters"]], "log_owner() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_owner"]], "log_performance_metrics() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_performance_metrics"]], "log_plotly_figure() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_plotly_figure"]], "log_quantitative_analysis() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_quantitative_analysis"]], "log_reference() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_reference"]], "log_regulation() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_regulation"]], "log_risk() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_risk"]], "log_use_case() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_use_case"]], "log_user() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_user"]], "log_version() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_version"]], "cyclops.tasks.classification": [[122, "module-cyclops.tasks.classification"]], "binarytabularclassificationtask (class in cyclops.tasks.classification)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask"]], "__init__() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.__init__"]], "add_model() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.add_model"]], "data_type (binarytabularclassificationtask property)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.data_type"]], "evaluate() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.evaluate"]], "get_model() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.get_model"]], "list_models() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.list_models"]], "list_models_params() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.list_models_params"]], "load_model() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.load_model"]], "models_count (binarytabularclassificationtask property)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.models_count"]], "predict() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.predict"]], "save_model() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.save_model"]], "task_type (binarytabularclassificationtask property)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.task_type"]], "train() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.train"]], "multilabelimageclassificationtask (class in cyclops.tasks.classification)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask"]], "__init__() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.__init__"]], "add_model() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.add_model"]], "data_type (multilabelimageclassificationtask property)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.data_type"]], "evaluate() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.evaluate"]], "get_model() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.get_model"]], "list_models() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.list_models"]], "list_models_params() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.list_models_params"]], "load_model() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.load_model"]], "models_count (multilabelimageclassificationtask property)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.models_count"]], "predict() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.predict"]], "save_model() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.save_model"]], "task_type (multilabelimageclassificationtask property)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.task_type"]], "cyclops.data": [[125, "module-cyclops.data"]], "cyclops.data.features": [[125, "module-cyclops.data.features"]], "cyclops.evaluate": [[126, "module-cyclops.evaluate"]], "cyclops.evaluate.fairness": [[126, "module-cyclops.evaluate.fairness"]], "cyclops.evaluate.metrics": [[126, "module-cyclops.evaluate.metrics"]], "cyclops.evaluate.metrics.functional": [[126, "module-cyclops.evaluate.metrics.functional"]], "cyclops.monitor": [[127, "module-cyclops.monitor"]], "cyclops.report": [[128, "module-cyclops.report"]], "cyclops.tasks": [[129, "module-cyclops.tasks"]]}})
\ No newline at end of file
+Search.setIndex({"docnames": ["api", "contributing", "index", "intro", "reference/api/_autosummary/cyclops.data.features.medical_image", "reference/api/_autosummary/cyclops.data.features.medical_image.MedicalImage", "reference/api/_autosummary/cyclops.data.slicer", "reference/api/_autosummary/cyclops.data.slicer.SliceSpec", "reference/api/_autosummary/cyclops.data.slicer.compound_filter", "reference/api/_autosummary/cyclops.data.slicer.filter_datetime", "reference/api/_autosummary/cyclops.data.slicer.filter_non_null", "reference/api/_autosummary/cyclops.data.slicer.filter_range", "reference/api/_autosummary/cyclops.data.slicer.filter_string_contains", "reference/api/_autosummary/cyclops.data.slicer.filter_value", "reference/api/_autosummary/cyclops.data.slicer.is_datetime", "reference/api/_autosummary/cyclops.data.slicer.overall", "reference/api/_autosummary/cyclops.evaluate.evaluator", "reference/api/_autosummary/cyclops.evaluate.evaluator.evaluate", "reference/api/_autosummary/cyclops.evaluate.fairness.config", "reference/api/_autosummary/cyclops.evaluate.fairness.config.FairnessConfig", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.evaluate_fairness", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.Accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.BinaryAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MulticlassAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MultilabelAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.AUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.BinaryAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MulticlassAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MultilabelAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.F1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.FbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.factory", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.create_metric", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.auroc", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.binary_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.stat_scores", "reference/api/_autosummary/cyclops.evaluate.metrics.metric", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.Metric", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.MetricCollection", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.OperatorMetric", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Precision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Recall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.BinaryROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MulticlassROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MultilabelROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.ROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.BinarySensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.Sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.BinarySpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MulticlassSpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MultilabelSpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.Specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.BinaryStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MulticlassStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MultilabelStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.StatScores", "reference/api/_autosummary/cyclops.monitor.clinical_applicator", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.ClinicalShiftApplicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.binary_noise_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_association_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_swap_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.gaussian_noise_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.knockout_shift", "reference/api/_autosummary/cyclops.report.report", "reference/api/_autosummary/cyclops.report.report.ModelCardReport", "reference/api/_autosummary/cyclops.tasks.classification", "reference/api/_autosummary/cyclops.tasks.classification.BinaryTabularClassificationTask", "reference/api/_autosummary/cyclops.tasks.classification.MultilabelImageClassificationTask", "reference/api/cyclops.data", "reference/api/cyclops.evaluate", "reference/api/cyclops.monitor", "reference/api/cyclops.report", "reference/api/cyclops.tasks", "tutorials", "tutorials/kaggle/heart_failure_prediction", "tutorials/nihcxr/cxr_classification", "tutorials/nihcxr/monitor_api", "tutorials/synthea/los_prediction", "tutorials_monitor", "tutorials_use_cases"], "filenames": ["api.rst", "contributing.rst", "index.rst", "intro.rst", "reference/api/_autosummary/cyclops.data.features.medical_image.rst", "reference/api/_autosummary/cyclops.data.features.medical_image.MedicalImage.rst", "reference/api/_autosummary/cyclops.data.slicer.rst", "reference/api/_autosummary/cyclops.data.slicer.SliceSpec.rst", "reference/api/_autosummary/cyclops.data.slicer.compound_filter.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_datetime.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_non_null.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_range.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_string_contains.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_value.rst", "reference/api/_autosummary/cyclops.data.slicer.is_datetime.rst", "reference/api/_autosummary/cyclops.data.slicer.overall.rst", "reference/api/_autosummary/cyclops.evaluate.evaluator.rst", "reference/api/_autosummary/cyclops.evaluate.evaluator.evaluate.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.config.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.config.FairnessConfig.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.evaluate_fairness.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.Accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.BinaryAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.AUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.BinaryAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MulticlassAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MultilabelAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.F1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.FbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.create_metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.auroc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.binary_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.stat_scores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.Metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.MetricCollection.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.OperatorMetric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.BinaryROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MulticlassROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MultilabelROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.ROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.BinarySensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.Sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.BinarySpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MulticlassSpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MultilabelSpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.Specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.BinaryStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.StatScores.rst", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.rst", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.binary_noise_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_association_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_swap_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.gaussian_noise_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.knockout_shift.rst", "reference/api/_autosummary/cyclops.report.report.rst", "reference/api/_autosummary/cyclops.report.report.ModelCardReport.rst", "reference/api/_autosummary/cyclops.tasks.classification.rst", "reference/api/_autosummary/cyclops.tasks.classification.BinaryTabularClassificationTask.rst", "reference/api/_autosummary/cyclops.tasks.classification.MultilabelImageClassificationTask.rst", "reference/api/cyclops.data.rst", "reference/api/cyclops.evaluate.rst", "reference/api/cyclops.monitor.rst", "reference/api/cyclops.report.rst", "reference/api/cyclops.tasks.rst", "tutorials.rst", "tutorials/kaggle/heart_failure_prediction.ipynb", "tutorials/nihcxr/cxr_classification.ipynb", "tutorials/nihcxr/monitor_api.ipynb", "tutorials/synthea/los_prediction.ipynb", "tutorials_monitor.rst", "tutorials_use_cases.rst"], "titles": ["API Reference", "Contributing to cyclops", "Welcome to cyclops\u2019s documentation!", "\ud83d\udc23 Getting Started", "cyclops.data.features.medical_image", "cyclops.data.features.medical_image.MedicalImage", "cyclops.data.slicer", "cyclops.data.slicer.SliceSpec", "cyclops.data.slicer.compound_filter", "cyclops.data.slicer.filter_datetime", "cyclops.data.slicer.filter_non_null", "cyclops.data.slicer.filter_range", "cyclops.data.slicer.filter_string_contains", "cyclops.data.slicer.filter_value", "cyclops.data.slicer.is_datetime", "cyclops.data.slicer.overall", "cyclops.evaluate.evaluator", "cyclops.evaluate.evaluator.evaluate", "cyclops.evaluate.fairness.config", "cyclops.evaluate.fairness.config.FairnessConfig", "cyclops.evaluate.fairness.evaluator", "cyclops.evaluate.fairness.evaluator.evaluate_fairness", "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values", "cyclops.evaluate.metrics.accuracy", "cyclops.evaluate.metrics.accuracy.Accuracy", "cyclops.evaluate.metrics.accuracy.BinaryAccuracy", "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy", "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy", "cyclops.evaluate.metrics.auroc", "cyclops.evaluate.metrics.auroc.AUROC", "cyclops.evaluate.metrics.auroc.BinaryAUROC", "cyclops.evaluate.metrics.auroc.MulticlassAUROC", "cyclops.evaluate.metrics.auroc.MultilabelAUROC", "cyclops.evaluate.metrics.f_beta", "cyclops.evaluate.metrics.f_beta.BinaryF1Score", "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore", "cyclops.evaluate.metrics.f_beta.F1Score", "cyclops.evaluate.metrics.f_beta.FbetaScore", "cyclops.evaluate.metrics.f_beta.MulticlassF1Score", "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore", "cyclops.evaluate.metrics.f_beta.MultilabelF1Score", "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore", "cyclops.evaluate.metrics.factory", "cyclops.evaluate.metrics.factory.create_metric", "cyclops.evaluate.metrics.functional.accuracy", "cyclops.evaluate.metrics.functional.auroc", "cyclops.evaluate.metrics.functional.f_beta", "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score", "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.f1_score", "cyclops.evaluate.metrics.functional.f_beta.fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score", "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score", "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score", "cyclops.evaluate.metrics.functional.precision_recall", "cyclops.evaluate.metrics.functional.precision_recall.binary_precision", "cyclops.evaluate.metrics.functional.precision_recall.binary_recall", "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision", "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall", "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision", "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall", "cyclops.evaluate.metrics.functional.precision_recall.precision", "cyclops.evaluate.metrics.functional.precision_recall.recall", "cyclops.evaluate.metrics.functional.precision_recall_curve", "cyclops.evaluate.metrics.functional.roc", "cyclops.evaluate.metrics.functional.roc.binary_roc_curve", "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve", "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve", "cyclops.evaluate.metrics.functional.roc.roc_curve", "cyclops.evaluate.metrics.functional.sensitivity", "cyclops.evaluate.metrics.functional.specificity", "cyclops.evaluate.metrics.functional.stat_scores", "cyclops.evaluate.metrics.metric", "cyclops.evaluate.metrics.metric.Metric", "cyclops.evaluate.metrics.metric.MetricCollection", "cyclops.evaluate.metrics.metric.OperatorMetric", "cyclops.evaluate.metrics.precision_recall", "cyclops.evaluate.metrics.precision_recall.BinaryPrecision", "cyclops.evaluate.metrics.precision_recall.BinaryRecall", "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision", "cyclops.evaluate.metrics.precision_recall.MulticlassRecall", "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision", "cyclops.evaluate.metrics.precision_recall.MultilabelRecall", "cyclops.evaluate.metrics.precision_recall.Precision", "cyclops.evaluate.metrics.precision_recall.Recall", "cyclops.evaluate.metrics.precision_recall_curve", "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve", "cyclops.evaluate.metrics.roc", "cyclops.evaluate.metrics.roc.BinaryROCCurve", "cyclops.evaluate.metrics.roc.MulticlassROCCurve", "cyclops.evaluate.metrics.roc.MultilabelROCCurve", "cyclops.evaluate.metrics.roc.ROCCurve", "cyclops.evaluate.metrics.sensitivity", "cyclops.evaluate.metrics.sensitivity.BinarySensitivity", "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity", "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity", "cyclops.evaluate.metrics.sensitivity.Sensitivity", "cyclops.evaluate.metrics.specificity", "cyclops.evaluate.metrics.specificity.BinarySpecificity", "cyclops.evaluate.metrics.specificity.MulticlassSpecificity", "cyclops.evaluate.metrics.specificity.MultilabelSpecificity", "cyclops.evaluate.metrics.specificity.Specificity", "cyclops.evaluate.metrics.stat_scores", "cyclops.evaluate.metrics.stat_scores.BinaryStatScores", "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores", "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores", "cyclops.evaluate.metrics.stat_scores.StatScores", "cyclops.monitor.clinical_applicator", "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator", "cyclops.monitor.synthetic_applicator", "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator", "cyclops.monitor.synthetic_applicator.binary_noise_shift", "cyclops.monitor.synthetic_applicator.feature_association_shift", "cyclops.monitor.synthetic_applicator.feature_swap_shift", "cyclops.monitor.synthetic_applicator.gaussian_noise_shift", "cyclops.monitor.synthetic_applicator.knockout_shift", "cyclops.report.report", "cyclops.report.report.ModelCardReport", "cyclops.tasks.classification", "cyclops.tasks.classification.BinaryTabularClassificationTask", "cyclops.tasks.classification.MultilabelImageClassificationTask", "cyclops.data", "cyclops.evaluate", "cyclops.monitor", "cyclops.report", "cyclops.tasks", "Tutorials", "Heart Failure Prediction", "Chest X-Ray Disease Classification", "NIHCXR Clinical Drift Experiments Tutorial", "Prolonged Length of Stay Prediction", "monitor API", "Example use cases"], "terms": {"cyclop": [0, 131, 132, 133, 134], "data": [0, 2, 3, 24, 26, 27, 49, 50, 52, 54, 69, 72, 89, 95, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 130, 132, 133, 135], "slicer": [0, 131, 132, 133, 134], "compound_filt": 0, "filter_datetim": 0, "filter_non_nul": 0, "filter_rang": 0, "filter_string_contain": 0, "filter_valu": [0, 132], "is_datetim": 0, "overal": [0, 7, 21, 121, 131, 132, 134], "slicespec": [0, 17, 112, 124, 131, 132, 133, 134], "spec_list": [0, 7, 131, 132, 133, 134], "include_overal": [0, 7, 131], "valid": [0, 7, 9, 17, 121, 123, 124, 131, 132], "column_nam": [0, 7, 9, 10, 11, 12, 13, 132], "_registri": [0, 7], "add_slice_spec": [0, 7], "get_slic": [0, 7], "slice": [0, 3, 7, 8, 17, 21, 121, 123, 124, 131, 132, 134], "featur": [0, 7, 9, 10, 11, 12, 13, 15, 17, 112, 116, 117, 121, 123, 124, 130, 132, 136], "medical_imag": 0, "medicalimag": 0, "__call__": [0, 5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "cast_storag": [0, 5], "decode_exampl": [0, 5], "embed_storag": [0, 5], "encode_exampl": [0, 5], "flatten": [0, 5, 131, 132, 134], "task": [0, 2, 3, 24, 25, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 44, 47, 48, 49, 50, 51, 53, 54, 58, 60, 61, 62, 63, 66, 67, 68, 69, 78, 80, 81, 82, 83, 84, 85, 90, 92, 93, 94, 95, 98, 99, 100, 102, 103, 104, 105, 110, 130, 132, 136], "classif": [0, 3, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 44, 47, 48, 49, 50, 51, 53, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 78, 79, 80, 81, 82, 83, 84, 85, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 130, 131, 134], "binarytabularclassificationtask": [0, 131, 134], "__init__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 132], "add_model": [0, 123, 124], "data_typ": [0, 123, 124], "evalu": [0, 2, 3, 121, 123, 124, 130, 132, 136], "get_model": [0, 123, 124], "list_model": [0, 123, 124, 131, 134], "list_models_param": [0, 123, 124, 131, 134], "load_model": [0, 123, 124], "models_count": [0, 123, 124], "predict": [0, 3, 17, 19, 21, 24, 26, 27, 30, 31, 32, 34, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 67, 80, 81, 82, 84, 85, 87, 88, 89, 92, 93, 94, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 130, 132], "save_model": [0, 123, 124], "task_typ": [0, 123, 124, 131, 134], "train": [0, 3, 17, 121, 123, 124, 130, 132, 135, 136], "multilabelimageclassificationtask": 0, "metric": [0, 17, 19, 21, 121, 123, 124, 130, 131, 134, 136], "__add__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "__mul__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "add_stat": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "clone": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "comput": [0, 17, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 123, 124, 130, 132, 136], "reset_st": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "update_st": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "metriccollect": [0, 17, 21, 123, 124, 131, 134], "add_metr": [0, 75], "clear": [0, 75], "get": [0, 2, 75, 123, 124, 131, 134], "item": [0, 75, 131, 132, 133, 134], "kei": [0, 7, 17, 21, 75, 121, 131, 132, 133, 134], "pop": [0, 75, 131, 134], "popitem": [0, 75], "setdefault": [0, 75], "updat": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 133, 134], "valu": [0, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 130, 132, 133, 134, 136], "operatormetr": 0, "factori": [0, 7, 132], "create_metr": [0, 131, 132, 134], "accuraci": [0, 131, 134], "binaryaccuraci": [0, 131, 134], "multiclassaccuraci": 0, "multilabelaccuraci": 0, "auroc": [0, 130, 131, 134, 136], "binaryauroc": [0, 29, 131, 134], "multiclassauroc": [0, 29], "multilabelauroc": [0, 29], "precision_recal": 0, "binaryprecis": [0, 131, 134], "binaryrecal": [0, 97, 131, 134], "multiclassprecis": 0, "multiclassrecal": [0, 98], "multilabelprecis": 0, "multilabelrecal": [0, 99], "precis": [0, 24, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 60, 64, 66, 77, 78, 80, 82, 85, 86, 87, 88, 89, 90, 92, 100, 105, 131, 132, 134], "recal": [0, 24, 38, 51, 55, 57, 59, 61, 64, 66, 77, 79, 81, 83, 86, 87, 88, 89, 90, 92, 97, 98, 99, 105, 131, 132, 134], "precision_recall_curv": [0, 131, 134], "binaryprecisionrecallcurv": [0, 30, 92, 131, 134], "multiclassprecisionrecallcurv": [0, 31, 93], "multilabelprecisionrecallcurv": [0, 32, 94], "precisionrecallcurv": 0, "roc": [0, 28, 29, 30, 31, 32, 45, 131, 134], "binaryroccurv": [0, 131, 134], "multiclassroccurv": 0, "multilabelroccurv": 0, "roccurv": 0, "sensit": [0, 121, 130, 131, 132, 134, 135], "binarysensit": 0, "multiclasssensit": 0, "multilabelsensit": [0, 132], "specif": [0, 7, 17, 115, 118, 123, 124, 131, 132, 134], "binaryspecif": 0, "multiclassspecif": 0, "multilabelspecif": [0, 132], "f_beta": 0, "binaryf1scor": [0, 131, 134], "binaryfbetascor": [0, 34], "f1score": 0, "fbetascor": [0, 36], "multiclassf1scor": 0, "multiclassfbetascor": [0, 38], "multilabelf1scor": 0, "multilabelfbetascor": [0, 40], "stat_scor": [0, 132], "binarystatscor": [0, 25, 35, 78, 79, 102], "multiclassstatscor": [0, 26, 39, 80, 81, 103], "multilabelstatscor": [0, 27, 41, 82, 83, 104, 132], "statscor": 0, "function": [0, 3, 5, 6, 7, 8, 16, 17, 20, 21, 25, 35, 41, 42, 76, 93, 102, 104, 107, 109, 110, 113, 121, 131, 132, 134], "binary_precis": 0, "binary_recal": 0, "multiclass_precis": 0, "multiclass_recal": 0, "multilabel_precis": 0, "multilabel_recal": 0, "binary_roc_curv": 0, "multiclass_roc_curv": 0, "multilabel_roc_curv": 0, "roc_curv": [0, 131, 134], "binary_f1_scor": 0, "binary_fbeta_scor": 0, "f1_score": [0, 131, 134], "fbeta_scor": 0, "multiclass_f1_scor": 0, "multiclass_fbeta_scor": 0, "multilabel_f1_scor": 0, "multilabel_fbeta_scor": 0, "fair": [0, 17, 121, 123, 124, 131, 132, 134], "evaluate_fair": 0, "warn_too_many_unique_valu": 0, "config": [0, 123], "fairnessconfig": [0, 17, 123, 124, 131, 134], "monitor": [0, 2, 3, 130, 131, 133, 134], "clinical_appl": 0, "clinicalshiftappl": [0, 133], "ag": [0, 112, 130, 133, 136], "apply_shift": [0, 112, 114, 133], "custom": [0, 112, 121, 133], "hospital_typ": [0, 112], "month": [0, 7, 9, 112], "sex": [0, 112, 130, 133, 134, 136], "time": [0, 7, 75, 112, 121, 130, 132, 134, 135, 136], "synthetic_appl": 0, "binary_noise_shift": 0, "feature_association_shift": 0, "feature_swap_shift": 0, "gaussian_noise_shift": 0, "knockout_shift": 0, "syntheticshiftappl": [0, 113], "report": [0, 2, 3, 110, 130, 136], "modelcardreport": [0, 131, 132, 134], "export": [0, 121, 131, 132, 134], "from_json_fil": [0, 121], "log_cit": [0, 121, 132], "log_dataset": [0, 121, 131], "log_descriptor": [0, 121, 131, 132, 134], "log_fairness_assess": [0, 121, 131, 132, 134], "log_from_dict": [0, 121, 131, 132, 134], "log_imag": [0, 121], "log_licens": [0, 121, 131, 134], "log_model_paramet": [0, 121, 131, 134], "log_own": [0, 121, 131, 132, 134], "log_performance_metr": [0, 121, 131, 134], "log_plotly_figur": [0, 121, 131, 132, 134], "log_quantitative_analysi": [0, 121, 131, 132, 134], "log_refer": [0, 121, 131, 134], "log_regul": [0, 121], "log_risk": [0, 121, 131, 132, 134], "log_use_cas": [0, 121, 131, 132, 134], "log_us": [0, 121, 131, 132, 134], "log_vers": [0, 121, 131, 134], "thank": 1, "your": [1, 131], "interest": [1, 131, 134], "To": [1, 3, 5, 131, 134], "submit": 1, "pr": 1, "pleas": [1, 131, 132, 133, 134], "fill": 1, "out": [1, 121, 131, 134], "templat": [1, 121], "along": [1, 112, 131, 132, 134], "If": [1, 5, 7, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124, 131, 134], "fix": 1, "an": [1, 3, 5, 7, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 51, 60, 61, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 131, 132, 134], "issu": [1, 21], "don": 1, "t": [1, 5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121], "forget": 1, "link": [1, 121, 131, 132, 134], "onc": [1, 75, 131, 134], "python": [1, 3, 134], "virtual": [1, 3], "environ": [1, 3, 131, 134], "i": [1, 3, 5, 7, 9, 10, 11, 12, 13, 14, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 131, 132, 134, 136], "setup": [1, 134], "you": [1, 3, 5, 75, 131, 132, 134, 135], "can": [1, 3, 5, 7, 21, 25, 38, 51, 69, 75, 84, 85, 95, 100, 110, 121, 123, 124, 131, 132, 134, 135], "run": [1, 3, 131, 134], "us": [1, 2, 5, 7, 8, 17, 21, 24, 29, 30, 31, 32, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 62, 63, 66, 67, 68, 69, 75, 76, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 102, 105, 107, 110, 112, 114, 121, 123, 124, 130, 131, 132, 134, 135], "all": [1, 7, 8, 9, 10, 11, 12, 13, 15, 63, 73, 75, 108, 109, 110, 123, 131, 132, 133, 134], "file": [1, 5, 121, 131, 132, 134], "For": [1, 21, 76, 121, 131, 134], "style": 1, "we": [1, 3, 121, 131, 132, 134], "recommend": [1, 76], "googl": 1, "guid": 1, "appli": [1, 8, 25, 29, 59, 62, 63, 66, 67, 68, 75, 76, 93, 104, 109, 110, 112, 123, 124, 131, 134], "black": 1, "format": [1, 5, 7, 89, 121, 131, 134], "docstr": 1, "numpi": [1, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 116, 117, 118, 119, 124, 131, 132, 133, 134], "also": [1, 3, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 134, 136], "flake8": 1, "pylint": 1, "further": 1, "static": 1, "analysi": [1, 121, 131, 132, 134], "The": [1, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 60, 61, 63, 66, 68, 69, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 131, 132, 134, 135, 136], "show": [1, 131, 132, 134], "error": 1, "which": [1, 9, 10, 11, 12, 13, 21, 90, 121, 131, 132, 134, 136], "need": [1, 17, 21, 131, 134], "befor": [1, 17, 21, 22, 123, 131, 134], "last": 1, "least": 1, "type": [1, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 130, 132, 136], "hint": 1, "our": [1, 131, 134], "check": [1, 14, 89], "mypi": 1, "current": [1, 121, 131, 134], "ar": [1, 5, 7, 11, 12, 17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 97, 98, 99, 100, 103, 104, 105, 108, 109, 110, 112, 116, 121, 131, 132, 134], "strict": 1, "enforc": 1, "more": [1, 7, 16, 17, 123, 124, 131, 136], "api": [1, 2, 3, 130, 131, 136], "becom": 1, "stabl": [1, 131, 132, 133, 134], "start": [2, 17, 131, 134], "instal": [2, 131], "pip": [2, 131], "develop": [2, 131, 132, 134], "poetri": 2, "contribut": 2, "notebook": [2, 131, 132, 134], "citat": [2, 121, 131, 132, 134], "pre": [2, 131, 134], "commit": 2, "hook": 2, "code": [2, 131, 134], "guidelin": [2, 3], "tutori": [2, 131, 135, 136], "exampl": [2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 15, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 130, 131, 132, 134, 135], "case": [2, 3, 75, 115, 121, 130, 131, 134, 135], "refer": [2, 3, 121, 131, 132, 134], "toolkit": 3, "facilit": 3, "research": 3, "deploy": 3, "ml": [3, 131, 134], "model": [3, 16, 17, 21, 121, 123, 124, 130, 135, 136], "healthcar": 3, "It": [3, 38, 51, 75, 84, 85, 100, 105, 135], "provid": [3, 7, 9, 12, 17, 21, 69, 110, 121, 131, 132, 134], "few": 3, "high": [3, 131, 132, 134], "level": [3, 21, 131, 132, 134], "name": [3, 7, 8, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 124, 131, 132, 133, 134], "creat": [3, 6, 7, 21, 42, 43, 75, 84, 85, 100, 115, 118, 119, 121, 123, 124, 130, 132, 136], "dataset": [3, 6, 7, 16, 17, 19, 21, 26, 38, 39, 51, 52, 58, 61, 68, 69, 80, 81, 83, 88, 89, 90, 94, 95, 98, 99, 103, 104, 112, 114, 121, 123, 124, 125, 130, 135, 136], "infer": [3, 17], "popular": [3, 131], "effici": 3, "load": [3, 17, 121, 123, 124, 130, 134, 135, 136], "differ": [3, 24, 29, 36, 37, 46, 55, 62, 63, 64, 69, 70, 72, 84, 85, 90, 95, 100, 105, 130, 131, 132, 134, 135], "modal": 3, "common": [3, 131], "implement": [3, 136], "scikit": [3, 131], "learn": [3, 131, 132], "pytorch": 3, "canon": 3, "mortal": [3, 123], "chest": [3, 130], "x": [3, 114, 115, 116, 117, 118, 119, 123, 130, 131, 133, 134], "rai": [3, 130], "clinic": [3, 111, 112, 130, 135], "detect": [3, 132, 135], "shift": [3, 111, 112, 114, 116, 117, 130, 135], "relev": [3, 121, 131, 134, 135], "card": [3, 121, 130, 131, 134, 136], "librari": [3, 130, 135, 136], "end": [3, 131, 132, 134], "mimic": 3, "iii": 3, "iv": 3, "eicu": 3, "crd": 3, "python3": [3, 131, 132, 133, 134], "m": [3, 131, 132, 133, 134], "pycyclop": [3, 131, 132, 133, 134], "base": [3, 5, 7, 17, 19, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 130, 131, 136], "packag": [3, 125, 126, 127, 128, 129, 131, 132, 133, 134], "support": [3, 7, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 72, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 107, 108, 109, 135], "process": [3, 112, 131, 132, 134], "transform": [3, 17, 66, 67, 68, 93, 123, 124, 131, 132, 133, 134], "downstream": [3, 131, 134], "addit": [3, 75, 121, 123, 124, 131, 132, 134], "from": [3, 5, 7, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 119, 121, 123, 124, 131, 132, 133, 134], "other": [3, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131], "thei": [3, 69], "extra": [3, 121], "multipl": [3, 8, 17, 21, 75, 121], "could": [3, 131, 134], "combin": [3, 8, 131], "both": 3, "set": [3, 7, 17, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 131, 132, 134], "up": [3, 131, 132, 134], "henc": 3, "make": [3, 131, 134], "sure": [3, 131], "sourc": [3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 130, 135], "env": 3, "info": [3, 131, 134], "path": [3, 5, 112, 121, 123, 124, 131, 134], "bin": [3, 21], "activ": [3, 134], "In": [3, 75, 131, 134], "order": [3, 5, 17, 107, 108, 109], "depend": 3, "test": [3, 17, 121, 123, 124, 130, 131, 134, 135, 136], "codestyl": 3, "unit": 3, "integr": [3, 131], "built": 3, "sphinx": 3, "local": 3, "doc": 3, "cd": 3, "html": [3, 121, 131, 132, 133, 134], "sphinxopt": 3, "d": [3, 75, 112, 132], "nbsphinx_allow_error": 3, "true": [3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 24, 26, 27, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 112, 114, 116, 121, 123, 124, 131, 132, 133, 134], "welcom": 3, "see": [3, 7, 121, 131, 132, 133, 134], "jupyt": [3, 131, 132, 133, 134], "insid": 3, "ipython": 3, "kernel": 3, "after": [3, 17, 131, 134], "ipykernel": 3, "user": [3, 121, 131, 134], "name_of_kernel": 3, "now": 3, "navig": 3, "": [3, 7, 10, 14, 17, 21, 75, 121, 123, 124, 131, 132, 133, 134], "tab": [3, 131], "cite": 3, "when": [3, 5, 17, 21, 24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 75, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105, 123, 124, 131, 134], "project": 3, "paper": 3, "articl": 3, "krishnan2022": 3, "12": [3, 7, 131, 132, 133, 134], "02": [3, 69, 133], "22283021": 3, "author": [3, 131, 132], "krishnan": 3, "amrit": 3, "subasri": 3, "vallijah": 3, "mckeen": 3, "kaden": 3, "kore": 3, "ali": 3, "ogidi": 3, "franklin": 3, "alinoori": 3, "mahshid": 3, "lalani": 3, "nadim": 3, "dhalla": 3, "azra": 3, "verma": 3, "amol": 3, "razak": 3, "fahad": 3, "pandya": 3, "deval": 3, "dolatabadi": 3, "elham": 3, "titl": [3, 131, 132, 134], "cyclic": 3, "toward": 3, "operation": 3, "health": [3, 131, 134], "eloc": 3, "id": [3, 5, 112, 131, 132, 134], "2022": [3, 7, 131, 132], "year": [3, 7, 9, 131, 132, 134], "doi": 3, "10": [3, 131, 132, 133, 134], "1101": 3, "publish": [3, 131], "cold": 3, "spring": 3, "harbor": 3, "laboratori": [3, 134], "press": 3, "url": [3, 132], "http": [3, 121, 131, 132, 133, 134], "www": [3, 131], "medrxiv": 3, "org": [3, 121, 131, 132, 134], "content": [3, 121], "earli": 3, "08": [3, 133, 134], "journal": 3, "medic": [4, 5, 125, 132, 134, 136], "imag": [4, 5, 17, 21, 118, 121, 124, 125, 130, 132, 133], "class": [4, 5, 6, 7, 17, 18, 19, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 69, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 116, 117, 119, 120, 121, 122, 123, 124, 131, 132, 134], "decod": [5, 132], "none": [5, 7, 9, 17, 19, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 124, 131, 132, 133, 134], "reader": 5, "itkread": 5, "suffix": 5, "jpg": 5, "read": [5, 17], "paramet": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 131, 132, 134], "bool": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 75, 76, 108, 109, 110, 112, 116, 117, 121, 123, 124, 131, 132, 134], "option": [5, 7, 9, 10, 11, 12, 13, 17, 21, 24, 27, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 69, 75, 80, 81, 82, 83, 84, 85, 90, 95, 98, 99, 100, 103, 104, 105, 108, 112, 114, 121, 123, 124, 132], "default": [5, 7, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 124, 131, 134], "whether": [5, 7, 21, 75, 108, 109, 110, 112, 121, 134, 136], "fals": [5, 7, 9, 10, 11, 12, 13, 14, 19, 21, 29, 30, 40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105, 107, 108, 109, 110, 117, 118, 123, 124, 131, 132, 134], "return": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 132, 134], "dictionari": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 75, 121, 123, 124, 131, 134], "image_path": 5, "byte": 5, "image_byt": 5, "union": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124], "str": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 131, 134], "imageread": 5, "monai": [5, 132, 133], "method": [5, 7, 19, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 131, 134], "attribut": [5, 7, 19, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 131, 134], "call": [5, 121], "self": [5, 132], "storag": 5, "cast": [5, 131, 134], "arrow": 5, "arrai": [5, 24, 26, 27, 29, 30, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 63, 66, 67, 68, 69, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 119, 124, 132], "convert": [5, 25, 35, 41, 48, 61, 69, 95, 102, 104, 107, 131, 134], "pyarrow": 5, "rtype": 5, "structarrai": 5, "pa": 5, "string": [5, 7, 9, 12, 17, 21, 75, 121, 132], "must": [5, 9, 17, 21, 121], "contain": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 27, 103, 104, 121, 131, 132, 134, 136], "binari": [5, 24, 25, 29, 30, 34, 35, 36, 37, 47, 48, 49, 50, 56, 57, 60, 61, 62, 63, 66, 69, 72, 78, 79, 84, 85, 87, 90, 92, 95, 97, 100, 102, 104, 105, 107, 110, 115, 123, 124, 131, 134, 136], "struct": 5, "doesn": 5, "matter": 5, "list": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 115, 116, 117, 118, 119, 121, 123, 124, 131, 134], "arg": [5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "stringarrai": 5, "listarrai": 5, "token_per_repo_id": 5, "serial": 5, "version": [5, 121, 131, 132, 134], "dict": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 75, 121, 123, 124], "access": 5, "privat": 5, "repositori": [5, 131], "hub": 5, "pass": [5, 17, 43, 75, 112, 121, 123, 124, 131, 134], "repo_id": 5, "token": [5, 131], "deseri": 5, "np": [5, 11, 14, 21, 123, 124, 131, 132, 133, 134], "ndarrai": [5, 14, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 116, 117, 118, 119, 123, 124], "metadata": [5, 131, 132, 134], "emb": 5, "encod": 5, "input": [5, 24, 46, 55, 60, 61, 64, 69, 70, 72, 87, 89, 95, 115, 118, 123, 124], "state": [5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 132], "itself": 5, "otherwis": [5, 14, 24, 27, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110], "tupl": [5, 7, 66, 67, 68, 69, 75, 87, 88, 89, 92, 93, 94, 112, 123, 124], "classlabel": [5, 131, 134], "translat": 5, "translationvariablelanguag": 5, "sequenc": [5, 17, 75, 123, 124, 132], "array2d": 5, "array3d": 5, "array4d": 5, "array5d": 5, "audio": 5, "subset": 6, "hug": [6, 123, 124, 130, 136], "face": [6, 123, 124, 130, 136], "object": [7, 19, 21, 112, 114, 121, 123, 124, 131, 134], "ani": [7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124, 131, 132, 134], "A": [7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 25, 75, 76, 104, 109, 121, 131, 132, 134], "each": [7, 8, 17, 21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 69, 75, 76, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110, 131, 134], "map": [7, 8, 22, 75, 123, 124, 131, 132, 134], "column": [7, 8, 9, 10, 11, 12, 13, 17, 21, 112, 123, 124, 131, 132, 134], "one": [7, 16, 17, 21, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 69, 76, 80, 81, 82, 83, 84, 85, 95, 98, 99, 100, 105, 123, 124], "follow": [7, 17, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105, 121, 131, 132, 134], "exact": [7, 13], "select": [7, 112, 116, 131, 132, 134], "thi": [7, 17, 21, 24, 25, 26, 27, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105, 121, 123, 131, 132, 134, 136], "singl": [7, 75, 121, 123, 124, 131, 134], "row": [7, 131, 132], "where": [7, 8, 9, 10, 11, 12, 13, 60, 61, 63, 75, 121, 123, 124, 131, 134, 136], "e": [7, 9, 10, 17, 21, 75, 116, 117, 118, 121, 131, 134], "g": [7, 9, 17, 21, 116, 117, 118, 121, 131, 134], "2021": [7, 131], "01": [7, 29, 31, 32, 131, 132, 134], "00": [7, 131, 132, 133, 134], "min_valu": [7, 11, 131, 132, 133, 134], "minimum": [7, 11], "specifi": [7, 17, 75, 112, 121, 123, 124, 131, 134], "min_inclus": [7, 11, 131, 134], "indic": [7, 21, 27, 60, 61, 115, 118, 131, 132, 134], "includ": [7, 11, 21, 72, 112, 114, 131, 132, 134, 135], "rang": [7, 11, 29, 30, 66, 67, 68, 93, 131, 132, 134], "work": [7, 27, 103, 104, 121, 131, 132, 134], "numer": [7, 11, 131, 134], "datetim": [7, 9, 11, 14, 121, 131, 134], "inf": [7, 11, 131, 134], "max_valu": [7, 11, 131, 132, 133, 134], "boolean": [7, 8, 9, 10, 11, 12, 13, 15], "greater": [7, 22, 134], "than": [7, 11, 22, 48, 52, 54, 123, 124, 131, 134, 136], "equal": [7, 11, 21], "maximum": [7, 11, 22, 29, 30], "max_inclus": [7, 11, 131, 134], "less": [7, 11, 48, 52, 54, 134], "match": [7, 9, 12, 13, 17], "between": [7, 21, 38, 51, 69, 95], "1": [7, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 116, 117, 118, 119, 121, 130, 131, 132, 134, 135, 136], "dai": [7, 9, 134, 136], "31": [7, 131, 134], "hour": [7, 9], "0": [7, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 115, 116, 117, 118, 119, 121, 131, 132, 133, 134], "23": [7, 131, 132, 134], "negat": [7, 9, 10, 11, 12, 13, 132], "flag": 7, "doe": [7, 9, 11, 12, 13, 17, 21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 121], "keep_nul": [7, 9, 11, 12, 13], "keep": [7, 17, 21, 134], "null": [7, 9, 10, 11, 12, 13, 134], "conjunct": [7, 132], "its": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 60, 61, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 134], "own": [7, 131, 134], "callabl": [7, 8, 17, 21, 76, 121], "import": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 130, 135, 136], "slice_spec": [7, 17, 123, 124, 131, 132, 134], "feature_1": 7, "feature_2": 7, "feature_3": 7, "value_1": 7, "value_2": 7, "2020": [7, 9, 132], "5": [7, 24, 25, 27, 29, 31, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 115, 118, 119, 130, 131, 132, 134, 135], "60": 7, "6": [7, 24, 26, 35, 36, 38, 39, 49, 56, 59, 62, 63, 78, 79, 80, 81, 83, 84, 85, 87, 88, 90, 92, 93, 95, 97, 98, 99, 100, 104, 107, 108, 110, 131, 132, 133, 134], "7": [7, 29, 30, 31, 36, 39, 40, 69, 80, 81, 82, 84, 85, 87, 88, 89, 93, 98, 100, 105, 108, 109, 110, 131, 132, 134, 136], "8": [7, 24, 26, 27, 29, 30, 31, 34, 35, 36, 37, 38, 40, 41, 47, 49, 50, 53, 54, 56, 59, 60, 62, 66, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 105, 107, 109, 110, 131, 132, 134], "2000": 7, "2010": 7, "slice_nam": [7, 121, 131, 134], "slice_func": 7, "print": [7, 131, 132, 134], "do": [7, 17, 131, 132, 134], "someth": 7, "here": [7, 131, 134], "filter": [7, 9, 10, 11, 12, 13, 17, 21, 131, 132, 133, 134], "add": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124, 131, 134], "detail": [7, 131, 132, 134], "registri": [7, 131, 134], "gener": [7, 69, 95, 112, 121, 130, 135, 136], "slice_funct": 8, "result": [8, 17, 38, 51, 123, 124, 131, 133, 134], "bitwis": 8, "AND": 8, "signatur": 8, "should": [8, 21, 69, 76, 95, 117, 121, 123, 124, 131, 132, 134], "kwarg": [8, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 123, 124], "given": [9, 11, 12, 13, 14, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 75, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110, 121, 123, 124], "int": [9, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 116, 117, 118, 119, 121, 123, 124, 131, 132, 134], "compon": 9, "have": [9, 12, 13, 17, 114, 131, 136], "nan": [9, 10, 130, 136], "nat": 9, "rais": [9, 11, 12, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124], "typeerror": [9, 11, 12, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121], "float": [11, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 109, 110, 115, 116, 117, 118, 119, 121, 132], "valueerror": [11, 17, 21, 48, 50, 52, 54, 58, 59, 60, 61, 62, 63, 69, 121, 123, 124], "either": [11, 30, 31, 32, 75, 87, 88, 89, 92, 93, 94, 110, 121, 131, 134], "substr": 12, "ha": [13, 75, 121, 131, 132, 134], "find": [13, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 123, 132], "perform": [13, 26, 27, 31, 32, 121, 130, 134, 135, 136], "datetime64": 14, "target_column": [17, 19, 21, 131, 132, 134], "feature_column": [17, 132, 133], "prediction_column_prefix": [17, 123, 124, 131, 132, 134], "remove_column": [17, 19, 21, 123, 124, 132], "split": [17, 112, 121, 123, 124, 131, 132, 134], "batch_siz": [17, 19, 21, 112, 123, 124, 131, 134], "1000": [17, 19, 21, 112, 123, 131, 132], "fairness_config": [17, 123, 124, 131, 134], "override_fairness_metr": [17, 123, 124, 131, 134], "load_dataset_kwarg": 17, "datasetdict": [17, 123, 124], "load_dataset": 17, "argument": [17, 21, 43, 75, 123, 124, 131, 134], "target": [17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 116, 117, 123, 124, 130, 131, 134, 135, 136], "prefix": [17, 75], "ad": [17, 114, 121, 123, 124, 131, 134], "model_nam": [17, 123, 124, 131, 132, 133, 134], "remov": [17, 21, 75, 119, 123, 124, 131, 132, 134], "mai": [17, 21, 131, 132, 134], "expens": [17, 21], "memori": [17, 21], "wrappedmodel": [17, 123, 124], "entir": [17, 131, 134], "being": 17, "note": [17, 121, 131, 134], "chosen": 17, "avail": [17, 121, 131, 134, 136], "first": [17, 21, 25, 76, 104, 131, 134], "eval": 17, "val": 17, "dev": 17, "batch": [17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 123, 124, 132], "size": [17, 21, 112, 123, 124, 131, 132, 134], "neg": [17, 35, 48, 49, 50, 51, 52, 53, 54, 59, 61, 62, 63, 72, 81, 83, 85, 98, 99, 100, 105, 107, 108, 109, 132, 134], "integ": [17, 21, 121], "configur": [17, 18, 19, 123, 124, 131, 134], "overridden": [17, 123, 124], "prediction_column": [17, 19, 21], "keyword": [17, 21, 43, 75, 123, 124], "onli": [17, 21, 24, 27, 29, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 62, 63, 75, 80, 81, 82, 84, 85, 98, 100, 103, 104, 105, 108, 109, 110], "found": [17, 75, 121, 131, 132, 133, 134], "group": [19, 21, 22, 75, 121, 131, 134], "group_valu": [19, 21], "group_bin": [19, 21, 131, 134], "group_base_valu": [19, 21, 131, 134], "threshold": [19, 21, 24, 25, 27, 29, 30, 31, 32, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 53, 54, 56, 57, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 102, 104, 105, 107, 109, 110, 121, 130, 131, 134, 136], "compute_optimal_threshold": [19, 21], "metric_nam": [19, 21, 43, 121, 131, 132, 134], "metric_kwarg": [19, 21], "take": [21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 112, 131], "allow": [21, 22, 131, 134, 135], "intersect": 21, "treat": 21, "multilabel": [21, 24, 27, 29, 32, 36, 37, 40, 41, 49, 50, 53, 54, 60, 61, 62, 63, 68, 69, 72, 82, 83, 84, 85, 89, 90, 94, 95, 99, 100, 104, 105, 109, 110, 130, 136], "same": [21, 75, 116], "uniqu": [21, 22, 29, 30, 31, 32, 66, 67, 68, 69, 87, 88, 89, 92, 93, 94, 95, 132, 136], "limit": [21, 131, 132, 134], "number": [21, 22, 24, 26, 27, 29, 30, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 103, 104, 105, 108, 110, 112, 116, 117, 121, 123, 124, 134, 135], "continu": [21, 131, 132, 134], "veri": 21, "slow": 21, "larg": 21, "denomin": 21, "pariti": 21, "across": [21, 116, 135], "linspac": 21, "monoton": [21, 69, 95], "control": [21, 115], "usag": [21, 131, 134], "rel": 21, "small": 21, "32": [21, 131, 134], "avoid": 21, "optim": [21, 131], "oper": [21, 65, 76, 131, 134], "necessari": 21, "nest": 21, "second": [21, 76], "third": 21, "omit": 21, "requir": [21, 24, 29, 36, 37, 49, 50, 69, 84, 85, 90, 95, 100, 105, 110, 121, 123, 124, 131, 134], "huggingfac": [21, 112, 123, 124], "runtimeerror": 21, "empti": [21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "encount": [21, 134], "unique_valu": 22, "max_unique_valu": 22, "50": [22, 131, 132, 133, 134], "warn": [22, 24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 105], "score": [24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 66, 70, 72, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 132], "liter": [24, 25, 26, 27, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 69, 78, 79, 80, 81, 82, 83, 84, 85, 90, 95, 97, 98, 99, 100, 103, 104, 105, 110, 121], "multiclass": [24, 26, 29, 31, 36, 37, 38, 39, 49, 50, 51, 52, 58, 59, 62, 63, 67, 69, 72, 80, 81, 84, 85, 88, 90, 93, 95, 98, 100, 103, 105, 108, 110], "One": [24, 29, 31, 32, 35, 48, 59, 62, 63, 69, 95, 132, 134], "pos_label": [24, 25, 30, 34, 35, 36, 37, 47, 48, 49, 50, 56, 57, 62, 63, 66, 69, 78, 79, 84, 85, 87, 90, 92, 95, 97, 100, 102, 105, 107, 110], "label": [24, 25, 27, 29, 32, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 68, 69, 78, 79, 81, 82, 83, 84, 85, 87, 89, 90, 92, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 109, 110, 116, 117, 119, 123, 124, 130, 131, 132, 136], "consid": [24, 26, 27, 36, 37, 49, 50, 62, 63, 84, 85, 90, 95, 100, 103, 104, 105], "posit": [24, 25, 29, 30, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 90, 92, 95, 97, 98, 99, 100, 102, 105, 107, 108, 109, 110, 131, 132, 134], "num_class": [24, 26, 29, 31, 36, 37, 38, 39, 49, 50, 51, 52, 58, 59, 61, 62, 63, 67, 69, 80, 81, 84, 85, 88, 90, 93, 95, 98, 100, 103, 105, 108, 110, 131, 134], "decid": [24, 36, 37, 40, 41, 49, 50, 53, 54, 56, 57, 60, 61, 78, 79, 82, 83, 84, 85, 97, 99, 100, 105], "top_k": [24, 26, 27, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110, 132], "probabl": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 80, 81, 82, 84, 85, 93, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 131, 134], "logit": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 72, 80, 81, 82, 84, 85, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110], "top": [24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110], "k": [24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 75, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110, 133], "num_label": [24, 27, 29, 32, 36, 37, 40, 41, 49, 50, 53, 54, 60, 61, 62, 63, 68, 69, 82, 83, 84, 85, 89, 90, 94, 95, 99, 100, 104, 105, 109, 110, 132], "averag": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 131], "micro": [24, 26, 27, 29, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "macro": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "weight": [24, 26, 27, 29, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 132, 133, 134], "calcul": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "global": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "unweight": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "mean": [24, 26, 27, 29, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 131, 132, 133, 134], "imbal": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 119], "account": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 131, 132], "instanc": [24, 26, 27, 31, 32, 36, 37, 38, 39, 40, 41, 43, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 131, 132, 134], "alter": [24, 26, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105], "zero_divis": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 105], "zero": [24, 25, 26, 27, 34, 36, 37, 38, 39, 40, 41, 47, 49, 50, 51, 52, 53, 54, 56, 57, 58, 60, 61, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "divis": [24, 25, 26, 27, 34, 36, 37, 38, 39, 40, 41, 47, 49, 50, 51, 52, 53, 54, 56, 57, 58, 60, 61, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "act": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "pred": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 134], "75": [24, 25, 29, 30, 66, 67, 68, 90, 92, 95, 103, 104, 105, 131], "05": [24, 26, 27, 29, 31, 32, 36, 38, 39, 40, 49, 53, 62, 67, 68, 69, 80, 81, 84, 85, 88, 90, 93, 94, 95, 98, 100, 103, 104, 105, 108, 110, 133], "95": [24, 26, 27, 36, 38, 49, 62, 69, 88, 90, 93, 94, 95, 132, 134], "p": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 132], "zip": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "2": [24, 26, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 56, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 75, 78, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 92, 93, 95, 97, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 121, 130, 131, 132, 134, 135], "3": [24, 26, 27, 29, 31, 34, 35, 36, 37, 38, 39, 40, 47, 49, 50, 51, 52, 53, 56, 58, 59, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 130, 131, 132, 134, 135], "66666667": [24, 26, 36, 38, 49, 51, 61, 63, 81, 85, 87, 88, 90, 93, 94, 95, 98, 100, 104], "initi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 130, 131, 134, 136], "two": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "scalar": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "togeth": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "multipli": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "variabl": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 136], "attributeerror": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "alreadi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 134], "exist": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124], "copi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 134], "abstract": [24, 29, 36, 37, 73, 74, 84, 85, 90, 95, 100, 105, 110], "final": [24, 29, 36, 37, 74, 84, 85, 90, 95, 100, 105, 110, 132, 134], "reset": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "_update_count": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "_comput": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "sigmoid": [25, 35, 41, 66, 68, 69, 102, 104, 107, 109, 110], "them": [25, 104, 131, 134, 135], "875": [25, 134], "problem": [26, 88, 108, 109, 110, 136], "highest": [26, 27, 62, 63, 103, 104], "determin": [26, 27, 29, 30, 31, 32, 66, 67, 68, 87, 88, 89, 90, 92, 93, 94], "dtype": [26, 27, 31, 32, 38, 39, 40, 41, 66, 67, 68, 69, 80, 81, 82, 83, 87, 88, 89, 92, 93, 94, 98, 99, 103, 104, 115, 116, 117, 118, 119, 131, 132], "float64": [26, 27, 31, 32, 38, 39, 40, 41, 66, 67, 68, 69, 80, 81, 82, 83, 87, 88, 89, 92, 93, 94, 98, 99, 103, 104, 115, 116, 117, 118, 119, 132], "binar": [27, 29, 30, 31, 32, 34, 47, 67, 68, 93, 94, 109, 110], "output": [27, 69, 121, 131, 134], "classifi": [27, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 102, 131, 134], "correct": [27, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102, 103, 104], "per": [27, 75, 134], "area": [28, 29, 30, 31, 32, 45, 131, 134], "under": [28, 29, 30, 31, 32, 45, 131, 134], "curv": [28, 29, 30, 31, 32, 45, 64, 65, 66, 67, 68, 69, 86, 87, 88, 89, 90, 92, 93, 94, 95, 131, 134], "max_fpr": [29, 30], "rate": [29, 30, 66, 67, 68, 69, 131, 132, 134], "partial": [29, 30, 132], "auc": 29, "automat": [29, 30, 31, 32, 66, 67, 68, 87, 88, 89, 90, 92, 93, 94], "applic": [29, 111, 112, 114], "4": [29, 30, 34, 35, 36, 37, 40, 47, 50, 59, 63, 69, 82, 83, 84, 85, 87, 88, 90, 92, 93, 94, 95, 99, 100, 105, 107, 108, 109, 110, 130, 131, 132, 134, 135], "35": [29, 30, 69, 87, 92, 95, 103, 104, 105, 131, 132, 133, 134], "9": [29, 30, 31, 32, 34, 36, 37, 38, 39, 40, 41, 49, 50, 53, 54, 56, 60, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 89, 90, 93, 94, 95, 97, 98, 99, 100, 103, 104, 105, 107, 109, 110, 131, 132, 134], "6111111111111112": [29, 30], "89": [29, 31, 32, 69], "06": [29, 31, 69, 132], "94": [29, 31, 132], "22222222": [29, 31], "625": [29, 32, 35, 103], "aucroc": 30, "confus": [30, 31, 32, 87, 88, 89, 92, 93, 94], "matrix": [30, 31, 32, 87, 88, 89, 92, 93, 94, 115, 116, 117, 118, 119], "f": [33, 35, 37, 38, 39, 41, 46, 48, 50, 51, 52, 54, 75, 131, 132, 133, 134], "beta": [33, 35, 37, 39, 41, 46, 48, 50, 52, 54], "f1": [34, 36, 38, 40, 46, 47, 49, 51, 53], "form": [34, 47, 131, 134], "6666666666666666": [34, 36, 47, 56, 78, 84], "harmon": [35, 37, 39, 41, 48, 50, 52, 54, 131, 134], "8333333333333334": [35, 37, 50, 59, 62], "85714286": [36, 38], "9090909090909091": 37, "83333333": [37, 41, 50, 54], "55555556": [37, 50, 103], "90909091": [37, 39, 41], "85": [39, 80, 81, 84, 85, 98, 100, 131, 134], "total": [40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 108, 134], "count": [40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 131, 132, 134], "predicit": 41, "constructor": 43, "arraylik": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 93, 102], "ground": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102], "truth": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102], "npt": [48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63], "7142857142857143": 48, "estim": [49, 50, 66, 67, 68, 69, 93, 102, 123], "shape": [49, 50, 51, 52, 53, 54, 60, 61, 108, 109, 132, 133], "expect": [60, 61, 131, 134], "like": [60, 61, 75, 131], "n": [60, 61, 131, 132], "l": [60, 61], "sampl": [60, 61, 63, 119], "presenc": [60, 61, 132], "absenc": [60, 61], "rest": 61, "ratio": [62, 63, 105, 134], "correctli": [62, 131, 132, 134], "observ": [62, 131, 134, 136], "precision_scor": 62, "tp": [63, 107, 108, 109, 132], "fn": [63, 107, 108, 109, 132], "intuit": 63, "abil": [63, 131, 134], "recall_scor": 63, "3333333333333333": 63, "receiv": [65, 131, 134], "characterist": [65, 131, 134], "decis": [66, 67, 68, 69, 93, 121, 131, 134], "fpr": [66, 67, 68, 69, 131, 134], "tpr": [66, 67, 68, 69], "25": [66, 67, 68, 88, 90, 92, 93, 95, 105, 116, 117, 131, 132, 133, 134], "softmax": [67, 69, 93], "1d": [67, 68, 69, 95], "33333333": [67, 85, 88, 90, 93, 94, 95, 100], "non": 69, "evenli": [69, 95], "space": [69, 95], "increas": [69, 95], "assertionerror": [69, 121], "03": 69, "stat": [72, 106, 107, 108, 109, 110], "abc": 74, "other_metr": 75, "postfix": 75, "userdict": 75, "collect": [75, 131], "want": 75, "behav": 75, "themselv": 75, "intern": 75, "similar": 75, "reduc": 75, "els": [75, 132, 133], "keep_bas": 75, "iter": 75, "underli": 75, "moduledict": 75, "hashabl": 75, "v": 75, "correspond": [75, 123, 124], "keyerror": [75, 121], "some": [75, 131, 134], "pair": 75, "present": 75, "lack": 75, "metric_a": 76, "metric_b": 76, "metric1": 76, "metric2": 76, "unari": 76, "appropri": [84, 85, 100, 131, 134], "375": [88, 90], "suniqu": 90, "45": [90, 105, 131, 132, 134], "42857143": 90, "15": [103, 104, 105, 131, 132, 134], "57142857": 103, "sum": [105, 108, 109, 110, 132, 134], "_abstractscor": [107, 108, 109], "fp": [107, 108, 109, 132], "tn": [107, 108, 109, 132], "classwis": [108, 110], "over": [108, 109, 110, 130, 132, 134, 136], "labelwis": [109, 110, 132], "prior": [110, 131], "modul": [111, 120, 121, 131, 134], "shift_typ": [112, 114], "shift_id": [112, 133], "induc": [112, 114], "synthet": [112, 114, 121, 130, 134, 135, 136], "categor": [112, 131, 134], "origin": 112, "util": [112, 131, 132, 134], "load_nih": 112, "mnt": [112, 132, 133], "nihcxr": [112, 130, 132, 135], "hospital_type_1": 112, "hospital_type_2": 112, "hospital_type_3": 112, "hospital_type_4": 112, "hospital_type_5": 112, "ds_sourc": [112, 133], "ds_target": [112, 133], "num_proc": [112, 133], "build": 112, "hospit": [112, 131, 134, 136], "drift_detect": 114, "experiment": 114, "sklearn": [114, 131, 134], "load_diabet": 114, "y": [114, 116, 117, 119, 123, 131, 132, 134], "return_x_i": 114, "x_tr": 114, "x_te": 114, "y_tr": 114, "y_te": 114, "train_test_split": [114, 131, 134], "test_siz": 114, "random_st": [114, 131, 134], "42": [114, 131, 132, 133, 134], "gn_shift": 114, "x_shift": 114, "x_train": [114, 123], "noise_amt": [114, 118], "delta": [114, 115, 118, 119], "ko_shift": 114, "cp_shift": 114, "mfa_shift": 114, "bn_shift": 114, "tolerance_shift": 114, "ds_shift": 114, "nois": [114, 115, 118], "prob": 115, "covari": [115, 116, 117, 118, 119], "proport": [115, 131, 132, 134], "fraction": [115, 118, 119, 134], "affect": [115, 118, 121, 131, 134], "n_shuffl": [116, 117], "keep_rows_const": 116, "repermute_each_column": 116, "multiwai": 116, "associ": [116, 131, 132, 134], "swap": [116, 117], "individu": [116, 131, 134], "within": 116, "cl": [116, 117], "etc": [116, 117, 131, 132, 134], "floatnumpi": 116, "shuffl": [116, 117, 131], "permut": 116, "placehold": 116, "shift_class": [117, 119], "rank": 117, "changepoint": 117, "axi": [117, 132, 133, 134], "x_ref": 117, "y_ref": 117, "normal": [118, 131, 134], "clip": [118, 131, 134], "gaussian": 118, "standard": [118, 131, 134], "deviat": 118, "divid": 118, "255": [118, 132, 133], "placehol": 119, "output_dir": [121, 131, 134], "serv": 121, "interfac": 121, "popul": [121, 130, 131, 134, 136], "modelcard": 121, "directori": [121, 131, 134], "save": [121, 123, 124, 131, 134], "output_filenam": [121, 131, 132, 134], "template_path": 121, "interact": [121, 134], "save_json": 121, "synthetic_timestamp": [121, 131, 132], "date": [121, 131, 134], "jinja2": 121, "json": [121, 131, 134], "timestamp": [121, 130, 132, 135], "back": 121, "classmethod": 121, "cyclops_report": [121, 131, 134], "section_nam": [121, 131, 132, 134], "model_detail": [121, 131, 134], "section": [121, 131, 132, 134], "repres": [121, 132], "bibtex": 121, "entri": 121, "plain": 121, "text": [121, 132], "descript": [121, 131, 132, 134], "license_id": [121, 131], "sensitive_featur": [121, 131], "sensitive_feature_justif": [121, 131], "log": [121, 130, 131, 134, 136], "inform": [121, 131], "about": [121, 131, 132, 134], "resourc": [121, 131, 134], "context": 121, "homepag": 121, "spdx": [121, 131], "identifi": [121, 130, 132, 136], "licens": [121, 131, 132, 134], "apach": [121, 131, 134], "unknown": 121, "unlicens": 121, "proprietari": 121, "justif": [121, 131], "field": [121, 130, 131, 134, 136], "descriptor": 121, "new": [121, 131, 134], "pydant": 121, "basemodel": 121, "subclass": 121, "As": 121, "long": 121, "conflict": 121, "defin": [121, 131, 132, 134], "model_card": 121, "cylop": 121, "tradeoff": [121, 132], "trade": 121, "off": 121, "interpret": 121, "consider": [121, 131, 132, 134], "affected_group": [121, 131, 132, 134], "benefit": [121, 131, 132, 134], "harm": [121, 131, 132, 134], "mitigation_strategi": [121, 131, 132, 134], "assess": 121, "mitig": [121, 131, 132, 134], "strategi": [121, 131, 132, 134], "relat": 121, "img_path": 121, "caption": [121, 131, 132, 134], "full": 121, "whole": [121, 131, 134], "left": [121, 134], "blank": 121, "instead": 121, "param": [121, 131, 134], "contact": [121, 131, 132, 134], "role": 121, "owner": [121, 131, 132, 134], "quantit": [121, 131, 132, 134], "slash": 121, "fig": [121, 131, 132, 134], "plotli": [121, 131, 132, 134], "figur": [121, 131, 134], "plot": [121, 131, 132, 134], "analysis_typ": 121, "metric_slic": [121, 131, 132, 134], "decision_threshold": 121, "pass_fail_threshold": [121, 131, 132, 134], "pass_fail_threshold_fn": [121, 131, 132, 134], "explain": 121, "fail": 121, "regul": 121, "regulatori": [121, 131, 134], "compli": 121, "risk": [121, 131, 132, 134, 136], "kind": [121, 131, 132, 134], "primari": [121, 131, 132, 134], "scope": [121, 131, 134], "usecas": 121, "version_str": [121, 131, 134], "semant": 121, "v1": 121, "dt_date": 121, "dt_datetim": 121, "unix": 121, "yyyi": 121, "mm": 121, "dd": 121, "hh": 121, "ss": 121, "ffffff": 121, "z": 121, "summar": 121, "chang": [121, 131, 132, 134], "made": [121, 131, 134], "task_featur": [123, 124, 131, 134], "task_target": [123, 124, 131, 134], "basetask": [123, 124], "tabular": [123, 124, 130], "ptmodel": [123, 124, 132], "skmodel": [123, 124], "properti": [123, 124], "splits_map": [123, 124], "fit": [123, 131, 134], "columntransform": [123, 131, 134], "slicingconfig": 123, "default_max_batch_s": 123, "unnecessari": [123, 124], "filepath": [123, 124], "pretrain": [123, 124, 132], "proba": [123, 131, 134], "pd": 123, "datafram": [123, 131, 134], "notfittederror": 123, "destin": [123, 124], "parent": [123, 124], "dirctori": [123, 124], "best_model_param": [123, 131, 134], "y_train": 123, "seri": 123, "nonei": 123, "best": [123, 131, 134], "64": [124, 134], "compos": [124, 131, 132, 133, 134], "pathologi": [124, 130, 131, 136], "represent": [124, 131, 134], "drift": [130, 135], "experi": [130, 135], "dimension": [130, 135], "reduct": [130, 135], "techniqu": [130, 135], "roll": [130, 135], "window": [130, 135], "biweekli": [130, 135], "kaggl": [130, 131], "heart": 130, "failur": 130, "constant": [130, 136], "distribut": [130, 132, 136], "outcom": [130, 136], "preprocessor": [130, 136], "creation": [130, 136], "synthea": [130, 134], "prolong": 130, "length": [130, 132], "stai": 130, "queri": [130, 136], "inspect": [130, 131, 136], "preprocess": [130, 131, 136], "drop": [130, 131, 136], "nan_threshold": [130, 131, 136], "gender": [130, 131, 132, 133, 136], "nih": [130, 132, 133], "diseas": [130, 131, 136], "histor": [130, 131, 136], "period": [130, 136], "w": [130, 136], "showcas": [131, 134, 136], "formul": [131, 134], "patient": [131, 132, 133, 134, 136], "shutil": [131, 132, 134], "express": [131, 132, 134], "px": [131, 132, 134], "kaggle_api_extend": 131, "kaggleapi": 131, "imput": [131, 134], "simpleimput": [131, 134], "pipelin": [131, 134], "minmaxscal": [131, 134], "onehotencod": [131, 134], "noqa": [131, 132, 134], "e402": [131, 132, 134], "catalog": [131, 134], "create_model": [131, 134], "tabularfeatur": [131, 134], "classificationplott": [131, 134], "flatten_results_dict": [131, 134], "join": [131, 134], "load_datafram": 131, "home": [131, 132, 133, 134], "amritk": [131, 132, 133, 134], "cach": [131, 132, 133, 134], "pypoetri": [131, 132, 133, 134], "virtualenv": [131, 132, 133, 134], "wizuawxh": [131, 132, 133, 134], "py3": [131, 132, 133, 134], "lib": [131, 132, 133, 134], "site": [131, 132, 133, 134], "tqdm": [131, 132, 133, 134], "auto": [131, 132, 133, 134], "py": [131, 132, 133, 134], "21": [131, 132, 133, 134], "tqdmwarn": [131, 132, 133, 134], "iprogress": [131, 132, 133, 134], "ipywidget": [131, 132, 133, 134], "readthedoc": [131, 132, 133, 134], "io": [131, 132, 133, 134], "en": [131, 132, 133, 134], "user_instal": [131, 132, 133, 134], "autonotebook": [131, 132, 133, 134], "notebook_tqdm": [131, 132, 133, 134], "offer": [131, 132, 134], "document": [131, 132, 134], "through": [131, 132, 134], "overview": [131, 132, 134], "how": [131, 132, 134], "quick": [131, 132, 134], "glanc": [131, 132, 134], "sever": [131, 132, 134], "subgroup": [131, 132, 134], "statist": [131, 132, 134, 135], "subpopul": [131, 132, 134], "technic": [131, 132, 134], "architectur": [131, 132, 134], "involv": [131, 132, 134], "intend": [131, 132, 134], "go": [131, 132, 134], "tool": [131, 132, 134], "progress": [131, 132, 134], "subject": [131, 132, 134], "data_dir": [131, 132], "random_se": [131, 134], "train_siz": [131, 134], "sign": [131, 134], "com": [131, 132], "Then": 131, "profil": [131, 134], "usernam": 131, "trigger": 131, "download": 131, "credenti": 131, "place": 131, "locat": 131, "machin": [131, 132], "authent": 131, "dataset_download_fil": 131, "fedesoriano": 131, "unzip": 131, "df": 131, "csv": [131, 134], "file_format": 131, "reset_index": [131, 134], "index": [131, 132, 134], "2023": [131, 132, 134], "11": [131, 132, 134, 136], "24": [131, 132, 134], "43": [131, 132, 134], "545": 131, "chestpaintyp": 131, "restingbp": 131, "cholesterol": 131, "fastingb": 131, "restingecg": 131, "40": [131, 134], "ata": 131, "140": 131, "289": 131, "49": [131, 132, 134], "nap": 131, "160": 131, "180": 131, "37": [131, 134], "130": 131, "283": [131, 134], "st": 131, "48": [131, 134], "asi": 131, "138": 131, "214": 131, "54": 131, "150": 131, "195": 131, "913": 131, "ta": 131, "110": 131, "264": 131, "914": 131, "68": [131, 132], "144": 131, "193": 131, "915": 131, "57": [131, 132], "131": 131, "916": 131, "236": 131, "lvh": 131, "917": 131, "38": [131, 134], "175": 131, "maxhr": 131, "exerciseangina": 131, "oldpeak": 131, "st_slope": 131, "heartdiseas": 131, "172": 131, "156": 131, "flat": 131, "98": [131, 132], "108": 131, "122": 131, "132": 131, "141": 131, "115": 131, "174": 131, "173": 131, "918": 131, "13": [131, 132, 134], "pie": [131, 132, 134], "update_layout": [131, 132, 134], "histogram": [131, 132, 134], "xaxis_titl": [131, 132, 134], "yaxis_titl": [131, 132, 134], "bargap": [131, 132, 134], "astyp": [131, 134], "update_trac": [131, 132, 134], "textinfo": [131, 134], "percent": [131, 134], "title_text": [131, 134], "hovertempl": [131, 134], "br": [131, 134], "class_count": [131, 134], "value_count": [131, 134], "class_ratio": [131, 134], "8070866141732284": 131, "14": [131, 132, 134, 136], "39": [131, 132, 134], "20": [131, 132, 134], "wa": [131, 132, 134], "li": 131, "et": 131, "al": 131, "most": 131, "features_list": [131, 134], "sort": [131, 134], "help": [131, 132, 134], "essenti": [131, 134], "step": [131, 134], "understand": [131, 134], "u": [131, 134], "16": [131, 132, 134], "tab_featur": [131, 134], "ordin": 131, "might": [131, 134], "17": [131, 132, 133, 134], "numeric_transform": [131, 134], "scaler": [131, 134], "binary_transform": [131, 134], "most_frequ": [131, 134], "18": [131, 133, 134], "numeric_featur": [131, 134], "features_by_typ": [131, 134], "numeric_indic": [131, 134], "get_loc": [131, 134], "19": [131, 132, 134], "binary_featur": [131, 134], "ordinal_featur": 131, "binary_indic": [131, 134], "ordinal_indic": 131, "num": [131, 134], "onehot": [131, 134], "handle_unknown": [131, 134], "ignor": [131, 132, 134], "remaind": [131, 134], "passthrough": [131, 134], "let": [131, 134], "done": [131, 134], "independ": 131, "everi": 131, "uci": 131, "archiv": 131, "ic": 131, "edu": 131, "databas": [131, 134], "cleandoc": 131, "misc": 131, "cc0": 131, "demograph": [131, 132], "often": 131, "strong": 131, "correl": 131, "older": [131, 134], "higher": 131, "panda": [131, 134], "power": [131, 134], "easi": [131, 134], "compat": [131, 134], "22": [131, 132, 134], "from_panda": [131, 134], "cleanup_cache_fil": [131, 134], "num_row": 131, "cast_column": [131, 134], "stratify_by_column": [131, 134], "seed": [131, 132, 134], "100": [131, 132, 133, 134], "lt": [131, 132, 133, 134], "194149": 131, "41": [131, 134], "straightforward": [131, 134], "maintain": [131, 134], "instanti": [131, 134], "line": [131, 134], "sgd": [131, 134], "logisit": [131, 134], "regress": [131, 134], "sgdclassif": [131, 134], "sgd_classifi": 131, "123": [131, 134], "verbos": [131, 134], "class_weight": 131, "balanc": 131, "encapsul": [131, 134], "cohes": [131, 134], "structur": [131, 134], "smooth": [131, 134], "manag": [131, 134], "heart_failure_prediction_task": 131, "26": [131, 134], "hyperparamet": [131, 134], "search": [131, 134], "grid": [131, 134], "27": [131, 134], "alpha": 131, "0001": 131, "001": 131, "learning_r": [131, 134], "invscal": 131, "adapt": 131, "eta0": 131, "roc_auc": 131, "725": 131, "wrapper": [131, 132, 134], "sk_model": [131, 134], "726": 131, "727": 131, "sgdclassifi": 131, "x27": [131, 134], "early_stop": 131, "loss": 131, "log_loss": 131, "rerun": [131, 134], "cell": [131, 134], "trust": [131, 134], "On": [131, 132, 134], "github": [131, 132, 134], "unabl": [131, 134], "render": [131, 134], "try": [131, 134], "page": [131, 134], "nbviewer": [131, 134], "sgdclassifiersgdclassifi": 131, "28": [131, 134], "model_param": [131, 134], "epsilon": 131, "fit_intercept": 131, "l1_ratio": 131, "max_it": 131, "n_iter_no_chang": 131, "n_job": [131, 134], "penalti": 131, "l2": 131, "power_t": 131, "tol": 131, "validation_fract": 131, "warm_start": 131, "29": [131, 134], "30": [131, 132, 134, 136], "y_pred": [131, 134], "only_predict": [131, 134], "len": [131, 132, 134], "184": 131, "7818": 131, "93": [131, 132, 134], "variou": [131, 134], "perspect": [131, 134], "metric_collect": [131, 134], "certain": [131, 134], "70": 131, "33": [131, 134], "fnr": [131, 134], "ber": [131, 134], "fairness_metric_collect": [131, 134], "34": [131, 134], "dataset_with_pr": [131, 134], "6900": 131, "99": [131, 132], "8927": 131, "50923": 131, "92": [131, 134], "gt": [131, 132, 134], "20082": 131, "21034": 131, "23186": 131, "87": [131, 132], "19017": 131, "21323": 131, "83": [131, 133], "22144": 131, "96": [131, 132], "36": [131, 132, 134], "results_femal": 131, "_": [131, 134], "8871": 131, "11474": 131, "53919": 131, "65": [131, 132, 133, 134], "18695": 131, "right": [131, 134], "results_flat": [131, 132, 134], "remove_metr": [131, 134], "results_female_flat": 131, "plw2901": [131, 132, 134], "actual": [131, 132, 134], "known": [131, 132, 134], "measur": [131, 134], "lambda": [131, 132, 133, 134], "plotter": [131, 133, 134], "class_nam": [131, 134], "set_templ": [131, 134], "plotly_whit": [131, 134], "extract": [131, 134], "slice_result": [131, 134], "dict_kei": [131, 134], "roc_plot": [131, 134], "roc_curve_comparison": [131, 134], "femal": [131, 132, 133, 134], "overall_perform": [131, 134], "metric_valu": [131, 134], "overall_performance_plot": [131, 134], "metrics_valu": [131, 134], "slice_metr": [131, 134], "44": [131, 132, 134], "slice_metrics_plot": [131, 134], "metrics_comparison_bar": [131, 134], "comparison": [131, 132, 134], "reform": [131, 134], "fairness_result": [131, 134], "deepcopi": [131, 134], "fairness_metr": [131, 134], "group_siz": [131, 134], "46": [131, 132, 134], "fairness_plot": [131, 134], "metrics_comparison_scatt": [131, 134], "leverag": 131, "get_metrics_trend": 131, "gather": 131, "merg": [131, 134], "recent": 131, "wish": 131, "metrics_trend": 131, "purpos": 131, "three": 131, "dummi": 131, "demonstr": [131, 136], "trend": 131, "audienc": [131, 134], "organ": [131, 134], "store": [131, 134], "regulatory_requir": [131, 134], "47": [131, 134], "todai": [131, 134], "releas": [131, 134], "team": [131, 134], "vectorinstitut": [131, 134], "email": [131, 132, 134], "ai": [131, 134], "linear_model": 131, "e501": [131, 134], "next": [131, 134], "use_cas": [131, 134], "These": [131, 134], "fairness_assess": [131, 134], "well": [131, 132, 134], "taken": [131, 134], "ethical_consider": [131, 134], "clinician": [131, 134], "engin": [131, 134], "condit": 131, "improv": [131, 134], "bias": [131, 132, 134], "lead": [131, 134], "wors": [131, 134], "retrain": [131, 134], "below": [131, 134], "By": [131, 134], "folder": [131, 134], "09": 131, "_model_card": [131, 134], "report_path": [131, 132, 134], "heart_failure_report_period": 131, "quantitative_analysi": [131, 134], "random": [131, 134], "rmtree": 131, "view": [131, 132, 134, 136], "torchxrayvis": [132, 133], "functool": 132, "lambdad": [132, 133], "resiz": [132, 133], "densenet": [132, 133], "loader": [132, 133], "load_nihcxr": [132, 133], "apply_transform": 132, "generate_nihcxr_report": 132, "530320": 132, "215092": 132, "51": 132, "400": 132, "1612": 132, "86": 132, "37072": 132, "62": [132, 134], "26745": 132, "28224": 132, "26132": 132, "74": [132, 133], "28789": 132, "27377": 132, "07": 132, "amp": [132, 134], "45724": 132, "97": 132, "571431": 132, "241287": 132, "69": [132, 134], "396": 132, "1886": 132, "19850": 132, "66": 132, "43247": 132, "45546": 132, "45133": 132, "45285": 132, "72": 132, "45249": 132, "47140": 132, "53": 132, "560061": 132, "241357": 132, "383": 132, "1921": 132, "35777": 132, "43020": 132, "45167": 132, "43747": 132, "78": 132, "44947": 132, "44381": 132, "44512": 132, "56": 132, "84": 132, "572444": 132, "238380": 132, "411": 132, "1835": 132, "44467": 132, "43879": 132, "73": [132, 134], "45320": 132, "58": 132, "44772": 132, "46457": 132, "45263": 132, "46223": 132, "clinical_dataset": [132, 133], "nih_d": [132, 133], "spatial_s": [132, 133], "224": [132, 133], "allow_missing_kei": [132, 133], "func": [132, 133], "1024": [132, 133], "newaxi": [132, 133], "densenet121": [132, 133], "res224": [132, 133], "No": 132, "adjust": 132, "114726": 132, "661": 132, "1729": 132, "int64": 132, "originalimag": 132, "width": [132, 134], "height": [132, 134], "originalimagepixelspac": 132, "unnam": 132, "atelectasi": 132, "float32": 132, "cardiomegali": 132, "consolid": 132, "edema": 132, "effus": 132, "emphysema": 132, "fibrosi": 132, "hernia": 132, "infiltr": 132, "mass": [132, 134], "nodul": 132, "pleural_thicken": 132, "pneumonia": 132, "pneumothorax": 132, "__index_level_0__": 132, "multilabelpositivepredictivevalu": 132, "registry_kei": 132, "positive_predictive_valu": 132, "def": [132, 134], "super": 132, "overrid": 132, "_final_st": 132, "multilabelnegativepredictivevalu": 132, "negative_predictive_valu": 132, "ppv": 132, "npv": 132, "nih_eval_results_gend": 132, "41450": 132, "77": [132, 134], "47011": 132, "46982": 132, "nih_eval_results_ag": 132, "46581": 132, "48143": 132, "47470": 132, "76": 132, "45817": 132, "04": 132, "45001": 132, "46226": 132, "46525": 132, "44062": 132, "42838": 132, "45220": 132, "male": [132, 133], "1200": 132, "600": [132, 134], "showlegend": 132, "bar": [132, 134], "slice_": 132, "itr": 132, "enumer": 132, "among": 132, "multi": 132, "112": [132, 136], "120": [132, 136], "frontal": [132, 136], "805": [132, 136], "fourteen": 132, "mine": 132, "radiolog": 132, "pleural": 132, "thicken": 132, "80": [132, 134], "remain": 132, "arxiv": 132, "ab": 132, "2111": 132, "00595": 132, "inproceed": 132, "cohen2022xrv": 132, "cohen": 132, "joseph": 132, "paul": 132, "viviano": 132, "bertin": 132, "morrison": 132, "torabian": 132, "parsa": 132, "guarrera": 132, "matteo": 132, "lungren": 132, "matthew": 132, "chaudhari": 132, "akshai": 132, "brook": 132, "rupert": 132, "hashir": 132, "mohammad": 132, "bertrand": 132, "hadrien": 132, "booktitl": 132, "deep": 132, "mlmed": 132, "arxivid": 132, "cohen2020limit": 132, "cross": 132, "domain": 132, "autom": [132, 134], "2002": 132, "02497": 132, "medicin": 132, "lab": 132, "josephpcohen": 132, "radiologist": 132, "scientist": 132, "inabl": 132, "addition": 132, "poor": 132, "qualiti": 132, "artifact": 132, "geograph": 132, "region": 132, "ethic": 132, "ensur": 132, "divers": 132, "regularli": 132, "human": 132, "expertis": 132, "address": 132, "rare": 132, "nihcxr_report_period": 132, "detector": 133, "reductor": 133, "tstester": 133, "plot_drift_experi": 133, "plot_drift_timeseri": 133, "shifter": 133, "source_d": 133, "target_d": 133, "25596": 133, "63823": 133, "dr_method": 133, "bbse": 133, "soft": 133, "txrv": 133, "ae": 133, "sensitivity_test": 133, "tester": 133, "tester_method": 133, "source_sample_s": 133, "target_sample_s": 133, "num_run": 133, "detect_shift": 133, "chexpert": 133, "chex": 133, "padchest": 133, "pc": 133, "source_slic": 133, "target_slic": 133, "51393": 133, "49848": 133, "48922": 133, "51002": 133, "46871": 133, "48929": 133, "38338": 133, "49692": 133, "52": 133, "rolling_window_drift": 133, "timestamp_column": 133, "window_s": 133, "4w": 133, "longer": 134, "v3": 134, "instruct": 134, "etl": 134, "postgr": 134, "cycqueri": 134, "op": 134, "qo": 134, "graph_object": 134, "datasetqueri": 134, "num_dai": 134, "querier": 134, "dbm": 134, "postgresql": 134, "port": 134, "5432": 134, "host": 134, "localhost": 134, "synthea_demo": 134, "password": 134, "pwd": 134, "get_encount": 134, "nativ": 134, "sequenti": 134, "renam": 134, "patient_id": 134, "birthdat": 134, "race": 134, "ethnic": 134, "patient_encount": 134, "isout": 134, "encounter_id": 134, "extracttimestampcompon": 134, "start_year": 134, "birthdate_year": 134, "addcolumn": 134, "new_col_label": 134, "stop": 134, "lo": 134, "conditiongreaterthan": 134, "conditionlessthan": 134, "get_observ": 134, "cohort": 134, "conditionin": 134, "categori": 134, "vital": 134, "conditionequ": 134, "groupby_op": 134, "groupbyaggreg": 134, "n_ob": 134, "observations_count": 134, "observations_stat": 134, "pivot_t": 134, "aggfunc": 134, "max": 134, "add_prefix": 134, "obs_": 134, "get_med": 134, "n_med": 134, "get_procedur": 134, "procedur": [134, 136], "n_procedur": 134, "run_queri": 134, "cohort_queri": 134, "to_merg": 134, "extend": 134, "append": 134, "to_merge_df": 134, "868": 134, "orm": 134, "readi": 134, "273": 134, "successfulli": 134, "274": 134, "finish": 134, "execut": 134, "435702": 134, "077": 134, "078": 134, "802668": 134, "282": 134, "342421": 134, "708": 134, "709": 134, "422492": 134, "788": 134, "078192": 134, "list_column": 134, "payer": 134, "encounterclass": 134, "base_encounter_cost": 134, "total_claim_cost": 134, "payer_coverag": 134, "reasoncod": 134, "reasondescript": 134, "null_count": 134, "isnul": 134, "respect": 134, "larger": 134, "thresh_nan": 134, "dropna": 134, "thresh": 134, "length_of_stai": 134, "length_of_stay_count": 134, "length_of_stay_kei": 134, "5573997233748271": 134, "obs_alanin": 134, "aminotransferas": 134, "enzymat": 134, "volum": 134, "serum": 134, "plasma": 134, "obs_albumin": 134, "obs_alkalin": 134, "phosphatas": 134, "obs_aspart": 134, "obs_bilirubin": 134, "obs_bodi": 134, "obs_calcium": 134, "obs_carbon": 134, "dioxid": 134, "mole": 134, "obs_chlorid": 134, "obs_creatinin": 134, "obs_diastol": 134, "blood": 134, "pressur": 134, "obs_erythrocyt": 134, "obs_ferritin": 134, "obs_glomerular": 134, "filtrat": 134, "sq": 134, "obs_glucos": 134, "obs_hematocrit": 134, "obs_hemoglobin": 134, "obs_leukocyt": 134, "obs_mch": 134, "entit": 134, "obs_mchc": 134, "obs_mcv": 134, "obs_oxygen": 134, "satur": 134, "arteri": 134, "obs_platelet": 134, "obs_potassium": 134, "obs_protein": 134, "obs_sodium": 134, "obs_systol": 134, "obs_troponin": 134, "cardiac": 134, "obs_urea": 134, "nitrogen": 134, "1126": 134, "191275": 134, "sllearn": 134, "xgb_classifi": 134, "mortalitypredict": 134, "los_task": 134, "n_estim": 134, "250": 134, "500": 134, "max_depth": 134, "reg_lambda": 134, "colsample_bytre": 134, "gamma": 134, "054": 134, "055": 134, "056": 134, "057": 134, "xgbclassifi": 134, "base_scor": 134, "booster": 134, "callback": 134, "colsample_bylevel": 134, "colsample_bynod": 134, "early_stopping_round": 134, "enable_categor": 134, "eval_metr": 134, "logloss": 134, "feature_typ": 134, "gpu_id": 134, "grow_polici": 134, "importance_typ": 134, "interaction_constraint": 134, "max_bin": 134, "max_cat_threshold": 134, "max_cat_to_onehot": 134, "max_delta_step": 134, "max_leav": 134, "min_child_weight": 134, "miss": 134, "monotone_constraint": 134, "num_parallel_tre": 134, "predictor": 134, "xgbclassifierxgbclassifi": 134, "logist": 134, "use_label_encod": 134, "reg_alpha": 134, "sampling_method": 134, "scale_pos_weight": 134, "subsampl": 134, "tree_method": 134, "validate_paramet": 134, "226": 134, "4176": 134, "4183": 134, "3662": 134, "57286": 134, "7218": 134, "8753": 134, "71": 134, "8545": 134, "7756": 134, "8719": 134, "8235": 134, "8163": 134, "8379": 134, "7823": 134, "8119": 134, "7949": 134, "82": 134, "8793103448275862": 134, "8450704225352113": 134, "9523809523809523": 134, "8955223880597015": 134, "9743935309973046": 134, "88": 134, "8518518518518519": 134, "8846153846153846": 134, "9541062801932366": 134, "8934426229508197": 134, "8777777777777778": 134, "9753086419753086": 134, "9239766081871345": 134, "9795242396868412": 134, "8942307692307693": 134, "9491525423728814": 134, "9105691056910569": 134, "9568359375": 134, "8938053097345132": 134, "9060402684563759": 134, "9310344827586207": 134, "9183673469387755": 134, "9649638143891016": 134, "xgboost": 134, "python_api": 134, "length_of_stay_report_period": 134, "goal": 136}, "objects": {"cyclops": [[125, 0, 0, "-", "data"], [126, 0, 0, "-", "evaluate"], [127, 0, 0, "-", "monitor"], [128, 0, 0, "-", "report"], [129, 0, 0, "-", "tasks"]], "cyclops.data": [[125, 0, 0, "-", "features"], [6, 0, 0, "-", "slicer"]], "cyclops.data.features": [[4, 0, 0, "-", "medical_image"]], "cyclops.data.features.medical_image": [[5, 1, 1, "", "MedicalImage"]], "cyclops.data.features.medical_image.MedicalImage": [[5, 2, 1, "", "__call__"], [5, 2, 1, "", "cast_storage"], [5, 2, 1, "", "decode_example"], [5, 2, 1, "", "embed_storage"], [5, 2, 1, "", "encode_example"], [5, 2, 1, "", "flatten"]], "cyclops.data.slicer": [[7, 1, 1, "", "SliceSpec"], [8, 4, 1, "", "compound_filter"], [9, 4, 1, "", "filter_datetime"], [10, 4, 1, "", "filter_non_null"], [11, 4, 1, "", "filter_range"], [12, 4, 1, "", "filter_string_contains"], [13, 4, 1, "", "filter_value"], [14, 4, 1, "", "is_datetime"], [15, 4, 1, "", "overall"]], "cyclops.data.slicer.SliceSpec": [[7, 3, 1, "", "_registry"], [7, 2, 1, "", "add_slice_spec"], [7, 3, 1, "", "column_names"], [7, 2, 1, "", "get_slices"], [7, 3, 1, "", "include_overall"], [7, 2, 1, "", "slices"], [7, 3, 1, "", "spec_list"], [7, 3, 1, "", "validate"]], "cyclops.evaluate": [[16, 0, 0, "-", "evaluator"], [126, 0, 0, "-", "fairness"], [126, 0, 0, "-", "metrics"]], "cyclops.evaluate.evaluator": [[17, 4, 1, "", "evaluate"]], "cyclops.evaluate.fairness": [[18, 0, 0, "-", "config"], [20, 0, 0, "-", "evaluator"]], "cyclops.evaluate.fairness.config": [[19, 1, 1, "", "FairnessConfig"]], "cyclops.evaluate.fairness.evaluator": [[21, 4, 1, "", "evaluate_fairness"], [22, 4, 1, "", "warn_too_many_unique_values"]], "cyclops.evaluate.metrics": [[23, 0, 0, "-", "accuracy"], [28, 0, 0, "-", "auroc"], [33, 0, 0, "-", "f_beta"], [42, 0, 0, "-", "factory"], [126, 0, 0, "-", "functional"], [73, 0, 0, "-", "metric"], [77, 0, 0, "-", "precision_recall"], [86, 0, 0, "-", "precision_recall_curve"], [91, 0, 0, "-", "roc"], [96, 0, 0, "-", "sensitivity"], [101, 0, 0, "-", "specificity"], [106, 0, 0, "-", "stat_scores"]], "cyclops.evaluate.metrics.accuracy": [[24, 1, 1, "", "Accuracy"], [25, 1, 1, "", "BinaryAccuracy"], [26, 1, 1, "", "MulticlassAccuracy"], [27, 1, 1, "", "MultilabelAccuracy"]], "cyclops.evaluate.metrics.accuracy.Accuracy": [[24, 2, 1, "", "__add__"], [24, 2, 1, "", "__call__"], [24, 2, 1, "", "__init__"], [24, 2, 1, "", "__mul__"], [24, 2, 1, "", "add_state"], [24, 2, 1, "", "clone"], [24, 2, 1, "", "compute"], [24, 2, 1, "", "reset_state"], [24, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.BinaryAccuracy": [[25, 2, 1, "", "__add__"], [25, 2, 1, "", "__call__"], [25, 2, 1, "", "__init__"], [25, 2, 1, "", "__mul__"], [25, 2, 1, "", "add_state"], [25, 2, 1, "", "clone"], [25, 2, 1, "", "compute"], [25, 2, 1, "", "reset_state"], [25, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy": [[26, 2, 1, "", "__add__"], [26, 2, 1, "", "__call__"], [26, 2, 1, "", "__init__"], [26, 2, 1, "", "__mul__"], [26, 2, 1, "", "add_state"], [26, 2, 1, "", "clone"], [26, 2, 1, "", "compute"], [26, 2, 1, "", "reset_state"], [26, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy": [[27, 2, 1, "", "__add__"], [27, 2, 1, "", "__call__"], [27, 2, 1, "", "__init__"], [27, 2, 1, "", "__mul__"], [27, 2, 1, "", "add_state"], [27, 2, 1, "", "clone"], [27, 2, 1, "", "compute"], [27, 2, 1, "", "reset_state"], [27, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc": [[29, 1, 1, "", "AUROC"], [30, 1, 1, "", "BinaryAUROC"], [31, 1, 1, "", "MulticlassAUROC"], [32, 1, 1, "", "MultilabelAUROC"]], "cyclops.evaluate.metrics.auroc.AUROC": [[29, 2, 1, "", "__add__"], [29, 2, 1, "", "__call__"], [29, 2, 1, "", "__init__"], [29, 2, 1, "", "__mul__"], [29, 2, 1, "", "add_state"], [29, 2, 1, "", "clone"], [29, 2, 1, "", "compute"], [29, 2, 1, "", "reset_state"], [29, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.BinaryAUROC": [[30, 2, 1, "", "__add__"], [30, 2, 1, "", "__call__"], [30, 2, 1, "", "__init__"], [30, 2, 1, "", "__mul__"], [30, 2, 1, "", "add_state"], [30, 2, 1, "", "clone"], [30, 2, 1, "", "compute"], [30, 2, 1, "", "reset_state"], [30, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.MulticlassAUROC": [[31, 2, 1, "", "__add__"], [31, 2, 1, "", "__call__"], [31, 2, 1, "", "__init__"], [31, 2, 1, "", "__mul__"], [31, 2, 1, "", "add_state"], [31, 2, 1, "", "clone"], [31, 2, 1, "", "compute"], [31, 2, 1, "", "reset_state"], [31, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.MultilabelAUROC": [[32, 2, 1, "", "__add__"], [32, 2, 1, "", "__call__"], [32, 2, 1, "", "__init__"], [32, 2, 1, "", "__mul__"], [32, 2, 1, "", "add_state"], [32, 2, 1, "", "clone"], [32, 2, 1, "", "compute"], [32, 2, 1, "", "reset_state"], [32, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta": [[34, 1, 1, "", "BinaryF1Score"], [35, 1, 1, "", "BinaryFbetaScore"], [36, 1, 1, "", "F1Score"], [37, 1, 1, "", "FbetaScore"], [38, 1, 1, "", "MulticlassF1Score"], [39, 1, 1, "", "MulticlassFbetaScore"], [40, 1, 1, "", "MultilabelF1Score"], [41, 1, 1, "", "MultilabelFbetaScore"]], "cyclops.evaluate.metrics.f_beta.BinaryF1Score": [[34, 2, 1, "", "__add__"], [34, 2, 1, "", "__call__"], [34, 2, 1, "", "__init__"], [34, 2, 1, "", "__mul__"], [34, 2, 1, "", "add_state"], [34, 2, 1, "", "clone"], [34, 2, 1, "", "compute"], [34, 2, 1, "", "reset_state"], [34, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore": [[35, 2, 1, "", "__add__"], [35, 2, 1, "", "__call__"], [35, 2, 1, "", "__init__"], [35, 2, 1, "", "__mul__"], [35, 2, 1, "", "add_state"], [35, 2, 1, "", "clone"], [35, 2, 1, "", "compute"], [35, 2, 1, "", "reset_state"], [35, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.F1Score": [[36, 2, 1, "", "__add__"], [36, 2, 1, "", "__call__"], [36, 2, 1, "", "__init__"], [36, 2, 1, "", "__mul__"], [36, 2, 1, "", "add_state"], [36, 2, 1, "", "clone"], [36, 2, 1, "", "compute"], [36, 2, 1, "", "reset_state"], [36, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.FbetaScore": [[37, 2, 1, "", "__add__"], [37, 2, 1, "", "__call__"], [37, 2, 1, "", "__init__"], [37, 2, 1, "", "__mul__"], [37, 2, 1, "", "add_state"], [37, 2, 1, "", "clone"], [37, 2, 1, "", "compute"], [37, 2, 1, "", "reset_state"], [37, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MulticlassF1Score": [[38, 2, 1, "", "__add__"], [38, 2, 1, "", "__call__"], [38, 2, 1, "", "__init__"], [38, 2, 1, "", "__mul__"], [38, 2, 1, "", "add_state"], [38, 2, 1, "", "clone"], [38, 2, 1, "", "compute"], [38, 2, 1, "", "reset_state"], [38, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore": [[39, 2, 1, "", "__add__"], [39, 2, 1, "", "__call__"], [39, 2, 1, "", "__init__"], [39, 2, 1, "", "__mul__"], [39, 2, 1, "", "add_state"], [39, 2, 1, "", "clone"], [39, 2, 1, "", "compute"], [39, 2, 1, "", "reset_state"], [39, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MultilabelF1Score": [[40, 2, 1, "", "__add__"], [40, 2, 1, "", "__call__"], [40, 2, 1, "", "__init__"], [40, 2, 1, "", "__mul__"], [40, 2, 1, "", "add_state"], [40, 2, 1, "", "clone"], [40, 2, 1, "", "compute"], [40, 2, 1, "", "reset_state"], [40, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore": [[41, 2, 1, "", "__add__"], [41, 2, 1, "", "__call__"], [41, 2, 1, "", "__init__"], [41, 2, 1, "", "__mul__"], [41, 2, 1, "", "add_state"], [41, 2, 1, "", "clone"], [41, 2, 1, "", "compute"], [41, 2, 1, "", "reset_state"], [41, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.factory": [[43, 4, 1, "", "create_metric"]], "cyclops.evaluate.metrics.functional": [[44, 0, 0, "-", "accuracy"], [45, 0, 0, "-", "auroc"], [46, 0, 0, "-", "f_beta"], [55, 0, 0, "-", "precision_recall"], [64, 0, 0, "-", "precision_recall_curve"], [65, 0, 0, "-", "roc"], [70, 0, 0, "-", "sensitivity"], [71, 0, 0, "-", "specificity"], [72, 0, 0, "-", "stat_scores"]], "cyclops.evaluate.metrics.functional.f_beta": [[47, 4, 1, "", "binary_f1_score"], [48, 4, 1, "", "binary_fbeta_score"], [49, 4, 1, "", "f1_score"], [50, 4, 1, "", "fbeta_score"], [51, 4, 1, "", "multiclass_f1_score"], [52, 4, 1, "", "multiclass_fbeta_score"], [53, 4, 1, "", "multilabel_f1_score"], [54, 4, 1, "", "multilabel_fbeta_score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[56, 4, 1, "", "binary_precision"], [57, 4, 1, "", "binary_recall"], [58, 4, 1, "", "multiclass_precision"], [59, 4, 1, "", "multiclass_recall"], [60, 4, 1, "", "multilabel_precision"], [61, 4, 1, "", "multilabel_recall"], [62, 4, 1, "", "precision"], [63, 4, 1, "", "recall"]], "cyclops.evaluate.metrics.functional.roc": [[66, 4, 1, "", "binary_roc_curve"], [67, 4, 1, "", "multiclass_roc_curve"], [68, 4, 1, "", "multilabel_roc_curve"], [69, 4, 1, "", "roc_curve"]], "cyclops.evaluate.metrics.metric": [[74, 1, 1, "", "Metric"], [75, 1, 1, "", "MetricCollection"], [76, 1, 1, "", "OperatorMetric"]], "cyclops.evaluate.metrics.metric.Metric": [[74, 2, 1, "", "__add__"], [74, 2, 1, "", "__call__"], [74, 2, 1, "", "__init__"], [74, 2, 1, "", "__mul__"], [74, 2, 1, "", "add_state"], [74, 2, 1, "", "clone"], [74, 2, 1, "", "compute"], [74, 2, 1, "", "reset_state"], [74, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.metric.MetricCollection": [[75, 2, 1, "", "__call__"], [75, 2, 1, "", "__init__"], [75, 2, 1, "", "add_metrics"], [75, 2, 1, "", "clear"], [75, 2, 1, "", "clone"], [75, 2, 1, "", "compute"], [75, 2, 1, "", "get"], [75, 2, 1, "", "items"], [75, 2, 1, "", "keys"], [75, 2, 1, "", "pop"], [75, 2, 1, "", "popitem"], [75, 2, 1, "", "reset_state"], [75, 2, 1, "", "setdefault"], [75, 2, 1, "", "update"], [75, 2, 1, "", "update_state"], [75, 2, 1, "", "values"]], "cyclops.evaluate.metrics.metric.OperatorMetric": [[76, 2, 1, "", "__add__"], [76, 2, 1, "", "__call__"], [76, 2, 1, "", "__init__"], [76, 2, 1, "", "__mul__"], [76, 2, 1, "", "add_state"], [76, 2, 1, "", "clone"], [76, 2, 1, "", "compute"], [76, 2, 1, "", "reset_state"], [76, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall": [[78, 1, 1, "", "BinaryPrecision"], [79, 1, 1, "", "BinaryRecall"], [80, 1, 1, "", "MulticlassPrecision"], [81, 1, 1, "", "MulticlassRecall"], [82, 1, 1, "", "MultilabelPrecision"], [83, 1, 1, "", "MultilabelRecall"], [84, 1, 1, "", "Precision"], [85, 1, 1, "", "Recall"]], "cyclops.evaluate.metrics.precision_recall.BinaryPrecision": [[78, 2, 1, "", "__add__"], [78, 2, 1, "", "__call__"], [78, 2, 1, "", "__init__"], [78, 2, 1, "", "__mul__"], [78, 2, 1, "", "add_state"], [78, 2, 1, "", "clone"], [78, 2, 1, "", "compute"], [78, 2, 1, "", "reset_state"], [78, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.BinaryRecall": [[79, 2, 1, "", "__add__"], [79, 2, 1, "", "__call__"], [79, 2, 1, "", "__init__"], [79, 2, 1, "", "__mul__"], [79, 2, 1, "", "add_state"], [79, 2, 1, "", "clone"], [79, 2, 1, "", "compute"], [79, 2, 1, "", "reset_state"], [79, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision": [[80, 2, 1, "", "__add__"], [80, 2, 1, "", "__call__"], [80, 2, 1, "", "__init__"], [80, 2, 1, "", "__mul__"], [80, 2, 1, "", "add_state"], [80, 2, 1, "", "clone"], [80, 2, 1, "", "compute"], [80, 2, 1, "", "reset_state"], [80, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MulticlassRecall": [[81, 2, 1, "", "__add__"], [81, 2, 1, "", "__call__"], [81, 2, 1, "", "__init__"], [81, 2, 1, "", "__mul__"], [81, 2, 1, "", "add_state"], [81, 2, 1, "", "clone"], [81, 2, 1, "", "compute"], [81, 2, 1, "", "reset_state"], [81, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision": [[82, 2, 1, "", "__add__"], [82, 2, 1, "", "__call__"], [82, 2, 1, "", "__init__"], [82, 2, 1, "", "__mul__"], [82, 2, 1, "", "add_state"], [82, 2, 1, "", "clone"], [82, 2, 1, "", "compute"], [82, 2, 1, "", "reset_state"], [82, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MultilabelRecall": [[83, 2, 1, "", "__add__"], [83, 2, 1, "", "__call__"], [83, 2, 1, "", "__init__"], [83, 2, 1, "", "__mul__"], [83, 2, 1, "", "add_state"], [83, 2, 1, "", "clone"], [83, 2, 1, "", "compute"], [83, 2, 1, "", "reset_state"], [83, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.Precision": [[84, 2, 1, "", "__add__"], [84, 2, 1, "", "__call__"], [84, 2, 1, "", "__init__"], [84, 2, 1, "", "__mul__"], [84, 2, 1, "", "add_state"], [84, 2, 1, "", "clone"], [84, 2, 1, "", "compute"], [84, 2, 1, "", "reset_state"], [84, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.Recall": [[85, 2, 1, "", "__add__"], [85, 2, 1, "", "__call__"], [85, 2, 1, "", "__init__"], [85, 2, 1, "", "__mul__"], [85, 2, 1, "", "add_state"], [85, 2, 1, "", "clone"], [85, 2, 1, "", "compute"], [85, 2, 1, "", "reset_state"], [85, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve": [[87, 1, 1, "", "BinaryPrecisionRecallCurve"], [88, 1, 1, "", "MulticlassPrecisionRecallCurve"], [89, 1, 1, "", "MultilabelPrecisionRecallCurve"], [90, 1, 1, "", "PrecisionRecallCurve"]], "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve": [[87, 2, 1, "", "__add__"], [87, 2, 1, "", "__call__"], [87, 2, 1, "", "__init__"], [87, 2, 1, "", "__mul__"], [87, 2, 1, "", "add_state"], [87, 2, 1, "", "clone"], [87, 2, 1, "", "compute"], [87, 2, 1, "", "reset_state"], [87, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve": [[88, 2, 1, "", "__add__"], [88, 2, 1, "", "__call__"], [88, 2, 1, "", "__init__"], [88, 2, 1, "", "__mul__"], [88, 2, 1, "", "add_state"], [88, 2, 1, "", "clone"], [88, 2, 1, "", "compute"], [88, 2, 1, "", "reset_state"], [88, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve": [[89, 2, 1, "", "__add__"], [89, 2, 1, "", "__call__"], [89, 2, 1, "", "__init__"], [89, 2, 1, "", "__mul__"], [89, 2, 1, "", "add_state"], [89, 2, 1, "", "clone"], [89, 2, 1, "", "compute"], [89, 2, 1, "", "reset_state"], [89, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve": [[90, 2, 1, "", "__add__"], [90, 2, 1, "", "__call__"], [90, 2, 1, "", "__init__"], [90, 2, 1, "", "__mul__"], [90, 2, 1, "", "add_state"], [90, 2, 1, "", "clone"], [90, 2, 1, "", "compute"], [90, 2, 1, "", "reset_state"], [90, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc": [[92, 1, 1, "", "BinaryROCCurve"], [93, 1, 1, "", "MulticlassROCCurve"], [94, 1, 1, "", "MultilabelROCCurve"], [95, 1, 1, "", "ROCCurve"]], "cyclops.evaluate.metrics.roc.BinaryROCCurve": [[92, 2, 1, "", "__add__"], [92, 2, 1, "", "__call__"], [92, 2, 1, "", "__init__"], [92, 2, 1, "", "__mul__"], [92, 2, 1, "", "add_state"], [92, 2, 1, "", "clone"], [92, 2, 1, "", "compute"], [92, 2, 1, "", "reset_state"], [92, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.MulticlassROCCurve": [[93, 2, 1, "", "__add__"], [93, 2, 1, "", "__call__"], [93, 2, 1, "", "__init__"], [93, 2, 1, "", "__mul__"], [93, 2, 1, "", "add_state"], [93, 2, 1, "", "clone"], [93, 2, 1, "", "compute"], [93, 2, 1, "", "reset_state"], [93, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.MultilabelROCCurve": [[94, 2, 1, "", "__add__"], [94, 2, 1, "", "__call__"], [94, 2, 1, "", "__init__"], [94, 2, 1, "", "__mul__"], [94, 2, 1, "", "add_state"], [94, 2, 1, "", "clone"], [94, 2, 1, "", "compute"], [94, 2, 1, "", "reset_state"], [94, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.ROCCurve": [[95, 2, 1, "", "__add__"], [95, 2, 1, "", "__call__"], [95, 2, 1, "", "__init__"], [95, 2, 1, "", "__mul__"], [95, 2, 1, "", "add_state"], [95, 2, 1, "", "clone"], [95, 2, 1, "", "compute"], [95, 2, 1, "", "reset_state"], [95, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity": [[97, 1, 1, "", "BinarySensitivity"], [98, 1, 1, "", "MulticlassSensitivity"], [99, 1, 1, "", "MultilabelSensitivity"], [100, 1, 1, "", "Sensitivity"]], "cyclops.evaluate.metrics.sensitivity.BinarySensitivity": [[97, 2, 1, "", "__add__"], [97, 2, 1, "", "__call__"], [97, 2, 1, "", "__init__"], [97, 2, 1, "", "__mul__"], [97, 2, 1, "", "add_state"], [97, 2, 1, "", "clone"], [97, 2, 1, "", "compute"], [97, 2, 1, "", "reset_state"], [97, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity": [[98, 2, 1, "", "__add__"], [98, 2, 1, "", "__call__"], [98, 2, 1, "", "__init__"], [98, 2, 1, "", "__mul__"], [98, 2, 1, "", "add_state"], [98, 2, 1, "", "clone"], [98, 2, 1, "", "compute"], [98, 2, 1, "", "reset_state"], [98, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity": [[99, 2, 1, "", "__add__"], [99, 2, 1, "", "__call__"], [99, 2, 1, "", "__init__"], [99, 2, 1, "", "__mul__"], [99, 2, 1, "", "add_state"], [99, 2, 1, "", "clone"], [99, 2, 1, "", "compute"], [99, 2, 1, "", "reset_state"], [99, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.Sensitivity": [[100, 2, 1, "", "__add__"], [100, 2, 1, "", "__call__"], [100, 2, 1, "", "__init__"], [100, 2, 1, "", "__mul__"], [100, 2, 1, "", "add_state"], [100, 2, 1, "", "clone"], [100, 2, 1, "", "compute"], [100, 2, 1, "", "reset_state"], [100, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity": [[102, 1, 1, "", "BinarySpecificity"], [103, 1, 1, "", "MulticlassSpecificity"], [104, 1, 1, "", "MultilabelSpecificity"], [105, 1, 1, "", "Specificity"]], "cyclops.evaluate.metrics.specificity.BinarySpecificity": [[102, 2, 1, "", "__add__"], [102, 2, 1, "", "__call__"], [102, 2, 1, "", "__init__"], [102, 2, 1, "", "__mul__"], [102, 2, 1, "", "add_state"], [102, 2, 1, "", "clone"], [102, 2, 1, "", "compute"], [102, 2, 1, "", "reset_state"], [102, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.MulticlassSpecificity": [[103, 2, 1, "", "__add__"], [103, 2, 1, "", "__call__"], [103, 2, 1, "", "__init__"], [103, 2, 1, "", "__mul__"], [103, 2, 1, "", "add_state"], [103, 2, 1, "", "clone"], [103, 2, 1, "", "compute"], [103, 2, 1, "", "reset_state"], [103, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.MultilabelSpecificity": [[104, 2, 1, "", "__add__"], [104, 2, 1, "", "__call__"], [104, 2, 1, "", "__init__"], [104, 2, 1, "", "__mul__"], [104, 2, 1, "", "add_state"], [104, 2, 1, "", "clone"], [104, 2, 1, "", "compute"], [104, 2, 1, "", "reset_state"], [104, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.Specificity": [[105, 2, 1, "", "__add__"], [105, 2, 1, "", "__call__"], [105, 2, 1, "", "__init__"], [105, 2, 1, "", "__mul__"], [105, 2, 1, "", "add_state"], [105, 2, 1, "", "clone"], [105, 2, 1, "", "compute"], [105, 2, 1, "", "reset_state"], [105, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores": [[107, 1, 1, "", "BinaryStatScores"], [108, 1, 1, "", "MulticlassStatScores"], [109, 1, 1, "", "MultilabelStatScores"], [110, 1, 1, "", "StatScores"]], "cyclops.evaluate.metrics.stat_scores.BinaryStatScores": [[107, 2, 1, "", "__add__"], [107, 2, 1, "", "__call__"], [107, 2, 1, "", "__init__"], [107, 2, 1, "", "__mul__"], [107, 2, 1, "", "add_state"], [107, 2, 1, "", "clone"], [107, 2, 1, "", "compute"], [107, 2, 1, "", "reset_state"], [107, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores": [[108, 2, 1, "", "__add__"], [108, 2, 1, "", "__call__"], [108, 2, 1, "", "__init__"], [108, 2, 1, "", "__mul__"], [108, 2, 1, "", "add_state"], [108, 2, 1, "", "clone"], [108, 2, 1, "", "compute"], [108, 2, 1, "", "reset_state"], [108, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores": [[109, 2, 1, "", "__add__"], [109, 2, 1, "", "__call__"], [109, 2, 1, "", "__init__"], [109, 2, 1, "", "__mul__"], [109, 2, 1, "", "add_state"], [109, 2, 1, "", "clone"], [109, 2, 1, "", "compute"], [109, 2, 1, "", "reset_state"], [109, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.StatScores": [[110, 2, 1, "", "__add__"], [110, 2, 1, "", "__call__"], [110, 2, 1, "", "__init__"], [110, 2, 1, "", "__mul__"], [110, 2, 1, "", "add_state"], [110, 2, 1, "", "clone"], [110, 2, 1, "", "compute"], [110, 2, 1, "", "reset_state"], [110, 2, 1, "", "update_state"]], "cyclops.monitor": [[111, 0, 0, "-", "clinical_applicator"], [113, 0, 0, "-", "synthetic_applicator"]], "cyclops.monitor.clinical_applicator": [[112, 1, 1, "", "ClinicalShiftApplicator"]], "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator": [[112, 2, 1, "", "age"], [112, 2, 1, "", "apply_shift"], [112, 2, 1, "", "custom"], [112, 2, 1, "", "hospital_type"], [112, 2, 1, "", "month"], [112, 2, 1, "", "sex"], [112, 2, 1, "", "time"]], "cyclops.monitor.synthetic_applicator": [[114, 1, 1, "", "SyntheticShiftApplicator"], [115, 4, 1, "", "binary_noise_shift"], [116, 4, 1, "", "feature_association_shift"], [117, 4, 1, "", "feature_swap_shift"], [118, 4, 1, "", "gaussian_noise_shift"], [119, 4, 1, "", "knockout_shift"]], "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator": [[114, 2, 1, "", "apply_shift"]], "cyclops.report": [[120, 0, 0, "-", "report"]], "cyclops.report.report": [[121, 1, 1, "", "ModelCardReport"]], "cyclops.report.report.ModelCardReport": [[121, 2, 1, "", "export"], [121, 2, 1, "", "from_json_file"], [121, 2, 1, "", "log_citation"], [121, 2, 1, "", "log_dataset"], [121, 2, 1, "", "log_descriptor"], [121, 2, 1, "", "log_fairness_assessment"], [121, 2, 1, "", "log_from_dict"], [121, 2, 1, "", "log_image"], [121, 2, 1, "", "log_license"], [121, 2, 1, "", "log_model_parameters"], [121, 2, 1, "", "log_owner"], [121, 2, 1, "", "log_performance_metrics"], [121, 2, 1, "", "log_plotly_figure"], [121, 2, 1, "", "log_quantitative_analysis"], [121, 2, 1, "", "log_reference"], [121, 2, 1, "", "log_regulation"], [121, 2, 1, "", "log_risk"], [121, 2, 1, "", "log_use_case"], [121, 2, 1, "", "log_user"], [121, 2, 1, "", "log_version"]], "cyclops.tasks": [[122, 0, 0, "-", "classification"]], "cyclops.tasks.classification": [[123, 1, 1, "", "BinaryTabularClassificationTask"], [124, 1, 1, "", "MultilabelImageClassificationTask"]], "cyclops.tasks.classification.BinaryTabularClassificationTask": [[123, 2, 1, "", "__init__"], [123, 2, 1, "", "add_model"], [123, 5, 1, "", "data_type"], [123, 2, 1, "", "evaluate"], [123, 2, 1, "", "get_model"], [123, 2, 1, "", "list_models"], [123, 2, 1, "", "list_models_params"], [123, 2, 1, "", "load_model"], [123, 5, 1, "", "models_count"], [123, 2, 1, "", "predict"], [123, 2, 1, "", "save_model"], [123, 5, 1, "", "task_type"], [123, 2, 1, "", "train"]], "cyclops.tasks.classification.MultilabelImageClassificationTask": [[124, 2, 1, "", "__init__"], [124, 2, 1, "", "add_model"], [124, 5, 1, "", "data_type"], [124, 2, 1, "", "evaluate"], [124, 2, 1, "", "get_model"], [124, 2, 1, "", "list_models"], [124, 2, 1, "", "list_models_params"], [124, 2, 1, "", "load_model"], [124, 5, 1, "", "models_count"], [124, 2, 1, "", "predict"], [124, 2, 1, "", "save_model"], [124, 5, 1, "", "task_type"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:attribute", "4": "py:function", "5": "py:property"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "attribute", "Python attribute"], "4": ["py", "function", "Python function"], "5": ["py", "property", "Python property"]}, "titleterms": {"api": [0, 135], "refer": 0, "contribut": [1, 3], "cyclop": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129], "pre": 1, "commit": 1, "hook": 1, "code": 1, "guidelin": 1, "welcom": 2, "": 2, "document": [2, 3], "content": 2, "get": 3, "start": 3, "instal": 3, "us": [3, 133, 136], "pip": 3, "develop": 3, "poetri": 3, "notebook": 3, "citat": 3, "data": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 125, 131, 134, 136], "featur": [4, 5, 125, 131, 134], "medical_imag": [4, 5], "medicalimag": 5, "slicer": [6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "slicespec": 7, "compound_filt": 8, "filter_datetim": 9, "filter_non_nul": 10, "filter_rang": 11, "filter_string_contain": 12, "filter_valu": 13, "is_datetim": 14, "overal": 15, "evalu": [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 126, 131, 134], "fair": [18, 19, 20, 21, 22, 126], "config": [18, 19], "fairnessconfig": 19, "evaluate_fair": 21, "warn_too_many_unique_valu": 22, "metric": [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 126, 132], "accuraci": [23, 24, 25, 26, 27, 44], "binaryaccuraci": 25, "multiclassaccuraci": 26, "multilabelaccuraci": 27, "auroc": [28, 29, 30, 31, 32, 45, 132], "binaryauroc": 30, "multiclassauroc": 31, "multilabelauroc": 32, "f_beta": [33, 34, 35, 36, 37, 38, 39, 40, 41, 46, 47, 48, 49, 50, 51, 52, 53, 54], "binaryf1scor": 34, "binaryfbetascor": 35, "f1score": 36, "fbetascor": 37, "multiclassf1scor": 38, "multiclassfbetascor": 39, "multilabelf1scor": 40, "multilabelfbetascor": 41, "factori": [42, 43], "create_metr": 43, "function": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 126], "binary_f1_scor": 47, "binary_fbeta_scor": 48, "f1_score": 49, "fbeta_scor": 50, "multiclass_f1_scor": 51, "multiclass_fbeta_scor": 52, "multilabel_f1_scor": 53, "multilabel_fbeta_scor": 54, "precision_recal": [55, 56, 57, 58, 59, 60, 61, 62, 63, 77, 78, 79, 80, 81, 82, 83, 84, 85], "binary_precis": 56, "binary_recal": 57, "multiclass_precis": 58, "multiclass_recal": 59, "multilabel_precis": 60, "multilabel_recal": 61, "precis": [62, 84], "recal": [63, 85], "precision_recall_curv": [64, 86, 87, 88, 89, 90], "roc": [65, 66, 67, 68, 69, 91, 92, 93, 94, 95], "binary_roc_curv": 66, "multiclass_roc_curv": 67, "multilabel_roc_curv": 68, "roc_curv": 69, "sensit": [70, 96, 97, 98, 99, 100, 133], "specif": [71, 101, 102, 103, 104, 105], "stat_scor": [72, 106, 107, 108, 109, 110], "metriccollect": 75, "operatormetr": 76, "binaryprecis": 78, "binaryrecal": 79, "multiclassprecis": 80, "multiclassrecal": 81, "multilabelprecis": 82, "multilabelrecal": 83, "binaryprecisionrecallcurv": 87, "multiclassprecisionrecallcurv": 88, "multilabelprecisionrecallcurv": 89, "precisionrecallcurv": 90, "binaryroccurv": 92, "multiclassroccurv": 93, "multilabelroccurv": 94, "roccurv": 95, "binarysensit": 97, "multiclasssensit": 98, "multilabelsensit": 99, "binaryspecif": 102, "multiclassspecif": 103, "multilabelspecif": 104, "binarystatscor": 107, "multiclassstatscor": 108, "multilabelstatscor": 109, "statscor": 110, "monitor": [111, 112, 113, 114, 115, 116, 117, 118, 119, 127, 135], "clinical_appl": [111, 112], "clinicalshiftappl": 112, "synthetic_appl": [113, 114, 115, 116, 117, 118, 119], "syntheticshiftappl": 114, "binary_noise_shift": 115, "feature_association_shift": 116, "feature_swap_shift": 117, "gaussian_noise_shift": 118, "knockout_shift": 119, "report": [120, 121, 128, 131, 132, 134], "modelcardreport": 121, "task": [122, 123, 124, 129, 131, 134], "classif": [122, 123, 124, 132, 136], "binarytabularclassificationtask": 123, "multilabelimageclassificationtask": 124, "tutori": [130, 133], "heart": [131, 136], "failur": [131, 136], "predict": [131, 134, 136], "import": [131, 132, 133, 134], "librari": [131, 132, 133, 134], "constant": [131, 134], "load": [131, 132, 133], "sex": [131, 132], "valu": 131, "ag": [131, 132, 134], "distribut": [131, 134], "outcom": [131, 134], "identifi": [131, 134], "type": [131, 134], "creat": [131, 134], "preprocessor": [131, 134], "hug": [131, 134], "face": [131, 134], "dataset": [131, 132, 133, 134], "model": [131, 132, 133, 134], "creation": [131, 132, 134], "train": [131, 133, 134], "perform": [131, 132], "over": 131, "time": 131, "gener": [131, 132, 133, 134], "chest": [132, 136], "x": [132, 136], "rai": [132, 136], "diseas": 132, "histor": 132, "initi": 132, "period": 132, "multilabel": 132, "pathologi": 132, "log": 132, "test": [132, 133], "w": 132, "threshold": 132, "popul": 132, "card": 132, "field": 132, "nihcxr": 133, "clinic": 133, "drift": 133, "experi": 133, "exampl": [133, 136], "1": 133, "sourc": 133, "target": 133, "2": 133, "3": 133, "dimension": 133, "reduct": 133, "techniqu": 133, "differ": 133, "4": 133, "shift": 133, "5": 133, "roll": 133, "window": 133, "synthet": 133, "timestamp": 133, "biweekli": 133, "prolong": [134, 136], "length": [134, 136], "stai": [134, 136], "queri": 134, "comput": 134, "label": 134, "inspect": 134, "preprocess": 134, "drop": 134, "nan": 134, "base": 134, "nan_threshold": 134, "gender": 134, "case": 136, "tabular": 136, "kaggl": 136, "synthea": 136, "imag": 136, "nih": 136}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1, "sphinx.ext.intersphinx": 1, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"API Reference": [[0, "api-reference"]], "Contributing to cyclops": [[1, "contributing-to-cyclops"]], "Pre-commit hooks": [[1, "pre-commit-hooks"]], "Coding guidelines": [[1, "coding-guidelines"]], "Welcome to cyclops\u2019s documentation!": [[2, "welcome-to-cyclops-s-documentation"]], "Contents:": [[2, null]], "\ud83d\udc23 Getting Started": [[3, "getting-started"]], "Installing cyclops using pip": [[3, "installing-cyclops-using-pip"]], "\ud83e\uddd1\ud83c\udfff\u200d\ud83d\udcbb Developing": [[3, "developing"]], "Using poetry": [[3, "using-poetry"]], "Contributing": [[3, "contributing"]], "\ud83d\udcda Documentation": [[3, "documentation"]], "\ud83d\udcd3 Notebooks": [[3, "notebooks"]], "\ud83c\udf93 Citation": [[3, "citation"]], "cyclops.data.features.medical_image": [[4, "module-cyclops.data.features.medical_image"]], "cyclops.data.features.medical_image.MedicalImage": [[5, "cyclops-data-features-medical-image-medicalimage"]], "cyclops.data.slicer": [[6, "module-cyclops.data.slicer"]], "cyclops.data.slicer.SliceSpec": [[7, "cyclops-data-slicer-slicespec"]], "cyclops.data.slicer.compound_filter": [[8, "cyclops-data-slicer-compound-filter"]], "cyclops.data.slicer.filter_datetime": [[9, "cyclops-data-slicer-filter-datetime"]], "cyclops.data.slicer.filter_non_null": [[10, "cyclops-data-slicer-filter-non-null"]], "cyclops.data.slicer.filter_range": [[11, "cyclops-data-slicer-filter-range"]], "cyclops.data.slicer.filter_string_contains": [[12, "cyclops-data-slicer-filter-string-contains"]], "cyclops.data.slicer.filter_value": [[13, "cyclops-data-slicer-filter-value"]], "cyclops.data.slicer.is_datetime": [[14, "cyclops-data-slicer-is-datetime"]], "cyclops.data.slicer.overall": [[15, "cyclops-data-slicer-overall"]], "cyclops.evaluate.evaluator": [[16, "module-cyclops.evaluate.evaluator"]], "cyclops.evaluate.evaluator.evaluate": [[17, "cyclops-evaluate-evaluator-evaluate"]], "cyclops.evaluate.fairness.config": [[18, "module-cyclops.evaluate.fairness.config"]], "cyclops.evaluate.fairness.config.FairnessConfig": [[19, "cyclops-evaluate-fairness-config-fairnessconfig"]], "cyclops.evaluate.fairness.evaluator": [[20, "module-cyclops.evaluate.fairness.evaluator"]], "cyclops.evaluate.fairness.evaluator.evaluate_fairness": [[21, "cyclops-evaluate-fairness-evaluator-evaluate-fairness"]], "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values": [[22, "cyclops-evaluate-fairness-evaluator-warn-too-many-unique-values"]], "cyclops.evaluate.metrics.accuracy": [[23, "module-cyclops.evaluate.metrics.accuracy"]], "cyclops.evaluate.metrics.accuracy.Accuracy": [[24, "cyclops-evaluate-metrics-accuracy-accuracy"]], "cyclops.evaluate.metrics.accuracy.BinaryAccuracy": [[25, "cyclops-evaluate-metrics-accuracy-binaryaccuracy"]], "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy": [[26, "cyclops-evaluate-metrics-accuracy-multiclassaccuracy"]], "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy": [[27, "cyclops-evaluate-metrics-accuracy-multilabelaccuracy"]], "cyclops.evaluate.metrics.auroc": [[28, "module-cyclops.evaluate.metrics.auroc"]], "cyclops.evaluate.metrics.auroc.AUROC": [[29, "cyclops-evaluate-metrics-auroc-auroc"]], "cyclops.evaluate.metrics.auroc.BinaryAUROC": [[30, "cyclops-evaluate-metrics-auroc-binaryauroc"]], "cyclops.evaluate.metrics.auroc.MulticlassAUROC": [[31, "cyclops-evaluate-metrics-auroc-multiclassauroc"]], "cyclops.evaluate.metrics.auroc.MultilabelAUROC": [[32, "cyclops-evaluate-metrics-auroc-multilabelauroc"]], "cyclops.evaluate.metrics.f_beta": [[33, "module-cyclops.evaluate.metrics.f_beta"]], "cyclops.evaluate.metrics.f_beta.BinaryF1Score": [[34, "cyclops-evaluate-metrics-f-beta-binaryf1score"]], "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore": [[35, "cyclops-evaluate-metrics-f-beta-binaryfbetascore"]], "cyclops.evaluate.metrics.f_beta.F1Score": [[36, "cyclops-evaluate-metrics-f-beta-f1score"]], "cyclops.evaluate.metrics.f_beta.FbetaScore": [[37, "cyclops-evaluate-metrics-f-beta-fbetascore"]], "cyclops.evaluate.metrics.f_beta.MulticlassF1Score": [[38, "cyclops-evaluate-metrics-f-beta-multiclassf1score"]], "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore": [[39, "cyclops-evaluate-metrics-f-beta-multiclassfbetascore"]], "cyclops.evaluate.metrics.f_beta.MultilabelF1Score": [[40, "cyclops-evaluate-metrics-f-beta-multilabelf1score"]], "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore": [[41, "cyclops-evaluate-metrics-f-beta-multilabelfbetascore"]], "cyclops.evaluate.metrics.factory": [[42, "module-cyclops.evaluate.metrics.factory"]], "cyclops.evaluate.metrics.factory.create_metric": [[43, "cyclops-evaluate-metrics-factory-create-metric"]], "cyclops.evaluate.metrics.functional.accuracy": [[44, "module-cyclops.evaluate.metrics.functional.accuracy"]], "cyclops.evaluate.metrics.functional.auroc": [[45, "module-cyclops.evaluate.metrics.functional.auroc"]], "cyclops.evaluate.metrics.functional.f_beta": [[46, "module-cyclops.evaluate.metrics.functional.f_beta"]], "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score": [[47, "cyclops-evaluate-metrics-functional-f-beta-binary-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score": [[48, "cyclops-evaluate-metrics-functional-f-beta-binary-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.f1_score": [[49, "cyclops-evaluate-metrics-functional-f-beta-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.fbeta_score": [[50, "cyclops-evaluate-metrics-functional-f-beta-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score": [[51, "cyclops-evaluate-metrics-functional-f-beta-multiclass-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score": [[52, "cyclops-evaluate-metrics-functional-f-beta-multiclass-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score": [[53, "cyclops-evaluate-metrics-functional-f-beta-multilabel-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score": [[54, "cyclops-evaluate-metrics-functional-f-beta-multilabel-fbeta-score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[55, "module-cyclops.evaluate.metrics.functional.precision_recall"]], "cyclops.evaluate.metrics.functional.precision_recall.binary_precision": [[56, "cyclops-evaluate-metrics-functional-precision-recall-binary-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.binary_recall": [[57, "cyclops-evaluate-metrics-functional-precision-recall-binary-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision": [[58, "cyclops-evaluate-metrics-functional-precision-recall-multiclass-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall": [[59, "cyclops-evaluate-metrics-functional-precision-recall-multiclass-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision": [[60, "cyclops-evaluate-metrics-functional-precision-recall-multilabel-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall": [[61, "cyclops-evaluate-metrics-functional-precision-recall-multilabel-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.precision": [[62, "cyclops-evaluate-metrics-functional-precision-recall-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.recall": [[63, "cyclops-evaluate-metrics-functional-precision-recall-recall"]], "cyclops.evaluate.metrics.functional.precision_recall_curve": [[64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"]], "cyclops.evaluate.metrics.functional.roc": [[65, "module-cyclops.evaluate.metrics.functional.roc"]], "cyclops.evaluate.metrics.functional.roc.binary_roc_curve": [[66, "cyclops-evaluate-metrics-functional-roc-binary-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve": [[67, "cyclops-evaluate-metrics-functional-roc-multiclass-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve": [[68, "cyclops-evaluate-metrics-functional-roc-multilabel-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.roc_curve": [[69, "cyclops-evaluate-metrics-functional-roc-roc-curve"]], "cyclops.evaluate.metrics.functional.sensitivity": [[70, "module-cyclops.evaluate.metrics.functional.sensitivity"]], "cyclops.evaluate.metrics.functional.specificity": [[71, "module-cyclops.evaluate.metrics.functional.specificity"]], "cyclops.evaluate.metrics.functional.stat_scores": [[72, "module-cyclops.evaluate.metrics.functional.stat_scores"]], "cyclops.evaluate.metrics.metric": [[73, "module-cyclops.evaluate.metrics.metric"]], "cyclops.evaluate.metrics.metric.Metric": [[74, "cyclops-evaluate-metrics-metric-metric"]], "cyclops.evaluate.metrics.metric.MetricCollection": [[75, "cyclops-evaluate-metrics-metric-metriccollection"]], "cyclops.evaluate.metrics.metric.OperatorMetric": [[76, "cyclops-evaluate-metrics-metric-operatormetric"]], "cyclops.evaluate.metrics.precision_recall": [[77, "module-cyclops.evaluate.metrics.precision_recall"]], "cyclops.evaluate.metrics.precision_recall.BinaryPrecision": [[78, "cyclops-evaluate-metrics-precision-recall-binaryprecision"]], "cyclops.evaluate.metrics.precision_recall.BinaryRecall": [[79, "cyclops-evaluate-metrics-precision-recall-binaryrecall"]], "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision": [[80, "cyclops-evaluate-metrics-precision-recall-multiclassprecision"]], "cyclops.evaluate.metrics.precision_recall.MulticlassRecall": [[81, "cyclops-evaluate-metrics-precision-recall-multiclassrecall"]], "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision": [[82, "cyclops-evaluate-metrics-precision-recall-multilabelprecision"]], "cyclops.evaluate.metrics.precision_recall.MultilabelRecall": [[83, "cyclops-evaluate-metrics-precision-recall-multilabelrecall"]], "cyclops.evaluate.metrics.precision_recall.Precision": [[84, "cyclops-evaluate-metrics-precision-recall-precision"]], "cyclops.evaluate.metrics.precision_recall.Recall": [[85, "cyclops-evaluate-metrics-precision-recall-recall"]], "cyclops.evaluate.metrics.precision_recall_curve": [[86, "module-cyclops.evaluate.metrics.precision_recall_curve"]], "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve": [[87, "cyclops-evaluate-metrics-precision-recall-curve-binaryprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve": [[88, "cyclops-evaluate-metrics-precision-recall-curve-multiclassprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve": [[89, "cyclops-evaluate-metrics-precision-recall-curve-multilabelprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve": [[90, "cyclops-evaluate-metrics-precision-recall-curve-precisionrecallcurve"]], "cyclops.evaluate.metrics.roc": [[91, "module-cyclops.evaluate.metrics.roc"]], "cyclops.evaluate.metrics.roc.BinaryROCCurve": [[92, "cyclops-evaluate-metrics-roc-binaryroccurve"]], "cyclops.evaluate.metrics.roc.MulticlassROCCurve": [[93, "cyclops-evaluate-metrics-roc-multiclassroccurve"]], "cyclops.evaluate.metrics.roc.MultilabelROCCurve": [[94, "cyclops-evaluate-metrics-roc-multilabelroccurve"]], "cyclops.evaluate.metrics.roc.ROCCurve": [[95, "cyclops-evaluate-metrics-roc-roccurve"]], "cyclops.evaluate.metrics.sensitivity": [[96, "module-cyclops.evaluate.metrics.sensitivity"]], "cyclops.evaluate.metrics.sensitivity.BinarySensitivity": [[97, "cyclops-evaluate-metrics-sensitivity-binarysensitivity"]], "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity": [[98, "cyclops-evaluate-metrics-sensitivity-multiclasssensitivity"]], "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity": [[99, "cyclops-evaluate-metrics-sensitivity-multilabelsensitivity"]], "cyclops.evaluate.metrics.sensitivity.Sensitivity": [[100, "cyclops-evaluate-metrics-sensitivity-sensitivity"]], "cyclops.evaluate.metrics.specificity": [[101, "module-cyclops.evaluate.metrics.specificity"]], "cyclops.evaluate.metrics.specificity.BinarySpecificity": [[102, "cyclops-evaluate-metrics-specificity-binaryspecificity"]], "cyclops.evaluate.metrics.specificity.MulticlassSpecificity": [[103, "cyclops-evaluate-metrics-specificity-multiclassspecificity"]], "cyclops.evaluate.metrics.specificity.MultilabelSpecificity": [[104, "cyclops-evaluate-metrics-specificity-multilabelspecificity"]], "cyclops.evaluate.metrics.specificity.Specificity": [[105, "cyclops-evaluate-metrics-specificity-specificity"]], "cyclops.evaluate.metrics.stat_scores": [[106, "module-cyclops.evaluate.metrics.stat_scores"]], "cyclops.evaluate.metrics.stat_scores.BinaryStatScores": [[107, "cyclops-evaluate-metrics-stat-scores-binarystatscores"]], "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores": [[108, "cyclops-evaluate-metrics-stat-scores-multiclassstatscores"]], "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores": [[109, "cyclops-evaluate-metrics-stat-scores-multilabelstatscores"]], "cyclops.evaluate.metrics.stat_scores.StatScores": [[110, "cyclops-evaluate-metrics-stat-scores-statscores"]], "cyclops.monitor.clinical_applicator": [[111, "module-cyclops.monitor.clinical_applicator"]], "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator": [[112, "cyclops-monitor-clinical-applicator-clinicalshiftapplicator"]], "cyclops.monitor.synthetic_applicator": [[113, "module-cyclops.monitor.synthetic_applicator"]], "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator": [[114, "cyclops-monitor-synthetic-applicator-syntheticshiftapplicator"]], "cyclops.monitor.synthetic_applicator.binary_noise_shift": [[115, "cyclops-monitor-synthetic-applicator-binary-noise-shift"]], "cyclops.monitor.synthetic_applicator.feature_association_shift": [[116, "cyclops-monitor-synthetic-applicator-feature-association-shift"]], "cyclops.monitor.synthetic_applicator.feature_swap_shift": [[117, "cyclops-monitor-synthetic-applicator-feature-swap-shift"]], "cyclops.monitor.synthetic_applicator.gaussian_noise_shift": [[118, "cyclops-monitor-synthetic-applicator-gaussian-noise-shift"]], "cyclops.monitor.synthetic_applicator.knockout_shift": [[119, "cyclops-monitor-synthetic-applicator-knockout-shift"]], "cyclops.report.report": [[120, "module-cyclops.report.report"]], "cyclops.report.report.ModelCardReport": [[121, "cyclops-report-report-modelcardreport"]], "cyclops.tasks.classification": [[122, "module-cyclops.tasks.classification"]], "cyclops.tasks.classification.BinaryTabularClassificationTask": [[123, "cyclops-tasks-classification-binarytabularclassificationtask"]], "cyclops.tasks.classification.MultilabelImageClassificationTask": [[124, "cyclops-tasks-classification-multilabelimageclassificationtask"]], "cyclops.data": [[125, "module-cyclops.data"]], "cyclops.data.features": [[125, "module-cyclops.data.features"]], "cyclops.evaluate": [[126, "module-cyclops.evaluate"]], "cyclops.evaluate.metrics": [[126, "module-cyclops.evaluate.metrics"]], "cyclops.evaluate.metrics.functional": [[126, "module-cyclops.evaluate.metrics.functional"]], "cyclops.evaluate.fairness": [[126, "module-cyclops.evaluate.fairness"]], "cyclops.monitor": [[127, "module-cyclops.monitor"]], "cyclops.report": [[128, "module-cyclops.report"]], "cyclops.tasks": [[129, "module-cyclops.tasks"]], "Tutorials": [[130, "tutorials"]], "Heart Failure Prediction": [[131, "Heart-Failure-Prediction"]], "Import Libraries": [[131, "Import-Libraries"], [132, "Import-Libraries"], [134, "Import-Libraries"]], "Constants": [[131, "Constants"], [134, "Constants"]], "Data Loading": [[131, "Data-Loading"]], "Sex values": [[131, "Sex-values"]], "Age distribution": [[131, "Age-distribution"], [134, "Age-distribution"]], "Outcome distribution": [[131, "Outcome-distribution"], [134, "Outcome-distribution"]], "Identifying feature types": [[131, "Identifying-feature-types"], [134, "Identifying-feature-types"]], "Creating data preprocessors": [[131, "Creating-data-preprocessors"], [134, "Creating-data-preprocessors"]], "Creating Hugging Face Dataset": [[131, "Creating-Hugging-Face-Dataset"], [134, "Creating-Hugging-Face-Dataset"]], "Model Creation": [[131, "Model-Creation"], [132, "Model-Creation"], [134, "Model-Creation"]], "Task Creation": [[131, "Task-Creation"], [134, "Task-Creation"]], "Training": [[131, "Training"], [134, "Training"]], "Prediction": [[131, "Prediction"], [134, "Prediction"]], "Evaluation": [[131, "Evaluation"], [134, "Evaluation"]], "Performance over time": [[131, "Performance-over-time"]], "Report Generation": [[131, "Report-Generation"], [134, "Report-Generation"]], "Chest X-Ray Disease Classification": [[132, "Chest-X-Ray-Disease-Classification"]], "Generate Historical Reports": [[132, "Generate-Historical-Reports"]], "Initialize Periodic Report": [[132, "Initialize-Periodic-Report"]], "Load Dataset": [[132, "Load-Dataset"]], "Multilabel AUROC by Pathology and Sex": [[132, "Multilabel-AUROC-by-Pathology-and-Sex"]], "Multilabel AUROC by Pathology and Age": [[132, "Multilabel-AUROC-by-Pathology-and-Age"]], "Log Performance Metrics as Tests w/ Thresholds": [[132, "Log-Performance-Metrics-as-Tests-w/-Thresholds"]], "Populate Model Card Fields": [[132, "Populate-Model-Card-Fields"]], "NIHCXR Clinical Drift Experiments Tutorial": [[133, "NIHCXR-Clinical-Drift-Experiments-Tutorial"]], "Import Libraries and Load NIHCXR Dataset": [[133, "Import-Libraries-and-Load-NIHCXR-Dataset"]], "Example 1. Generate Source/Target Dataset for Experiments (1-2)": [[133, "Example-1.-Generate-Source/Target-Dataset-for-Experiments-(1-2)"]], "Example 2. Sensitivity test experiment with 3 dimensionality reduction techniques": [[133, "Example-2.-Sensitivity-test-experiment-with-3-dimensionality-reduction-techniques"]], "Example 3. Sensitivity test experiment with models trained on different datasets": [[133, "Example-3.-Sensitivity-test-experiment-with-models-trained-on-different-datasets"]], "Example 4. Sensitivity test experiment with different clinical shifts": [[133, "Example-4.-Sensitivity-test-experiment-with-different-clinical-shifts"]], "Example 5. Rolling window experiment with synthetic timestamps using biweekly window": [[133, "Example-5.-Rolling-window-experiment-with-synthetic-timestamps-using-biweekly-window"]], "Prolonged Length of Stay Prediction": [[134, "Prolonged-Length-of-Stay-Prediction"]], "Data Querying": [[134, "Data-Querying"]], "Compute length of stay (labels)": [[134, "Compute-length-of-stay-(labels)"]], "Data Inspection and Preprocessing": [[134, "Data-Inspection-and-Preprocessing"]], "Drop NaNs based on the NAN_THRESHOLD": [[134, "Drop-NaNs-based-on-the-NAN_THRESHOLD"]], "Length of stay distribution": [[134, "Length-of-stay-distribution"]], "Gender distribution": [[134, "Gender-distribution"]], "monitor API": [[135, "monitor-api"]], "Example use cases": [[136, "example-use-cases"]], "Tabular data": [[136, "tabular-data"]], "Kaggle Heart Failure Prediction": [[136, "kaggle-heart-failure-prediction"]], "Synthea Prolonged Length of Stay Prediction": [[136, "synthea-prolonged-length-of-stay-prediction"]], "Image data": [[136, "image-data"]], "NIH Chest X-ray classification": [[136, "nih-chest-x-ray-classification"]]}, "indexentries": {"cyclops.data.features.medical_image": [[4, "module-cyclops.data.features.medical_image"]], "module": [[4, "module-cyclops.data.features.medical_image"], [6, "module-cyclops.data.slicer"], [16, "module-cyclops.evaluate.evaluator"], [18, "module-cyclops.evaluate.fairness.config"], [20, "module-cyclops.evaluate.fairness.evaluator"], [23, "module-cyclops.evaluate.metrics.accuracy"], [28, "module-cyclops.evaluate.metrics.auroc"], [33, "module-cyclops.evaluate.metrics.f_beta"], [42, "module-cyclops.evaluate.metrics.factory"], [44, "module-cyclops.evaluate.metrics.functional.accuracy"], [45, "module-cyclops.evaluate.metrics.functional.auroc"], [46, "module-cyclops.evaluate.metrics.functional.f_beta"], [55, "module-cyclops.evaluate.metrics.functional.precision_recall"], [64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"], [65, "module-cyclops.evaluate.metrics.functional.roc"], [70, "module-cyclops.evaluate.metrics.functional.sensitivity"], [71, "module-cyclops.evaluate.metrics.functional.specificity"], [72, "module-cyclops.evaluate.metrics.functional.stat_scores"], [73, "module-cyclops.evaluate.metrics.metric"], [77, "module-cyclops.evaluate.metrics.precision_recall"], [86, "module-cyclops.evaluate.metrics.precision_recall_curve"], [91, "module-cyclops.evaluate.metrics.roc"], [96, "module-cyclops.evaluate.metrics.sensitivity"], [101, "module-cyclops.evaluate.metrics.specificity"], [106, "module-cyclops.evaluate.metrics.stat_scores"], [111, "module-cyclops.monitor.clinical_applicator"], [113, "module-cyclops.monitor.synthetic_applicator"], [120, "module-cyclops.report.report"], [122, "module-cyclops.tasks.classification"], [125, "module-cyclops.data"], [125, "module-cyclops.data.features"], [126, "module-cyclops.evaluate"], [126, "module-cyclops.evaluate.fairness"], [126, "module-cyclops.evaluate.metrics"], [126, "module-cyclops.evaluate.metrics.functional"], [127, "module-cyclops.monitor"], [128, "module-cyclops.report"], [129, "module-cyclops.tasks"]], "medicalimage (class in cyclops.data.features.medical_image)": [[5, "cyclops.data.features.medical_image.MedicalImage"]], "__call__() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.__call__"]], "cast_storage() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.cast_storage"]], "decode_example() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.decode_example"]], "embed_storage() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.embed_storage"]], "encode_example() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.encode_example"]], "flatten() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.flatten"]], "cyclops.data.slicer": [[6, "module-cyclops.data.slicer"]], "slicespec (class in cyclops.data.slicer)": [[7, "cyclops.data.slicer.SliceSpec"]], "_registry (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec._registry"]], "add_slice_spec() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.add_slice_spec"]], "column_names (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.column_names"]], "get_slices() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.get_slices"]], "include_overall (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.include_overall"]], "slices() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.slices"]], "spec_list (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.spec_list"]], "validate (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.validate"]], "compound_filter() (in module cyclops.data.slicer)": [[8, "cyclops.data.slicer.compound_filter"]], "filter_datetime() (in module cyclops.data.slicer)": [[9, "cyclops.data.slicer.filter_datetime"]], "filter_non_null() (in module cyclops.data.slicer)": [[10, "cyclops.data.slicer.filter_non_null"]], "filter_range() (in module cyclops.data.slicer)": [[11, "cyclops.data.slicer.filter_range"]], "filter_string_contains() (in module cyclops.data.slicer)": [[12, "cyclops.data.slicer.filter_string_contains"]], "filter_value() (in module cyclops.data.slicer)": [[13, "cyclops.data.slicer.filter_value"]], "is_datetime() (in module cyclops.data.slicer)": [[14, "cyclops.data.slicer.is_datetime"]], "overall() (in module cyclops.data.slicer)": [[15, "cyclops.data.slicer.overall"]], "cyclops.evaluate.evaluator": [[16, "module-cyclops.evaluate.evaluator"]], "evaluate() (in module cyclops.evaluate.evaluator)": [[17, "cyclops.evaluate.evaluator.evaluate"]], "cyclops.evaluate.fairness.config": [[18, "module-cyclops.evaluate.fairness.config"]], "fairnessconfig (class in cyclops.evaluate.fairness.config)": [[19, "cyclops.evaluate.fairness.config.FairnessConfig"]], "cyclops.evaluate.fairness.evaluator": [[20, "module-cyclops.evaluate.fairness.evaluator"]], "evaluate_fairness() (in module cyclops.evaluate.fairness.evaluator)": [[21, "cyclops.evaluate.fairness.evaluator.evaluate_fairness"]], "warn_too_many_unique_values() (in module cyclops.evaluate.fairness.evaluator)": [[22, "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values"]], "cyclops.evaluate.metrics.accuracy": [[23, "module-cyclops.evaluate.metrics.accuracy"]], "accuracy (class in cyclops.evaluate.metrics.accuracy)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy"]], "__add__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__add__"]], "__call__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__call__"]], "__init__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__init__"]], "__mul__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__mul__"]], "add_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.add_state"]], "clone() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.clone"]], "compute() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.compute"]], "reset_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.reset_state"]], "update_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.update_state"]], "binaryaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy"]], "__add__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__add__"]], "__call__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__call__"]], "__init__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__init__"]], "__mul__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__mul__"]], "add_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.add_state"]], "clone() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.clone"]], "compute() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.compute"]], "reset_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.reset_state"]], "update_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.update_state"]], "multiclassaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy"]], "__add__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__add__"]], "__call__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__call__"]], "__init__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__init__"]], "__mul__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__mul__"]], "add_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.add_state"]], "clone() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.clone"]], "compute() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.compute"]], "reset_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.reset_state"]], "update_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.update_state"]], "multilabelaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy"]], "__add__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__add__"]], "__call__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__call__"]], "__init__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__init__"]], "__mul__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__mul__"]], "add_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.add_state"]], "clone() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.clone"]], "compute() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.compute"]], "reset_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.reset_state"]], "update_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.update_state"]], "cyclops.evaluate.metrics.auroc": [[28, "module-cyclops.evaluate.metrics.auroc"]], "auroc (class in cyclops.evaluate.metrics.auroc)": [[29, "cyclops.evaluate.metrics.auroc.AUROC"]], "__add__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__add__"]], "__call__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__call__"]], "__init__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__init__"]], "__mul__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__mul__"]], "add_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.add_state"]], "clone() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.clone"]], "compute() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.compute"]], "reset_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.reset_state"]], "update_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.update_state"]], "binaryauroc (class in cyclops.evaluate.metrics.auroc)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC"]], "__add__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__add__"]], "__call__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__call__"]], "__init__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__init__"]], "__mul__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__mul__"]], "add_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.add_state"]], "clone() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.clone"]], "compute() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.compute"]], "reset_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.reset_state"]], "update_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.update_state"]], "multiclassauroc (class in cyclops.evaluate.metrics.auroc)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC"]], "__add__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__add__"]], "__call__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__call__"]], "__init__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__init__"]], "__mul__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__mul__"]], "add_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.add_state"]], "clone() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.clone"]], "compute() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.compute"]], "reset_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.reset_state"]], "update_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.update_state"]], "multilabelauroc (class in cyclops.evaluate.metrics.auroc)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC"]], "__add__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__add__"]], "__call__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__call__"]], "__init__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__init__"]], "__mul__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__mul__"]], "add_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.add_state"]], "clone() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.clone"]], "compute() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.compute"]], "reset_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.reset_state"]], "update_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.update_state"]], "cyclops.evaluate.metrics.f_beta": [[33, "module-cyclops.evaluate.metrics.f_beta"]], "binaryf1score (class in cyclops.evaluate.metrics.f_beta)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score"]], "__add__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__add__"]], "__call__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__call__"]], "__init__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__init__"]], "__mul__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__mul__"]], "add_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.add_state"]], "clone() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.clone"]], "compute() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.compute"]], "reset_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.reset_state"]], "update_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.update_state"]], "binaryfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore"]], "__add__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__add__"]], "__call__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__call__"]], "__init__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__init__"]], "__mul__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__mul__"]], "add_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.add_state"]], "clone() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.clone"]], "compute() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.compute"]], "reset_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.reset_state"]], "update_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.update_state"]], "f1score (class in cyclops.evaluate.metrics.f_beta)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score"]], "__add__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__add__"]], "__call__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__call__"]], "__init__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__init__"]], "__mul__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__mul__"]], "add_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.add_state"]], "clone() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.clone"]], "compute() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.compute"]], "reset_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.reset_state"]], "update_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.update_state"]], "fbetascore (class in cyclops.evaluate.metrics.f_beta)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore"]], "__add__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__add__"]], "__call__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__call__"]], "__init__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__init__"]], "__mul__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__mul__"]], "add_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.add_state"]], "clone() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.clone"]], "compute() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.compute"]], "reset_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.reset_state"]], "update_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.update_state"]], "multiclassf1score (class in cyclops.evaluate.metrics.f_beta)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score"]], "__add__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__add__"]], "__call__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__call__"]], "__init__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__init__"]], "__mul__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__mul__"]], "add_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.add_state"]], "clone() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.clone"]], "compute() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.compute"]], "reset_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.reset_state"]], "update_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.update_state"]], "multiclassfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore"]], "__add__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__add__"]], "__call__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__call__"]], "__init__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__init__"]], "__mul__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__mul__"]], "add_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.add_state"]], "clone() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.clone"]], "compute() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.compute"]], "reset_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.reset_state"]], "update_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.update_state"]], "multilabelf1score (class in cyclops.evaluate.metrics.f_beta)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score"]], "__add__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__add__"]], "__call__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__call__"]], "__init__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__init__"]], "__mul__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__mul__"]], "add_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.add_state"]], "clone() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.clone"]], "compute() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.compute"]], "reset_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.reset_state"]], "update_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.update_state"]], "multilabelfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore"]], "__add__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__add__"]], "__call__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__call__"]], "__init__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__init__"]], "__mul__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__mul__"]], "add_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.add_state"]], "clone() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.clone"]], "compute() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.compute"]], "reset_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.reset_state"]], "update_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.update_state"]], "cyclops.evaluate.metrics.factory": [[42, "module-cyclops.evaluate.metrics.factory"]], "create_metric() (in module cyclops.evaluate.metrics.factory)": [[43, "cyclops.evaluate.metrics.factory.create_metric"]], "cyclops.evaluate.metrics.functional.accuracy": [[44, "module-cyclops.evaluate.metrics.functional.accuracy"]], "cyclops.evaluate.metrics.functional.auroc": [[45, "module-cyclops.evaluate.metrics.functional.auroc"]], "cyclops.evaluate.metrics.functional.f_beta": [[46, "module-cyclops.evaluate.metrics.functional.f_beta"]], "binary_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[47, "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score"]], "binary_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[48, "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score"]], "f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[49, "cyclops.evaluate.metrics.functional.f_beta.f1_score"]], "fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[50, "cyclops.evaluate.metrics.functional.f_beta.fbeta_score"]], "multiclass_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[51, "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score"]], "multiclass_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[52, "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score"]], "multilabel_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[53, "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score"]], "multilabel_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[54, "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[55, "module-cyclops.evaluate.metrics.functional.precision_recall"]], "binary_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[56, "cyclops.evaluate.metrics.functional.precision_recall.binary_precision"]], "binary_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[57, "cyclops.evaluate.metrics.functional.precision_recall.binary_recall"]], "multiclass_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[58, "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision"]], "multiclass_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[59, "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall"]], "multilabel_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[60, "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision"]], "multilabel_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[61, "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall"]], "precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[62, "cyclops.evaluate.metrics.functional.precision_recall.precision"]], "recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[63, "cyclops.evaluate.metrics.functional.precision_recall.recall"]], "cyclops.evaluate.metrics.functional.precision_recall_curve": [[64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"]], "cyclops.evaluate.metrics.functional.roc": [[65, "module-cyclops.evaluate.metrics.functional.roc"]], "binary_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[66, "cyclops.evaluate.metrics.functional.roc.binary_roc_curve"]], "multiclass_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[67, "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve"]], "multilabel_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[68, "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve"]], "roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[69, "cyclops.evaluate.metrics.functional.roc.roc_curve"]], "cyclops.evaluate.metrics.functional.sensitivity": [[70, "module-cyclops.evaluate.metrics.functional.sensitivity"]], "cyclops.evaluate.metrics.functional.specificity": [[71, "module-cyclops.evaluate.metrics.functional.specificity"]], "cyclops.evaluate.metrics.functional.stat_scores": [[72, "module-cyclops.evaluate.metrics.functional.stat_scores"]], "cyclops.evaluate.metrics.metric": [[73, "module-cyclops.evaluate.metrics.metric"]], "metric (class in cyclops.evaluate.metrics.metric)": [[74, "cyclops.evaluate.metrics.metric.Metric"]], "__add__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__add__"]], "__call__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__call__"]], "__init__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__init__"]], "__mul__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__mul__"]], "add_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.add_state"]], "clone() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.clone"]], "compute() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.compute"]], "reset_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.reset_state"]], "update_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.update_state"]], "metriccollection (class in cyclops.evaluate.metrics.metric)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection"]], "__call__() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.__call__"]], "__init__() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.__init__"]], "add_metrics() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.add_metrics"]], "clear() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.clear"]], "clone() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.clone"]], "compute() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.compute"]], "get() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.get"]], "items() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.items"]], "keys() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.keys"]], "pop() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.pop"]], "popitem() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.popitem"]], "reset_state() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.reset_state"]], "setdefault() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.setdefault"]], "update() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.update"]], "update_state() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.update_state"]], "values() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.values"]], "operatormetric (class in cyclops.evaluate.metrics.metric)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric"]], "__add__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__add__"]], "__call__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__call__"]], "__init__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__init__"]], "__mul__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__mul__"]], "add_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.add_state"]], "clone() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.clone"]], "compute() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.compute"]], "reset_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.reset_state"]], "update_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.update_state"]], "cyclops.evaluate.metrics.precision_recall": [[77, "module-cyclops.evaluate.metrics.precision_recall"]], "binaryprecision (class in cyclops.evaluate.metrics.precision_recall)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision"]], "__add__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__add__"]], "__call__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__call__"]], "__init__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__init__"]], "__mul__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__mul__"]], "add_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.add_state"]], "clone() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.clone"]], "compute() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.compute"]], "reset_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.reset_state"]], "update_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.update_state"]], "binaryrecall (class in cyclops.evaluate.metrics.precision_recall)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall"]], "__add__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__add__"]], "__call__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__call__"]], "__init__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__init__"]], "__mul__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__mul__"]], "add_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.add_state"]], "clone() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.clone"]], "compute() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.compute"]], "reset_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.reset_state"]], "update_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.update_state"]], "multiclassprecision (class in cyclops.evaluate.metrics.precision_recall)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision"]], "__add__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__add__"]], "__call__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__call__"]], "__init__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__init__"]], "__mul__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__mul__"]], "add_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.add_state"]], "clone() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.clone"]], "compute() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.compute"]], "reset_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.reset_state"]], "update_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.update_state"]], "multiclassrecall (class in cyclops.evaluate.metrics.precision_recall)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall"]], "__add__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__add__"]], "__call__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__call__"]], "__init__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__init__"]], "__mul__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__mul__"]], "add_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.add_state"]], "clone() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.clone"]], "compute() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.compute"]], "reset_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.reset_state"]], "update_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.update_state"]], "multilabelprecision (class in cyclops.evaluate.metrics.precision_recall)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision"]], "__add__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__add__"]], "__call__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__call__"]], "__init__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__init__"]], "__mul__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__mul__"]], "add_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.add_state"]], "clone() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.clone"]], "compute() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.compute"]], "reset_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.reset_state"]], "update_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.update_state"]], "multilabelrecall (class in cyclops.evaluate.metrics.precision_recall)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall"]], "__add__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__add__"]], "__call__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__call__"]], "__init__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__init__"]], "__mul__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__mul__"]], "add_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.add_state"]], "clone() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.clone"]], "compute() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.compute"]], "reset_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.reset_state"]], "update_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.update_state"]], "precision (class in cyclops.evaluate.metrics.precision_recall)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision"]], "__add__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__add__"]], "__call__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__call__"]], "__init__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__init__"]], "__mul__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__mul__"]], "add_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.add_state"]], "clone() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.clone"]], "compute() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.compute"]], "reset_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.reset_state"]], "update_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.update_state"]], "recall (class in cyclops.evaluate.metrics.precision_recall)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall"]], "__add__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__add__"]], "__call__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__call__"]], "__init__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__init__"]], "__mul__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__mul__"]], "add_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.add_state"]], "clone() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.clone"]], "compute() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.compute"]], "reset_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.reset_state"]], "update_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.update_state"]], "cyclops.evaluate.metrics.precision_recall_curve": [[86, "module-cyclops.evaluate.metrics.precision_recall_curve"]], "binaryprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve"]], "__add__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__add__"]], "__call__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__call__"]], "__init__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__init__"]], "__mul__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__mul__"]], "add_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.add_state"]], "clone() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.clone"]], "compute() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.compute"]], "reset_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.reset_state"]], "update_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.update_state"]], "multiclassprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve"]], "__add__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__add__"]], "__call__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__call__"]], "__init__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__init__"]], "__mul__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__mul__"]], "add_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.add_state"]], "clone() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.clone"]], "compute() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.compute"]], "reset_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.reset_state"]], "update_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.update_state"]], "multilabelprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve"]], "__add__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__add__"]], "__call__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__call__"]], "__init__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__init__"]], "__mul__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__mul__"]], "add_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.add_state"]], "clone() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.clone"]], "compute() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.compute"]], "reset_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.reset_state"]], "update_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.update_state"]], "precisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve"]], "__add__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__add__"]], "__call__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__call__"]], "__init__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__init__"]], "__mul__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__mul__"]], "add_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.add_state"]], "clone() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.clone"]], "compute() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.compute"]], "reset_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.reset_state"]], "update_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.update_state"]], "cyclops.evaluate.metrics.roc": [[91, "module-cyclops.evaluate.metrics.roc"]], "binaryroccurve (class in cyclops.evaluate.metrics.roc)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve"]], "__add__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__add__"]], "__call__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__call__"]], "__init__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__init__"]], "__mul__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__mul__"]], "add_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.add_state"]], "clone() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.clone"]], "compute() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.compute"]], "reset_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.reset_state"]], "update_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.update_state"]], "multiclassroccurve (class in cyclops.evaluate.metrics.roc)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve"]], "__add__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__add__"]], "__call__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__call__"]], "__init__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__init__"]], "__mul__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__mul__"]], "add_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.add_state"]], "clone() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.clone"]], "compute() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.compute"]], "reset_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.reset_state"]], "update_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.update_state"]], "multilabelroccurve (class in cyclops.evaluate.metrics.roc)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve"]], "__add__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__add__"]], "__call__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__call__"]], "__init__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__init__"]], "__mul__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__mul__"]], "add_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.add_state"]], "clone() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.clone"]], "compute() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.compute"]], "reset_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.reset_state"]], "update_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.update_state"]], "roccurve (class in cyclops.evaluate.metrics.roc)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve"]], "__add__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__add__"]], "__call__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__call__"]], "__init__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__init__"]], "__mul__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__mul__"]], "add_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.add_state"]], "clone() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.clone"]], "compute() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.compute"]], "reset_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.reset_state"]], "update_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.update_state"]], "cyclops.evaluate.metrics.sensitivity": [[96, "module-cyclops.evaluate.metrics.sensitivity"]], "binarysensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity"]], "__add__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__add__"]], "__call__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__call__"]], "__init__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__init__"]], "__mul__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__mul__"]], "add_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.add_state"]], "clone() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.clone"]], "compute() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.compute"]], "reset_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.reset_state"]], "update_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.update_state"]], "multiclasssensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity"]], "__add__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__add__"]], "__call__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__call__"]], "__init__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__init__"]], "__mul__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__mul__"]], "add_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.add_state"]], "clone() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.clone"]], "compute() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.compute"]], "reset_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.reset_state"]], "update_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.update_state"]], "multilabelsensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity"]], "__add__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__add__"]], "__call__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__call__"]], "__init__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__init__"]], "__mul__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__mul__"]], "add_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.add_state"]], "clone() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.clone"]], "compute() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.compute"]], "reset_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.reset_state"]], "update_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.update_state"]], "sensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity"]], "__add__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__add__"]], "__call__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__call__"]], "__init__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__init__"]], "__mul__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__mul__"]], "add_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.add_state"]], "clone() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.clone"]], "compute() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.compute"]], "reset_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.reset_state"]], "update_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.update_state"]], "cyclops.evaluate.metrics.specificity": [[101, "module-cyclops.evaluate.metrics.specificity"]], "binaryspecificity (class in cyclops.evaluate.metrics.specificity)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity"]], "__add__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__add__"]], "__call__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__call__"]], "__init__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__init__"]], "__mul__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__mul__"]], "add_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.add_state"]], "clone() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.clone"]], "compute() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.compute"]], "reset_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.reset_state"]], "update_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.update_state"]], "multiclassspecificity (class in cyclops.evaluate.metrics.specificity)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity"]], "__add__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__add__"]], "__call__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__call__"]], "__init__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__init__"]], "__mul__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__mul__"]], "add_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.add_state"]], "clone() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.clone"]], "compute() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.compute"]], "reset_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.reset_state"]], "update_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.update_state"]], "multilabelspecificity (class in cyclops.evaluate.metrics.specificity)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity"]], "__add__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__add__"]], "__call__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__call__"]], "__init__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__init__"]], "__mul__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__mul__"]], "add_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.add_state"]], "clone() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.clone"]], "compute() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.compute"]], "reset_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.reset_state"]], "update_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.update_state"]], "specificity (class in cyclops.evaluate.metrics.specificity)": [[105, "cyclops.evaluate.metrics.specificity.Specificity"]], "__add__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__add__"]], "__call__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__call__"]], "__init__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__init__"]], "__mul__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__mul__"]], "add_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.add_state"]], "clone() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.clone"]], "compute() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.compute"]], "reset_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.reset_state"]], "update_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.update_state"]], "cyclops.evaluate.metrics.stat_scores": [[106, "module-cyclops.evaluate.metrics.stat_scores"]], "binarystatscores (class in cyclops.evaluate.metrics.stat_scores)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores"]], "__add__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__add__"]], "__call__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__call__"]], "__init__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__init__"]], "__mul__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__mul__"]], "add_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.add_state"]], "clone() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.clone"]], "compute() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.compute"]], "reset_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.reset_state"]], "update_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.update_state"]], "multiclassstatscores (class in cyclops.evaluate.metrics.stat_scores)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores"]], "__add__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__add__"]], "__call__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__call__"]], "__init__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__init__"]], "__mul__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__mul__"]], "add_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.add_state"]], "clone() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.clone"]], "compute() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.compute"]], "reset_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.reset_state"]], "update_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.update_state"]], "multilabelstatscores (class in cyclops.evaluate.metrics.stat_scores)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores"]], "__add__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__add__"]], "__call__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__call__"]], "__init__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__init__"]], "__mul__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__mul__"]], "add_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.add_state"]], "clone() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.clone"]], "compute() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.compute"]], "reset_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.reset_state"]], "update_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.update_state"]], "statscores (class in cyclops.evaluate.metrics.stat_scores)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores"]], "__add__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__add__"]], "__call__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__call__"]], "__init__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__init__"]], "__mul__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__mul__"]], "add_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.add_state"]], "clone() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.clone"]], "compute() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.compute"]], "reset_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.reset_state"]], "update_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.update_state"]], "cyclops.monitor.clinical_applicator": [[111, "module-cyclops.monitor.clinical_applicator"]], "clinicalshiftapplicator (class in cyclops.monitor.clinical_applicator)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator"]], "age() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.age"]], "apply_shift() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.apply_shift"]], "custom() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.custom"]], "hospital_type() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.hospital_type"]], "month() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.month"]], "sex() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.sex"]], "time() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.time"]], "cyclops.monitor.synthetic_applicator": [[113, "module-cyclops.monitor.synthetic_applicator"]], "syntheticshiftapplicator (class in cyclops.monitor.synthetic_applicator)": [[114, "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator"]], "apply_shift() (syntheticshiftapplicator method)": [[114, "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator.apply_shift"]], "binary_noise_shift() (in module cyclops.monitor.synthetic_applicator)": [[115, "cyclops.monitor.synthetic_applicator.binary_noise_shift"]], "feature_association_shift() (in module cyclops.monitor.synthetic_applicator)": [[116, "cyclops.monitor.synthetic_applicator.feature_association_shift"]], "feature_swap_shift() (in module cyclops.monitor.synthetic_applicator)": [[117, "cyclops.monitor.synthetic_applicator.feature_swap_shift"]], "gaussian_noise_shift() (in module cyclops.monitor.synthetic_applicator)": [[118, "cyclops.monitor.synthetic_applicator.gaussian_noise_shift"]], "knockout_shift() (in module cyclops.monitor.synthetic_applicator)": [[119, "cyclops.monitor.synthetic_applicator.knockout_shift"]], "cyclops.report.report": [[120, "module-cyclops.report.report"]], "modelcardreport (class in cyclops.report.report)": [[121, "cyclops.report.report.ModelCardReport"]], "export() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.export"]], "from_json_file() (modelcardreport class method)": [[121, "cyclops.report.report.ModelCardReport.from_json_file"]], "log_citation() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_citation"]], "log_dataset() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_dataset"]], "log_descriptor() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_descriptor"]], "log_fairness_assessment() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_fairness_assessment"]], "log_from_dict() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_from_dict"]], "log_image() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_image"]], "log_license() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_license"]], "log_model_parameters() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_model_parameters"]], "log_owner() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_owner"]], "log_performance_metrics() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_performance_metrics"]], "log_plotly_figure() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_plotly_figure"]], "log_quantitative_analysis() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_quantitative_analysis"]], "log_reference() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_reference"]], "log_regulation() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_regulation"]], "log_risk() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_risk"]], "log_use_case() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_use_case"]], "log_user() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_user"]], "log_version() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_version"]], "cyclops.tasks.classification": [[122, "module-cyclops.tasks.classification"]], "binarytabularclassificationtask (class in cyclops.tasks.classification)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask"]], "__init__() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.__init__"]], "add_model() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.add_model"]], "data_type (binarytabularclassificationtask property)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.data_type"]], "evaluate() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.evaluate"]], "get_model() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.get_model"]], "list_models() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.list_models"]], "list_models_params() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.list_models_params"]], "load_model() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.load_model"]], "models_count (binarytabularclassificationtask property)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.models_count"]], "predict() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.predict"]], "save_model() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.save_model"]], "task_type (binarytabularclassificationtask property)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.task_type"]], "train() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.train"]], "multilabelimageclassificationtask (class in cyclops.tasks.classification)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask"]], "__init__() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.__init__"]], "add_model() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.add_model"]], "data_type (multilabelimageclassificationtask property)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.data_type"]], "evaluate() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.evaluate"]], "get_model() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.get_model"]], "list_models() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.list_models"]], "list_models_params() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.list_models_params"]], "load_model() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.load_model"]], "models_count (multilabelimageclassificationtask property)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.models_count"]], "predict() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.predict"]], "save_model() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.save_model"]], "task_type (multilabelimageclassificationtask property)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.task_type"]], "cyclops.data": [[125, "module-cyclops.data"]], "cyclops.data.features": [[125, "module-cyclops.data.features"]], "cyclops.evaluate": [[126, "module-cyclops.evaluate"]], "cyclops.evaluate.fairness": [[126, "module-cyclops.evaluate.fairness"]], "cyclops.evaluate.metrics": [[126, "module-cyclops.evaluate.metrics"]], "cyclops.evaluate.metrics.functional": [[126, "module-cyclops.evaluate.metrics.functional"]], "cyclops.monitor": [[127, "module-cyclops.monitor"]], "cyclops.report": [[128, "module-cyclops.report"]], "cyclops.tasks": [[129, "module-cyclops.tasks"]]}})
\ No newline at end of file
diff --git a/api/tutorials/kaggle/heart_failure_prediction.html b/api/tutorials/kaggle/heart_failure_prediction.html
index 20b756cd1..00eea26e2 100644
--- a/api/tutorials/kaggle/heart_failure_prediction.html
+++ b/api/tutorials/kaggle/heart_failure_prediction.html
@@ -484,7 +484,7 @@ 

Import Libraries
-/home/amritk/.cache/pypoetry/virtualenvs/pycyclops-mhx6UJW0-py3.10/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
+/home/amritk/.cache/pypoetry/virtualenvs/pycyclops-wIzUAwxh-py3.10/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
   from .autonotebook import tqdm as notebook_tqdm
 

@@ -556,7 +556,7 @@

Data Loading
-2023-11-20 15:32:06,461 INFO cyclops.utils.file - Loading DataFrame from ./data/heart.csv
+2023-11-21 10:24:43,545 INFO cyclops.utils.file - Loading DataFrame from ./data/heart.csv
 

-
-
[40]:
+
[41]:
 
# Extracting the overall classification metric values.
@@ -1483,7 +1536,7 @@ 

Evaluation -
[41]:
+
[42]:
 
-
-
[42]:
+
[43]:
 
# Extracting the metric values for all the slices.
@@ -1547,7 +1600,7 @@ 

Evaluation -
[43]:
+
[44]:
 
-
-
[44]:
+
[45]:
 
# Reformating the fairness metrics
@@ -1606,7 +1659,7 @@ 

Evaluation -
[45]:
+
[46]:
 
-
- -
- - +
+
@@ -585,7 +644,7 @@

A quick glance of your most import
- 0.91 + 0.9 @@ -595,15 +654,8 @@

A quick glance of your most import 0.7
minimum
threshold
- - -
- -
- -
- - +
+

@@ -625,7 +677,7 @@

A quick glance of your most import
- 0.71 + 0.79 @@ -635,15 +687,8 @@

A quick glance of your most import 0.7
minimum
threshold
- - -
- -
- -
- - +
+

@@ -665,7 +710,7 @@

A quick glance of your most import
- 0.74 + 0.82 @@ -675,15 +720,8 @@

A quick glance of your most import 0.7
minimum
threshold
- - -
- -
- -
- - +
+

@@ -705,7 +743,7 @@

A quick glance of your most import
- 0.84 + 1.0 @@ -715,15 +753,8 @@

A quick glance of your most import 0.7
minimum
threshold
- - -
- -
- -
- - +
+

@@ -789,6 +820,10 @@

A quick glance of your most import + + + + @@ -796,13 +831,23 @@

A quick glance of your most import -
+

How is your model doing over time?


See how your model is performing over several metrics and subgroups over time.

+ +
+

Multi-plot Selection:

+
+ + + + +
+

Metrics

-
+
@@ -865,9 +910,21 @@

Metrics

+
+

Sex

+
+ + + + + + +
+
+

Age

-
+
@@ -882,141 +939,7 @@

Age

-
- - -
+
@@ -1319,23 +1242,23 @@

Sensitive Data

-

Reference

+

Citation

    +
  • -
  • - - - https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction - -
    - + @misc{fedesoriano, + title={Heart Failure Prediction Dataset.}, + author={Fedesoriano, F}, + year={2021}, + publisher={Kaggle} +} -
  • +
    @@ -1347,23 +1270,23 @@

    Reference

    -

    Citation

    +

    Reference

      @@ -1422,7 +1345,7 @@

      Graphics

      -
      +
      @@ -1430,7 +1353,7 @@

      Graphics

      -
      +
      @@ -1438,7 +1361,7 @@

      Graphics

      -
      +
      @@ -1482,6 +1405,8 @@

      Quantitative Analysis

      + + @@ -1499,7 +1424,7 @@

      Quantitative Analysis

      - 0.84 + 0.76 @@ -1509,15 +1434,8 @@

      Quantitative Analysis

      0.7
      minimum
      threshold
      - - -
      - -
      - -
      - - +
      +
@@ -1539,7 +1457,7 @@

Quantitative Analysis

- 0.91 + 0.9 @@ -1549,15 +1467,8 @@

Quantitative Analysis

0.7
minimum
threshold
- - -
- -
- -
- - +
+
@@ -1579,7 +1490,7 @@

Quantitative Analysis

- 0.71 + 0.79 @@ -1589,15 +1500,8 @@

Quantitative Analysis

0.7
minimum
threshold
- - -
- -
- -
- - +
+
@@ -1619,7 +1523,7 @@

Quantitative Analysis

- 0.74 + 0.82 @@ -1629,15 +1533,8 @@

Quantitative Analysis

0.7
minimum
threshold
- - -
- -
- -
- - +
+
@@ -1659,7 +1556,7 @@

Quantitative Analysis

- 0.84 + 1.0 @@ -1669,15 +1566,8 @@

Quantitative Analysis

0.7
minimum
threshold
- - -
- -
- -
- - +
+
@@ -1724,7 +1614,7 @@

Graphics

-
+
@@ -1779,7 +1669,7 @@

Version

- Date: 2023-11-20 + Date: 2023-11-21
@@ -1997,8 +1887,8 @@

Model Parameters

-

Class_weight

- balanced +

L1_ratio

+ 0.15
@@ -2006,8 +1896,8 @@

Class_weight

-

Tol

- 0.001 +

Average

+ False
@@ -2015,8 +1905,8 @@

Tol

-

Verbose

- 0 +

Epsilon

+ 0.1
@@ -2024,8 +1914,8 @@

Verbose

-

Validation_fraction

- 0.1 +

Verbose

+ 0
@@ -2033,8 +1923,8 @@

Validation_fraction

-

L1_ratio

- 0.15 +

Penalty

+ l2
@@ -2042,8 +1932,8 @@

L1_ratio

-

Max_iter

- 1000 +

Shuffle

+ True
@@ -2051,8 +1941,8 @@

Max_iter

-

Average

- False +

Class_weight

+ balanced
@@ -2060,8 +1950,8 @@

Average

-

Alpha

- 0.001 +

Random_state

+ 123
@@ -2069,31 +1959,31 @@

Alpha

-

Loss

- log_loss +

Fit_intercept

+ True
+
+

Max_iter

+ 1000 +
-
-

Shuffle

- True -
-

Early_stopping

- True +

Validation_fraction

+ 0.1
@@ -2101,8 +1991,8 @@

Early_stopping

-

Random_state

- 123 +

Early_stopping

+ True
@@ -2110,8 +2000,8 @@

Random_state

-

Power_t

- 0.5 +

Eta0

+ 0.01
@@ -2119,8 +2009,8 @@

Power_t

-

Epsilon

- 0.1 +

Learning_rate

+ adaptive
@@ -2137,8 +2027,8 @@

Warm_start

-

Fit_intercept

- True +

N_iter_no_change

+ 5
@@ -2146,8 +2036,8 @@

Fit_intercept

-

Eta0

- 0.01 +

Power_t

+ 0.5
@@ -2155,8 +2045,8 @@

Eta0

-

Penalty

- l2 +

Tol

+ 0.001
@@ -2164,8 +2054,8 @@

Penalty

-

N_iter_no_change

- 5 +

Loss

+ log_loss
@@ -2173,8 +2063,8 @@

N_iter_no_change

-

Learning_rate

- adaptive +

Alpha

+ 0.001
@@ -2450,7 +2340,6 @@

Ethical Considerations

return true; } } - function setActiveButton() { const buttons = document.querySelectorAll('#contents li'); const sections = document.querySelectorAll('.card'); @@ -2471,7 +2360,781 @@

Ethical Considerations

} } } - document.addEventListener('scroll', setActiveButton); setActiveButton(); + + function generate_model_card_plot() { + var model_card_plots = [] + var overall_indices = [11, 12, 13, 14, 15] + var histories = JSON.parse("{\"0\": [\"0.8421052631578947\", \"0.9443366297070744\", \"0.6696966658997907\", \"0.7917884636345517\", \"1.0\"], \"1\": [\"0.796875\", \"0.8032692280474679\", \"0.8104086880694173\", \"0.7662504408321089\", \"0.733254320528702\"], \"2\": [\"0.8260869565217391\", \"0.8801965037090079\", \"0.9088616256065348\", \"0.9005887032719392\", \"0.7318415609625138\"], \"3\": [\"0.6785714285714286\", \"0.7061788871876555\", \"0.8234200856028526\", \"0.6689744509810135\", \"0.7620675719240091\"], \"4\": [\"0.7450980392156863\", \"0.8232575960858443\", \"0.5498675985686183\", \"0.8574174525837635\", \"0.6937614116110762\"], \"5\": [\"0.8819444444444444\", \"0.6529999183975839\", \"0.8503495058201004\", \"1.0\", \"0.9920904453877579\"], \"6\": [\"0.8623853211009175\", \"0.7451503351764498\", \"0.7575696615631983\", \"0.8128392007041036\", \"0.8669919022480744\"], \"7\": [\"0.8676470588235294\", \"0.8505926531332457\", \"0.7755402584280724\", \"0.7046570917647931\", \"0.8368618989726452\"], \"8\": [\"0.9076923076923077\", \"0.9027325794047122\", \"0.9145744539589293\", \"0.9795187743625171\", \"0.8281839998952537\"], \"9\": [\"0.8872180451127819\", \"0.8303960872133204\", \"0.844145250696786\", \"0.868645924442111\", \"0.7165689140230025\"], \"10\": [\"0.927972027972028\", \"0.9917891023297087\", \"0.924922111379513\", \"0.991110811175645\", \"0.8625594142253621\"], \"11\": [\"0.842391304347826\", \"0.7825740292592875\", \"0.9243205295960827\", \"0.9133802204641654\", \"0.7641960608195242\"], \"12\": [\"0.8686868686868687\", \"1.0\", \"0.9423804438863684\", \"0.889084104518579\", \"0.8975897083031747\"], \"13\": [\"0.8431372549019608\", \"0.7795144694830195\", \"0.9426669241322884\", \"0.6806287006654718\", \"0.785614301768915\"], \"14\": [\"0.8557213930348259\", \"0.9757521710384467\", \"0.9555559061064605\", \"0.9615911087123208\", \"0.8243079817735177\"], \"15\": [\"0.9152319464371114\", \"0.9113294244106782\", \"0.8458731419792791\", \"0.8605328254392286\", \"1.0\"]}"); + var thresholds = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\"}"); + var timestamps = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"1\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"2\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"3\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"4\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"5\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"6\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"7\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"8\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"9\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"10\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"11\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"12\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"13\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"14\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"15\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"]}"); + + for (let i = 0; i < overall_indices.length; i++) { + var idx = overall_indices[i]; + var model_card_plot = "model-card-plot-" + idx; + var threshold = thresholds[idx]; + var history_data = []; + for (let i = 0; i < histories[idx].length; i++) { + history_data.push(parseFloat(histories[idx][i])); + } + var timestamp_data = []; + for (let i = 0; i < timestamps[idx].length; i++) { + timestamp_data.push(timestamps[idx][i]); + } + + var model_card_fig = { + data: [ + { + x: timestamp_data, + y: history_data, + mode: "lines+markers", + marker: { color: "rgb(31,111,235)" }, + line: { color: "rgb(31,111,235)" }, + showlegend: false, + type: "scatter", + name: "" + }, + { + x: timestamp_data, + y: Array(history_data.length).fill(threshold), + mode: "lines", + line: { color: "black", dash: "dot" }, + showlegend: false, + type: "scatter", + name: "" + } + ], + layout: { + paper_bgcolor: "rgba(0,0,0,0)", + plot_bgcolor: "rgba(0,0,0,0)", + xaxis: { + zeroline: false, + showticklabels: false, + showgrid: false + }, + yaxis: { + gridcolor: "#ffffff" + }, + margin: { l: 0, r: 0, t: 0, b: 0 }, + height: 125, + width: 250 + } + }; + if (history.length > 0) { + Plotly.newPlot(model_card_plot, model_card_fig.data, model_card_fig.layout, {displayModeBar: false}); + } + } + } + generate_model_card_plot(); + + const plot = document.getElementById('plot'); + const inputs_all = document.querySelectorAll('#slice-selection input[type="radio"]'); + const plot_selection = document.querySelectorAll('#plot-selection input[type="radio"]'); + var selections = [null, null, null, null, null, null, null, null, null, null, null]; + var plot_colors = [ + "rgb(0, 115, 228)", + "rgb(31, 119, 180)", + "rgb(255, 127, 14)", + "rgb(44, 160, 44)", + "rgb(214, 39, 40)", + "rgb(148, 103, 189)", + "rgb(140, 86, 75)", + "rgb(227, 119, 194)", + "rgb(127, 127, 127)", + "rgb(188, 189, 34)", + "rgb(23, 190, 207)" + ]; + + function deletePlotSelection(plot_number) { + var plot_selection = document.querySelectorAll('#plot-selection input[type="radio"]'); + var label_selection = document.querySelectorAll('#plot-selection label'); + var label_slice_selection = document.querySelectorAll('#slice-selection label'); + var button_plot_selection = document.querySelectorAll('#plot-selection button'); + + // set last plot to checked + // get plot_selection with name "Plot N" where N is plot_number + for (let i = 0; i < plot_selection.length; i++) { + var plot_name = "Plot " + (plot_number+1) + if (plot_selection[i].value === plot_name) { + plot_number = i; + } + } + plot_selection[plot_number].checked = false; + plot_selection[plot_number-1].checked = true; + + // delete plot_selected and label + plot_selection[plot_number].remove(); + label_selection[plot_number].remove(); + + selections[plot_number] = null; + + // set selection to last plot + selection = selections[plot_number-1]; + plot_color = plot_colors[plot_number-1]; + + // set current plot selection color to plot_color + const [r, g, b] = plot_color.match(/\d+/g); + const rgbaColor = `rgba(${r}, ${g}, ${b}, 0.2)`; + plot_selection[plot_number-1].style.backgroundColor = rgbaColor; + plot_selection[plot_number-1].style.border = "2px solid " + plot_color; + plot_selection[plot_number-1].style.color = plot_color; + + // make visibility of delete button from last plot visible + if (button_plot_selection.length >= 2) { + button_plot_selection[button_plot_selection.length-2].style.visibility = "visible"; + } + + for (let i = 0; i < selection.length; i++) { + // use selection to set label_slice_selection background color + for (let j = 0; j < inputs_all.length; j++) { + if (inputs_all[j].name === selection[i].split(":")[0]) { + if (inputs_all[j].value == selection[i].split(":")[1]) { + inputs_all[j].checked = true; + label_slice_selection[j].style.backgroundColor = rgbaColor; + label_slice_selection[j].style.border = "2px solid " + plot_color; + label_slice_selection[j].style.color = plot_color; + } + } + } + } + updatePlot(); + } + + function updatePlotSelection() { + const inputs = document.querySelectorAll('#slice-selection input[type="radio"]:checked'); + var plot_selection = document.querySelectorAll('#plot-selection input[type="radio"]'); + var plot_selected = document.querySelectorAll('#plot-selection input[type="radio"]:checked')[0]; + // get number from value in plot_selected "Plot 1" -> 1 + var plot_number = parseInt(plot_selected.value.split(" ")[1]); + var label_selection = document.querySelectorAll('#plot-selection label'); + var label_slice_selection = document.querySelectorAll('#slice-selection label'); + var button_plot_selection = document.querySelectorAll('#plot-selection button'); + + // if plot_selected is "+" then add new radio button to plot_selection called "Plot N" where last plot is N-1 but keep "+" at end and set new radio button to checked for second last element + if (plot_selected.value === "+") { + // if 10 plots already exist, don't add new plot and gray out "+" + if (plot_selection.length === 11) { + plot_selected.checked = false; + label_selection[label_selection.length-1].style.color = "gray"; + return; + } + // plot_name should be name of last plot + 1 + if (plot_selection.length === 2) { + var plot_name = "Plot 2" + } else { + var plot_name = "Plot " + (parseInt(plot_selection[plot_selection.length - 2].value.split(" ")[1]) + 1); + } + var new_plot = document.createElement("input"); + new_plot.type = "radio"; + new_plot.id = plot_name; + new_plot.name = "plot"; + new_plot.value = plot_name; + new_plot.checked = true; + var new_label = document.createElement("label"); + new_label.htmlFor = plot_name; + new_label.innerHTML = plot_name; + + // Parse plot_color to get r, g, b values + var plot_color = plot_colors[plot_selection.length] + const [r, g, b] = plot_color.match(/\d+/g); + const rgbaColor = `rgba(${r}, ${g}, ${b}, 0.2)`; + // set background color of new radio button to plot_color + new_label.style.backgroundColor = rgbaColor; + new_label.style.border = "2px solid " + plot_color; + new_label.style.color = plot_color; + + // add button to delete plot + var delete_button = document.createElement("button"); + delete_button.id = "button"; + delete_button.innerHTML = "×"; + delete_button.style.backgroundColor = "transparent"; + delete_button.style.border = "none"; + new_label.style.padding = "1.5px 0px"; + new_label.style.paddingLeft = "10px"; + + new_label.appendChild(delete_button) + + // make delete button from last plot invisible if not Plot 1 + if (plot_selection.length > 2) { + button_plot_selection[button_plot_selection.length-1].style.visibility = "hidden"; + } + // add on_click event to delete button and send plot number to deletePlotSelection + delete_button.onclick = function() {deletePlotSelection(plot_number)}; + + // insert new radio button and label before "+" radio button and after last radio button + plot_selected.insertAdjacentElement("beforebegin", new_plot); + plot_selected.insertAdjacentElement("beforebegin", new_label); + + // Add event listener to new radio button + new_plot.addEventListener('change', updatePlotSelection); + + // set plot_selected to new plot + var plot_selected = new_plot + + for (let i = 0; i < label_selection.length-1; i++) { + plot_selection[i].checked = false; + label_selection[i].style.backgroundColor = "#ffffff"; + label_selection[i].style.border = "2px solid #DADCE0"; + label_selection[i].style.color = "#000000"; + } + + selections[parseInt(plot_selected.value.split(" ")[1]-1)] = selections[parseInt(plot_selected.value.split(" ")[1]-2)] + selection = selections[parseInt(plot_selected.value.split(" ")[1]-1)]; + plot_color = plot_colors[parseInt(plot_selected.value.split(" ")[1])]; + + for (let i = 0; i < selection.length; i++) { + // use selection to set label_slice_selection background color + for (let j = 0; j < inputs_all.length; j++) { + if (inputs_all[j].name === selection[i].split(":")[0]) { + if (inputs_all[j].value == selection[i].split(":")[1]) { + const [r, g, b] = plot_color.match(/\d+/g); + const rgbaColor = `rgba(${r}, ${g}, ${b}, 0.2)`; + inputs_all[j].checked = true; + label_slice_selection[j].style.backgroundColor = rgbaColor; + label_slice_selection[j].style.border = "2px solid " + plot_color; + label_slice_selection[j].style.color = plot_color; + } + else { + inputs_all[j].checked = false; + label_slice_selection[j].style.backgroundColor = "#ffffff"; + label_slice_selection[j].style.border = "2px solid #DADCE0"; + label_slice_selection[j].style.color = "#000000"; + } + } + } + } + } else { + for (let i = 0; i < plot_selection.length-1; i++) { + if (plot_selection[i].value !== plot_selected.value) { + plot_selection[i].checked = false; + label_selection[i].style.backgroundColor = "#ffffff"; + label_selection[i].style.border = "2px solid #DADCE0"; + label_selection[i].style.color = "#000000"; + } + else { + var plot_color = plot_colors[i+1] + const [r, g, b] = plot_color.match(/\d+/g); + const rgbaColor = `rgba(${r}, ${g}, ${b}, 0.2)`; + plot_selected.checked = true; + label_selection[i].style.backgroundColor = rgbaColor; + label_selection[i].style.border = "2px solid " + plot_color; + label_selection[i].style.color = plot_color; + } + } + selection = selections[parseInt(plot_selected.value.split(" ")[1]-1)]; + plot_color = plot_colors[parseInt(plot_selected.value.split(" ")[1])]; + for (let i = 0; i < selection.length; i++) { + // use selection to set label_slice_selection background color + for (let j = 0; j < inputs_all.length; j++) { + if (inputs_all[j].name === selection[i].split(":")[0]) { + if (inputs_all[j].value == selection[i].split(":")[1]) { + inputs_all[j].checked = true; + const [r, g, b] = plot_color.match(/\d+/g); + const rgbaColor = `rgba(${r}, ${g}, ${b}, 0.2)`; + label_slice_selection[j].style.backgroundColor = rgbaColor; + label_slice_selection[j].style.border = "2px solid " + plot_color; + label_slice_selection[j].style.color = plot_color; + } + else { + inputs_all[j].checked = false; + label_slice_selection[j].style.backgroundColor = "#ffffff"; + label_slice_selection[j].style.border = "2px solid #DADCE0"; + label_slice_selection[j].style.color = "#000000"; + } + } + } + } + } + var slices_all = JSON.parse("{\"0\": [\"metric:Accuracy\", \"Sex:F\", \"Age:overall_Age\"], \"1\": [\"metric:Accuracy\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"2\": [\"metric:Precision\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"3\": [\"metric:Recall\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"4\": [\"metric:F1 Score\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"5\": [\"metric:AUROC\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"6\": [\"metric:Accuracy\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"7\": [\"metric:Precision\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"8\": [\"metric:Recall\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"9\": [\"metric:F1 Score\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"10\": [\"metric:AUROC\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"11\": [\"metric:Accuracy\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"12\": [\"metric:Precision\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"13\": [\"metric:Recall\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"14\": [\"metric:F1 Score\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"15\": [\"metric:AUROC\", \"Sex:overall_Sex\", \"Age:overall_Age\"]}"); + var histories_all = JSON.parse("{\"0\": [\"0.8421052631578947\", \"0.9443366297070744\", \"0.6696966658997907\", \"0.7917884636345517\", \"1.0\"], \"1\": [\"0.796875\", \"0.8032692280474679\", \"0.8104086880694173\", \"0.7662504408321089\", \"0.733254320528702\"], \"2\": [\"0.8260869565217391\", \"0.8801965037090079\", \"0.9088616256065348\", \"0.9005887032719392\", \"0.7318415609625138\"], \"3\": [\"0.6785714285714286\", \"0.7061788871876555\", \"0.8234200856028526\", \"0.6689744509810135\", \"0.7620675719240091\"], \"4\": [\"0.7450980392156863\", \"0.8232575960858443\", \"0.5498675985686183\", \"0.8574174525837635\", \"0.6937614116110762\"], \"5\": [\"0.8819444444444444\", \"0.6529999183975839\", \"0.8503495058201004\", \"1.0\", \"0.9920904453877579\"], \"6\": [\"0.8623853211009175\", \"0.7451503351764498\", \"0.7575696615631983\", \"0.8128392007041036\", \"0.8669919022480744\"], \"7\": [\"0.8676470588235294\", \"0.8505926531332457\", \"0.7755402584280724\", \"0.7046570917647931\", \"0.8368618989726452\"], \"8\": [\"0.9076923076923077\", \"0.9027325794047122\", \"0.9145744539589293\", \"0.9795187743625171\", \"0.8281839998952537\"], \"9\": [\"0.8872180451127819\", \"0.8303960872133204\", \"0.844145250696786\", \"0.868645924442111\", \"0.7165689140230025\"], \"10\": [\"0.927972027972028\", \"0.9917891023297087\", \"0.924922111379513\", \"0.991110811175645\", \"0.8625594142253621\"], \"11\": [\"0.842391304347826\", \"0.7825740292592875\", \"0.9243205295960827\", \"0.9133802204641654\", \"0.7641960608195242\"], \"12\": [\"0.8686868686868687\", \"1.0\", \"0.9423804438863684\", \"0.889084104518579\", \"0.8975897083031747\"], \"13\": [\"0.8431372549019608\", \"0.7795144694830195\", \"0.9426669241322884\", \"0.6806287006654718\", \"0.785614301768915\"], \"14\": [\"0.8557213930348259\", \"0.9757521710384467\", \"0.9555559061064605\", \"0.9615911087123208\", \"0.8243079817735177\"], \"15\": [\"0.9152319464371114\", \"0.9113294244106782\", \"0.8458731419792791\", \"0.8605328254392286\", \"1.0\"]}"); + var thresholds_all = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\"}"); + var trends_all = JSON.parse("{\"0\": \"positive\", \"1\": \"negative\", \"2\": \"negative\", \"3\": \"positive\", \"4\": \"neutral\", \"5\": \"positive\", \"6\": \"neutral\", \"7\": \"negative\", \"8\": \"neutral\", \"9\": \"negative\", \"10\": \"negative\", \"11\": \"neutral\", \"12\": \"neutral\", \"13\": \"negative\", \"14\": \"neutral\", \"15\": \"positive\"}"); + var passed_all = JSON.parse("{\"0\": true, \"1\": true, \"2\": true, \"3\": true, \"4\": false, \"5\": true, \"6\": true, \"7\": true, \"8\": true, \"9\": true, \"10\": true, \"11\": true, \"12\": true, \"13\": true, \"14\": true, \"15\": true}"); + var names_all = JSON.parse("{\"0\": \"Accuracy\", \"1\": \"Accuracy\", \"2\": \"Precision\", \"3\": \"Recall\", \"4\": \"F1 Score\", \"5\": \"AUROC\", \"6\": \"Accuracy\", \"7\": \"Precision\", \"8\": \"Recall\", \"9\": \"F1 Score\", \"10\": \"AUROC\", \"11\": \"Accuracy\", \"12\": \"Precision\", \"13\": \"Recall\", \"14\": \"F1 Score\", \"15\": \"AUROC\"}"); + var timestamps_all = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"1\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"2\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"3\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"4\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"5\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"6\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"7\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"8\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"9\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"10\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"11\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"12\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"13\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"14\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"15\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"]}"); + + var radioGroups = {}; + var labelGroups = {}; + for (let i = 0; i < inputs_all.length; i++) { + var input = inputs_all[i]; + var label = label_slice_selection[i]; + var groupName = input.name; + if (!radioGroups[groupName]) { + radioGroups[groupName] = []; + labelGroups[groupName] = []; + } + radioGroups[groupName].push(input); + labelGroups[groupName].push(label); + } + + // use radioGroups to loop through selection changing only one element at a time + for (let i = 0; i < selection.length; i++) { + for (let j = 0; j < inputs_all.length; j++) { + if (inputs_all[j].name === selection[i].split(":")[0]) { + radio_group = radioGroups[selection[i].split(":")[0]]; + label_group = labelGroups[selection[i].split(":")[0]]; + for (let k = 0; k < radio_group.length; k++) { + selection_copy = selection.slice(); + selection_copy[i] = selection[i].split(":")[0] + ":" + radio_group[k].value; + // get idx of slices where all elements match + var idx = Object.keys(slices_all).find(key => JSON.stringify(slices_all[key].sort()) === JSON.stringify(selection_copy.sort())); + if (idx === undefined) { + // set radio button to disabled and cursor to not allowed and color to gray if idx is undefined + radio_group[k].disabled = true; + label_group[k].style.cursor = "not-allowed"; + label_group[k].style.color = "gray"; + label_group[k].style.backgroundColor = "rgba(125, 125, 125, 0.2)"; + } + else { + radio_group[k].disabled = false; + label_group[k].style.cursor = "pointer"; + } + } + } + } + } + + traces = []; + var plot_number = parseInt(plot_selected.value.split(" ")[1]-1); + for (let i = 0; i < selections.length; i++) { + if (selections[i] === null) { + continue; + } + selection = selections[i] + + // get idx of slices where all elements match + var idx = Object.keys(slices_all).find(key => JSON.stringify(slices_all[key].sort()) === JSON.stringify(selection)); + var history_data = []; + for (let i = 0; i < histories_all[idx].length; i++) { + history_data.push(parseFloat(histories_all[idx][i])); + } + var timestamp_data = []; + for (let i = 0; i < timestamps_all[idx].length; i++) { + timestamp_data.push(timestamps_all[idx][i]); + } + threshold = parseFloat(thresholds_all[idx]); + trend = trends_all[idx]; + passed = passed_all[idx]; + name = names_all[idx]; + + // if trend is "positive" set keyword to upwards, if trend is "negative" set keyword to downwards, else set keyword to flat + if (trend === "positive") { + var trend_keyword = "upwards"; + } else if (trend === "negative") { + var trend_keyword = "downwards"; + } else { + var trend_keyword = "flat"; + } + + // if passed is true set keyword to Above, if passed is false set keyword to Below + if (passed) { + var passed_keyword = "above"; + } + else { + var passed_keyword = "below"; + } + + // create title for plot: Current {metric name} is trending {trend_keyword} and is {passed_keyword} the threshold. + // get number of nulls in selections, if 9 then plot title, else don't plot title + console.log(selections) + var nulls = 0; + for (let i = 0; i < selections.length; i++) { + if (selections[i] === null) { + nulls += 1; + } + } + if (nulls === 10) { + var plot_title = "Current " + name + " is trending " + trend_keyword + " and is " + passed_keyword + " the threshold."; + var showlegend = false; + } + else { + var plot_title = ""; + var showlegend = true; + } + name = "" + suffix = " ( " + for (let i = 0; i < selection.length; i++) { + if (selection[i].split(":")[0] === "metric") { + name += selection[i].split(":")[1]; + } + else { + if (selection[i].split(":")[1].includes("overall")) { + continue; + } else { + suffix += selection[i]; + suffix += ", "; + } + } + } + if (suffix === " ( ") { + name += ""; + } + else { + suffix = suffix.slice(0, -2); + name += suffix + " )"; + } + + var trace = { + // range of x is the length of the list of floats + x: timestamp_data, + y: history_data, + mode: 'lines+markers', + type: 'scatter', + marker: {color: plot_colors[i+1]}, + line: {color: plot_colors[i+1]}, + name: name, + }; + traces.push(trace); + } + + if (nulls === 10) { + var threshold_trace = { + x: timestamp_data, + y: Array.from({length: history_data.length}, (_, i) => threshold), + mode: 'lines', + type: 'scatter', + marker: {color: 'rgb(0,0,0)'}, + line: {color: 'rgb(0,0,0)', dash: 'dot'}, + name: '', + }; + traces.push(threshold_trace); + } + var layout = { + title: { + text: plot_title, + font: { + family: 'Arial, Helvetica, sans-serif', + size: 18, + } + }, + paper_bgcolor: 'rgba(0,0,0,0)', + plot_bgcolor: 'rgba(0,0,0,0)', + xaxis: { + zeroline: false, + showticklabels: false, + showgrid: false, + }, + yaxis: { + gridcolor: '#ffffff', + }, + showlegend: showlegend, + margin: { + l: 50, + r: 50, + b: 50, + t: 50, + pad: 4 + }, + // set height and width of plot to extra-wide to fit the plot + height: 500, + width: 900, + } + Plotly.newPlot(plot, traces, layout, {displayModeBar: false}); + } + + + + // Define a function to update the plot based on selected filters + function updatePlot() { + const inputs = document.querySelectorAll('#slice-selection input[type="radio"]:checked'); + var plot_selection = document.querySelectorAll('#plot-selection input[type="radio"]'); + var plot_selected = document.querySelectorAll('#plot-selection input[type="radio"]:checked')[0]; + // get number from value in plot_selected "Plot 1" -> 1 + var label_selection = document.querySelectorAll('#plot-selection label'); + var label_slice_selection = document.querySelectorAll('#slice-selection label'); + + // get all inputs values from div class radio-buttons + // get name of inputs + var inputs_name = []; + var inputs_value = []; + for (let i = 0; i < inputs.length; i++) { + inputs_name.push(inputs[i].name); + inputs_value.push(inputs[i].value); + } + + var plot_number = parseInt(plot_selected.value.split(" ")[1]-1); + var selection = []; + for (let i = 0; i < inputs_value.length; i++) { + selection.push(inputs_name[i] + ":" + inputs_value[i]); + } + selection.sort(); + selections[plot_number] = selection; + + // if plot_selected is "+" then add new radio button to plot_selection called "Plot N" where last plot is N-1 but keep "+" at end and set new radio button to checked for second last element + if (plot_selected.value === "+") { + // if 10 plots already exist, don't add new plot and gray out "+" + if (plot_selection.length === 13) { + plot_selected.checked = false; + label_selection[-1].style.color = "gray"; + return; + } + var new_plot = document.createElement("input"); + new_plot.type = "radio"; + new_plot.id = "Plot " + (plot_selection.length); + new_plot.name = "plot"; + new_plot.value = "Plot " + (plot_selection.length); + new_plot.checked = true; + var new_label = document.createElement("label"); + new_label.htmlFor = "Plot " + (plot_selection.length); + new_label.innerHTML = "Plot " + (plot_selection.length); + + // Parse plot_color to get r, g, b values + var plot_color = plot_colors[plot_selection.length] + const [r, g, b] = plot_color.match(/\d+/g); + const rgbaColor = `rgba(${r}, ${g}, ${b}, 0.2)`; + // set background color of new radio button to plot_color + new_label.style.backgroundColor = rgbaColor; + new_label.style.border = "2px solid " + plot_color; + new_label.style.color = plot_color; + + // insert new radio button and label before "+" radio button and after last radio button + plot_selected.insertAdjacentElement("beforebegin", new_plot); + plot_selected.insertAdjacentElement("beforebegin", new_label); + // Add event listener to new radio button + new_plot.addEventListener('change', updatePlot); + + // set plot_selected to new plot + plot_selected = new_plot + + for (let i = 0; i < label_selection.length-1; i++) { + plot_selection[i].checked = false; + label_selection[i].style.backgroundColor = "#ffffff"; + label_selection[i].style.border = "2px solid #DADCE0"; + label_selection[i].style.color = "#000000"; + } + } else { + for (let i = 0; i < plot_selection.length-1; i++) { + if (plot_selection[i].value !== plot_selected.value) { + plot_selection[i].checked = false; + label_selection[i].style.backgroundColor = "#ffffff"; + label_selection[i].style.border = "2px solid #DADCE0"; + label_selection[i].style.color = "#000000"; + } + else { + var plot_color = plot_colors[i+1] + const [r, g, b] = plot_color.match(/\d+/g); + const rgbaColor = `rgba(${r}, ${g}, ${b}, 0.2)`; + plot_selected.checked = true; + label_selection[i].style.backgroundColor = rgbaColor; + label_selection[i].style.border = "2px solid " + plot_color; + label_selection[i].style.color = plot_color; + } + } + } + var slices_all = JSON.parse("{\"0\": [\"metric:Accuracy\", \"Sex:F\", \"Age:overall_Age\"], \"1\": [\"metric:Accuracy\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"2\": [\"metric:Precision\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"3\": [\"metric:Recall\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"4\": [\"metric:F1 Score\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"5\": [\"metric:AUROC\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"6\": [\"metric:Accuracy\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"7\": [\"metric:Precision\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"8\": [\"metric:Recall\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"9\": [\"metric:F1 Score\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"10\": [\"metric:AUROC\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"11\": [\"metric:Accuracy\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"12\": [\"metric:Precision\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"13\": [\"metric:Recall\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"14\": [\"metric:F1 Score\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"15\": [\"metric:AUROC\", \"Sex:overall_Sex\", \"Age:overall_Age\"]}"); + var histories_all = JSON.parse("{\"0\": [\"0.8421052631578947\", \"0.9443366297070744\", \"0.6696966658997907\", \"0.7917884636345517\", \"1.0\"], \"1\": [\"0.796875\", \"0.8032692280474679\", \"0.8104086880694173\", \"0.7662504408321089\", \"0.733254320528702\"], \"2\": [\"0.8260869565217391\", \"0.8801965037090079\", \"0.9088616256065348\", \"0.9005887032719392\", \"0.7318415609625138\"], \"3\": [\"0.6785714285714286\", \"0.7061788871876555\", \"0.8234200856028526\", \"0.6689744509810135\", \"0.7620675719240091\"], \"4\": [\"0.7450980392156863\", \"0.8232575960858443\", \"0.5498675985686183\", \"0.8574174525837635\", \"0.6937614116110762\"], \"5\": [\"0.8819444444444444\", \"0.6529999183975839\", \"0.8503495058201004\", \"1.0\", \"0.9920904453877579\"], \"6\": [\"0.8623853211009175\", \"0.7451503351764498\", \"0.7575696615631983\", \"0.8128392007041036\", \"0.8669919022480744\"], \"7\": [\"0.8676470588235294\", \"0.8505926531332457\", \"0.7755402584280724\", \"0.7046570917647931\", \"0.8368618989726452\"], \"8\": [\"0.9076923076923077\", \"0.9027325794047122\", \"0.9145744539589293\", \"0.9795187743625171\", \"0.8281839998952537\"], \"9\": [\"0.8872180451127819\", \"0.8303960872133204\", \"0.844145250696786\", \"0.868645924442111\", \"0.7165689140230025\"], \"10\": [\"0.927972027972028\", \"0.9917891023297087\", \"0.924922111379513\", \"0.991110811175645\", \"0.8625594142253621\"], \"11\": [\"0.842391304347826\", \"0.7825740292592875\", \"0.9243205295960827\", \"0.9133802204641654\", \"0.7641960608195242\"], \"12\": [\"0.8686868686868687\", \"1.0\", \"0.9423804438863684\", \"0.889084104518579\", \"0.8975897083031747\"], \"13\": [\"0.8431372549019608\", \"0.7795144694830195\", \"0.9426669241322884\", \"0.6806287006654718\", \"0.785614301768915\"], \"14\": [\"0.8557213930348259\", \"0.9757521710384467\", \"0.9555559061064605\", \"0.9615911087123208\", \"0.8243079817735177\"], \"15\": [\"0.9152319464371114\", \"0.9113294244106782\", \"0.8458731419792791\", \"0.8605328254392286\", \"1.0\"]}"); + var thresholds_all = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\"}"); + var trends_all = JSON.parse("{\"0\": \"positive\", \"1\": \"negative\", \"2\": \"negative\", \"3\": \"positive\", \"4\": \"neutral\", \"5\": \"positive\", \"6\": \"neutral\", \"7\": \"negative\", \"8\": \"neutral\", \"9\": \"negative\", \"10\": \"negative\", \"11\": \"neutral\", \"12\": \"neutral\", \"13\": \"negative\", \"14\": \"neutral\", \"15\": \"positive\"}"); + var passed_all = JSON.parse("{\"0\": true, \"1\": true, \"2\": true, \"3\": true, \"4\": false, \"5\": true, \"6\": true, \"7\": true, \"8\": true, \"9\": true, \"10\": true, \"11\": true, \"12\": true, \"13\": true, \"14\": true, \"15\": true}"); + var names_all = JSON.parse("{\"0\": \"Accuracy\", \"1\": \"Accuracy\", \"2\": \"Precision\", \"3\": \"Recall\", \"4\": \"F1 Score\", \"5\": \"AUROC\", \"6\": \"Accuracy\", \"7\": \"Precision\", \"8\": \"Recall\", \"9\": \"F1 Score\", \"10\": \"AUROC\", \"11\": \"Accuracy\", \"12\": \"Precision\", \"13\": \"Recall\", \"14\": \"F1 Score\", \"15\": \"AUROC\"}"); + var timestamps_all = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"1\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"2\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"3\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"4\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"5\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"6\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"7\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"8\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"9\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"10\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"11\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"12\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"13\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"14\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"15\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"]}"); + + for (let i = 0; i < selection.length; i++) { + // use selection to set label_slice_selection background color + for (let j = 0; j < inputs_all.length; j++) { + if (inputs_all[j].name === selection[i].split(":")[0]) { + if (inputs_all[j].value == selection[i].split(":")[1]) { + inputs_all[j].checked = true; + const [r, g, b] = plot_color.match(/\d+/g); + const rgbaColor = `rgba(${r}, ${g}, ${b}, 0.2)`; + label_slice_selection[j].style.backgroundColor = rgbaColor; + label_slice_selection[j].style.border = "2px solid " + plot_color; + label_slice_selection[j].style.color = plot_color; + } + else { + inputs_all[j].checked = false; + label_slice_selection[j].style.backgroundColor = "#ffffff"; + label_slice_selection[j].style.border = "2px solid #DADCE0"; + label_slice_selection[j].style.color = "#000000"; + } + } + } + } + + var radioGroups = {}; + var labelGroups = {}; + for (let i = 0; i < inputs_all.length; i++) { + var input = inputs_all[i]; + var label = label_slice_selection[i]; + var groupName = input.name; + if (!radioGroups[groupName]) { + radioGroups[groupName] = []; + labelGroups[groupName] = []; + } + radioGroups[groupName].push(input); + labelGroups[groupName].push(label); + } + + // use radioGroups to loop through selection changing only one element at a time + for (let i = 0; i < selection.length; i++) { + for (let j = 0; j < inputs_all.length; j++) { + if (inputs_all[j].name === selection[i].split(":")[0]) { + radio_group = radioGroups[selection[i].split(":")[0]]; + label_group = labelGroups[selection[i].split(":")[0]]; + for (let k = 0; k < radio_group.length; k++) { + selection_copy = selection.slice(); + selection_copy[i] = selection[i].split(":")[0] + ":" + radio_group[k].value; + // get idx of slices where all elements match + var idx = Object.keys(slices_all).find(key => JSON.stringify(slices_all[key].sort()) === JSON.stringify(selection_copy.sort())); + if (idx === undefined) { + // set radio button to disabled and cursor to not allowed and color to gray if idx is undefined + radio_group[k].disabled = true; + label_group[k].style.cursor = "not-allowed"; + label_group[k].style.color = "gray"; + label_group[k].style.backgroundColor = "rgba(125, 125, 125, 0.2)"; + } + else { + radio_group[k].disabled = false; + label_group[k].style.cursor = "pointer"; + } + } + } + } + } + + traces = []; + for (let i = 0; i < selections.length; i++) { + if (selections[i] === null) { + continue; + } + selection = selections[i] + // get idx of slices where all elements match + var idx = Object.keys(slices_all).find(key => JSON.stringify(slices_all[key].sort()) === JSON.stringify(selection)); + var history_data = []; + for (let i = 0; i < histories_all[idx].length; i++) { + history_data.push(parseFloat(histories_all[idx][i])); + } + var timestamp_data = []; + for (let i = 0; i < timestamps_all[idx].length; i++) { + timestamp_data.push(timestamps_all[idx][i]); + } + threshold = parseFloat(thresholds_all[idx]); + trend = trends_all[idx]; + passed = passed_all[idx]; + name = names_all[idx]; + + // if trend is "positive" set keyword to upwards, if trend is "negative" set keyword to downwards, else set keyword to flat + if (trend === "positive") { + var trend_keyword = "upwards"; + } else if (trend === "negative") { + var trend_keyword = "downwards"; + } else { + var trend_keyword = "flat"; + } + + // if passed is true set keyword to Above, if passed is false set keyword to Below + if (passed) { + var passed_keyword = "above"; + } + else { + var passed_keyword = "below"; + } + + // create title for plot: Current {metric name} is trending {trend_keyword} and is {passed_keyword} the threshold. + // get number of nulls in selections, if 9 then plot title, else don't plot title + var nulls = 0; + for (let i = 0; i < selections.length; i++) { + if (selections[i] === null) { + nulls += 1; + } + } + if (nulls === 10) { + var plot_title = "Current " + name + " is trending " + trend_keyword + " and is " + passed_keyword + " the threshold."; + var showlegend = false; + } + else { + var plot_title = ""; + var showlegend = true; + } + name = "" + suffix = " ( " + for (let i = 0; i < selection.length; i++) { + if (selection[i].split(":")[0] === "metric") { + name += selection[i].split(":")[1]; + } + else { + if (selection[i].split(":")[1].includes("overall")) { + continue; + } else { + suffix += selection[i]; + suffix += ", "; + } + } + } + if (suffix === " ( ") { + name += ""; + } + else { + suffix = suffix.slice(0, -2); + name += suffix + " )"; + } + var trace = { + // range of x is the length of the list of floats + x: timestamp_data, + y: history_data, + mode: 'lines+markers', + type: 'scatter', + marker: {color: plot_colors[i+1]}, + line: {color: plot_colors[i+1]}, + name: name, + //name: selection.toString(), + }; + traces.push(trace); + } + + if (nulls === 10) { + var threshold_trace = { + x: timestamp_data, + y: Array.from({length: history_data.length}, (_, i) => threshold), + mode: 'lines', + type: 'scatter', + marker: {color: 'rgb(0,0,0)'}, + line: {color: 'rgb(0,0,0)', dash: 'dot'}, + name: '', + }; + traces.push(threshold_trace); + } + var layout = { + title: { + text: plot_title, + font: { + family: 'Arial, Helvetica, sans-serif', + size: 18, + } + }, + paper_bgcolor: 'rgba(0,0,0,0)', + plot_bgcolor: 'rgba(0,0,0,0)', + xaxis: { + zeroline: false, + showticklabels: false, + showgrid: false, + }, + yaxis: { + gridcolor: '#ffffff', + }, + showlegend: showlegend, + margin: { + l: 50, + r: 50, + b: 50, + t: 50, + pad: 4 + }, + // set height and width of plot to extra-wide to fit the plot + height: 500, + width: 900, + } + Plotly.newPlot(plot, traces, layout, {displayModeBar: false}); + } + // Add event listeners to radio buttons + for (let input of inputs_all) { + input.addEventListener('change', updatePlot); + } + for (let selection of plot_selection) { + selection.addEventListener('change', updatePlotSelection); + } + // Initial update when the page loads + updatePlot(); + \ No newline at end of file diff --git a/api/tutorials/nihcxr/cxr_classification.html b/api/tutorials/nihcxr/cxr_classification.html index a2651db2e..ba19bbd66 100644 --- a/api/tutorials/nihcxr/cxr_classification.html +++ b/api/tutorials/nihcxr/cxr_classification.html @@ -478,7 +478,7 @@

Import Libraries
-/home/amritk/.cache/pypoetry/virtualenvs/pycyclops-mhx6UJW0-py3.10/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
+/home/amritk/.cache/pypoetry/virtualenvs/pycyclops-wIzUAwxh-py3.10/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
   from .autonotebook import tqdm as notebook_tqdm
 

@@ -503,74 +503,74 @@

Generate Historical Reports
-Flattening the indices: 100%|████████| 1000/1000 [00:59<00:00, 16.77 examples/s]
-Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 504123.08 examples/s]
-Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 201107.79 examples/s]
-Map: 100%|███████████████████████████| 400/400 [00:00<00:00, 1509.44 examples/s]
-Filter -> Patient Gender:M: 100%|███| 400/400 [00:00<00:00, 41562.74 examples/s]
-Filter -> Patient Gender:F: 100%|███| 400/400 [00:00<00:00, 41742.68 examples/s]
-Filter -> overall: 100%|████████████| 400/400 [00:00<00:00, 43866.59 examples/s]
-Filter -> Patient Age:[19 - 35]: 100%|█| 400/400 [00:00<00:00, 42852.59 examples
-Filter -> Patient Age:[35 - 65]: 100%|█| 400/400 [00:00<00:00, 43904.47 examples
-Filter -> Patient Age:[65 - 100]: 100%|█| 400/400 [00:00<00:00, 43300.51 example
+Flattening the indices: 100%|████████| 1000/1000 [00:57<00:00, 17.36 examples/s]
+Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 530320.39 examples/s]
+Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 215092.51 examples/s]
+Map: 100%|███████████████████████████| 400/400 [00:00<00:00, 1612.86 examples/s]
+Filter -> Patient Gender:M: 100%|███| 400/400 [00:00<00:00, 37072.62 examples/s]
+Filter -> Patient Gender:F: 100%|███| 400/400 [00:00<00:00, 26745.98 examples/s]
+Filter -> overall: 100%|████████████| 400/400 [00:00<00:00, 28224.51 examples/s]
+Filter -> Patient Age:[19 - 35]: 100%|█| 400/400 [00:00<00:00, 26132.74 examples
+Filter -> Patient Age:[35 - 65]: 100%|█| 400/400 [00:00<00:00, 28789.24 examples
+Filter -> Patient Age:[65 - 100]: 100%|█| 400/400 [00:00<00:00, 27377.07 example
 Filter -> Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 400/400 [00:00<00:00,
 Filter -> Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 400/400 [00:00<00:00,
 Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 400/400 [00:00<00:00,
 Filter -> Patient Age:[35 - 65]&Patient Gender:F: 100%|█| 400/400 [00:00<00:00,
 Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|█| 400/400 [00:00<00:00,
 Filter -> Patient Age:[65 - 100]&Patient Gender:F: 100%|█| 400/400 [00:00<00:00,
-Filter -> overall: 100%|████████████| 400/400 [00:00<00:00, 31870.40 examples/s]
-Flattening the indices: 100%|████████| 1000/1000 [00:57<00:00, 17.24 examples/s]
-Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 493157.44 examples/s]
-Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 226633.38 examples/s]
-Map: 100%|███████████████████████████| 396/396 [00:00<00:00, 1859.37 examples/s]
-Filter -> Patient Gender:M: 100%|███| 396/396 [00:00<00:00, 42283.66 examples/s]
-Filter -> Patient Gender:F: 100%|███| 396/396 [00:00<00:00, 42090.78 examples/s]
-Filter -> overall: 100%|████████████| 396/396 [00:00<00:00, 43437.01 examples/s]
-Filter -> Patient Age:[19 - 35]: 100%|█| 396/396 [00:00<00:00, 41593.28 examples
-Filter -> Patient Age:[35 - 65]: 100%|█| 396/396 [00:00<00:00, 42478.31 examples
-Filter -> Patient Age:[65 - 100]: 100%|█| 396/396 [00:00<00:00, 42016.25 example
+Filter -> overall: 100%|████████████| 400/400 [00:00<00:00, 45724.45 examples/s]
+Flattening the indices: 100%|████████| 1000/1000 [01:11<00:00, 13.97 examples/s]
+Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 571431.06 examples/s]
+Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 241287.69 examples/s]
+Map: 100%|███████████████████████████| 396/396 [00:00<00:00, 1886.01 examples/s]
+Filter -> Patient Gender:M: 100%|███| 396/396 [00:00<00:00, 19850.66 examples/s]
+Filter -> Patient Gender:F: 100%|███| 396/396 [00:00<00:00, 43247.00 examples/s]
+Filter -> overall: 100%|████████████| 396/396 [00:00<00:00, 45546.50 examples/s]
+Filter -> Patient Age:[19 - 35]: 100%|█| 396/396 [00:00<00:00, 45133.13 examples
+Filter -> Patient Age:[35 - 65]: 100%|█| 396/396 [00:00<00:00, 45285.72 examples
+Filter -> Patient Age:[65 - 100]: 100%|█| 396/396 [00:00<00:00, 45249.94 example
 Filter -> Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 396/396 [00:00<00:00,
 Filter -> Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 396/396 [00:00<00:00,
 Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 396/396 [00:00<00:00,
 Filter -> Patient Age:[35 - 65]&Patient Gender:F: 100%|█| 396/396 [00:00<00:00,
 Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|█| 396/396 [00:00<00:00,
 Filter -> Patient Age:[65 - 100]&Patient Gender:F: 100%|█| 396/396 [00:00<00:00,
-Filter -> overall: 100%|████████████| 396/396 [00:00<00:00, 43402.96 examples/s]
-Flattening the indices: 100%|████████| 1000/1000 [00:57<00:00, 17.26 examples/s]
-Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 530119.31 examples/s]
-Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 224702.88 examples/s]
-Map: 100%|███████████████████████████| 383/383 [00:00<00:00, 1797.29 examples/s]
-Filter -> Patient Gender:M: 100%|███| 383/383 [00:00<00:00, 40789.64 examples/s]
-Filter -> Patient Gender:F: 100%|███| 383/383 [00:00<00:00, 30004.64 examples/s]
-Filter -> overall: 100%|████████████| 383/383 [00:00<00:00, 42906.48 examples/s]
-Filter -> Patient Age:[19 - 35]: 100%|█| 383/383 [00:00<00:00, 43211.17 examples
-Filter -> Patient Age:[35 - 65]: 100%|█| 383/383 [00:00<00:00, 44180.92 examples
-Filter -> Patient Age:[65 - 100]: 100%|█| 383/383 [00:00<00:00, 42533.85 example
+Filter -> overall: 100%|████████████| 396/396 [00:00<00:00, 47140.39 examples/s]
+Flattening the indices: 100%|████████| 1000/1000 [00:57<00:00, 17.53 examples/s]
+Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 560061.96 examples/s]
+Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 241357.12 examples/s]
+Map: 100%|███████████████████████████| 383/383 [00:00<00:00, 1921.87 examples/s]
+Filter -> Patient Gender:M: 100%|███| 383/383 [00:00<00:00, 35777.69 examples/s]
+Filter -> Patient Gender:F: 100%|███| 383/383 [00:00<00:00, 43020.23 examples/s]
+Filter -> overall: 100%|████████████| 383/383 [00:00<00:00, 45167.25 examples/s]
+Filter -> Patient Age:[19 - 35]: 100%|█| 383/383 [00:00<00:00, 43747.78 examples
+Filter -> Patient Age:[35 - 65]: 100%|█| 383/383 [00:00<00:00, 44947.35 examples
+Filter -> Patient Age:[65 - 100]: 100%|█| 383/383 [00:00<00:00, 44381.10 example
 Filter -> Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 383/383 [00:00<00:00,
 Filter -> Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 383/383 [00:00<00:00,
 Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 383/383 [00:00<00:00,
 Filter -> Patient Age:[35 - 65]&Patient Gender:F: 100%|█| 383/383 [00:00<00:00,
 Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|█| 383/383 [00:00<00:00,
 Filter -> Patient Age:[65 - 100]&Patient Gender:F: 100%|█| 383/383 [00:00<00:00,
-Filter -> overall: 100%|████████████| 383/383 [00:00<00:00, 45386.74 examples/s]
-Flattening the indices: 100%|████████| 1000/1000 [01:08<00:00, 14.55 examples/s]
-Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 290665.56 examples/s]
-Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 105820.57 examples/s]
-Map: 100%|███████████████████████████| 411/411 [00:00<00:00, 1763.35 examples/s]
-Filter -> Patient Gender:M: 100%|███| 411/411 [00:00<00:00, 37239.61 examples/s]
-Filter -> Patient Gender:F: 100%|███| 411/411 [00:00<00:00, 38503.92 examples/s]
-Filter -> overall: 100%|████████████| 411/411 [00:00<00:00, 28800.10 examples/s]
-Filter -> Patient Age:[19 - 35]: 100%|█| 411/411 [00:00<00:00, 34093.96 examples
-Filter -> Patient Age:[35 - 65]: 100%|█| 411/411 [00:00<00:00, 29990.59 examples
-Filter -> Patient Age:[65 - 100]: 100%|█| 411/411 [00:00<00:00, 33812.43 example
+Filter -> overall: 100%|████████████| 383/383 [00:00<00:00, 44512.69 examples/s]
+Flattening the indices: 100%|████████| 1000/1000 [00:56<00:00, 17.84 examples/s]
+Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 572444.93 examples/s]
+Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 238380.45 examples/s]
+Map: 100%|███████████████████████████| 411/411 [00:00<00:00, 1835.56 examples/s]
+Filter -> Patient Gender:M: 100%|███| 411/411 [00:00<00:00, 44467.17 examples/s]
+Filter -> Patient Gender:F: 100%|███| 411/411 [00:00<00:00, 43879.73 examples/s]
+Filter -> overall: 100%|████████████| 411/411 [00:00<00:00, 45320.58 examples/s]
+Filter -> Patient Age:[19 - 35]: 100%|█| 411/411 [00:00<00:00, 44772.07 examples
+Filter -> Patient Age:[35 - 65]: 100%|█| 411/411 [00:00<00:00, 46457.69 examples
+Filter -> Patient Age:[65 - 100]: 100%|█| 411/411 [00:00<00:00, 45263.46 example
 Filter -> Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 411/411 [00:00<00:00,
 Filter -> Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 411/411 [00:00<00:00,
 Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 411/411 [00:00<00:00,
 Filter -> Patient Age:[35 - 65]&Patient Gender:F: 100%|█| 411/411 [00:00<00:00,
 Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|█| 411/411 [00:00<00:00,
 Filter -> Patient Age:[65 - 100]&Patient Gender:F: 100%|█| 411/411 [00:00<00:00,
-Filter -> overall: 100%|████████████| 411/411 [00:00<00:00, 42585.45 examples/s]
+Filter -> overall: 100%|████████████| 411/411 [00:00<00:00, 46223.49 examples/s]
 

CyclOps offers a package for documentation of the model through a model report. The ModelCardReport class is used to populate and generate the model report as an HTML file. The model report has the following sections:

@@ -667,8 +667,8 @@

Model Creation
-Filter: 100%|██████████| 1000/1000 [00:00<00:00, 79064.71 examples/s]
-Map: 100%|██████████| 661/661 [00:00<00:00, 1251.18 examples/s]
+Filter: 100%|██████████| 1000/1000 [00:00<00:00, 114726.99 examples/s]
+Map: 100%|██████████| 661/661 [00:00<00:00, 1729.15 examples/s]
 

@@ -858,16 +858,16 @@

Multilabel AUROC by Pathology and Age
-Filter -> Patient Age:[19 - 35]: 100%|██████████| 661/661 [00:00<00:00, 47232.19 examples/s]
-Filter -> Patient Age:[35 - 65]: 100%|██████████| 661/661 [00:00<00:00, 44932.66 examples/s]
-Filter -> Patient Age:[65 - 100]: 100%|██████████| 661/661 [00:00<00:00, 44363.22 examples/s]
-Filter -> Patient Age:[19 - 35]&Patient Gender:M: 100%|██████████| 661/661 [00:00<00:00, 42913.63 examples/s]
-Filter -> Patient Age:[19 - 35]&Patient Gender:F: 100%|██████████| 661/661 [00:00<00:00, 37359.32 examples/s]
-Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|██████████| 661/661 [00:00<00:00, 45026.07 examples/s]
-Filter -> Patient Age:[35 - 65]&Patient Gender:F: 100%|██████████| 661/661 [00:00<00:00, 42832.08 examples/s]
-Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|██████████| 661/661 [00:00<00:00, 42517.44 examples/s]
-Filter -> Patient Age:[65 - 100]&Patient Gender:F: 100%|██████████| 661/661 [00:00<00:00, 44203.36 examples/s]
-Filter -> overall: 100%|██████████| 661/661 [00:00<00:00, 41788.15 examples/s]
+Filter -> Patient Age:[19 - 35]: 100%|██████████| 661/661 [00:00<00:00, 46581.45 examples/s]
+Filter -> Patient Age:[35 - 65]: 100%|██████████| 661/661 [00:00<00:00, 48143.42 examples/s]
+Filter -> Patient Age:[65 - 100]: 100%|██████████| 661/661 [00:00<00:00, 47470.76 examples/s]
+Filter -> Patient Age:[19 - 35]&Patient Gender:M: 100%|██████████| 661/661 [00:00<00:00, 45817.04 examples/s]
+Filter -> Patient Age:[19 - 35]&Patient Gender:F: 100%|██████████| 661/661 [00:00<00:00, 45001.95 examples/s]
+Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|██████████| 661/661 [00:00<00:00, 46226.51 examples/s]
+Filter -> Patient Age:[35 - 65]&Patient Gender:F: 100%|██████████| 661/661 [00:00<00:00, 46525.17 examples/s]
+Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|██████████| 661/661 [00:00<00:00, 44062.86 examples/s]
+Filter -> Patient Age:[65 - 100]&Patient Gender:F: 100%|██████████| 661/661 [00:00<00:00, 42838.04 examples/s]
+Filter -> overall: 100%|██████████| 661/661 [00:00<00:00, 45220.68 examples/s]
 

-
- -
- - +
+
@@ -1675,15 +3138,8 @@

A quick glance of your most import 0.7
minimum
threshold
- - -
- -
- -
- - +
+
@@ -1743,15 +3199,8 @@

A quick glance of your most import 0.7
minimum
threshold
- - -
- -
- -
- - +
+
@@ -1811,15 +3260,8 @@

A quick glance of your most import 0.7
minimum
threshold
- - -
- -
- -
- - +
+
@@ -4980,13 +6422,23 @@

A quick glance of your most import -
+

How is your model doing over time?


See how your model is performing over several metrics and subgroups over time.

+ +
+

Multi-plot Selection:

+
+ + + + +
+

Metrics

-
+
@@ -5041,7 +6493,7 @@

Metrics

Patient Age

-
+
@@ -5059,7 +6511,7 @@

Patient Age

Pathology

-
+
@@ -5110,7 +6562,7 @@

Pathology

Patient Gender

-
+
@@ -5125,141 +6577,7 @@

Patient Gender

-
- - -
+
@@ -5289,7 +6607,7 @@

Graphics

-
+
@@ -5297,7 +6615,7 @@

Graphics

-
+
@@ -5305,7 +6623,7 @@

Graphics

-
+
@@ -6436,15 +7754,8 @@

Quantitative Analysis

0.7
minimum
threshold
- - -
- -
- -
- - +
+
@@ -6504,15 +7815,8 @@

Quantitative Analysis

0.7
minimum
threshold
- - -
- -
- -
- - +
+
@@ -6572,15 +7876,8 @@

Quantitative Analysis

0.7
minimum
threshold
- - -
- -
- -
- - +
+
@@ -6640,15 +7937,8 @@

Quantitative Analysis

0.7
minimum
threshold
- - -
- -
- -
- - +
+
@@ -7415,7 +8705,6 @@

Tradeoffs

return true; } } - function setActiveButton() { const buttons = document.querySelectorAll('#contents li'); const sections = document.querySelectorAll('.card'); @@ -7436,7 +8725,781 @@

Tradeoffs

} } } - document.addEventListener('scroll', setActiveButton); setActiveButton(); + + function generate_model_card_plot() { + var model_card_plots = [] + var overall_indices = [540, 555, 570, 585] + var histories = JSON.parse("{\"0\": [\"0.15167980673960318\", \"0.14129280028530336\", \"0.15995072768185709\", \"0.1258001490759194\"], \"1\": [\"0.30952380952380953\", \"0.3939393939393939\", \"0.32653061224489793\", \"0.20689655172413793\"], \"2\": [\"0.10714285714285714\", \"0.17777777777777778\", \"0.06896551724137931\", \"0.026845637583892617\"], \"3\": [\"0.4426229508196721\", \"0.42592592592592593\", \"0.647887323943662\", \"0.3712121212121212\"], \"4\": [\"0.047619047619047616\", \"0.05\", \"0.06\", \"0.4112903225806452\"], \"5\": [\"0.1276595744680851\", \"0.023255813953488372\", \"0.020833333333333332\", \"0.06422018348623854\"], \"6\": [\"0.027777777777777776\", \"0.0\", \"0.027777777777777776\", \"0.01834862385321101\"], \"7\": [\"0.041666666666666664\", \"0.0\", \"0.09375\", \"0.05102040816326531\"], \"8\": [\"0.36363636363636365\", \"0.48148148148148145\", \"0.43902439024390244\", \"0.17708333333333334\"], \"9\": [\"0.0\", \"0.02857142857142857\", \"0.045454545454545456\", \"0.03787878787878788\"], \"10\": [\"0.06451612903225806\", \"0.07407407407407407\", \"0.05\", \"0.16822429906542055\"], \"11\": [\"0.2962962962962963\", \"0.15789473684210525\", \"0.12\", \"0.1\"], \"12\": [\"0.05263157894736842\", \"0.09375\", \"0.175\", \"0.06818181818181818\"], \"13\": [\"0.24242424242424243\", \"0.07142857142857142\", \"0.10526315789473684\", \"0.06\"], \"14\": [\"0.0\", \"0.0\", \"0.058823529411764705\", \"0.0\"], \"15\": [\"0.948161213119298\", \"0.9395606461176224\", \"0.937037604089962\", \"0.9041296306770732\"], \"16\": [\"0.9285714285714286\", \"0.9642857142857143\", \"0.8823529411764706\", \"0.9230769230769231\"], \"17\": [\"1.0\", \"1.0\", \"1.0\", \"0.8333333333333334\"], \"18\": [\"0.7777777777777778\", \"0.5714285714285714\", \"0.5833333333333334\", \"0.6521739130434783\"], \"19\": [\"0.9285714285714286\", \"0.9047619047619048\", \"1.0\", \"0.7096774193548387\"], \"20\": [\"1.0\", \"1.0\", \"0.9714285714285714\", \"1.0\"], \"21\": [\"0.9705882352941176\", \"0.96875\", \"0.9787234042553191\", \"0.8260869565217391\"], \"22\": [\"0.9347826086956522\", \"1.0\", \"0.9803921568627451\", \"0.9649122807017544\"], \"23\": [\"0.9615384615384616\", \"0.9117647058823529\", \"0.8809523809523809\", \"0.9491525423728814\"], \"24\": [\"0.967741935483871\", \"0.9615384615384616\", \"1.0\", \"0.9130434782608695\"], \"25\": [\"0.9487179487179487\", \"0.9705882352941176\", \"1.0\", \"0.9791666666666666\"], \"26\": [\"0.9767441860465116\", \"1.0\", \"1.0\", \"1.0\"], \"27\": [\"0.90625\", \"0.9310344827586207\", \"0.9302325581395349\", \"0.9253731343283582\"], \"28\": [\"0.972972972972973\", \"0.9696969696969697\", \"0.9111111111111111\", \"0.9818181818181818\"], \"29\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"30\": [\"0.61904681412795\", \"0.6113585818942961\", \"0.816754962854707\", \"0.7305053759940978\"], \"31\": [\"0.8666666666666667\", \"0.9285714285714286\", \"0.8\", \"0.8888888888888888\"], \"32\": [\"1.0\", \"1.0\", \"1.0\", \"0.8\"], \"33\": [\"0.9310344827586207\", \"0.8846153846153846\", \"0.9019607843137255\", \"0.8596491228070176\"], \"34\": [\"0.5\", \"0.5\", \"1.0\", \"0.85\"], \"35\": [\"1.0\", \"1.0\", \"0.5\", \"1.0\"], \"36\": [\"0.5\", \"0.0\", \"0.5\", \"0.2\"], \"37\": [\"0.25\", \"0.0\", \"0.75\", \"0.7142857142857143\"], \"38\": [\"0.9411764705882353\", \"0.8125\", \"0.782608695652174\", \"0.85\"], \"39\": [\"0.0\", \"0.5\", \"1.0\", \"0.7142857142857143\"], \"40\": [\"0.5\", \"0.6666666666666666\", \"1.0\", \"0.9473684210526315\"], \"41\": [\"0.8888888888888888\", \"1.0\", \"1.0\", \"1.0\"], \"42\": [\"0.4\", \"0.6\", \"0.7\", \"0.5454545454545454\"], \"43\": [\"0.8888888888888888\", \"0.6666666666666666\", \"0.5\", \"0.8571428571428571\"], \"44\": [\"0.0\", \"0.0\", \"1.0\", \"0.0\"], \"45\": [\"0.46336563851831164\", \"0.48289690046395356\", \"0.5070017410868425\", \"0.3276357598055654\"], \"46\": [\"0.4727272727272727\", \"0.574468085106383\", \"0.47619047619047616\", \"0.28125\"], \"47\": [\"0.21875\", \"0.3018867924528302\", \"0.31645569620253167\", \"0.03333333333333333\"], \"48\": [\"0.17073170731707318\", \"0.11428571428571428\", \"0.21875\", \"0.15306122448979592\"], \"49\": [\"0.3939393939393939\", \"0.3333333333333333\", \"0.4125\", \"0.23157894736842105\"], \"50\": [\"0.359375\", \"0.3\", \"0.41975308641975306\", \"0.3108108108108108\"], \"51\": [\"0.4852941176470588\", \"0.5166666666666667\", \"0.5679012345679012\", \"0.2620689655172414\"], \"52\": [\"0.6515151515151515\", \"0.5245901639344263\", \"0.6329113924050633\", \"0.3716216216216216\"], \"53\": [\"0.4716981132075472\", \"0.6888888888888889\", \"0.6166666666666667\", \"0.4148148148148148\"], \"54\": [\"0.43478260869565216\", \"0.423728813559322\", \"0.48148148148148145\", \"0.14189189189189189\"], \"55\": [\"0.5606060606060606\", \"0.5689655172413793\", \"0.5308641975308642\", \"0.34558823529411764\"], \"56\": [\"0.6885245901639344\", \"0.7241379310344828\", \"0.725\", \"0.7615894039735099\"], \"57\": [\"0.4461538461538462\", \"0.48214285714285715\", \"0.547945205479452\", \"0.4305555555555556\"], \"58\": [\"0.5901639344262295\", \"0.5517241379310345\", \"0.5466666666666666\", \"0.36486486486486486\"], \"59\": [\"0.5428571428571428\", \"0.6557377049180327\", \"0.6049382716049383\", \"0.4838709677419355\"], \"60\": [\"0.1390022332304764\", \"0.12461397321555136\", \"0.14317050475245158\", \"0.14359228947856187\"], \"61\": [\"0.27218934911242604\", \"0.22981366459627328\", \"0.29931972789115646\", \"0.24516129032258063\"], \"62\": [\"0.11578947368421053\", \"0.08994708994708994\", \"0.09142857142857143\", \"0.1206896551724138\"], \"63\": [\"0.38388625592417064\", \"0.3736842105263158\", \"0.40641711229946526\", \"0.3813559322033898\"], \"64\": [\"0.0425531914893617\", \"0.08\", \"0.06944444444444445\", \"0.13653136531365315\"], \"65\": [\"0.030303030303030304\", \"0.078125\", \"0.08870967741935484\", \"0.10380622837370242\"], \"66\": [\"0.03571428571428571\", \"0.041379310344827586\", \"0.05714285714285714\", \"0.0821917808219178\"], \"67\": [\"0.04929577464788732\", \"0.02877697841726619\", \"0.048\", \"0.05855855855855856\"], \"68\": [\"0.3969465648854962\", \"0.3492063492063492\", \"0.35\", \"0.30111524163568776\"], \"69\": [\"0.03164556962025317\", \"0.014492753623188406\", \"0.023255813953488372\", \"0.030508474576271188\"], \"70\": [\"0.06338028169014084\", \"0.06818181818181818\", \"0.1\", \"0.07228915662650602\"], \"71\": [\"0.15294117647058825\", \"0.0958904109589041\", \"0.08064516129032258\", \"0.34615384615384615\"], \"72\": [\"0.16417910447761194\", \"0.16176470588235295\", \"0.2028985507246377\", \"0.045081967213114756\"], \"73\": [\"0.2072072072072072\", \"0.13333333333333333\", \"0.17073170731707318\", \"0.08298755186721991\"], \"74\": [\"0.0\", \"0.0\", \"0.01639344262295082\", \"0.003861003861003861\"], \"75\": [\"0.9333660415310792\", \"0.9279874736119439\", \"0.9221969798271173\", \"0.9308873954815544\"], \"76\": [\"0.8160919540229885\", \"0.9066666666666666\", \"0.8369565217391305\", \"0.8571428571428571\"], \"77\": [\"1.0\", \"1.0\", \"0.953125\", \"0.9433962264150944\"], \"78\": [\"0.6666666666666666\", \"0.6956521739130435\", \"0.5961538461538461\", \"0.723404255319149\"], \"79\": [\"0.9739130434782609\", \"0.9302325581395349\", \"0.9368421052631579\", \"0.9769230769230769\"], \"80\": [\"1.0\", \"0.9907407407407407\", \"0.991304347826087\", \"1.0\"], \"81\": [\"0.9913793103448276\", \"0.967032967032967\", \"0.98989898989899\", \"0.963302752293578\"], \"82\": [\"1.0\", \"0.9690721649484536\", \"0.9736842105263158\", \"0.9832402234636871\"], \"83\": [\"0.904\", \"0.8545454545454545\", \"0.8907563025210085\", \"0.8863636363636364\"], \"84\": [\"0.9795918367346939\", \"0.9591836734693877\", \"1.0\", \"0.9716981132075472\"], \"85\": [\"0.956140350877193\", \"0.9423076923076923\", \"0.944954128440367\", \"0.9210526315789473\"], \"86\": [\"0.9941520467836257\", \"0.9877300613496932\", \"0.9887005649717514\", \"0.9067357512953368\"], \"87\": [\"0.819672131147541\", \"0.85\", \"0.8514851485148515\", \"0.9554140127388535\"], \"88\": [\"0.9655172413793104\", \"0.9482758620689655\", \"0.9568965517241379\", \"0.94375\"], \"89\": [\"1.0\", \"0.9903846153846154\", \"1.0\", \"1.0\"], \"90\": [\"0.7503805957867018\", \"0.6611691277657663\", \"0.7921130753222533\", \"0.8277562300309229\"], \"91\": [\"0.7419354838709677\", \"0.8409090909090909\", \"0.7457627118644068\", \"0.8539325842696629\"], \"92\": [\"1.0\", \"1.0\", \"0.8421052631578947\", \"0.9333333333333333\"], \"93\": [\"0.84375\", \"0.8352941176470589\", \"0.7835051546391752\", \"0.9121621621621622\"], \"94\": [\"0.6666666666666666\", \"0.6666666666666666\", \"0.625\", \"0.925\"], \"95\": [\"1.0\", \"0.9090909090909091\", \"0.9166666666666666\", \"1.0\"], \"96\": [\"0.8333333333333334\", \"0.6666666666666666\", \"0.8888888888888888\", \"0.8571428571428571\"], \"97\": [\"1.0\", \"0.5714285714285714\", \"0.6666666666666666\", \"0.8125\"], \"98\": [\"0.8125\", \"0.7333333333333333\", \"0.7636363636363637\", \"0.84375\"], \"99\": [\"0.7142857142857143\", \"0.3333333333333333\", \"1.0\", \"0.75\"], \"100\": [\"0.6428571428571429\", \"0.6\", \"0.6842105263157895\", \"0.6\"], \"101\": [\"0.9285714285714286\", \"0.7777777777777778\", \"0.7142857142857143\", \"0.8\"], \"102\": [\"0.5\", \"0.5945945945945946\", \"0.6511627906976745\", \"0.6111111111111112\"], \"103\": [\"0.8214285714285714\", \"0.7272727272727273\", \"0.8076923076923077\", \"0.6896551724137931\"], \"104\": [\"0.0\", \"0.0\", \"1.0\", \"1.0\"], \"105\": [\"0.45127331247553704\", \"0.42116439055367694\", \"0.46082969784674394\", \"0.3327267660544629\"], \"106\": [\"0.36597938144329895\", \"0.3541666666666667\", \"0.42777777777777776\", \"0.25\"], \"107\": [\"0.28205128205128205\", \"0.2146118721461187\", \"0.2772727272727273\", \"0.1404494382022472\"], \"108\": [\"0.1875\", \"0.2119205298013245\", \"0.21830985915492956\", \"0.13438735177865613\"], \"109\": [\"0.4534412955465587\", \"0.3669724770642202\", \"0.3991031390134529\", \"0.3518005540166205\"], \"110\": [\"0.49206349206349204\", \"0.47555555555555556\", \"0.5022026431718062\", \"0.3018867924528302\"], \"111\": [\"0.46\", \"0.3876651982378855\", \"0.4260869565217391\", \"0.28150134048257375\"], \"112\": [\"0.4578313253012048\", \"0.4104803493449782\", \"0.4826086956521739\", \"0.45714285714285713\"], \"113\": [\"0.5885416666666666\", \"0.5340909090909091\", \"0.5760869565217391\", \"0.3836065573770492\"], \"114\": [\"0.3855421686746988\", \"0.40869565217391307\", \"0.4661016949152542\", \"0.2647814910025707\"], \"115\": [\"0.45041322314049587\", \"0.4434389140271493\", \"0.4681818181818182\", \"0.37735849056603776\"], \"116\": [\"0.7024793388429752\", \"0.7092511013215859\", \"0.7543103448275862\", \"0.5627009646302251\"], \"117\": [\"0.4716981132075472\", \"0.4271356783919598\", \"0.4387755102040816\", \"0.391644908616188\"], \"118\": [\"0.6140350877192983\", \"0.514018691588785\", \"0.5211267605633803\", \"0.40591397849462363\"], \"119\": [\"0.40625\", \"0.43829787234042555\", \"0.4936708860759494\", \"0.355\"], \"120\": [\"0.11923455215185493\", \"0.13087699439043274\", \"0.1275230072783852\", \"0.13966226265715678\"], \"121\": [\"0.2962962962962963\", \"0.2222222222222222\", \"0.234375\", \"0.10416666666666667\"], \"122\": [\"0.01694915254237288\", \"0.07142857142857142\", \"0.06896551724137931\", \"0.12222222222222222\"], \"123\": [\"0.4098360655737705\", \"0.3389830508474576\", \"0.2459016393442623\", \"0.15053763440860216\"], \"124\": [\"0.04081632653061224\", \"0.0425531914893617\", \"0.07692307692307693\", \"0.19230769230769232\"], \"125\": [\"0.05405405405405406\", \"0.05714285714285714\", \"0.025\", \"0.0\"], \"126\": [\"0.04081632653061224\", \"0.0784313725490196\", \"0.09259259259259259\", \"0.0425531914893617\"], \"127\": [\"0.022727272727272728\", \"0.044444444444444446\", \"0.0\", \"0.10344827586206896\"], \"128\": [\"0.25\", \"0.4634146341463415\", \"0.4090909090909091\", \"0.425\"], \"129\": [\"0.021739130434782608\", \"0.046511627906976744\", \"0.018867924528301886\", \"0.012048192771084338\"], \"130\": [\"0.17073170731707318\", \"0.125\", \"0.16326530612244897\", \"0.07142857142857142\"], \"131\": [\"0.13793103448275862\", \"0.13636363636363635\", \"0.1\", \"0.3409090909090909\"], \"132\": [\"0.11363636363636363\", \"0.12244897959183673\", \"0.1836734693877551\", \"0.1016949152542373\"], \"133\": [\"0.09375\", \"0.08333333333333333\", \"0.16666666666666666\", \"0.08\"], \"134\": [\"0.0\", \"0.0\", \"0.0\", \"0.208955223880597\"], \"135\": [\"0.9388265841207017\", \"0.9136475576691024\", \"0.9344389133985408\", \"0.9467833894060748\"], \"136\": [\"0.6666666666666666\", \"1.0\", \"0.875\", \"0.9230769230769231\"], \"137\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"138\": [\"0.8\", \"0.6\", \"0.7272727272727273\", \"0.875\"], \"139\": [\"1.0\", \"0.9545454545454546\", \"0.9\", \"0.967741935483871\"], \"140\": [\"1.0\", \"0.9705882352941176\", \"1.0\", \"1.0\"], \"141\": [\"1.0\", \"1.0\", \"0.9444444444444444\", \"1.0\"], \"142\": [\"1.0\", \"0.9583333333333334\", \"1.0\", \"0.9607843137254902\"], \"143\": [\"0.9230769230769231\", \"0.7142857142857143\", \"0.9285714285714286\", \"0.7586206896551724\"], \"144\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"145\": [\"0.96\", \"0.9047619047619048\", \"0.9565217391304348\", \"0.8974358974358975\"], \"146\": [\"0.972972972972973\", \"0.9361702127659575\", \"0.9807692307692307\", \"0.8923076923076924\"], \"147\": [\"0.9090909090909091\", \"0.8\", \"0.8695652173913043\", \"0.98\"], \"148\": [\"0.9117647058823529\", \"0.9523809523809523\", \"0.9\", \"1.0\"], \"149\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"150\": [\"0.8202969649398221\", \"0.7276455026455027\", \"0.7268849206349205\", \"0.813955414020745\"], \"151\": [\"0.8\", \"1.0\", \"0.9375\", \"0.9090909090909091\"], \"152\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"153\": [\"0.9615384615384616\", \"0.8333333333333334\", \"0.8333333333333334\", \"0.875\"], \"154\": [\"1.0\", \"0.6666666666666666\", \"0.6666666666666666\", \"0.9375\"], \"155\": [\"1.0\", \"0.6666666666666666\", \"1.0\", \"0.0\"], \"156\": [\"1.0\", \"1.0\", \"0.8333333333333334\", \"1.0\"], \"157\": [\"1.0\", \"0.6666666666666666\", \"0.0\", \"0.75\"], \"158\": [\"0.8333333333333334\", \"0.7037037037037037\", \"0.9\", \"0.8292682926829268\"], \"159\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"160\": [\"0.875\", \"0.75\", \"0.8888888888888888\", \"0.5555555555555556\"], \"161\": [\"0.8\", \"0.5\", \"0.6666666666666666\", \"0.6818181818181818\"], \"162\": [\"0.7142857142857143\", \"0.6\", \"0.75\", \"0.8571428571428571\"], \"163\": [\"0.5\", \"0.8\", \"0.7\", \"1.0\"], \"164\": [\"0.0\", \"0.0\", \"0.0\", \"1.0\"], \"165\": [\"0.3331907318315955\", \"0.3450885022573568\", \"0.33442997150425285\", \"0.3311644925271136\"], \"166\": [\"0.17391304347826086\", \"0.2631578947368421\", \"0.125\", \"0.12244897959183673\"], \"167\": [\"0.1076923076923077\", \"0.2\", \"0.20588235294117646\", \"0.19387755102040816\"], \"168\": [\"0.1\", \"0.13333333333333333\", \"0.14814814814814814\", \"0.15053763440860216\"], \"169\": [\"0.265625\", \"0.3181818181818182\", \"0.2727272727272727\", \"0.3225806451612903\"], \"170\": [\"0.453125\", \"0.5\", \"0.4507042253521127\", \"0.3853211009174312\"], \"171\": [\"0.265625\", \"0.27692307692307694\", \"0.25757575757575757\", \"0.14285714285714285\"], \"172\": [\"0.3384615384615385\", \"0.3484848484848485\", \"0.2777777777777778\", \"0.48514851485148514\"], \"173\": [\"0.4444444444444444\", \"0.47619047619047616\", \"0.5\", \"0.3235294117647059\"], \"174\": [\"0.3076923076923077\", \"0.3880597014925373\", \"0.2676056338028169\", \"0.24074074074074073\"], \"175\": [\"0.41379310344827586\", \"0.3114754098360656\", \"0.3492063492063492\", \"0.35\"], \"176\": [\"0.5901639344262295\", \"0.6984126984126984\", \"0.7391304347826086\", \"0.6666666666666666\"], \"177\": [\"0.3389830508474576\", \"0.2711864406779661\", \"0.3333333333333333\", \"0.4803921568627451\"], \"178\": [\"0.5166666666666667\", \"0.3125\", \"0.43548387096774194\", \"0.3300970873786408\"], \"179\": [\"0.3484848484848485\", \"0.3333333333333333\", \"0.3194444444444444\", \"0.4421052631578947\"], \"180\": [\"0.14190445408932803\", \"0.13909998782121544\", \"0.1701947480063646\", \"0.12517363860159866\"], \"181\": [\"0.2777777777777778\", \"0.29411764705882354\", \"0.34782608695652173\", \"0.2222222222222222\"], \"182\": [\"0.2\", \"0.2\", \"0.038461538461538464\", \"0.030534351145038167\"], \"183\": [\"0.4230769230769231\", \"0.43333333333333335\", \"0.7222222222222222\", \"0.4051724137931034\"], \"184\": [\"0.0\", \"0.05\", \"0.0\", \"0.3963963963963964\"], \"185\": [\"0.1\", \"0.043478260869565216\", \"0.0\", \"0.050505050505050504\"], \"186\": [\"0.0\", \"0.0\", \"0.058823529411764705\", \"0.019417475728155338\"], \"187\": [\"0.07142857142857142\", \"0.0\", \"0.17647058823529413\", \"0.06172839506172839\"], \"188\": [\"0.3333333333333333\", \"0.5\", \"0.42105263157894735\", \"0.18292682926829268\"], \"189\": [\"0.0\", \"0.0\", \"0.0\", \"0.0423728813559322\"], \"190\": [\"0.058823529411764705\", \"0.0\", \"0.0\", \"0.1595744680851064\"], \"191\": [\"0.2222222222222222\", \"0.25\", \"0.09090909090909091\", \"0.08108108108108109\"], \"192\": [\"0.0\", \"0.17647058823529413\", \"0.23529411764705882\", \"0.05555555555555555\"], \"193\": [\"0.3\", \"0.0\", \"0.16666666666666666\", \"0.0449438202247191\"], \"194\": [\"0.0\", \"0.0\", \"0.125\", \"0.0\"], \"195\": [\"0.9340888278388279\", \"0.9755952380952381\", \"0.9621086642825772\", \"0.8973056892089453\"], \"196\": [\"0.9166666666666666\", \"1.0\", \"0.8888888888888888\", \"0.9714285714285714\"], \"197\": [\"1.0\", \"1.0\", \"1.0\", \"0.6666666666666666\"], \"198\": [\"0.5\", \"1.0\", \"0.8\", \"0.6111111111111112\"], \"199\": [\"1.0\", \"0.9166666666666666\", \"1.0\", \"0.6521739130434783\"], \"200\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"201\": [\"1.0\", \"1.0\", \"1.0\", \"0.967741935483871\"], \"202\": [\"0.9375\", \"1.0\", \"1.0\", \"0.9622641509433962\"], \"203\": [\"1.0\", \"0.9375\", \"0.9545454545454546\", \"0.9615384615384616\"], \"204\": [\"0.9230769230769231\", \"0.9333333333333333\", \"1.0\", \"0.875\"], \"205\": [\"1.0\", \"0.9375\", \"1.0\", \"0.975\"], \"206\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"207\": [\"0.8\", \"0.9333333333333333\", \"1.0\", \"0.9193548387096774\"], \"208\": [\"1.0\", \"1.0\", \"0.8260869565217391\", \"1.0\"], \"209\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"210\": [\"0.5842490842490842\", \"0.509920634920635\", \"0.6486016628873772\", \"0.773755816893833\"], \"211\": [\"0.8333333333333334\", \"1.0\", \"0.8\", \"0.9565217391304348\"], \"212\": [\"1.0\", \"1.0\", \"1.0\", \"0.8\"], \"213\": [\"0.8461538461538461\", \"1.0\", \"0.9629629629629629\", \"0.8703703703703703\"], \"214\": [\"0.0\", \"0.5\", \"0.0\", \"0.8461538461538461\"], \"215\": [\"1.0\", \"1.0\", \"0.0\", \"1.0\"], \"216\": [\"0.0\", \"0.0\", \"1.0\", \"0.6666666666666666\"], \"217\": [\"0.5\", \"0.0\", \"1.0\", \"0.7142857142857143\"], \"218\": [\"1.0\", \"0.8888888888888888\", \"0.8888888888888888\", \"0.8823529411764706\"], \"219\": [\"0.0\", \"0.0\", \"0.0\", \"0.7142857142857143\"], \"220\": [\"1.0\", \"0.0\", \"0.0\", \"0.9375\"], \"221\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"222\": [\"0.0\", \"0.75\", \"1.0\", \"0.4444444444444444\"], \"223\": [\"1.0\", \"0.0\", \"0.42857142857142855\", \"1.0\"], \"224\": [\"0.0\", \"0.0\", \"1.0\", \"0.0\"], \"225\": [\"0.4124708429098776\", \"0.4628128697461709\", \"0.5508536123022646\", \"0.3176701124993818\"], \"226\": [\"0.4583333333333333\", \"0.5555555555555556\", \"0.5161290322580645\", \"0.3063063063063063\"], \"227\": [\"0.2\", \"0.25925925925925924\", \"0.375\", \"0.015503875968992248\"], \"228\": [\"0.11764705882352941\", \"0.10526315789473684\", \"0.2857142857142857\", \"0.1375\"], \"229\": [\"0.3333333333333333\", \"0.36666666666666664\", \"0.4878048780487805\", \"0.18292682926829268\"], \"230\": [\"0.35714285714285715\", \"0.2903225806451613\", \"0.4634146341463415\", \"0.2713178294573643\"], \"231\": [\"0.5\", \"0.40625\", \"0.6\", \"0.22900763358778625\"], \"232\": [\"0.5357142857142857\", \"0.53125\", \"0.631578947368421\", \"0.4015748031496063\"], \"233\": [\"0.391304347826087\", \"0.6521739130434783\", \"0.65625\", \"0.42735042735042733\"], \"234\": [\"0.41379310344827586\", \"0.45161290322580644\", \"0.5365853658536586\", \"0.11023622047244094\"], \"235\": [\"0.4482758620689655\", \"0.4838709677419355\", \"0.5609756097560976\", \"0.3305084745762712\"], \"236\": [\"0.75\", \"0.6896551724137931\", \"0.75\", \"0.7404580152671756\"], \"237\": [\"0.2857142857142857\", \"0.5\", \"0.6486486486486487\", \"0.456\"], \"238\": [\"0.4166666666666667\", \"0.5\", \"0.5588235294117647\", \"0.34615384615384615\"], \"239\": [\"0.5666666666666667\", \"0.6875\", \"0.6410256410256411\", \"0.4925373134328358\"], \"240\": [\"0.1550310042295616\", \"0.1410894660894661\", \"0.1473947974546336\", \"0.14249189186163977\"], \"241\": [\"0.3333333333333333\", \"0.5\", \"0.3076923076923077\", \"0.11764705882352941\"], \"242\": [\"0.03225806451612903\", \"0.15\", \"0.09375\", \"0.0\"], \"243\": [\"0.45714285714285713\", \"0.4166666666666667\", \"0.5714285714285714\", \"0.125\"], \"244\": [\"0.09090909090909091\", \"0.05\", \"0.10344827586206896\", \"0.5384615384615384\"], \"245\": [\"0.14814814814814814\", \"0.0\", \"0.038461538461538464\", \"0.2\"], \"246\": [\"0.047619047619047616\", \"0.0\", \"0.0\", \"0.0\"], \"247\": [\"0.0\", \"0.0\", \"0.0\", \"0.0\"], \"248\": [\"0.391304347826087\", \"0.45454545454545453\", \"0.45454545454545453\", \"0.14285714285714285\"], \"249\": [\"0.0\", \"0.05555555555555555\", \"0.08\", \"0.0\"], \"250\": [\"0.07142857142857142\", \"0.18181818181818182\", \"0.09090909090909091\", \"0.23076923076923078\"], \"251\": [\"0.3333333333333333\", \"0.0\", \"0.14285714285714285\", \"0.3333333333333333\"], \"252\": [\"0.1111111111111111\", \"0.0\", \"0.13043478260869565\", \"0.125\"], \"253\": [\"0.15384615384615385\", \"0.16666666666666666\", \"0.05\", \"0.18181818181818182\"], \"254\": [\"0.0\", \"0.0\", \"0.0\", \"0.0\"], \"255\": [\"0.9602427077852775\", \"0.9227122157904998\", \"0.9144758138444801\", \"0.890391156462585\"], \"256\": [\"0.9375\", \"0.9230769230769231\", \"0.875\", \"0.5\"], \"257\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"258\": [\"1.0\", \"0.4\", \"0.42857142857142855\", \"0.8\"], \"259\": [\"0.8888888888888888\", \"0.8888888888888888\", \"1.0\", \"0.875\"], \"260\": [\"1.0\", \"1.0\", \"0.9375\", \"1.0\"], \"261\": [\"0.9473684210526315\", \"0.9473684210526315\", \"0.9565217391304348\", \"0.5333333333333333\"], \"262\": [\"0.9333333333333333\", \"1.0\", \"0.9629629629629629\", \"1.0\"], \"263\": [\"0.9411764705882353\", \"0.8888888888888888\", \"0.8\", \"0.8571428571428571\"], \"264\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"265\": [\"0.9230769230769231\", \"1.0\", \"1.0\", \"1.0\"], \"266\": [\"0.9545454545454546\", \"1.0\", \"1.0\", \"1.0\"], \"267\": [\"0.9545454545454546\", \"0.9285714285714286\", \"0.8421052631578947\", \"1.0\"], \"268\": [\"0.9629629629629629\", \"0.9411764705882353\", \"1.0\", \"0.9\"], \"269\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"270\": [\"0.5937641723356009\", \"0.46707657421943144\", \"0.6676870748299321\", \"0.5267857142857143\"], \"271\": [\"0.8888888888888888\", \"0.8888888888888888\", \"0.8\", \"0.5\"], \"272\": [\"1.0\", \"1.0\", \"1.0\", \"0.0\"], \"273\": [\"1.0\", \"0.7692307692307693\", \"0.8333333333333334\", \"0.6666666666666666\"], \"274\": [\"0.5\", \"0.5\", \"1.0\", \"0.875\"], \"275\": [\"1.0\", \"0.0\", \"0.5\", \"1.0\"], \"276\": [\"0.5\", \"0.0\", \"0.0\", \"0.0\"], \"277\": [\"0.0\", \"0.0\", \"0.0\", \"0.0\"], \"278\": [\"0.9\", \"0.7142857142857143\", \"0.7142857142857143\", \"0.6666666666666666\"], \"279\": [\"0.0\", \"1.0\", \"1.0\", \"0.0\"], \"280\": [\"0.3333333333333333\", \"1.0\", \"1.0\", \"1.0\"], \"281\": [\"0.8571428571428571\", \"0.0\", \"1.0\", \"1.0\"], \"282\": [\"0.6666666666666666\", \"0.0\", \"0.5\", \"1.0\"], \"283\": [\"0.6666666666666666\", \"0.6666666666666666\", \"1.0\", \"0.6666666666666666\"], \"284\": [\"0.0\", \"0.0\", \"0.0\", \"0.0\"], \"285\": [\"0.5001908065575299\", \"0.5059764788213064\", \"0.46346635120589824\", \"0.39749146622211645\"], \"286\": [\"0.4838709677419355\", \"0.6\", \"0.4375\", \"0.11764705882352941\"], \"287\": [\"0.23076923076923078\", \"0.34615384615384615\", \"0.2564102564102564\", \"0.14285714285714285\"], \"288\": [\"0.20833333333333334\", \"0.125\", \"0.16666666666666666\", \"0.2222222222222222\"], \"289\": [\"0.4444444444444444\", \"0.2962962962962963\", \"0.3333333333333333\", \"0.5384615384615384\"], \"290\": [\"0.3611111111111111\", \"0.3103448275862069\", \"0.375\", \"0.5789473684210527\"], \"291\": [\"0.47368421052631576\", \"0.6428571428571429\", \"0.5365853658536586\", \"0.5714285714285714\"], \"292\": [\"0.7368421052631579\", \"0.5172413793103449\", \"0.6341463414634146\", \"0.19047619047619047\"], \"293\": [\"0.5333333333333333\", \"0.7272727272727273\", \"0.5714285714285714\", \"0.3333333333333333\"], \"294\": [\"0.45\", \"0.39285714285714285\", \"0.425\", \"0.3333333333333333\"], \"295\": [\"0.6486486486486487\", \"0.6666666666666666\", \"0.5\", \"0.4444444444444444\"], \"296\": [\"0.6363636363636364\", \"0.7586206896551724\", \"0.7\", \"0.9\"], \"297\": [\"0.5675675675675675\", \"0.4642857142857143\", \"0.4444444444444444\", \"0.2631578947368421\"], \"298\": [\"0.7027027027027027\", \"0.6153846153846154\", \"0.5365853658536586\", \"0.5\"], \"299\": [\"0.525\", \"0.6206896551724138\", \"0.5714285714285714\", \"0.42857142857142855\"], \"300\": [\"0.1469463570917117\", \"0.13135461005054608\", \"0.15366968200659187\", \"0.1498733315595946\"], \"301\": [\"0.2391304347826087\", \"0.29523809523809524\", \"0.32051282051282054\", \"0.18681318681318682\"], \"302\": [\"0.09900990099009901\", \"0.09009009009009009\", \"0.08974358974358974\", \"0.0990990990990991\"], \"303\": [\"0.3305785123966942\", \"0.3333333333333333\", \"0.325\", \"0.2641509433962264\"], \"304\": [\"0.0547945205479452\", \"0.09411764705882353\", \"0.09375\", \"0.27835051546391754\"], \"305\": [\"0.056338028169014086\", \"0.05714285714285714\", \"0.14035087719298245\", \"0.022988505747126436\"], \"306\": [\"0.04\", \"0.06741573033707865\", \"0.07042253521126761\", \"0.1559633027522936\"], \"307\": [\"0.0375\", \"0.011235955056179775\", \"0.018867924528301886\", \"0.031578947368421054\"], \"308\": [\"0.47692307692307695\", \"0.352112676056338\", \"0.38181818181818183\", \"0.21052631578947367\"], \"309\": [\"0.022727272727272728\", \"0.025\", \"0.017241379310344827\", \"0.022222222222222223\"], \"310\": [\"0.09333333333333334\", \"0.0963855421686747\", \"0.11475409836065574\", \"0.0898876404494382\"], \"311\": [\"0.20512820512820512\", \"0.07894736842105263\", \"0.1111111111111111\", \"0.5714285714285714\"], \"312\": [\"0.1875\", \"0.18604651162790697\", \"0.265625\", \"0.06521739130434782\"], \"313\": [\"0.21428571428571427\", \"0.1518987341772152\", \"0.171875\", \"0.1\"], \"314\": [\"0.0\", \"0.0\", \"0.030303030303030304\", \"0.0\"], \"315\": [\"0.9295222170180396\", \"0.932458689086653\", \"0.9225334207275214\", \"0.9205154657992932\"], \"316\": [\"0.86\", \"0.9705882352941176\", \"0.8275862068965517\", \"0.8536585365853658\"], \"317\": [\"1.0\", \"1.0\", \"0.9655172413793104\", \"0.9523809523809523\"], \"318\": [\"0.6666666666666666\", \"0.7419354838709677\", \"0.7037037037037037\", \"0.7692307692307693\"], \"319\": [\"0.9710144927536232\", \"0.9259259259259259\", \"0.9302325581395349\", \"0.9428571428571428\"], \"320\": [\"1.0\", \"1.0\", \"0.98\", \"1.0\"], \"321\": [\"0.9850746268656716\", \"0.94\", \"0.9722222222222222\", \"0.9130434782608695\"], \"322\": [\"1.0\", \"0.96\", \"1.0\", \"0.972972972972973\"], \"323\": [\"0.8571428571428571\", \"0.8676470588235294\", \"0.8076923076923077\", \"0.9285714285714286\"], \"324\": [\"0.9814814814814815\", \"0.9491525423728814\", \"1.0\", \"0.9523809523809523\"], \"325\": [\"0.9552238805970149\", \"0.9464285714285714\", \"0.8913043478260869\", \"0.7906976744186046\"], \"326\": [\"0.9902912621359223\", \"0.9900990099009901\", \"1.0\", \"0.9518072289156626\"], \"327\": [\"0.7741935483870968\", \"0.8301886792452831\", \"0.9069767441860465\", \"0.975\"], \"328\": [\"0.9722222222222222\", \"0.95\", \"0.9302325581395349\", \"0.8846153846153846\"], \"329\": [\"1.0\", \"0.9824561403508771\", \"1.0\", \"1.0\"], \"330\": [\"0.7442568785890488\", \"0.6790118092691623\", \"0.8369942062846646\", \"0.723518392995958\"], \"331\": [\"0.7586206896551724\", \"0.96875\", \"0.8333333333333334\", \"0.7391304347826086\"], \"332\": [\"1.0\", \"1.0\", \"0.875\", \"0.9166666666666666\"], \"333\": [\"0.851063829787234\", \"0.8181818181818182\", \"0.7647058823529411\", \"0.8235294117647058\"], \"334\": [\"0.6666666666666666\", \"0.6666666666666666\", \"0.6666666666666666\", \"0.9310344827586207\"], \"335\": [\"1.0\", \"1.0\", \"0.8888888888888888\", \"1.0\"], \"336\": [\"0.75\", \"0.6666666666666666\", \"0.8333333333333334\", \"0.8947368421052632\"], \"337\": [\"1.0\", \"0.3333333333333333\", \"1.0\", \"0.75\"], \"338\": [\"0.7380952380952381\", \"0.7352941176470589\", \"0.6774193548387096\", \"0.8\"], \"339\": [\"0.6666666666666666\", \"0.4\", \"1.0\", \"0.5\"], \"340\": [\"0.7\", \"0.7272727272727273\", \"0.5833333333333334\", \"0.47058823529411764\"], \"341\": [\"0.8888888888888888\", \"0.75\", \"1.0\", \"0.875\"], \"342\": [\"0.5172413793103449\", \"0.64\", \"0.8095238095238095\", \"0.8571428571428571\"], \"343\": [\"0.8823529411764706\", \"0.8\", \"0.7857142857142857\", \"0.5714285714285714\"], \"344\": [\"0.0\", \"0.0\", \"1.0\", \"0.0\"], \"345\": [\"0.46115996499908746\", \"0.41235144012073616\", \"0.4363357131497031\", \"0.3508912706988956\"], \"346\": [\"0.3805309734513274\", \"0.308411214953271\", \"0.3116883116883117\", \"0.3211009174311927\"], \"347\": [\"0.3106060606060606\", \"0.21705426356589147\", \"0.2828282828282828\", \"0.16666666666666666\"], \"348\": [\"0.14736842105263157\", \"0.24210526315789474\", \"0.2602739726027397\", \"0.20408163265306123\"], \"349\": [\"0.49264705882352944\", \"0.3937007874015748\", \"0.40816326530612246\", \"0.32038834951456313\"], \"350\": [\"0.5144927536231884\", \"0.5111111111111111\", \"0.5\", \"0.34615384615384615\"], \"351\": [\"0.4782608695652174\", \"0.36153846153846153\", \"0.3465346534653465\", \"0.18584070796460178\"], \"352\": [\"0.4460431654676259\", \"0.35294117647058826\", \"0.5094339622641509\", \"0.28125\"], \"353\": [\"0.66\", \"0.5619047619047619\", \"0.5526315789473685\", \"0.4642857142857143\"], \"354\": [\"0.381294964028777\", \"0.417910447761194\", \"0.46226415094339623\", \"0.3125\"], \"355\": [\"0.48484848484848486\", \"0.4140625\", \"0.43157894736842106\", \"0.2956521739130435\"], \"356\": [\"0.7669172932330827\", \"0.7407407407407407\", \"0.7692307692307693\", \"0.79\"], \"357\": [\"0.4247787610619469\", \"0.38596491228070173\", \"0.45348837209302323\", \"0.312\"], \"358\": [\"0.56\", \"0.4596774193548387\", \"0.43010752688172044\", \"0.3898305084745763\"], \"359\": [\"0.4084507042253521\", \"0.4057971014492754\", \"0.3904761904761905\", \"0.5227272727272727\"], \"360\": [\"0.13222209948257632\", \"0.11045798937107018\", \"0.13261570417529836\", \"0.14053076770309197\"], \"361\": [\"0.3116883116883117\", \"0.10714285714285714\", \"0.2753623188405797\", \"0.2694063926940639\"], \"362\": [\"0.1348314606741573\", \"0.08974358974358974\", \"0.09278350515463918\", \"0.1308016877637131\"], \"363\": [\"0.45555555555555555\", \"0.4268292682926829\", \"0.4672897196261682\", \"0.4314516129032258\"], \"364\": [\"0.029411764705882353\", \"0.06153846153846154\", \"0.05\", \"0.05747126436781609\"], \"365\": [\"0.0\", \"0.10344827586206896\", \"0.04477611940298507\", \"0.13861386138613863\"], \"366\": [\"0.03076923076923077\", \"0.0\", \"0.043478260869565216\", \"0.03825136612021858\"], \"367\": [\"0.06451612903225806\", \"0.06\", \"0.06944444444444445\", \"0.07874015748031496\"], \"368\": [\"0.3181818181818182\", \"0.34545454545454546\", \"0.3230769230769231\", \"0.33678756476683935\"], \"369\": [\"0.04285714285714286\", \"0.0\", \"0.028169014084507043\", \"0.03414634146341464\"], \"370\": [\"0.029850746268656716\", \"0.02040816326530612\", \"0.08695652173913043\", \"0.0625\"], \"371\": [\"0.10869565217391304\", \"0.11428571428571428\", \"0.05714285714285714\", \"0.27672955974842767\"], \"372\": [\"0.12962962962962962\", \"0.12\", \"0.14864864864864866\", \"0.03289473684210526\"], \"373\": [\"0.1951219512195122\", \"0.0975609756097561\", \"0.1694915254237288\", \"0.07453416149068323\"], \"374\": [\"0.0\", \"0.0\", \"0.0\", \"0.00510204081632653\"], \"375\": [\"0.93865294797817\", \"0.9208623705424565\", \"0.9184367536978485\", \"0.9301487639759868\"], \"376\": [\"0.7567567567567568\", \"0.8536585365853658\", \"0.8412698412698413\", \"0.86\"], \"377\": [\"1.0\", \"1.0\", \"0.9428571428571428\", \"0.9375\"], \"378\": [\"0.6666666666666666\", \"0.6\", \"0.48\", \"0.6666666666666666\"], \"379\": [\"0.9782608695652174\", \"0.9375\", \"0.9423076923076923\", \"0.9894736842105263\"], \"380\": [\"1.0\", \"0.9743589743589743\", \"1.0\", \"1.0\"], \"381\": [\"1.0\", \"1.0\", \"1.0\", \"0.9767441860465116\"], \"382\": [\"1.0\", \"0.9787234042553191\", \"0.95\", \"0.9859154929577465\"], \"383\": [\"0.9791666666666666\", \"0.8333333333333334\", \"0.9552238805970149\", \"0.8552631578947368\"], \"384\": [\"0.9772727272727273\", \"0.9743589743589743\", \"1.0\", \"0.984375\"], \"385\": [\"0.9574468085106383\", \"0.9375\", \"0.9841269841269841\", \"0.9724770642201835\"], \"386\": [\"1.0\", \"0.9838709677419355\", \"0.979381443298969\", \"0.8727272727272727\"], \"387\": [\"0.8666666666666667\", \"0.8723404255319149\", \"0.8103448275862069\", \"0.9487179487179487\"], \"388\": [\"0.958904109589041\", \"0.9464285714285714\", \"0.9726027397260274\", \"0.9722222222222222\"], \"389\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"390\": [\"0.6877970668786996\", \"0.5342618473280495\", \"0.7163506991093199\", \"0.8431994225778257\"], \"391\": [\"0.7272727272727273\", \"0.5\", \"0.6551724137931034\", \"0.8939393939393939\"], \"392\": [\"1.0\", \"1.0\", \"0.8181818181818182\", \"0.9393939393939394\"], \"393\": [\"0.8367346938775511\", \"0.8536585365853658\", \"0.7936507936507936\", \"0.9385964912280702\"], \"394\": [\"0.6666666666666666\", \"0.6666666666666666\", \"0.5714285714285714\", \"0.9090909090909091\"], \"395\": [\"0.0\", \"0.8571428571428571\", \"1.0\", \"1.0\"], \"396\": [\"1.0\", \"0.0\", \"1.0\", \"0.7777777777777778\"], \"397\": [\"1.0\", \"0.75\", \"0.625\", \"0.8333333333333334\"], \"398\": [\"0.9545454545454546\", \"0.7307692307692307\", \"0.875\", \"0.8552631578947368\"], \"399\": [\"0.75\", \"0.0\", \"1.0\", \"0.875\"], \"400\": [\"0.5\", \"0.25\", \"0.8571428571428571\", \"0.7692307692307693\"], \"401\": [\"1.0\", \"0.8\", \"0.5\", \"0.7586206896551724\"], \"402\": [\"0.4666666666666667\", \"0.5\", \"0.5\", \"0.45454545454545453\"], \"403\": [\"0.7272727272727273\", \"0.5714285714285714\", \"0.8333333333333334\", \"0.8\"], \"404\": [\"0.0\", \"0.0\", \"0.0\", \"1.0\"], \"405\": [\"0.44004082717457116\", \"0.4317335829457151\", \"0.47855976684945184\", \"0.32161781404777523\"], \"406\": [\"0.345679012345679\", \"0.4117647058823529\", \"0.5145631067961165\", \"0.21182266009852216\"], \"407\": [\"0.24509803921568626\", \"0.2111111111111111\", \"0.2727272727272727\", \"0.1271186440677966\"], \"408\": [\"0.24615384615384617\", \"0.16071428571428573\", \"0.17391304347826086\", \"0.09032258064516129\"], \"409\": [\"0.40540540540540543\", \"0.32967032967032966\", \"0.392\", \"0.3643410852713178\"], \"410\": [\"0.4649122807017544\", \"0.4222222222222222\", \"0.5038759689922481\", \"0.27800829875518673\"], \"411\": [\"0.4375\", \"0.422680412371134\", \"0.4883720930232558\", \"0.3230769230769231\"], \"412\": [\"0.4727272727272727\", \"0.4946236559139785\", \"0.4596774193548387\", \"0.5447470817120622\"], \"413\": [\"0.5108695652173914\", \"0.49295774647887325\", \"0.5925925925925926\", \"0.33678756476683935\"], \"414\": [\"0.39090909090909093\", \"0.3958333333333333\", \"0.46923076923076923\", \"0.2413793103448276\"], \"415\": [\"0.4090909090909091\", \"0.4838709677419355\", \"0.496\", \"0.4140625\"], \"416\": [\"0.6238532110091743\", \"0.6630434782608695\", \"0.7421875\", \"0.4549763033175355\"], \"417\": [\"0.5252525252525253\", \"0.4823529411764706\", \"0.42727272727272725\", \"0.43023255813953487\"], \"418\": [\"0.6796116504854369\", \"0.5888888888888889\", \"0.5916666666666667\", \"0.41338582677165353\"], \"419\": [\"0.40350877192982454\", \"0.4845360824742268\", \"0.5757575757575758\", \"0.27238805970149255\"], \"420\": [\"0.13310939085989032\", \"0.12764355814767434\", \"0.12270129693974231\", \"0.14383479184721423\"], \"421\": [\"0.34210526315789475\", \"0.24242424242424243\", \"0.225\", \"0.21428571428571427\"], \"422\": [\"0.02702702702702703\", \"0.029411764705882353\", \"0.058823529411764705\", \"0.038461538461538464\"], \"423\": [\"0.32432432432432434\", \"0.3055555555555556\", \"0.2972972972972973\", \"0.20833333333333334\"], \"424\": [\"0.0625\", \"0.03333333333333333\", \"0.06060606060606061\", \"0.4166666666666667\"], \"425\": [\"0.08333333333333333\", \"0.05263157894736842\", \"0.0\", \"0.0\"], \"426\": [\"0.0625\", \"0.03225806451612903\", \"0.11428571428571428\", \"0.041666666666666664\"], \"427\": [\"0.03333333333333333\", \"0.037037037037037035\", \"0.0\", \"0.13043478260869565\"], \"428\": [\"0.32\", \"0.4583333333333333\", \"0.375\", \"0.16666666666666666\"], \"429\": [\"0.03333333333333333\", \"0.0\", \"0.03125\", \"0.0\"], \"430\": [\"0.14285714285714285\", \"0.1724137931034483\", \"0.2222222222222222\", \"0.0\"], \"431\": [\"0.17647058823529413\", \"0.1111111111111111\", \"0.0\", \"0.4444444444444444\"], \"432\": [\"0.1724137931034483\", \"0.1875\", \"0.125\", \"0.08\"], \"433\": [\"0.08333333333333333\", \"0.125\", \"0.20833333333333334\", \"0.2727272727272727\"], \"434\": [\"0.0\", \"0.0\", \"0.0\", \"0.0\"], \"435\": [\"0.9290293040293041\", \"0.9034037658125451\", \"0.9313895534290272\", \"nan\"], \"436\": [\"0.6666666666666666\", \"1.0\", \"1.0\", \"nan\"], \"437\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"438\": [\"0.75\", \"0.5714285714285714\", \"0.6666666666666666\", \"0.75\"], \"439\": [\"1.0\", \"1.0\", \"0.9\", \"1.0\"], \"440\": [\"1.0\", \"0.9583333333333334\", \"1.0\", \"1.0\"], \"441\": [\"1.0\", \"1.0\", \"0.875\", \"1.0\"], \"442\": [\"1.0\", \"0.9375\", \"1.0\", \"0.8\"], \"443\": [\"0.875\", \"0.6842105263157895\", \"0.9473684210526315\", \"1.0\"], \"444\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"445\": [\"0.9230769230769231\", \"0.8571428571428571\", \"0.9375\", \"1.0\"], \"446\": [\"0.9583333333333334\", \"0.9117647058823529\", \"1.0\", \"1.0\"], \"447\": [\"0.8333333333333334\", \"0.8181818181818182\", \"0.8181818181818182\", \"1.0\"], \"448\": [\"1.0\", \"0.9090909090909091\", \"0.8947368421052632\", \"1.0\"], \"449\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"450\": [\"0.8511381475667189\", \"0.639075630252101\", \"0.6036368393511251\", \"0.6845238095238095\"], \"451\": [\"0.9285714285714286\", \"1.0\", \"1.0\", \"1.0\"], \"452\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"453\": [\"0.9230769230769231\", \"0.7857142857142857\", \"0.8461538461538461\", \"0.8333333333333334\"], \"454\": [\"1.0\", \"1.0\", \"0.6666666666666666\", \"1.0\"], \"455\": [\"1.0\", \"0.5\", \"0.0\", \"0.0\"], \"456\": [\"1.0\", \"1.0\", \"0.8\", \"1.0\"], \"457\": [\"1.0\", \"0.5\", \"0.0\", \"0.75\"], \"458\": [\"0.8\", \"0.6470588235294118\", \"0.9\", \"1.0\"], \"459\": [\"1.0\", \"0.0\", \"1.0\", \"0.0\"], \"460\": [\"0.8\", \"0.7142857142857143\", \"0.8571428571428571\", \"0.0\"], \"461\": [\"0.75\", \"0.25\", \"0.0\", \"1.0\"], \"462\": [\"0.7142857142857143\", \"0.75\", \"0.6666666666666666\", \"1.0\"], \"463\": [\"1.0\", \"0.8\", \"0.7142857142857143\", \"1.0\"], \"464\": [\"0.0\", \"0.0\", \"0.0\", \"0.0\"], \"465\": [\"0.29699419261565124\", \"0.3609064517578566\", \"0.33548282375472904\", \"0.22609632431061\"], \"466\": [\"0.07407407407407407\", \"0.2857142857142857\", \"0.08823529411764706\", \"0.0\"], \"467\": [\"0.1\", \"0.21428571428571427\", \"0.21951219512195122\", \"0.07407407407407407\"], \"468\": [\"0.10714285714285714\", \"0.13793103448275862\", \"0.13333333333333333\", \"0.13636363636363635\"], \"469\": [\"0.23076923076923078\", \"0.30952380952380953\", \"0.225\", \"0.2222222222222222\"], \"470\": [\"0.4358974358974359\", \"0.5609756097560976\", \"0.5116279069767442\", \"0.6785714285714286\"], \"471\": [\"0.23076923076923078\", \"0.2857142857142857\", \"0.18421052631578946\", \"0.14814814814814814\"], \"472\": [\"0.275\", \"0.36585365853658536\", \"0.3023255813953488\", \"0.16666666666666666\"], \"473\": [\"0.45161290322580644\", \"0.5\", \"0.5454545454545454\", \"0.16666666666666666\"], \"474\": [\"0.275\", \"0.4186046511627907\", \"0.2619047619047619\", \"0.25\"], \"475\": [\"0.3333333333333333\", \"0.3333333333333333\", \"0.4166666666666667\", \"0.10714285714285714\"], \"476\": [\"0.6216216216216216\", \"0.7948717948717948\", \"0.7674418604651163\", \"0.7916666666666666\"], \"477\": [\"0.29411764705882354\", \"0.2571428571428571\", \"0.24324324324324326\", \"0.11538461538461539\"], \"478\": [\"0.4358974358974359\", \"0.2631578947368421\", \"0.4722222222222222\", \"0.2727272727272727\"], \"479\": [\"0.2926829268292683\", \"0.32558139534883723\", \"0.32558139534883723\", \"0.03571428571428571\"], \"480\": [\"0.09297161172161171\", \"0.13094288134514181\", \"0.1326188689191785\", \"0.14368282395551332\"], \"481\": [\"0.1875\", \"0.19047619047619047\", \"0.25\", \"0.058823529411764705\"], \"482\": [\"0.0\", \"0.13636363636363635\", \"0.08333333333333333\", \"0.15625\"], \"483\": [\"0.5416666666666666\", \"0.391304347826087\", \"0.16666666666666666\", \"0.13043478260869565\"], \"484\": [\"0.0\", \"0.058823529411764705\", \"0.10526315789473684\", \"0.09259259259259259\"], \"485\": [\"0.0\", \"0.0625\", \"0.05263157894736842\", \"0.0\"], \"486\": [\"0.0\", \"0.15\", \"0.05263157894736842\", \"0.04285714285714286\"], \"487\": [\"0.0\", \"0.05555555555555555\", \"0.0\", \"0.08571428571428572\"], \"488\": [\"0.13333333333333333\", \"0.47058823529411764\", \"0.45\", \"0.5357142857142857\"], \"489\": [\"0.0\", \"0.1111111111111111\", \"0.0\", \"0.016129032258064516\"], \"490\": [\"0.23076923076923078\", \"0.05263157894736842\", \"0.09090909090909091\", \"0.1111111111111111\"], \"491\": [\"0.08333333333333333\", \"0.15384615384615385\", \"0.2\", \"0.3142857142857143\"], \"492\": [\"0.0\", \"0.0\", \"0.29411764705882354\", \"0.11764705882352941\"], \"493\": [\"0.125\", \"0.0\", \"0.1111111111111111\", \"0.0\"], \"494\": [\"0.0\", \"0.0\", \"0.0\", \"0.35\"], \"495\": [\"0.9635854341736695\", \"0.9365079365079365\", \"0.9401439204070783\", \"0.9440289858837501\"], \"496\": [\"0.6666666666666666\", \"1.0\", \"0.8\", \"0.9230769230769231\"], \"497\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"498\": [\"1.0\", \"0.6666666666666666\", \"0.8\", \"0.9166666666666666\"], \"499\": [\"1.0\", \"0.8888888888888888\", \"0.9\", \"0.9629629629629629\"], \"500\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"501\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"502\": [\"1.0\", \"1.0\", \"1.0\", \"0.9782608695652174\"], \"503\": [\"1.0\", \"0.7777777777777778\", \"0.8888888888888888\", \"0.72\"], \"504\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"505\": [\"1.0\", \"1.0\", \"1.0\", \"0.8888888888888888\"], \"506\": [\"1.0\", \"1.0\", \"0.9473684210526315\", \"0.8478260869565217\"], \"507\": [\"1.0\", \"0.7777777777777778\", \"0.9166666666666666\", \"0.9787234042553191\"], \"508\": [\"0.8235294117647058\", \"1.0\", \"0.9090909090909091\", \"1.0\"], \"509\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"510\": [\"0.3392857142857143\", \"0.7285714285714285\", \"0.6707482993197279\", \"0.7186293436293436\"], \"511\": [\"0.5\", \"1.0\", \"0.8571428571428571\", \"0.8\"], \"512\": [\"0.0\", \"1.0\", \"1.0\", \"1.0\"], \"513\": [\"1.0\", \"0.9\", \"0.8\", \"0.9\"], \"514\": [\"0.0\", \"0.5\", \"0.6666666666666666\", \"0.8333333333333334\"], \"515\": [\"0.0\", \"1.0\", \"1.0\", \"0.0\"], \"516\": [\"0.0\", \"1.0\", \"1.0\", \"1.0\"], \"517\": [\"0.0\", \"1.0\", \"0.0\", \"0.75\"], \"518\": [\"1.0\", \"0.8\", \"0.9\", \"0.8108108108108109\"], \"519\": [\"0.0\", \"1.0\", \"0.0\", \"1.0\"], \"520\": [\"1.0\", \"1.0\", \"1.0\", \"0.5555555555555556\"], \"521\": [\"1.0\", \"1.0\", \"0.6666666666666666\", \"0.6111111111111112\"], \"522\": [\"0.0\", \"0.0\", \"0.8333333333333334\", \"0.8\"], \"523\": [\"0.25\", \"0.0\", \"0.6666666666666666\", \"0.0\"], \"524\": [\"0.0\", \"0.0\", \"0.0\", \"1.0\"], \"525\": [\"0.39054952103579105\", \"0.3182374690526864\", \"0.3326565455951891\", \"0.3700917774819926\"], \"526\": [\"0.3157894736842105\", \"0.22727272727272727\", \"0.18181818181818182\", \"0.15789473684210525\"], \"527\": [\"0.12\", \"0.17391304347826086\", \"0.18518518518518517\", \"0.23943661971830985\"], \"528\": [\"0.08333333333333333\", \"0.125\", \"0.16666666666666666\", \"0.15492957746478872\"], \"529\": [\"0.32\", \"0.3333333333333333\", \"0.34615384615384615\", \"0.3466666666666667\"], \"530\": [\"0.48\", \"0.4\", \"0.35714285714285715\", \"0.2839506172839506\"], \"531\": [\"0.32\", \"0.2608695652173913\", \"0.35714285714285715\", \"0.14102564102564102\"], \"532\": [\"0.44\", \"0.32\", \"0.2413793103448276\", \"0.5844155844155844\"], \"533\": [\"0.43478260869565216\", \"0.4375\", \"0.42105263157894735\", \"0.4090909090909091\"], \"534\": [\"0.36\", \"0.3333333333333333\", \"0.27586206896551724\", \"0.2375\"], \"535\": [\"0.5454545454545454\", \"0.28\", \"0.25925925925925924\", \"0.4444444444444444\"], \"536\": [\"0.5416666666666666\", \"0.5416666666666666\", \"0.6923076923076923\", \"0.6190476190476191\"], \"537\": [\"0.4\", \"0.2916666666666667\", \"0.4782608695652174\", \"0.6052631578947368\"], \"538\": [\"0.6666666666666666\", \"0.38461538461538464\", \"0.38461538461538464\", \"0.345679012345679\"], \"539\": [\"0.44\", \"0.34615384615384615\", \"0.3103448275862069\", \"0.6119402985074627\"], \"540\": [\"0.14173370901378063\", \"0.13031525043854597\", \"0.14351981400010655\", \"0.141466821116307\"], \"541\": [\"0.27413127413127414\", \"0.23387096774193547\", \"0.2824427480916031\", \"0.2127659574468085\"], \"542\": [\"0.10197368421052631\", \"0.10774410774410774\", \"0.09764309764309764\", \"0.09931506849315068\"], \"543\": [\"0.41369047619047616\", \"0.4012738853503185\", \"0.4376899696048632\", \"0.3431542461005199\"], \"544\": [\"0.048034934497816595\", \"0.08677685950413223\", \"0.0728744939271255\", \"0.21822033898305085\"], \"545\": [\"0.0547945205479452\", \"0.07075471698113207\", \"0.05909090909090909\", \"0.07956989247311828\"], \"546\": [\"0.039647577092511016\", \"0.049107142857142856\", \"0.0635593220338983\", \"0.06097560975609756\"], \"547\": [\"0.043478260869565216\", \"0.03333333333333333\", \"0.04854368932038835\", \"0.06382978723404255\"], \"548\": [\"0.3755868544600939\", \"0.3711340206185567\", \"0.36633663366336633\", \"0.2979683972911964\"], \"549\": [\"0.020833333333333332\", \"0.026785714285714284\", \"0.03418803418803419\", \"0.027559055118110236\"], \"550\": [\"0.09259259259259259\", \"0.07692307692307693\", \"0.10909090909090909\", \"0.09669811320754718\"], \"551\": [\"0.16428571428571428\", \"0.11504424778761062\", \"0.08928571428571429\", \"0.30689655172413793\"], \"552\": [\"0.13488372093023257\", \"0.14285714285714285\", \"0.17647058823529413\", \"0.05897435897435897\"], \"553\": [\"0.22033898305084745\", \"0.10880829015544041\", \"0.15196078431372548\", \"0.07729468599033816\"], \"554\": [\"0.0\", \"0.0\", \"0.020100502512562814\", \"0.03731343283582089\"], \"555\": [\"0.9365988342313647\", \"0.9291284563353369\", \"0.929652834298313\", \"0.9295580959292421\"], \"556\": [\"0.851063829787234\", \"0.9259259259259259\", \"0.8590604026845637\", \"0.8819444444444444\"], \"557\": [\"0.9895833333333334\", \"0.9883720930232558\", \"0.9736842105263158\", \"0.935064935064935\"], \"558\": [\"0.703125\", \"0.6521739130434783\", \"0.6219512195121951\", \"0.7261904761904762\"], \"559\": [\"0.9473684210526315\", \"0.9361702127659575\", \"0.9512195121951219\", \"0.9312169312169312\"], \"560\": [\"0.988950276243094\", \"0.9824561403508771\", \"0.9895287958115183\", \"1.0\"], \"561\": [\"0.9826589595375722\", \"0.9559748427672956\", \"0.9771428571428571\", \"0.9289940828402367\"], \"562\": [\"0.9844559585492227\", \"0.976878612716763\", \"0.9804878048780488\", \"0.9789473684210527\"], \"563\": [\"0.9144385026737968\", \"0.8677248677248677\", \"0.9043062200956937\", \"0.8853211009174312\"], \"564\": [\"0.98125\", \"0.9685534591194969\", \"0.9887005649717514\", \"0.9673202614379085\"], \"565\": [\"0.9565217391304348\", \"0.9428571428571428\", \"0.9581151832460733\", \"0.9282700421940928\"], \"566\": [\"0.9884615384615385\", \"0.9777777777777777\", \"0.9899665551839465\", \"0.9353099730458221\"], \"567\": [\"0.8648648648648649\", \"0.8805031446540881\", \"0.8789473684210526\", \"0.955719557195572\"], \"568\": [\"0.9596412556053812\", \"0.9578947368421052\", \"0.9420289855072463\", \"0.9595141700404858\"], \"569\": [\"1.0\", \"0.994535519125683\", \"1.0\", \"1.0\"], \"570\": [\"0.7095821637351534\", \"0.6701680619138815\", \"0.7876582550825294\", \"0.826863016443639\"], \"571\": [\"0.7717391304347826\", \"0.8529411764705882\", \"0.7789473684210526\", \"0.8661417322834646\"], \"572\": [\"0.96875\", \"0.9696969696969697\", \"0.90625\", \"0.9206349206349206\"], \"573\": [\"0.879746835443038\", \"0.84\", \"0.8228571428571428\", \"0.8959276018099548\"], \"574\": [\"0.55\", \"0.7\", \"0.6923076923076923\", \"0.8879310344827587\"], \"575\": [\"0.8571428571428571\", \"0.8333333333333334\", \"0.8666666666666667\", \"1.0\"], \"576\": [\"0.75\", \"0.6111111111111112\", \"0.7894736842105263\", \"0.7142857142857143\"], \"577\": [\"0.75\", \"0.6363636363636364\", \"0.7142857142857143\", \"0.8\"], \"578\": [\"0.8333333333333334\", \"0.7422680412371134\", \"0.7872340425531915\", \"0.8407643312101911\"], \"579\": [\"0.625\", \"0.5454545454545454\", \"0.8\", \"0.7368421052631579\"], \"580\": [\"0.7142857142857143\", \"0.6153846153846154\", \"0.75\", \"0.7068965517241379\"], \"581\": [\"0.8846153846153846\", \"0.6842105263157895\", \"0.7692307692307693\", \"0.7876106194690266\"], \"582\": [\"0.5370370370370371\", \"0.6274509803921569\", \"0.6290322580645161\", \"0.6571428571428571\"], \"583\": [\"0.8125\", \"0.7241379310344828\", \"0.7209302325581395\", \"0.7619047619047619\"], \"584\": [\"0.0\", \"0.0\", \"1.0\", \"1.0\"], \"585\": [\"0.45019792413476545\", \"0.43749158332902266\", \"0.4662505547608729\", \"0.331339758461629\"], \"586\": [\"0.38961038961038963\", \"0.3968253968253968\", \"0.4050632911392405\", \"0.23782771535580524\"], \"587\": [\"0.25815217391304346\", \"0.24285714285714285\", \"0.2928759894459103\", \"0.12040133779264214\"], \"588\": [\"0.1859504132231405\", \"0.19313304721030042\", \"0.21610169491525424\", \"0.13863636363636364\"], \"589\": [\"0.4263157894736842\", \"0.37393767705382436\", \"0.4051948051948052\", \"0.3229357798165138\"], \"590\": [\"0.4637305699481865\", \"0.4602739726027397\", \"0.4772727272727273\", \"0.3141025641025641\"], \"591\": [\"0.4381443298969072\", \"0.41643835616438357\", \"0.4362244897959184\", \"0.25363489499192243\"], \"592\": [\"0.4896907216494845\", \"0.4543010752688172\", \"0.5062972292191436\", \"0.4421553090332805\"], \"593\": [\"0.5625\", \"0.5734265734265734\", \"0.5962145110410094\", \"0.38293650793650796\"], \"594\": [\"0.4005102040816326\", \"0.41397849462365593\", \"0.43640897755610975\", \"0.23052959501557632\"], \"595\": [\"0.4731182795698925\", \"0.46218487394957986\", \"0.48284960422163586\", \"0.3648424543946932\"], \"596\": [\"0.6871657754010695\", \"0.7252747252747253\", \"0.7437185929648241\", \"0.6332116788321168\"], \"597\": [\"0.4624277456647399\", \"0.42168674698795183\", \"0.4785100286532951\", \"0.41373801916932906\"], \"598\": [\"0.6079545454545454\", \"0.5141242937853108\", \"0.529891304347826\", \"0.38287560581583197\"], \"599\": [\"0.4575\", \"0.47643979057591623\", \"0.5208845208845209\", \"0.40092879256965946\"], \"600\": [\"0.1476509761123425\", \"0.1346574748651364\", \"0.14807438235896836\", \"0.1413716383184272\"], \"601\": [\"0.2671232876712329\", \"0.2611464968152866\", \"0.2857142857142857\", \"0.2073732718894009\"], \"602\": [\"0.10303030303030303\", \"0.10344827586206896\", \"0.08783783783783784\", \"0.06343283582089553\"], \"603\": [\"0.3548387096774194\", \"0.3743016759776536\", \"0.41916167664670656\", \"0.32793522267206476\"], \"604\": [\"0.05555555555555555\", \"0.08088235294117647\", \"0.072\", \"0.34913793103448276\"], \"605\": [\"0.06666666666666667\", \"0.06896551724137931\", \"0.08108108108108109\", \"0.03553299492385787\"], \"606\": [\"0.047619047619047616\", \"0.05714285714285714\", \"0.07575757575757576\", \"0.0847457627118644\"], \"607\": [\"0.040983606557377046\", \"0.023622047244094488\", \"0.047619047619047616\", \"0.05527638190954774\"], \"608\": [\"0.415929203539823\", \"0.3805309734513274\", \"0.3627450980392157\", \"0.19230769230769232\"], \"609\": [\"0.014705882352941176\", \"0.0234375\", \"0.03305785123966942\", \"0.03056768558951965\"], \"610\": [\"0.11382113821138211\", \"0.09230769230769231\", \"0.12173913043478261\", \"0.11057692307692307\"], \"611\": [\"0.18840579710144928\", \"0.11290322580645161\", \"0.07407407407407407\", \"0.3645833333333333\"], \"612\": [\"0.15267175572519084\", \"0.18840579710144928\", \"0.20689655172413793\", \"0.06349206349206349\"], \"613\": [\"0.2457627118644068\", \"0.11811023622047244\", \"0.16964285714285715\", \"0.09424083769633508\"], \"614\": [\"0.0\", \"0.0\", \"0.03571428571428571\", \"0.0\"], \"615\": [\"0.9342102989849421\", \"0.9334210036254339\", \"0.9345687246395652\", \"0.9209422736564626\"], \"616\": [\"0.88\", \"0.9545454545454546\", \"0.8769230769230769\", \"0.9102564102564102\"], \"617\": [\"0.9821428571428571\", \"1.0\", \"0.984375\", \"0.8888888888888888\"], \"618\": [\"0.6857142857142857\", \"0.7045454545454546\", \"0.7111111111111111\", \"0.7083333333333334\"], \"619\": [\"0.9578947368421052\", \"0.9425287356321839\", \"0.9425287356321839\", \"0.8412698412698413\"], \"620\": [\"1.0\", \"0.9906542056074766\", \"0.9900990099009901\", \"1.0\"], \"621\": [\"0.9894736842105263\", \"0.963855421686747\", \"0.975\", \"0.9491525423728814\"], \"622\": [\"0.98989898989899\", \"0.96875\", \"1.0\", \"0.9583333333333334\"], \"623\": [\"0.8796296296296297\", \"0.8727272727272727\", \"0.8818181818181818\", \"0.9469026548672567\"], \"624\": [\"0.9764705882352941\", \"0.9578947368421052\", \"0.978021978021978\", \"0.9393939393939394\"], \"625\": [\"0.9591836734693877\", \"0.9247311827956989\", \"0.9278350515463918\", \"0.8850574712643678\"], \"626\": [\"0.9868421052631579\", \"0.968944099378882\", \"1.0\", \"0.9798994974874372\"], \"627\": [\"0.8111111111111111\", \"0.8705882352941177\", \"0.90625\", \"0.9433962264150944\"], \"628\": [\"0.9805825242718447\", \"0.9583333333333334\", \"0.91\", \"0.9423076923076923\"], \"629\": [\"1.0\", \"0.9897959183673469\", \"1.0\", \"1.0\"], \"630\": [\"0.7389092369795136\", \"0.6759304185056064\", \"0.8190937777082355\", \"0.7544370763705553\"], \"631\": [\"0.8125\", \"0.9318181818181818\", \"0.84\", \"0.8653846153846154\"], \"632\": [\"0.9444444444444444\", \"1.0\", \"0.9285714285714286\", \"0.85\"], \"633\": [\"0.8571428571428571\", \"0.8375\", \"0.8433734939759037\", \"0.8526315789473684\"], \"634\": [\"0.6363636363636364\", \"0.6875\", \"0.6428571428571429\", \"0.8901098901098901\"], \"635\": [\"1.0\", \"0.8888888888888888\", \"0.9\", \"1.0\"], \"636\": [\"0.8571428571428571\", \"0.7272727272727273\", \"0.8333333333333334\", \"0.8695652173913043\"], \"637\": [\"0.8333333333333334\", \"0.5\", \"1.0\", \"0.7333333333333333\"], \"638\": [\"0.7833333333333333\", \"0.7543859649122807\", \"0.74\", \"0.8536585365853658\"], \"639\": [\"0.5\", \"0.42857142857142855\", \"0.6666666666666666\", \"0.6363636363636364\"], \"640\": [\"0.7777777777777778\", \"0.631578947368421\", \"0.6666666666666666\", \"0.696969696969697\"], \"641\": [\"0.8666666666666667\", \"0.5833333333333334\", \"1.0\", \"0.8974358974358975\"], \"642\": [\"0.5405405405405406\", \"0.7027027027027027\", \"0.7272727272727273\", \"0.6666666666666666\"], \"643\": [\"0.9354838709677419\", \"0.7894736842105263\", \"0.6785714285714286\", \"0.75\"], \"644\": [\"0.0\", \"0.0\", \"1.0\", \"0.0\"], \"645\": [\"0.440446459150375\", \"0.42510261878864913\", \"0.46122761607505225\", \"0.32615800612559154\"], \"646\": [\"0.3815028901734104\", \"0.35195530726256985\", \"0.35185185185185186\", \"0.29218106995884774\"], \"647\": [\"0.270935960591133\", \"0.23902439024390243\", \"0.3181818181818182\", \"0.08727272727272728\"], \"648\": [\"0.16666666666666666\", \"0.21678321678321677\", \"0.24806201550387597\", \"0.17\"], \"649\": [\"0.43333333333333335\", \"0.3961352657004831\", \"0.41414141414141414\", \"0.25980392156862747\"], \"650\": [\"0.47417840375586856\", \"0.4953271028037383\", \"0.49504950495049505\", \"0.3402777777777778\"], \"651\": [\"0.4392523364485981\", \"0.37735849056603776\", \"0.39\", \"0.20588235294117646\"], \"652\": [\"0.4558139534883721\", \"0.42857142857142855\", \"0.5169082125603864\", \"0.32857142857142857\"], \"653\": [\"0.5900621118012422\", \"0.5783132530120482\", \"0.5987654320987654\", \"0.421259842519685\"], \"654\": [\"0.3824884792626728\", \"0.4212962962962963\", \"0.4320388349514563\", \"0.21830985915492956\"], \"655\": [\"0.4630541871921182\", \"0.4215686274509804\", \"0.4712041884816754\", \"0.29389312977099236\"], \"656\": [\"0.7281553398058253\", \"0.7393364928909952\", \"0.7596153846153846\", \"0.76171875\"], \"657\": [\"0.3967391304347826\", \"0.3978494623655914\", \"0.4860335195530726\", \"0.36101083032490977\"], \"658\": [\"0.531578947368421\", \"0.45098039215686275\", \"0.4945652173913043\", \"0.36162361623616235\"], \"659\": [\"0.45248868778280543\", \"0.4369369369369369\", \"0.4807692307692308\", \"0.46440677966101696\"], \"660\": [\"0.1333867466706706\", \"0.12197964588582617\", \"0.13770426307812497\", \"0.13960555433407368\"], \"661\": [\"0.2831858407079646\", \"0.18681318681318682\", \"0.2782608695652174\", \"0.21666666666666667\"], \"662\": [\"0.10071942446043165\", \"0.11382113821138211\", \"0.10738255033557047\", \"0.12974683544303797\"], \"663\": [\"0.4866666666666667\", \"0.43703703703703706\", \"0.4567901234567901\", \"0.35454545454545455\"], \"664\": [\"0.038834951456310676\", \"0.09433962264150944\", \"0.07377049180327869\", \"0.09166666666666666\"], \"665\": [\"0.04040404040404041\", \"0.07291666666666667\", \"0.03669724770642202\", \"0.11194029850746269\"], \"666\": [\"0.0297029702970297\", \"0.03571428571428571\", \"0.04807692307692308\", \"0.0390625\"], \"667\": [\"0.047058823529411764\", \"0.04819277108433735\", \"0.04950495049504951\", \"0.07344632768361582\"], \"668\": [\"0.33\", \"0.35802469135802467\", \"0.37\", \"0.3716475095785441\"], \"669\": [\"0.028846153846153848\", \"0.03125\", \"0.035398230088495575\", \"0.025089605734767026\"], \"670\": [\"0.06451612903225806\", \"0.05128205128205128\", \"0.09523809523809523\", \"0.08333333333333333\"], \"671\": [\"0.14084507042253522\", \"0.11764705882352941\", \"0.10344827586206896\", \"0.27835051546391754\"], \"672\": [\"0.10714285714285714\", \"0.06976744186046512\", \"0.14285714285714285\", \"0.05472636815920398\"], \"673\": [\"0.1694915254237288\", \"0.09090909090909091\", \"0.13043478260869565\", \"0.06278026905829596\"], \"674\": [\"0.0\", \"0.0\", \"0.0\", \"0.06147540983606557\"], \"675\": [\"0.9396421350323848\", \"0.9220924677068109\", \"0.9233724987753907\", \"0.9301819355485296\"], \"676\": [\"0.8181818181818182\", \"0.8985507246376812\", \"0.8452380952380952\", \"0.8484848484848485\"], \"677\": [\"1.0\", \"0.972972972972973\", \"0.96\", \"0.96\"], \"678\": [\"0.7241379310344828\", \"0.56\", \"0.5135135135135135\", \"0.75\"], \"679\": [\"0.9342105263157895\", \"0.9259259259259259\", \"0.961038961038961\", \"0.9761904761904762\"], \"680\": [\"0.975\", \"0.96875\", \"0.9888888888888889\", \"1.0\"], \"681\": [\"0.9743589743589743\", \"0.9473684210526315\", \"0.9789473684210527\", \"0.9181818181818182\"], \"682\": [\"0.9787234042553191\", \"0.987012987012987\", \"0.9591836734693877\", \"0.9894179894179894\"], \"683\": [\"0.9620253164556962\", \"0.8607594936708861\", \"0.9292929292929293\", \"0.819047619047619\"], \"684\": [\"0.9866666666666667\", \"0.984375\", \"1.0\", \"0.9885057471264368\"], \"685\": [\"0.9534883720930233\", \"0.9634146341463414\", \"0.9893617021276596\", \"0.9533333333333334\"], \"686\": [\"0.9907407407407407\", \"0.9908256880733946\", \"0.9787234042553191\", \"0.8837209302325582\"], \"687\": [\"0.9157894736842105\", \"0.8918918918918919\", \"0.851063829787234\", \"0.9636363636363636\"], \"688\": [\"0.9416666666666667\", \"0.9574468085106383\", \"0.9719626168224299\", \"0.972027972027972\"], \"689\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"690\": [\"0.6642635505380603\", \"0.6526643990929705\", \"0.7112926529932314\", \"0.8291058679328652\"], \"691\": [\"0.7272727272727273\", \"0.7083333333333334\", \"0.7111111111111111\", \"0.8666666666666667\"], \"692\": [\"1.0\", \"0.9333333333333333\", \"0.8888888888888888\", \"0.9534883720930233\"], \"693\": [\"0.9012345679012346\", \"0.8428571428571429\", \"0.8043478260869565\", \"0.9285714285714286\"], \"694\": [\"0.4444444444444444\", \"0.7142857142857143\", \"0.75\", \"0.88\"], \"695\": [\"0.6666666666666666\", \"0.7777777777777778\", \"0.8\", \"1.0\"], \"696\": [\"0.6\", \"0.42857142857142855\", \"0.7142857142857143\", \"0.5263157894736842\"], \"697\": [\"0.6666666666666666\", \"0.8\", \"0.5555555555555556\", \"0.8666666666666667\"], \"698\": [\"0.9166666666666666\", \"0.725\", \"0.8409090909090909\", \"0.8362068965517241\"], \"699\": [\"0.75\", \"0.75\", \"1.0\", \"0.875\"], \"700\": [\"0.6\", \"0.5714285714285714\", \"0.9090909090909091\", \"0.72\"], \"701\": [\"0.9090909090909091\", \"0.8571428571428571\", \"0.6666666666666666\", \"0.7297297297297297\"], \"702\": [\"0.5294117647058824\", \"0.42857142857142855\", \"0.5172413793103449\", \"0.6470588235294118\"], \"703\": [\"0.5882352941176471\", \"0.6\", \"0.8\", \"0.7777777777777778\"], \"704\": [\"0.0\", \"0.0\", \"0.0\", \"1.0\"], \"705\": [\"0.462035012368655\", \"0.4535518716910922\", \"0.4708278174364068\", \"0.33260458878166077\"], \"706\": [\"0.4\", \"0.45588235294117646\", \"0.461038961038961\", \"0.19243986254295534\"], \"707\": [\"0.24242424242424243\", \"0.2482758620689655\", \"0.26519337016574585\", \"0.14860681114551083\"], \"708\": [\"0.21428571428571427\", \"0.15555555555555556\", \"0.17757009345794392\", \"0.1125\"], \"709\": [\"0.4176470588235294\", \"0.3424657534246575\", \"0.39572192513368987\", \"0.36070381231671556\"], \"710\": [\"0.4508670520231214\", \"0.4105960264900662\", \"0.4587628865979381\", \"0.2916666666666667\"], \"711\": [\"0.4367816091954023\", \"0.47058823529411764\", \"0.484375\", \"0.2910662824207493\"], \"712\": [\"0.5317919075144508\", \"0.49032258064516127\", \"0.49473684210526314\", \"0.5327635327635327\"], \"713\": [\"0.5314685314685315\", \"0.5666666666666667\", \"0.5935483870967742\", \"0.344\"], \"714\": [\"0.4228571428571429\", \"0.40384615384615385\", \"0.441025641025641\", \"0.24022346368715083\"], \"715\": [\"0.48520710059171596\", \"0.5163398692810458\", \"0.4946808510638298\", \"0.41935483870967744\"], \"716\": [\"0.6369047619047619\", \"0.7058823529411765\", \"0.7263157894736842\", \"0.5205479452054794\"], \"717\": [\"0.5370370370370371\", \"0.4520547945205479\", \"0.47058823529411764\", \"0.45558739255014324\"], \"718\": [\"0.6975308641975309\", \"0.6\", \"0.5652173913043478\", \"0.3994252873563218\"], \"719\": [\"0.46368715083798884\", \"0.53125\", \"0.5628140703517588\", \"0.3475783475783476\"]}"); + var thresholds = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\", \"19\": \"0.7\", \"20\": \"0.7\", \"21\": \"0.7\", \"22\": \"0.7\", \"23\": \"0.7\", \"24\": \"0.7\", \"25\": \"0.7\", \"26\": \"0.7\", \"27\": \"0.7\", \"28\": \"0.7\", \"29\": \"0.7\", \"30\": \"0.7\", \"31\": \"0.7\", \"32\": \"0.7\", \"33\": \"0.7\", \"34\": \"0.7\", \"35\": \"0.7\", \"36\": \"0.7\", \"37\": \"0.7\", \"38\": \"0.7\", \"39\": \"0.7\", \"40\": \"0.7\", \"41\": \"0.7\", \"42\": \"0.7\", \"43\": \"0.7\", \"44\": \"0.7\", \"45\": \"0.7\", \"46\": \"0.7\", \"47\": \"0.7\", \"48\": \"0.7\", \"49\": \"0.7\", \"50\": \"0.7\", \"51\": \"0.7\", \"52\": \"0.7\", \"53\": \"0.7\", \"54\": \"0.7\", \"55\": \"0.7\", \"56\": \"0.7\", \"57\": \"0.7\", \"58\": \"0.7\", \"59\": \"0.7\", \"60\": \"0.7\", \"61\": \"0.7\", \"62\": \"0.7\", \"63\": \"0.7\", \"64\": \"0.7\", \"65\": \"0.7\", \"66\": \"0.7\", \"67\": \"0.7\", \"68\": \"0.7\", \"69\": \"0.7\", \"70\": \"0.7\", \"71\": \"0.7\", \"72\": \"0.7\", \"73\": \"0.7\", \"74\": \"0.7\", \"75\": \"0.7\", \"76\": \"0.7\", \"77\": \"0.7\", \"78\": \"0.7\", \"79\": \"0.7\", \"80\": \"0.7\", \"81\": \"0.7\", \"82\": \"0.7\", \"83\": \"0.7\", \"84\": \"0.7\", \"85\": \"0.7\", \"86\": \"0.7\", \"87\": \"0.7\", \"88\": \"0.7\", \"89\": \"0.7\", \"90\": \"0.7\", \"91\": \"0.7\", \"92\": \"0.7\", \"93\": \"0.7\", \"94\": \"0.7\", \"95\": \"0.7\", \"96\": \"0.7\", \"97\": \"0.7\", \"98\": \"0.7\", \"99\": \"0.7\", \"100\": \"0.7\", \"101\": \"0.7\", \"102\": \"0.7\", \"103\": \"0.7\", \"104\": \"0.7\", \"105\": \"0.7\", \"106\": \"0.7\", \"107\": \"0.7\", \"108\": \"0.7\", \"109\": \"0.7\", \"110\": \"0.7\", \"111\": \"0.7\", \"112\": \"0.7\", \"113\": \"0.7\", \"114\": \"0.7\", \"115\": \"0.7\", \"116\": \"0.7\", \"117\": \"0.7\", \"118\": \"0.7\", \"119\": \"0.7\", \"120\": \"0.7\", \"121\": \"0.7\", \"122\": \"0.7\", \"123\": \"0.7\", \"124\": \"0.7\", \"125\": \"0.7\", \"126\": \"0.7\", \"127\": \"0.7\", \"128\": \"0.7\", \"129\": \"0.7\", \"130\": \"0.7\", \"131\": \"0.7\", \"132\": \"0.7\", \"133\": \"0.7\", \"134\": \"0.7\", \"135\": \"0.7\", \"136\": \"0.7\", \"137\": \"0.7\", \"138\": \"0.7\", \"139\": \"0.7\", \"140\": \"0.7\", \"141\": \"0.7\", \"142\": \"0.7\", \"143\": \"0.7\", \"144\": \"0.7\", \"145\": \"0.7\", \"146\": \"0.7\", \"147\": \"0.7\", \"148\": \"0.7\", \"149\": \"0.7\", \"150\": \"0.7\", \"151\": \"0.7\", \"152\": \"0.7\", \"153\": \"0.7\", \"154\": \"0.7\", \"155\": \"0.7\", \"156\": \"0.7\", \"157\": \"0.7\", \"158\": \"0.7\", \"159\": \"0.7\", \"160\": \"0.7\", \"161\": \"0.7\", \"162\": \"0.7\", \"163\": \"0.7\", \"164\": \"0.7\", \"165\": \"0.7\", \"166\": \"0.7\", \"167\": \"0.7\", \"168\": \"0.7\", \"169\": \"0.7\", \"170\": \"0.7\", \"171\": \"0.7\", \"172\": \"0.7\", \"173\": \"0.7\", \"174\": \"0.7\", \"175\": \"0.7\", \"176\": \"0.7\", \"177\": \"0.7\", \"178\": \"0.7\", \"179\": \"0.7\", \"180\": \"0.7\", \"181\": \"0.7\", \"182\": \"0.7\", \"183\": \"0.7\", \"184\": \"0.7\", \"185\": \"0.7\", \"186\": \"0.7\", \"187\": \"0.7\", \"188\": \"0.7\", \"189\": \"0.7\", \"190\": \"0.7\", \"191\": \"0.7\", \"192\": \"0.7\", \"193\": \"0.7\", \"194\": \"0.7\", \"195\": \"0.7\", \"196\": \"0.7\", \"197\": \"0.7\", \"198\": \"0.7\", \"199\": \"0.7\", \"200\": \"0.7\", \"201\": \"0.7\", \"202\": \"0.7\", \"203\": \"0.7\", \"204\": \"0.7\", \"205\": \"0.7\", \"206\": \"0.7\", \"207\": \"0.7\", \"208\": \"0.7\", \"209\": \"0.7\", \"210\": \"0.7\", \"211\": \"0.7\", \"212\": \"0.7\", \"213\": \"0.7\", \"214\": \"0.7\", \"215\": \"0.7\", \"216\": \"0.7\", \"217\": \"0.7\", \"218\": \"0.7\", \"219\": \"0.7\", \"220\": \"0.7\", \"221\": \"0.7\", \"222\": \"0.7\", \"223\": \"0.7\", \"224\": \"0.7\", \"225\": \"0.7\", \"226\": \"0.7\", \"227\": \"0.7\", \"228\": \"0.7\", \"229\": \"0.7\", \"230\": \"0.7\", \"231\": \"0.7\", \"232\": \"0.7\", \"233\": \"0.7\", \"234\": \"0.7\", \"235\": \"0.7\", \"236\": \"0.7\", \"237\": \"0.7\", \"238\": \"0.7\", \"239\": \"0.7\", \"240\": \"0.7\", \"241\": \"0.7\", \"242\": \"0.7\", \"243\": \"0.7\", \"244\": \"0.7\", \"245\": \"0.7\", \"246\": \"0.7\", \"247\": \"0.7\", \"248\": \"0.7\", \"249\": \"0.7\", \"250\": \"0.7\", \"251\": \"0.7\", \"252\": \"0.7\", \"253\": \"0.7\", \"254\": \"0.7\", \"255\": \"0.7\", \"256\": \"0.7\", \"257\": \"0.7\", \"258\": \"0.7\", \"259\": \"0.7\", \"260\": \"0.7\", \"261\": \"0.7\", \"262\": \"0.7\", \"263\": \"0.7\", \"264\": \"0.7\", \"265\": \"0.7\", \"266\": \"0.7\", \"267\": \"0.7\", \"268\": \"0.7\", \"269\": \"0.7\", \"270\": \"0.7\", \"271\": \"0.7\", \"272\": \"0.7\", \"273\": \"0.7\", \"274\": \"0.7\", \"275\": \"0.7\", \"276\": \"0.7\", \"277\": \"0.7\", \"278\": \"0.7\", \"279\": \"0.7\", \"280\": \"0.7\", \"281\": \"0.7\", \"282\": \"0.7\", \"283\": \"0.7\", \"284\": \"0.7\", \"285\": \"0.7\", \"286\": \"0.7\", \"287\": \"0.7\", \"288\": \"0.7\", \"289\": \"0.7\", \"290\": \"0.7\", \"291\": \"0.7\", \"292\": \"0.7\", \"293\": \"0.7\", \"294\": \"0.7\", \"295\": \"0.7\", \"296\": \"0.7\", \"297\": \"0.7\", \"298\": \"0.7\", \"299\": \"0.7\", \"300\": \"0.7\", \"301\": \"0.7\", \"302\": \"0.7\", \"303\": \"0.7\", \"304\": \"0.7\", \"305\": \"0.7\", \"306\": \"0.7\", \"307\": \"0.7\", \"308\": \"0.7\", \"309\": \"0.7\", \"310\": \"0.7\", \"311\": \"0.7\", \"312\": \"0.7\", \"313\": \"0.7\", \"314\": \"0.7\", \"315\": \"0.7\", \"316\": \"0.7\", \"317\": \"0.7\", \"318\": \"0.7\", \"319\": \"0.7\", \"320\": \"0.7\", \"321\": \"0.7\", \"322\": \"0.7\", \"323\": \"0.7\", \"324\": \"0.7\", \"325\": \"0.7\", \"326\": \"0.7\", \"327\": \"0.7\", \"328\": \"0.7\", \"329\": \"0.7\", \"330\": \"0.7\", \"331\": \"0.7\", \"332\": \"0.7\", \"333\": \"0.7\", \"334\": \"0.7\", \"335\": \"0.7\", \"336\": \"0.7\", \"337\": \"0.7\", \"338\": \"0.7\", \"339\": \"0.7\", \"340\": \"0.7\", \"341\": \"0.7\", \"342\": \"0.7\", \"343\": \"0.7\", \"344\": \"0.7\", \"345\": \"0.7\", \"346\": \"0.7\", \"347\": \"0.7\", \"348\": \"0.7\", \"349\": \"0.7\", \"350\": \"0.7\", \"351\": \"0.7\", \"352\": \"0.7\", \"353\": \"0.7\", \"354\": \"0.7\", \"355\": \"0.7\", \"356\": \"0.7\", \"357\": \"0.7\", \"358\": \"0.7\", \"359\": \"0.7\", \"360\": \"0.7\", \"361\": \"0.7\", \"362\": \"0.7\", \"363\": \"0.7\", \"364\": \"0.7\", \"365\": \"0.7\", \"366\": \"0.7\", \"367\": \"0.7\", \"368\": \"0.7\", \"369\": \"0.7\", \"370\": \"0.7\", \"371\": \"0.7\", \"372\": \"0.7\", \"373\": \"0.7\", \"374\": \"0.7\", \"375\": \"0.7\", \"376\": \"0.7\", \"377\": \"0.7\", \"378\": \"0.7\", \"379\": \"0.7\", \"380\": \"0.7\", \"381\": \"0.7\", \"382\": \"0.7\", \"383\": \"0.7\", \"384\": \"0.7\", \"385\": \"0.7\", \"386\": \"0.7\", \"387\": \"0.7\", \"388\": \"0.7\", \"389\": \"0.7\", \"390\": \"0.7\", \"391\": \"0.7\", \"392\": \"0.7\", \"393\": \"0.7\", \"394\": \"0.7\", \"395\": \"0.7\", \"396\": \"0.7\", \"397\": \"0.7\", \"398\": \"0.7\", \"399\": \"0.7\", \"400\": \"0.7\", \"401\": \"0.7\", \"402\": \"0.7\", \"403\": \"0.7\", \"404\": \"0.7\", \"405\": \"0.7\", \"406\": \"0.7\", \"407\": \"0.7\", \"408\": \"0.7\", \"409\": \"0.7\", \"410\": \"0.7\", \"411\": \"0.7\", \"412\": \"0.7\", \"413\": \"0.7\", \"414\": \"0.7\", \"415\": \"0.7\", \"416\": \"0.7\", \"417\": \"0.7\", \"418\": \"0.7\", \"419\": \"0.7\", \"420\": \"0.7\", \"421\": \"0.7\", \"422\": \"0.7\", \"423\": \"0.7\", \"424\": \"0.7\", \"425\": \"0.7\", \"426\": \"0.7\", \"427\": \"0.7\", \"428\": \"0.7\", \"429\": \"0.7\", \"430\": \"0.7\", \"431\": \"0.7\", \"432\": \"0.7\", \"433\": \"0.7\", \"434\": \"0.7\", \"435\": \"0.7\", \"436\": \"0.7\", \"437\": \"0.7\", \"438\": \"0.7\", \"439\": \"0.7\", \"440\": \"0.7\", \"441\": \"0.7\", \"442\": \"0.7\", \"443\": \"0.7\", \"444\": \"0.7\", \"445\": \"0.7\", \"446\": \"0.7\", \"447\": \"0.7\", \"448\": \"0.7\", \"449\": \"0.7\", \"450\": \"0.7\", \"451\": \"0.7\", \"452\": \"0.7\", \"453\": \"0.7\", \"454\": \"0.7\", \"455\": \"0.7\", \"456\": \"0.7\", \"457\": \"0.7\", \"458\": \"0.7\", \"459\": \"0.7\", \"460\": \"0.7\", \"461\": \"0.7\", \"462\": \"0.7\", \"463\": \"0.7\", \"464\": \"0.7\", \"465\": \"0.7\", \"466\": \"0.7\", \"467\": \"0.7\", \"468\": \"0.7\", \"469\": \"0.7\", \"470\": \"0.7\", \"471\": \"0.7\", \"472\": \"0.7\", \"473\": \"0.7\", \"474\": \"0.7\", \"475\": \"0.7\", \"476\": \"0.7\", \"477\": \"0.7\", \"478\": \"0.7\", \"479\": \"0.7\", \"480\": \"0.7\", \"481\": \"0.7\", \"482\": \"0.7\", \"483\": \"0.7\", \"484\": \"0.7\", \"485\": \"0.7\", \"486\": \"0.7\", \"487\": \"0.7\", \"488\": \"0.7\", \"489\": \"0.7\", \"490\": \"0.7\", \"491\": \"0.7\", \"492\": \"0.7\", \"493\": \"0.7\", \"494\": \"0.7\", \"495\": \"0.7\", \"496\": \"0.7\", \"497\": \"0.7\", \"498\": \"0.7\", \"499\": \"0.7\", \"500\": \"0.7\", \"501\": \"0.7\", \"502\": \"0.7\", \"503\": \"0.7\", \"504\": \"0.7\", \"505\": \"0.7\", \"506\": \"0.7\", \"507\": \"0.7\", \"508\": \"0.7\", \"509\": \"0.7\", \"510\": \"0.7\", \"511\": \"0.7\", \"512\": \"0.7\", \"513\": \"0.7\", \"514\": \"0.7\", \"515\": \"0.7\", \"516\": \"0.7\", \"517\": \"0.7\", \"518\": \"0.7\", \"519\": \"0.7\", \"520\": \"0.7\", \"521\": \"0.7\", \"522\": \"0.7\", \"523\": \"0.7\", \"524\": \"0.7\", \"525\": \"0.7\", \"526\": \"0.7\", \"527\": \"0.7\", \"528\": \"0.7\", \"529\": \"0.7\", \"530\": \"0.7\", \"531\": \"0.7\", \"532\": \"0.7\", \"533\": \"0.7\", \"534\": \"0.7\", \"535\": \"0.7\", \"536\": \"0.7\", \"537\": \"0.7\", \"538\": \"0.7\", \"539\": \"0.7\", \"540\": \"0.7\", \"541\": \"0.7\", \"542\": \"0.7\", \"543\": \"0.7\", \"544\": \"0.7\", \"545\": \"0.7\", \"546\": \"0.7\", \"547\": \"0.7\", \"548\": \"0.7\", \"549\": \"0.7\", \"550\": \"0.7\", \"551\": \"0.7\", \"552\": \"0.7\", \"553\": \"0.7\", \"554\": \"0.7\", \"555\": \"0.7\", \"556\": \"0.7\", \"557\": \"0.7\", \"558\": \"0.7\", \"559\": \"0.7\", \"560\": \"0.7\", \"561\": \"0.7\", \"562\": \"0.7\", \"563\": \"0.7\", \"564\": \"0.7\", \"565\": \"0.7\", \"566\": \"0.7\", \"567\": \"0.7\", \"568\": \"0.7\", \"569\": \"0.7\", \"570\": \"0.7\", \"571\": \"0.7\", \"572\": \"0.7\", \"573\": \"0.7\", \"574\": \"0.7\", \"575\": \"0.7\", \"576\": \"0.7\", \"577\": \"0.7\", \"578\": \"0.7\", \"579\": \"0.7\", \"580\": \"0.7\", \"581\": \"0.7\", \"582\": \"0.7\", \"583\": \"0.7\", \"584\": \"0.7\", \"585\": \"0.7\", \"586\": \"0.7\", \"587\": \"0.7\", \"588\": \"0.7\", \"589\": \"0.7\", \"590\": \"0.7\", \"591\": \"0.7\", \"592\": \"0.7\", \"593\": \"0.7\", \"594\": \"0.7\", \"595\": \"0.7\", \"596\": \"0.7\", \"597\": \"0.7\", \"598\": \"0.7\", \"599\": \"0.7\", \"600\": \"0.7\", \"601\": \"0.7\", \"602\": \"0.7\", \"603\": \"0.7\", \"604\": \"0.7\", \"605\": \"0.7\", \"606\": \"0.7\", \"607\": \"0.7\", \"608\": \"0.7\", \"609\": \"0.7\", \"610\": \"0.7\", \"611\": \"0.7\", \"612\": \"0.7\", \"613\": \"0.7\", \"614\": \"0.7\", \"615\": \"0.7\", \"616\": \"0.7\", \"617\": \"0.7\", \"618\": \"0.7\", \"619\": \"0.7\", \"620\": \"0.7\", \"621\": \"0.7\", \"622\": \"0.7\", \"623\": \"0.7\", \"624\": \"0.7\", \"625\": \"0.7\", \"626\": \"0.7\", \"627\": \"0.7\", \"628\": \"0.7\", \"629\": \"0.7\", \"630\": \"0.7\", \"631\": \"0.7\", \"632\": \"0.7\", \"633\": \"0.7\", \"634\": \"0.7\", \"635\": \"0.7\", \"636\": \"0.7\", \"637\": \"0.7\", \"638\": \"0.7\", \"639\": \"0.7\", \"640\": \"0.7\", \"641\": \"0.7\", \"642\": \"0.7\", \"643\": \"0.7\", \"644\": \"0.7\", \"645\": \"0.7\", \"646\": \"0.7\", \"647\": \"0.7\", \"648\": \"0.7\", \"649\": \"0.7\", \"650\": \"0.7\", \"651\": \"0.7\", \"652\": \"0.7\", \"653\": \"0.7\", \"654\": \"0.7\", \"655\": \"0.7\", \"656\": \"0.7\", \"657\": \"0.7\", \"658\": \"0.7\", \"659\": \"0.7\", \"660\": \"0.7\", \"661\": \"0.7\", \"662\": \"0.7\", \"663\": \"0.7\", \"664\": \"0.7\", \"665\": \"0.7\", \"666\": \"0.7\", \"667\": \"0.7\", \"668\": \"0.7\", \"669\": \"0.7\", \"670\": \"0.7\", \"671\": \"0.7\", \"672\": \"0.7\", \"673\": \"0.7\", \"674\": \"0.7\", \"675\": \"0.7\", \"676\": \"0.7\", \"677\": \"0.7\", \"678\": \"0.7\", \"679\": \"0.7\", \"680\": \"0.7\", \"681\": \"0.7\", \"682\": \"0.7\", \"683\": \"0.7\", \"684\": \"0.7\", \"685\": \"0.7\", \"686\": \"0.7\", \"687\": \"0.7\", \"688\": \"0.7\", \"689\": \"0.7\", \"690\": \"0.7\", \"691\": \"0.7\", \"692\": \"0.7\", \"693\": \"0.7\", \"694\": \"0.7\", \"695\": \"0.7\", \"696\": \"0.7\", \"697\": \"0.7\", \"698\": \"0.7\", \"699\": \"0.7\", \"700\": \"0.7\", \"701\": \"0.7\", \"702\": \"0.7\", \"703\": \"0.7\", \"704\": \"0.7\", \"705\": \"0.7\", \"706\": \"0.7\", \"707\": \"0.7\", \"708\": \"0.7\", \"709\": \"0.7\", \"710\": \"0.7\", \"711\": \"0.7\", \"712\": \"0.7\", \"713\": \"0.7\", \"714\": \"0.7\", \"715\": \"0.7\", \"716\": \"0.7\", \"717\": \"0.7\", \"718\": \"0.7\", \"719\": \"0.7\"}"); + var timestamps = JSON.parse("{\"0\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"1\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"2\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"3\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"4\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"5\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"6\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"7\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"8\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"9\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"10\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"11\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"12\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"13\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"14\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"15\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"16\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"17\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"18\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"19\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"20\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"21\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"22\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"23\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"24\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"25\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"26\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"27\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"28\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"29\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"30\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"31\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"32\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"33\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"34\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"35\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"36\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"37\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"38\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"39\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"40\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"41\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"42\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"43\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"44\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"45\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"46\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"47\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"48\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"49\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"50\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"51\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"52\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"53\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"54\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"55\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"56\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"57\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"58\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"59\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"60\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"61\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"62\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"63\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"64\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"65\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"66\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"67\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"68\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"69\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"70\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"71\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"72\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"73\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"74\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"75\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"76\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"77\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"78\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"79\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"80\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"81\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"82\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"83\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"84\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"85\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"86\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"87\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"88\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"89\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"90\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"91\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"92\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"93\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"94\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"95\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"96\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"97\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"98\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"99\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"100\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"101\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"102\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"103\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"104\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"105\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"106\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"107\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"108\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"109\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"110\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"111\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"112\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"113\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"114\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"115\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"116\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"117\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"118\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"119\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"120\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"121\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"122\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"123\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"124\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"125\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"126\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"127\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"128\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"129\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"130\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"131\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"132\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"133\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"134\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"135\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"136\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"137\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"138\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"139\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"140\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"141\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"142\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"143\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"144\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"145\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"146\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"147\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"148\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"149\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"150\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"151\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"152\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"153\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"154\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"155\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"156\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"157\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"158\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"159\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"160\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"161\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"162\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"163\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"164\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"165\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"166\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"167\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"168\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"169\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"170\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"171\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"172\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"173\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"174\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"175\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"176\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"177\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"178\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"179\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"180\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"181\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"182\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"183\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"184\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"185\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"186\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"187\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"188\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"189\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"190\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"191\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"192\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"193\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"194\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"195\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"196\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"197\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"198\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"199\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"200\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"201\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"202\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"203\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"204\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"205\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"206\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"207\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"208\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"209\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"210\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"211\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"212\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"213\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"214\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"215\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"216\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"217\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"218\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"219\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"220\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"221\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"222\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"223\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"224\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"225\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"226\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"227\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"228\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"229\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"230\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"231\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"232\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"233\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"234\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"235\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"236\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"237\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"238\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"239\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"240\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"241\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"242\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"243\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"244\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"245\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"246\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"247\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"248\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"249\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"250\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"251\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"252\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"253\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"254\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"255\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"256\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"257\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"258\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"259\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"260\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"261\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"262\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"263\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"264\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"265\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"266\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"267\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"268\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"269\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"270\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"271\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"272\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"273\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"274\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"275\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"276\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"277\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"278\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"279\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"280\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"281\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"282\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"283\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"284\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"285\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"286\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"287\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"288\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"289\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"290\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"291\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"292\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"293\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"294\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"295\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"296\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"297\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"298\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"299\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"300\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"301\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"302\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"303\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"304\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"305\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"306\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"307\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"308\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"309\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"310\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"311\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"312\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"313\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"314\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"315\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"316\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"317\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"318\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"319\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"320\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"321\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"322\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"323\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"324\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"325\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"326\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"327\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"328\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"329\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"330\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"331\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"332\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"333\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"334\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"335\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"336\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"337\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"338\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"339\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"340\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"341\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"342\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"343\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"344\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"345\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"346\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"347\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"348\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"349\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"350\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"351\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"352\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"353\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"354\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"355\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"356\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"357\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"358\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"359\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"360\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"361\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"362\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"363\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"364\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"365\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"366\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"367\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"368\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"369\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"370\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"371\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"372\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"373\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"374\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"375\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"376\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"377\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"378\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"379\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"380\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"381\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"382\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"383\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"384\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"385\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"386\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"387\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"388\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"389\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"390\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"391\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"392\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"393\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"394\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"395\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"396\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"397\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"398\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"399\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"400\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"401\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"402\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"403\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"404\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"405\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"406\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"407\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"408\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"409\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"410\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"411\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"412\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"413\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"414\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"415\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"416\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"417\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"418\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"419\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"420\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"421\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"422\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"423\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"424\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"425\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"426\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"427\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"428\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"429\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"430\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"431\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"432\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"433\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"434\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"435\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"436\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"437\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"438\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"439\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"440\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"441\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"442\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"443\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"444\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"445\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"446\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"447\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"448\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"449\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"450\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"451\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"452\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"453\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"454\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"455\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"456\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"457\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"458\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"459\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"460\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"461\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"462\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"463\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"464\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"465\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"466\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"467\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"468\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"469\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"470\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"471\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"472\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"473\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"474\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"475\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"476\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"477\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"478\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"479\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"480\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"481\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"482\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"483\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"484\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"485\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"486\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"487\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"488\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"489\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"490\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"491\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"492\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"493\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"494\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"495\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"496\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"497\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"498\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"499\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"500\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"501\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"502\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"503\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"504\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"505\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"506\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"507\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"508\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"509\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"510\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"511\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"512\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"513\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"514\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"515\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"516\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"517\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"518\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"519\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"520\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"521\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"522\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"523\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"524\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"525\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"526\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"527\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"528\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"529\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"530\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"531\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"532\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"533\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"534\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"535\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"536\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"537\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"538\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"539\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"540\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"541\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"542\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"543\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"544\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"545\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"546\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"547\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"548\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"549\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"550\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"551\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"552\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"553\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"554\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"555\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"556\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"557\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"558\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"559\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"560\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"561\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"562\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"563\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"564\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"565\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"566\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"567\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"568\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"569\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"570\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"571\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"572\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"573\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"574\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"575\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"576\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"577\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"578\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"579\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"580\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"581\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"582\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"583\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"584\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"585\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"586\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"587\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"588\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"589\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"590\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"591\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"592\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"593\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"594\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"595\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"596\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"597\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"598\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"599\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"600\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"601\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"602\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"603\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"604\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"605\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"606\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"607\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"608\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"609\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"610\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"611\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"612\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"613\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"614\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"615\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"616\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"617\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"618\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"619\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"620\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"621\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"622\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"623\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"624\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"625\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"626\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"627\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"628\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"629\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"630\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"631\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"632\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"633\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"634\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"635\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"636\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"637\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"638\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"639\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"640\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"641\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"642\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"643\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"644\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"645\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"646\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"647\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"648\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"649\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"650\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"651\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"652\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"653\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"654\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"655\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"656\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"657\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"658\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"659\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"660\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"661\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"662\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"663\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"664\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"665\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"666\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"667\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"668\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"669\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"670\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"671\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"672\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"673\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"674\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"675\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"676\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"677\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"678\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"679\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"680\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"681\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"682\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"683\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"684\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"685\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"686\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"687\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"688\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"689\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"690\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"691\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"692\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"693\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"694\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"695\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"696\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"697\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"698\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"699\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"700\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"701\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"702\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"703\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"704\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"705\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"706\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"707\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"708\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"709\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"710\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"711\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"712\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"713\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"714\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"715\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"716\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"717\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"718\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"719\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"]}"); + + for (let i = 0; i < overall_indices.length; i++) { + var idx = overall_indices[i]; + var model_card_plot = "model-card-plot-" + idx; + var threshold = thresholds[idx]; + var history_data = []; + for (let i = 0; i < histories[idx].length; i++) { + history_data.push(parseFloat(histories[idx][i])); + } + var timestamp_data = []; + for (let i = 0; i < timestamps[idx].length; i++) { + timestamp_data.push(timestamps[idx][i]); + } + + var model_card_fig = { + data: [ + { + x: timestamp_data, + y: history_data, + mode: "lines+markers", + marker: { color: "rgb(31,111,235)" }, + line: { color: "rgb(31,111,235)" }, + showlegend: false, + type: "scatter", + name: "" + }, + { + x: timestamp_data, + y: Array(history_data.length).fill(threshold), + mode: "lines", + line: { color: "black", dash: "dot" }, + showlegend: false, + type: "scatter", + name: "" + } + ], + layout: { + paper_bgcolor: "rgba(0,0,0,0)", + plot_bgcolor: "rgba(0,0,0,0)", + xaxis: { + zeroline: false, + showticklabels: false, + showgrid: false + }, + yaxis: { + gridcolor: "#ffffff" + }, + margin: { l: 0, r: 0, t: 0, b: 0 }, + height: 125, + width: 250 + } + }; + if (history.length > 0) { + Plotly.newPlot(model_card_plot, model_card_fig.data, model_card_fig.layout, {displayModeBar: false}); + } + } + } + generate_model_card_plot(); + + const plot = document.getElementById('plot'); + const inputs_all = document.querySelectorAll('#slice-selection input[type="radio"]'); + const plot_selection = document.querySelectorAll('#plot-selection input[type="radio"]'); + var selections = [null, null, null, null, null, null, null, null, null, null, null]; + var plot_colors = [ + "rgb(0, 115, 228)", + "rgb(31, 119, 180)", + "rgb(255, 127, 14)", + "rgb(44, 160, 44)", + "rgb(214, 39, 40)", + "rgb(148, 103, 189)", + "rgb(140, 86, 75)", + "rgb(227, 119, 194)", + "rgb(127, 127, 127)", + "rgb(188, 189, 34)", + "rgb(23, 190, 207)" + ]; + + function deletePlotSelection(plot_number) { + var plot_selection = document.querySelectorAll('#plot-selection input[type="radio"]'); + var label_selection = document.querySelectorAll('#plot-selection label'); + var label_slice_selection = document.querySelectorAll('#slice-selection label'); + var button_plot_selection = document.querySelectorAll('#plot-selection button'); + + // set last plot to checked + // get plot_selection with name "Plot N" where N is plot_number + for (let i = 0; i < plot_selection.length; i++) { + var plot_name = "Plot " + (plot_number+1) + if (plot_selection[i].value === plot_name) { + plot_number = i; + } + } + plot_selection[plot_number].checked = false; + plot_selection[plot_number-1].checked = true; + + // delete plot_selected and label + plot_selection[plot_number].remove(); + label_selection[plot_number].remove(); + + selections[plot_number] = null; + + // set selection to last plot + selection = selections[plot_number-1]; + plot_color = plot_colors[plot_number-1]; + + // set current plot selection color to plot_color + const [r, g, b] = plot_color.match(/\d+/g); + const rgbaColor = `rgba(${r}, ${g}, ${b}, 0.2)`; + plot_selection[plot_number-1].style.backgroundColor = rgbaColor; + plot_selection[plot_number-1].style.border = "2px solid " + plot_color; + plot_selection[plot_number-1].style.color = plot_color; + + // make visibility of delete button from last plot visible + if (button_plot_selection.length >= 2) { + button_plot_selection[button_plot_selection.length-2].style.visibility = "visible"; + } + + for (let i = 0; i < selection.length; i++) { + // use selection to set label_slice_selection background color + for (let j = 0; j < inputs_all.length; j++) { + if (inputs_all[j].name === selection[i].split(":")[0]) { + if (inputs_all[j].value == selection[i].split(":")[1]) { + inputs_all[j].checked = true; + label_slice_selection[j].style.backgroundColor = rgbaColor; + label_slice_selection[j].style.border = "2px solid " + plot_color; + label_slice_selection[j].style.color = plot_color; + } + } + } + } + updatePlot(); + } + + function updatePlotSelection() { + const inputs = document.querySelectorAll('#slice-selection input[type="radio"]:checked'); + var plot_selection = document.querySelectorAll('#plot-selection input[type="radio"]'); + var plot_selected = document.querySelectorAll('#plot-selection input[type="radio"]:checked')[0]; + // get number from value in plot_selected "Plot 1" -> 1 + var plot_number = parseInt(plot_selected.value.split(" ")[1]); + var label_selection = document.querySelectorAll('#plot-selection label'); + var label_slice_selection = document.querySelectorAll('#slice-selection label'); + var button_plot_selection = document.querySelectorAll('#plot-selection button'); + + // if plot_selected is "+" then add new radio button to plot_selection called "Plot N" where last plot is N-1 but keep "+" at end and set new radio button to checked for second last element + if (plot_selected.value === "+") { + // if 10 plots already exist, don't add new plot and gray out "+" + if (plot_selection.length === 11) { + plot_selected.checked = false; + label_selection[label_selection.length-1].style.color = "gray"; + return; + } + // plot_name should be name of last plot + 1 + if (plot_selection.length === 2) { + var plot_name = "Plot 2" + } else { + var plot_name = "Plot " + (parseInt(plot_selection[plot_selection.length - 2].value.split(" ")[1]) + 1); + } + var new_plot = document.createElement("input"); + new_plot.type = "radio"; + new_plot.id = plot_name; + new_plot.name = "plot"; + new_plot.value = plot_name; + new_plot.checked = true; + var new_label = document.createElement("label"); + new_label.htmlFor = plot_name; + new_label.innerHTML = plot_name; + + // Parse plot_color to get r, g, b values + var plot_color = plot_colors[plot_selection.length] + const [r, g, b] = plot_color.match(/\d+/g); + const rgbaColor = `rgba(${r}, ${g}, ${b}, 0.2)`; + // set background color of new radio button to plot_color + new_label.style.backgroundColor = rgbaColor; + new_label.style.border = "2px solid " + plot_color; + new_label.style.color = plot_color; + + // add button to delete plot + var delete_button = document.createElement("button"); + delete_button.id = "button"; + delete_button.innerHTML = "×"; + delete_button.style.backgroundColor = "transparent"; + delete_button.style.border = "none"; + new_label.style.padding = "1.5px 0px"; + new_label.style.paddingLeft = "10px"; + + new_label.appendChild(delete_button) + + // make delete button from last plot invisible if not Plot 1 + if (plot_selection.length > 2) { + button_plot_selection[button_plot_selection.length-1].style.visibility = "hidden"; + } + // add on_click event to delete button and send plot number to deletePlotSelection + delete_button.onclick = function() {deletePlotSelection(plot_number)}; + + // insert new radio button and label before "+" radio button and after last radio button + plot_selected.insertAdjacentElement("beforebegin", new_plot); + plot_selected.insertAdjacentElement("beforebegin", new_label); + + // Add event listener to new radio button + new_plot.addEventListener('change', updatePlotSelection); + + // set plot_selected to new plot + var plot_selected = new_plot + + for (let i = 0; i < label_selection.length-1; i++) { + plot_selection[i].checked = false; + label_selection[i].style.backgroundColor = "#ffffff"; + label_selection[i].style.border = "2px solid #DADCE0"; + label_selection[i].style.color = "#000000"; + } + + selections[parseInt(plot_selected.value.split(" ")[1]-1)] = selections[parseInt(plot_selected.value.split(" ")[1]-2)] + selection = selections[parseInt(plot_selected.value.split(" ")[1]-1)]; + plot_color = plot_colors[parseInt(plot_selected.value.split(" ")[1])]; + + for (let i = 0; i < selection.length; i++) { + // use selection to set label_slice_selection background color + for (let j = 0; j < inputs_all.length; j++) { + if (inputs_all[j].name === selection[i].split(":")[0]) { + if (inputs_all[j].value == selection[i].split(":")[1]) { + const [r, g, b] = plot_color.match(/\d+/g); + const rgbaColor = `rgba(${r}, ${g}, ${b}, 0.2)`; + inputs_all[j].checked = true; + label_slice_selection[j].style.backgroundColor = rgbaColor; + label_slice_selection[j].style.border = "2px solid " + plot_color; + label_slice_selection[j].style.color = plot_color; + } + else { + inputs_all[j].checked = false; + label_slice_selection[j].style.backgroundColor = "#ffffff"; + label_slice_selection[j].style.border = "2px solid #DADCE0"; + label_slice_selection[j].style.color = "#000000"; + } + } + } + } + } else { + for (let i = 0; i < plot_selection.length-1; i++) { + if (plot_selection[i].value !== plot_selected.value) { + plot_selection[i].checked = false; + label_selection[i].style.backgroundColor = "#ffffff"; + label_selection[i].style.border = "2px solid #DADCE0"; + label_selection[i].style.color = "#000000"; + } + else { + var plot_color = plot_colors[i+1] + const [r, g, b] = plot_color.match(/\d+/g); + const rgbaColor = `rgba(${r}, ${g}, ${b}, 0.2)`; + plot_selected.checked = true; + label_selection[i].style.backgroundColor = rgbaColor; + label_selection[i].style.border = "2px solid " + plot_color; + label_selection[i].style.color = plot_color; + } + } + selection = selections[parseInt(plot_selected.value.split(" ")[1]-1)]; + plot_color = plot_colors[parseInt(plot_selected.value.split(" ")[1])]; + for (let i = 0; i < selection.length; i++) { + // use selection to set label_slice_selection background color + for (let j = 0; j < inputs_all.length; j++) { + if (inputs_all[j].name === selection[i].split(":")[0]) { + if (inputs_all[j].value == selection[i].split(":")[1]) { + inputs_all[j].checked = true; + const [r, g, b] = plot_color.match(/\d+/g); + const rgbaColor = `rgba(${r}, ${g}, ${b}, 0.2)`; + label_slice_selection[j].style.backgroundColor = rgbaColor; + label_slice_selection[j].style.border = "2px solid " + plot_color; + label_slice_selection[j].style.color = plot_color; + } + else { + inputs_all[j].checked = false; + label_slice_selection[j].style.backgroundColor = "#ffffff"; + label_slice_selection[j].style.border = "2px solid #DADCE0"; + label_slice_selection[j].style.color = "#000000"; + } + } + } + } + } + var slices_all = JSON.parse("{\"0\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"pathology:overall_pathology\", \"Patient Gender:overall_Patient Gender\"], \"1\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"pathology:Atelectasis\", \"Patient Gender:overall_Patient Gender\"], \"2\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"pathology:Consolidation\", \"Patient Gender:overall_Patient Gender\"], \"3\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"pathology:Infiltration\", \"Patient Gender:overall_Patient Gender\"], \"4\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"pathology:Pneumothorax\", \"Patient Gender:overall_Patient Gender\"], \"5\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"pathology:Edema\", \"Patient Gender:overall_Patient Gender\"], \"6\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"pathology:Emphysema\", \"Patient Gender:overall_Patient Gender\"], \"7\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"pathology:Fibrosis\", \"Patient Gender:overall_Patient Gender\"], \"8\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"pathology:Effusion\", \"Patient Gender:overall_Patient Gender\"], \"9\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"pathology:Pneumonia\", \"Patient Gender:overall_Patient Gender\"], \"10\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"pathology:Pleural_Thickening\", \"Patient Gender:overall_Patient Gender\"], \"11\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"pathology:Cardiomegaly\", \"Patient Gender:overall_Patient Gender\"], \"12\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"pathology:Nodule\", \"Patient Gender:overall_Patient Gender\"], \"13\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"pathology:Mass\", \"Patient Gender:overall_Patient Gender\"], \"14\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"pathology:Hernia\", \"Patient Gender:overall_Patient Gender\"], \"15\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"pathology:overall_pathology\", \"Patient Gender:overall_Patient Gender\"], \"16\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"pathology:Atelectasis\", \"Patient Gender:overall_Patient Gender\"], \"17\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"pathology:Consolidation\", \"Patient Gender:overall_Patient Gender\"], \"18\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"pathology:Infiltration\", \"Patient Gender:overall_Patient Gender\"], \"19\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"pathology:Pneumothorax\", \"Patient Gender:overall_Patient Gender\"], \"20\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"pathology:Edema\", \"Patient Gender:overall_Patient Gender\"], \"21\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"pathology:Emphysema\", \"Patient Gender:overall_Patient Gender\"], \"22\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"pathology:Fibrosis\", \"Patient Gender:overall_Patient Gender\"], \"23\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"pathology:Effusion\", \"Patient Gender:overall_Patient Gender\"], \"24\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"pathology:Pneumonia\", \"Patient Gender:overall_Patient Gender\"], \"25\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"pathology:Pleural_Thickening\", \"Patient Gender:overall_Patient Gender\"], \"26\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"pathology:Cardiomegaly\", \"Patient Gender:overall_Patient Gender\"], \"27\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"pathology:Nodule\", \"Patient Gender:overall_Patient Gender\"], \"28\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"pathology:Mass\", \"Patient Gender:overall_Patient Gender\"], \"29\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"pathology:Hernia\", \"Patient Gender:overall_Patient Gender\"], \"30\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"pathology:overall_pathology\", \"Patient Gender:overall_Patient Gender\"], \"31\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"pathology:Atelectasis\", \"Patient Gender:overall_Patient Gender\"], \"32\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"pathology:Consolidation\", \"Patient Gender:overall_Patient Gender\"], \"33\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"pathology:Infiltration\", \"Patient Gender:overall_Patient Gender\"], \"34\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"pathology:Pneumothorax\", \"Patient Gender:overall_Patient Gender\"], \"35\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"pathology:Edema\", \"Patient Gender:overall_Patient Gender\"], \"36\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"pathology:Emphysema\", \"Patient Gender:overall_Patient Gender\"], \"37\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"pathology:Fibrosis\", \"Patient Gender:overall_Patient Gender\"], \"38\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"pathology:Effusion\", \"Patient Gender:overall_Patient Gender\"], \"39\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"pathology:Pneumonia\", \"Patient Gender:overall_Patient Gender\"], \"40\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"pathology:Pleural_Thickening\", \"Patient Gender:overall_Patient Gender\"], \"41\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"pathology:Cardiomegaly\", \"Patient Gender:overall_Patient Gender\"], \"42\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"pathology:Nodule\", \"Patient Gender:overall_Patient Gender\"], \"43\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"pathology:Mass\", \"Patient Gender:overall_Patient Gender\"], \"44\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"pathology:Hernia\", \"Patient Gender:overall_Patient Gender\"], \"45\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"pathology:overall_pathology\", \"Patient Gender:overall_Patient Gender\"], \"46\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"pathology:Atelectasis\", \"Patient Gender:overall_Patient Gender\"], \"47\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"pathology:Consolidation\", \"Patient Gender:overall_Patient Gender\"], \"48\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"pathology:Infiltration\", \"Patient Gender:overall_Patient Gender\"], \"49\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"pathology:Pneumothorax\", \"Patient Gender:overall_Patient Gender\"], \"50\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"pathology:Edema\", \"Patient Gender:overall_Patient Gender\"], \"51\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"pathology:Emphysema\", \"Patient Gender:overall_Patient Gender\"], \"52\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"pathology:Fibrosis\", \"Patient Gender:overall_Patient Gender\"], \"53\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"pathology:Effusion\", \"Patient Gender:overall_Patient Gender\"], \"54\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"pathology:Pneumonia\", \"Patient Gender:overall_Patient Gender\"], \"55\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"pathology:Pleural_Thickening\", \"Patient Gender:overall_Patient Gender\"], \"56\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"pathology:Cardiomegaly\", \"Patient Gender:overall_Patient Gender\"], \"57\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"pathology:Nodule\", \"Patient Gender:overall_Patient Gender\"], \"58\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"pathology:Mass\", \"Patient Gender:overall_Patient Gender\"], \"59\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"pathology:Hernia\", \"Patient Gender:overall_Patient Gender\"], \"60\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"pathology:overall_pathology\", \"Patient Gender:overall_Patient Gender\"], \"61\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"pathology:Atelectasis\", \"Patient Gender:overall_Patient Gender\"], \"62\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"pathology:Consolidation\", \"Patient Gender:overall_Patient Gender\"], \"63\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"pathology:Infiltration\", \"Patient Gender:overall_Patient Gender\"], \"64\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"pathology:Pneumothorax\", \"Patient Gender:overall_Patient Gender\"], \"65\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"pathology:Edema\", \"Patient Gender:overall_Patient Gender\"], \"66\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"pathology:Emphysema\", \"Patient Gender:overall_Patient Gender\"], \"67\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"pathology:Fibrosis\", \"Patient Gender:overall_Patient Gender\"], \"68\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"pathology:Effusion\", \"Patient Gender:overall_Patient Gender\"], \"69\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"pathology:Pneumonia\", \"Patient Gender:overall_Patient Gender\"], \"70\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"pathology:Pleural_Thickening\", \"Patient Gender:overall_Patient Gender\"], \"71\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"pathology:Cardiomegaly\", \"Patient Gender:overall_Patient Gender\"], \"72\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"pathology:Nodule\", \"Patient Gender:overall_Patient Gender\"], \"73\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"pathology:Mass\", \"Patient Gender:overall_Patient Gender\"], \"74\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"pathology:Hernia\", \"Patient Gender:overall_Patient Gender\"], \"75\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"pathology:overall_pathology\", \"Patient Gender:overall_Patient Gender\"], \"76\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"pathology:Atelectasis\", \"Patient Gender:overall_Patient Gender\"], \"77\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"pathology:Consolidation\", \"Patient Gender:overall_Patient Gender\"], \"78\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"pathology:Infiltration\", \"Patient Gender:overall_Patient Gender\"], \"79\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"pathology:Pneumothorax\", \"Patient Gender:overall_Patient Gender\"], \"80\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"pathology:Edema\", \"Patient Gender:overall_Patient Gender\"], \"81\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"pathology:Emphysema\", \"Patient Gender:overall_Patient Gender\"], \"82\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"pathology:Fibrosis\", \"Patient Gender:overall_Patient Gender\"], \"83\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"pathology:Effusion\", \"Patient Gender:overall_Patient Gender\"], \"84\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"pathology:Pneumonia\", \"Patient Gender:overall_Patient Gender\"], \"85\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"pathology:Pleural_Thickening\", \"Patient Gender:overall_Patient Gender\"], \"86\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"pathology:Cardiomegaly\", \"Patient Gender:overall_Patient Gender\"], \"87\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"pathology:Nodule\", \"Patient Gender:overall_Patient Gender\"], \"88\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"pathology:Mass\", \"Patient Gender:overall_Patient Gender\"], \"89\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"pathology:Hernia\", \"Patient Gender:overall_Patient Gender\"], \"90\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"pathology:overall_pathology\", \"Patient Gender:overall_Patient Gender\"], \"91\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"pathology:Atelectasis\", \"Patient Gender:overall_Patient Gender\"], \"92\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"pathology:Consolidation\", \"Patient Gender:overall_Patient Gender\"], \"93\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"pathology:Infiltration\", \"Patient Gender:overall_Patient Gender\"], \"94\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"pathology:Pneumothorax\", \"Patient Gender:overall_Patient Gender\"], \"95\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"pathology:Edema\", \"Patient Gender:overall_Patient Gender\"], \"96\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"pathology:Emphysema\", \"Patient Gender:overall_Patient Gender\"], \"97\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"pathology:Fibrosis\", \"Patient Gender:overall_Patient Gender\"], \"98\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"pathology:Effusion\", \"Patient Gender:overall_Patient Gender\"], \"99\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"pathology:Pneumonia\", \"Patient Gender:overall_Patient Gender\"], \"100\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"pathology:Pleural_Thickening\", \"Patient Gender:overall_Patient Gender\"], \"101\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"pathology:Cardiomegaly\", \"Patient Gender:overall_Patient Gender\"], \"102\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"pathology:Nodule\", \"Patient Gender:overall_Patient Gender\"], \"103\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"pathology:Mass\", \"Patient Gender:overall_Patient Gender\"], \"104\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"pathology:Hernia\", \"Patient Gender:overall_Patient Gender\"], \"105\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"pathology:overall_pathology\", \"Patient Gender:overall_Patient Gender\"], \"106\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"pathology:Atelectasis\", \"Patient Gender:overall_Patient Gender\"], \"107\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"pathology:Consolidation\", \"Patient Gender:overall_Patient Gender\"], \"108\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"pathology:Infiltration\", \"Patient Gender:overall_Patient Gender\"], \"109\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"pathology:Pneumothorax\", \"Patient Gender:overall_Patient Gender\"], \"110\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"pathology:Edema\", \"Patient Gender:overall_Patient Gender\"], \"111\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"pathology:Emphysema\", \"Patient Gender:overall_Patient Gender\"], \"112\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"pathology:Fibrosis\", \"Patient Gender:overall_Patient Gender\"], \"113\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"pathology:Effusion\", \"Patient Gender:overall_Patient Gender\"], \"114\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"pathology:Pneumonia\", \"Patient Gender:overall_Patient Gender\"], \"115\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"pathology:Pleural_Thickening\", \"Patient Gender:overall_Patient Gender\"], \"116\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"pathology:Cardiomegaly\", \"Patient Gender:overall_Patient Gender\"], \"117\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"pathology:Nodule\", \"Patient Gender:overall_Patient Gender\"], \"118\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"pathology:Mass\", \"Patient Gender:overall_Patient Gender\"], \"119\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"pathology:Hernia\", \"Patient Gender:overall_Patient Gender\"], \"120\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"pathology:overall_pathology\", \"Patient Gender:overall_Patient Gender\"], \"121\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"pathology:Atelectasis\", \"Patient Gender:overall_Patient Gender\"], \"122\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"pathology:Consolidation\", \"Patient Gender:overall_Patient Gender\"], \"123\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"pathology:Infiltration\", \"Patient Gender:overall_Patient Gender\"], \"124\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"pathology:Pneumothorax\", \"Patient Gender:overall_Patient Gender\"], \"125\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"pathology:Edema\", \"Patient Gender:overall_Patient Gender\"], \"126\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"pathology:Emphysema\", \"Patient Gender:overall_Patient Gender\"], \"127\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"pathology:Fibrosis\", \"Patient Gender:overall_Patient Gender\"], \"128\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"pathology:Effusion\", \"Patient Gender:overall_Patient Gender\"], \"129\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"pathology:Pneumonia\", \"Patient Gender:overall_Patient Gender\"], \"130\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"pathology:Pleural_Thickening\", \"Patient Gender:overall_Patient Gender\"], \"131\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"pathology:Cardiomegaly\", \"Patient Gender:overall_Patient Gender\"], \"132\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"pathology:Nodule\", \"Patient Gender:overall_Patient Gender\"], \"133\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"pathology:Mass\", \"Patient Gender:overall_Patient Gender\"], \"134\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"pathology:Hernia\", \"Patient Gender:overall_Patient Gender\"], \"135\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"pathology:overall_pathology\", \"Patient Gender:overall_Patient Gender\"], \"136\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"pathology:Atelectasis\", \"Patient Gender:overall_Patient Gender\"], \"137\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"pathology:Consolidation\", \"Patient Gender:overall_Patient Gender\"], \"138\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"pathology:Infiltration\", \"Patient Gender:overall_Patient Gender\"], \"139\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"pathology:Pneumothorax\", \"Patient Gender:overall_Patient Gender\"], \"140\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"pathology:Edema\", \"Patient Gender:overall_Patient Gender\"], \"141\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"pathology:Emphysema\", \"Patient Gender:overall_Patient Gender\"], \"142\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"pathology:Fibrosis\", \"Patient Gender:overall_Patient Gender\"], \"143\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"pathology:Effusion\", \"Patient Gender:overall_Patient Gender\"], \"144\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"pathology:Pneumonia\", \"Patient Gender:overall_Patient Gender\"], \"145\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"pathology:Pleural_Thickening\", \"Patient Gender:overall_Patient Gender\"], \"146\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"pathology:Cardiomegaly\", \"Patient Gender:overall_Patient Gender\"], \"147\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"pathology:Nodule\", \"Patient Gender:overall_Patient Gender\"], \"148\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"pathology:Mass\", \"Patient Gender:overall_Patient Gender\"], \"149\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"pathology:Hernia\", \"Patient Gender:overall_Patient Gender\"], \"150\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"pathology:overall_pathology\", \"Patient Gender:overall_Patient Gender\"], \"151\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"pathology:Atelectasis\", \"Patient Gender:overall_Patient Gender\"], \"152\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"pathology:Consolidation\", \"Patient Gender:overall_Patient Gender\"], \"153\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"pathology:Infiltration\", \"Patient Gender:overall_Patient Gender\"], \"154\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"pathology:Pneumothorax\", \"Patient Gender:overall_Patient Gender\"], \"155\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"pathology:Edema\", \"Patient Gender:overall_Patient Gender\"], \"156\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"pathology:Emphysema\", \"Patient Gender:overall_Patient Gender\"], \"157\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"pathology:Fibrosis\", \"Patient Gender:overall_Patient Gender\"], \"158\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"pathology:Effusion\", \"Patient Gender:overall_Patient Gender\"], \"159\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"pathology:Pneumonia\", \"Patient Gender:overall_Patient Gender\"], \"160\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"pathology:Pleural_Thickening\", \"Patient Gender:overall_Patient Gender\"], \"161\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"pathology:Cardiomegaly\", \"Patient Gender:overall_Patient Gender\"], \"162\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"pathology:Nodule\", \"Patient Gender:overall_Patient Gender\"], \"163\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"pathology:Mass\", \"Patient Gender:overall_Patient Gender\"], \"164\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"pathology:Hernia\", \"Patient Gender:overall_Patient Gender\"], \"165\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"pathology:overall_pathology\", \"Patient Gender:overall_Patient Gender\"], \"166\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"pathology:Atelectasis\", \"Patient Gender:overall_Patient Gender\"], \"167\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"pathology:Consolidation\", \"Patient Gender:overall_Patient Gender\"], \"168\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"pathology:Infiltration\", \"Patient Gender:overall_Patient Gender\"], \"169\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"pathology:Pneumothorax\", \"Patient Gender:overall_Patient Gender\"], \"170\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"pathology:Edema\", \"Patient Gender:overall_Patient Gender\"], \"171\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"pathology:Emphysema\", \"Patient Gender:overall_Patient Gender\"], \"172\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"pathology:Fibrosis\", \"Patient Gender:overall_Patient Gender\"], \"173\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"pathology:Effusion\", \"Patient Gender:overall_Patient Gender\"], \"174\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"pathology:Pneumonia\", \"Patient Gender:overall_Patient Gender\"], \"175\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"pathology:Pleural_Thickening\", \"Patient Gender:overall_Patient Gender\"], \"176\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"pathology:Cardiomegaly\", \"Patient Gender:overall_Patient Gender\"], \"177\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"pathology:Nodule\", \"Patient Gender:overall_Patient Gender\"], \"178\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"pathology:Mass\", \"Patient Gender:overall_Patient Gender\"], \"179\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"pathology:Hernia\", \"Patient Gender:overall_Patient Gender\"], \"180\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:overall_pathology\"], \"181\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Atelectasis\"], \"182\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Consolidation\"], \"183\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Infiltration\"], \"184\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Pneumothorax\"], \"185\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Edema\"], \"186\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Emphysema\"], \"187\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Fibrosis\"], \"188\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Effusion\"], \"189\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Pneumonia\"], \"190\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Pleural_Thickening\"], \"191\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Cardiomegaly\"], \"192\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Nodule\"], \"193\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Mass\"], \"194\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Hernia\"], \"195\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:overall_pathology\"], \"196\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Atelectasis\"], \"197\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Consolidation\"], \"198\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Infiltration\"], \"199\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Pneumothorax\"], \"200\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Edema\"], \"201\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Emphysema\"], \"202\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Fibrosis\"], \"203\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Effusion\"], \"204\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Pneumonia\"], \"205\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Pleural_Thickening\"], \"206\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Cardiomegaly\"], \"207\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Nodule\"], \"208\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Mass\"], \"209\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Hernia\"], \"210\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:overall_pathology\"], \"211\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Atelectasis\"], \"212\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Consolidation\"], \"213\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Infiltration\"], \"214\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Pneumothorax\"], \"215\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Edema\"], \"216\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Emphysema\"], \"217\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Fibrosis\"], \"218\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Effusion\"], \"219\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Pneumonia\"], \"220\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Pleural_Thickening\"], \"221\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Cardiomegaly\"], \"222\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Nodule\"], \"223\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Mass\"], \"224\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Hernia\"], \"225\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:overall_pathology\"], \"226\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Atelectasis\"], \"227\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Consolidation\"], \"228\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Infiltration\"], \"229\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Pneumothorax\"], \"230\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Edema\"], \"231\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Emphysema\"], \"232\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Fibrosis\"], \"233\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Effusion\"], \"234\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Pneumonia\"], \"235\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Pleural_Thickening\"], \"236\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Cardiomegaly\"], \"237\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Nodule\"], \"238\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Mass\"], \"239\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Hernia\"], \"240\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:overall_pathology\"], \"241\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Atelectasis\"], \"242\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Consolidation\"], \"243\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Infiltration\"], \"244\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Pneumothorax\"], \"245\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Edema\"], \"246\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Emphysema\"], \"247\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Fibrosis\"], \"248\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Effusion\"], \"249\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Pneumonia\"], \"250\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Pleural_Thickening\"], \"251\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Cardiomegaly\"], \"252\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Nodule\"], \"253\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Mass\"], \"254\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Hernia\"], \"255\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:overall_pathology\"], \"256\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Atelectasis\"], \"257\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Consolidation\"], \"258\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Infiltration\"], \"259\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Pneumothorax\"], \"260\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Edema\"], \"261\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Emphysema\"], \"262\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Fibrosis\"], \"263\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Effusion\"], \"264\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Pneumonia\"], \"265\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Pleural_Thickening\"], \"266\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Cardiomegaly\"], \"267\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Nodule\"], \"268\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Mass\"], \"269\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Hernia\"], \"270\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:overall_pathology\"], \"271\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Atelectasis\"], \"272\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Consolidation\"], \"273\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Infiltration\"], \"274\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Pneumothorax\"], \"275\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Edema\"], \"276\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Emphysema\"], \"277\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Fibrosis\"], \"278\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Effusion\"], \"279\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Pneumonia\"], \"280\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Pleural_Thickening\"], \"281\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Cardiomegaly\"], \"282\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Nodule\"], \"283\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Mass\"], \"284\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Hernia\"], \"285\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:overall_pathology\"], \"286\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Atelectasis\"], \"287\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Consolidation\"], \"288\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Infiltration\"], \"289\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Pneumothorax\"], \"290\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Edema\"], \"291\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Emphysema\"], \"292\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Fibrosis\"], \"293\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Effusion\"], \"294\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Pneumonia\"], \"295\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Pleural_Thickening\"], \"296\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Cardiomegaly\"], \"297\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Nodule\"], \"298\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Mass\"], \"299\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Hernia\"], \"300\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:overall_pathology\"], \"301\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Atelectasis\"], \"302\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Consolidation\"], \"303\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Infiltration\"], \"304\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Pneumothorax\"], \"305\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Edema\"], \"306\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Emphysema\"], \"307\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Fibrosis\"], \"308\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Effusion\"], \"309\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Pneumonia\"], \"310\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Pleural_Thickening\"], \"311\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Cardiomegaly\"], \"312\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Nodule\"], \"313\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Mass\"], \"314\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Hernia\"], \"315\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:overall_pathology\"], \"316\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Atelectasis\"], \"317\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Consolidation\"], \"318\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Infiltration\"], \"319\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Pneumothorax\"], \"320\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Edema\"], \"321\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Emphysema\"], \"322\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Fibrosis\"], \"323\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Effusion\"], \"324\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Pneumonia\"], \"325\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Pleural_Thickening\"], \"326\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Cardiomegaly\"], \"327\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Nodule\"], \"328\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Mass\"], \"329\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Hernia\"], \"330\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:overall_pathology\"], \"331\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Atelectasis\"], \"332\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Consolidation\"], \"333\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Infiltration\"], \"334\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Pneumothorax\"], \"335\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Edema\"], \"336\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Emphysema\"], \"337\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Fibrosis\"], \"338\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Effusion\"], \"339\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Pneumonia\"], \"340\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Pleural_Thickening\"], \"341\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Cardiomegaly\"], \"342\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Nodule\"], \"343\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Mass\"], \"344\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Hernia\"], \"345\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:overall_pathology\"], \"346\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Atelectasis\"], \"347\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Consolidation\"], \"348\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Infiltration\"], \"349\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Pneumothorax\"], \"350\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Edema\"], \"351\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Emphysema\"], \"352\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Fibrosis\"], \"353\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Effusion\"], \"354\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Pneumonia\"], \"355\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Pleural_Thickening\"], \"356\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Cardiomegaly\"], \"357\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Nodule\"], \"358\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Mass\"], \"359\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Hernia\"], \"360\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:overall_pathology\"], \"361\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Atelectasis\"], \"362\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Consolidation\"], \"363\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Infiltration\"], \"364\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Pneumothorax\"], \"365\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Edema\"], \"366\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Emphysema\"], \"367\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Fibrosis\"], \"368\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Effusion\"], \"369\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Pneumonia\"], \"370\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Pleural_Thickening\"], \"371\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Cardiomegaly\"], \"372\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Nodule\"], \"373\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Mass\"], \"374\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Hernia\"], \"375\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:overall_pathology\"], \"376\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Atelectasis\"], \"377\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Consolidation\"], \"378\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Infiltration\"], \"379\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Pneumothorax\"], \"380\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Edema\"], \"381\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Emphysema\"], \"382\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Fibrosis\"], \"383\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Effusion\"], \"384\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Pneumonia\"], \"385\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Pleural_Thickening\"], \"386\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Cardiomegaly\"], \"387\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Nodule\"], \"388\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Mass\"], \"389\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Hernia\"], \"390\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:overall_pathology\"], \"391\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Atelectasis\"], \"392\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Consolidation\"], \"393\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Infiltration\"], \"394\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Pneumothorax\"], \"395\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Edema\"], \"396\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Emphysema\"], \"397\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Fibrosis\"], \"398\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Effusion\"], \"399\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Pneumonia\"], \"400\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Pleural_Thickening\"], \"401\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Cardiomegaly\"], \"402\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Nodule\"], \"403\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Mass\"], \"404\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Hernia\"], \"405\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:overall_pathology\"], \"406\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Atelectasis\"], \"407\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Consolidation\"], \"408\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Infiltration\"], \"409\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Pneumothorax\"], \"410\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Edema\"], \"411\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Emphysema\"], \"412\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Fibrosis\"], \"413\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Effusion\"], \"414\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Pneumonia\"], \"415\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Pleural_Thickening\"], \"416\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Cardiomegaly\"], \"417\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Nodule\"], \"418\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Mass\"], \"419\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Hernia\"], \"420\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:overall_pathology\"], \"421\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Atelectasis\"], \"422\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Consolidation\"], \"423\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Infiltration\"], \"424\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Pneumothorax\"], \"425\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Edema\"], \"426\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Emphysema\"], \"427\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Fibrosis\"], \"428\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Effusion\"], \"429\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Pneumonia\"], \"430\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Pleural_Thickening\"], \"431\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Cardiomegaly\"], \"432\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Nodule\"], \"433\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Mass\"], \"434\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Hernia\"], \"435\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:overall_pathology\"], \"436\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Atelectasis\"], \"437\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Consolidation\"], \"438\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Infiltration\"], \"439\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Pneumothorax\"], \"440\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Edema\"], \"441\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Emphysema\"], \"442\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Fibrosis\"], \"443\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Effusion\"], \"444\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Pneumonia\"], \"445\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Pleural_Thickening\"], \"446\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Cardiomegaly\"], \"447\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Nodule\"], \"448\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Mass\"], \"449\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Hernia\"], \"450\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:overall_pathology\"], \"451\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Atelectasis\"], \"452\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Consolidation\"], \"453\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Infiltration\"], \"454\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Pneumothorax\"], \"455\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Edema\"], \"456\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Emphysema\"], \"457\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Fibrosis\"], \"458\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Effusion\"], \"459\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Pneumonia\"], \"460\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Pleural_Thickening\"], \"461\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Cardiomegaly\"], \"462\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Nodule\"], \"463\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Mass\"], \"464\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Hernia\"], \"465\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:overall_pathology\"], \"466\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Atelectasis\"], \"467\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Consolidation\"], \"468\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Infiltration\"], \"469\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Pneumothorax\"], \"470\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Edema\"], \"471\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Emphysema\"], \"472\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Fibrosis\"], \"473\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Effusion\"], \"474\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Pneumonia\"], \"475\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Pleural_Thickening\"], \"476\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Cardiomegaly\"], \"477\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Nodule\"], \"478\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Mass\"], \"479\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Hernia\"], \"480\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:overall_pathology\"], \"481\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Atelectasis\"], \"482\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Consolidation\"], \"483\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Infiltration\"], \"484\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Pneumothorax\"], \"485\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Edema\"], \"486\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Emphysema\"], \"487\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Fibrosis\"], \"488\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Effusion\"], \"489\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Pneumonia\"], \"490\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Pleural_Thickening\"], \"491\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Cardiomegaly\"], \"492\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Nodule\"], \"493\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Mass\"], \"494\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Hernia\"], \"495\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:overall_pathology\"], \"496\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Atelectasis\"], \"497\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Consolidation\"], \"498\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Infiltration\"], \"499\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Pneumothorax\"], \"500\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Edema\"], \"501\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Emphysema\"], \"502\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Fibrosis\"], \"503\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Effusion\"], \"504\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Pneumonia\"], \"505\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Pleural_Thickening\"], \"506\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Cardiomegaly\"], \"507\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Nodule\"], \"508\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Mass\"], \"509\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Hernia\"], \"510\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:overall_pathology\"], \"511\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Atelectasis\"], \"512\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Consolidation\"], \"513\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Infiltration\"], \"514\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Pneumothorax\"], \"515\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Edema\"], \"516\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Emphysema\"], \"517\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Fibrosis\"], \"518\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Effusion\"], \"519\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Pneumonia\"], \"520\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Pleural_Thickening\"], \"521\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Cardiomegaly\"], \"522\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Nodule\"], \"523\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Mass\"], \"524\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Hernia\"], \"525\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:overall_pathology\"], \"526\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Atelectasis\"], \"527\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Consolidation\"], \"528\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Infiltration\"], \"529\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Pneumothorax\"], \"530\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Edema\"], \"531\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Emphysema\"], \"532\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Fibrosis\"], \"533\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Effusion\"], \"534\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Pneumonia\"], \"535\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Pleural_Thickening\"], \"536\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Cardiomegaly\"], \"537\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Nodule\"], \"538\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Mass\"], \"539\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Hernia\"], \"540\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:overall_Patient Age\", \"pathology:overall_pathology\", \"Patient Gender:overall_Patient Gender\"], \"541\": [\"metric:Positive Predictive Value (PPV)\", \"pathology:Atelectasis\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"542\": [\"metric:Positive Predictive Value (PPV)\", \"pathology:Consolidation\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"543\": [\"metric:Positive Predictive Value (PPV)\", \"pathology:Infiltration\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"544\": [\"metric:Positive Predictive Value (PPV)\", \"pathology:Pneumothorax\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"545\": [\"metric:Positive Predictive Value (PPV)\", \"pathology:Edema\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"546\": [\"metric:Positive Predictive Value (PPV)\", \"pathology:Emphysema\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"547\": [\"metric:Positive Predictive Value (PPV)\", \"pathology:Fibrosis\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"548\": [\"metric:Positive Predictive Value (PPV)\", \"pathology:Effusion\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"549\": [\"metric:Positive Predictive Value (PPV)\", \"pathology:Pneumonia\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"550\": [\"metric:Positive Predictive Value (PPV)\", \"pathology:Pleural_Thickening\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"551\": [\"metric:Positive Predictive Value (PPV)\", \"pathology:Cardiomegaly\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"552\": [\"metric:Positive Predictive Value (PPV)\", \"pathology:Nodule\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"553\": [\"metric:Positive Predictive Value (PPV)\", \"pathology:Mass\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"554\": [\"metric:Positive Predictive Value (PPV)\", \"pathology:Hernia\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"555\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:overall_Patient Age\", \"pathology:overall_pathology\", \"Patient Gender:overall_Patient Gender\"], \"556\": [\"metric:Negative Predictive Value (NPV)\", \"pathology:Atelectasis\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"557\": [\"metric:Negative Predictive Value (NPV)\", \"pathology:Consolidation\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"558\": [\"metric:Negative Predictive Value (NPV)\", \"pathology:Infiltration\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"559\": [\"metric:Negative Predictive Value (NPV)\", \"pathology:Pneumothorax\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"560\": [\"metric:Negative Predictive Value (NPV)\", \"pathology:Edema\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"561\": [\"metric:Negative Predictive Value (NPV)\", \"pathology:Emphysema\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"562\": [\"metric:Negative Predictive Value (NPV)\", \"pathology:Fibrosis\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"563\": [\"metric:Negative Predictive Value (NPV)\", \"pathology:Effusion\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"564\": [\"metric:Negative Predictive Value (NPV)\", \"pathology:Pneumonia\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"565\": [\"metric:Negative Predictive Value (NPV)\", \"pathology:Pleural_Thickening\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"566\": [\"metric:Negative Predictive Value (NPV)\", \"pathology:Cardiomegaly\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"567\": [\"metric:Negative Predictive Value (NPV)\", \"pathology:Nodule\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"568\": [\"metric:Negative Predictive Value (NPV)\", \"pathology:Mass\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"569\": [\"metric:Negative Predictive Value (NPV)\", \"pathology:Hernia\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"570\": [\"metric:Sensitivity\", \"Patient Age:overall_Patient Age\", \"pathology:overall_pathology\", \"Patient Gender:overall_Patient Gender\"], \"571\": [\"metric:Sensitivity\", \"pathology:Atelectasis\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"572\": [\"metric:Sensitivity\", \"pathology:Consolidation\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"573\": [\"metric:Sensitivity\", \"pathology:Infiltration\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"574\": [\"metric:Sensitivity\", \"pathology:Pneumothorax\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"575\": [\"metric:Sensitivity\", \"pathology:Edema\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"576\": [\"metric:Sensitivity\", \"pathology:Emphysema\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"577\": [\"metric:Sensitivity\", \"pathology:Fibrosis\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"578\": [\"metric:Sensitivity\", \"pathology:Effusion\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"579\": [\"metric:Sensitivity\", \"pathology:Pneumonia\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"580\": [\"metric:Sensitivity\", \"pathology:Pleural_Thickening\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"581\": [\"metric:Sensitivity\", \"pathology:Cardiomegaly\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"582\": [\"metric:Sensitivity\", \"pathology:Nodule\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"583\": [\"metric:Sensitivity\", \"pathology:Mass\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"584\": [\"metric:Sensitivity\", \"pathology:Hernia\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"585\": [\"metric:Specificity\", \"Patient Age:overall_Patient Age\", \"pathology:overall_pathology\", \"Patient Gender:overall_Patient Gender\"], \"586\": [\"metric:Specificity\", \"pathology:Atelectasis\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"587\": [\"metric:Specificity\", \"pathology:Consolidation\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"588\": [\"metric:Specificity\", \"pathology:Infiltration\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"589\": [\"metric:Specificity\", \"pathology:Pneumothorax\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"590\": [\"metric:Specificity\", \"pathology:Edema\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"591\": [\"metric:Specificity\", \"pathology:Emphysema\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"592\": [\"metric:Specificity\", \"pathology:Fibrosis\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"593\": [\"metric:Specificity\", \"pathology:Effusion\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"594\": [\"metric:Specificity\", \"pathology:Pneumonia\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"595\": [\"metric:Specificity\", \"pathology:Pleural_Thickening\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"596\": [\"metric:Specificity\", \"pathology:Cardiomegaly\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"597\": [\"metric:Specificity\", \"pathology:Nodule\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"598\": [\"metric:Specificity\", \"pathology:Mass\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"599\": [\"metric:Specificity\", \"pathology:Hernia\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"600\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:M\", \"Patient Age:overall_Patient Age\", \"pathology:overall_pathology\"], \"601\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:M\", \"pathology:Atelectasis\", \"Patient Age:overall_Patient Age\"], \"602\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:M\", \"pathology:Consolidation\", \"Patient Age:overall_Patient Age\"], \"603\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:M\", \"pathology:Infiltration\", \"Patient Age:overall_Patient Age\"], \"604\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:M\", \"pathology:Pneumothorax\", \"Patient Age:overall_Patient Age\"], \"605\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:M\", \"pathology:Edema\", \"Patient Age:overall_Patient Age\"], \"606\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:M\", \"pathology:Emphysema\", \"Patient Age:overall_Patient Age\"], \"607\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:M\", \"pathology:Fibrosis\", \"Patient Age:overall_Patient Age\"], \"608\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:M\", \"pathology:Effusion\", \"Patient Age:overall_Patient Age\"], \"609\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:M\", \"pathology:Pneumonia\", \"Patient Age:overall_Patient Age\"], \"610\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:M\", \"pathology:Pleural_Thickening\", \"Patient Age:overall_Patient Age\"], \"611\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:M\", \"pathology:Cardiomegaly\", \"Patient Age:overall_Patient Age\"], \"612\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:M\", \"pathology:Nodule\", \"Patient Age:overall_Patient Age\"], \"613\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:M\", \"pathology:Mass\", \"Patient Age:overall_Patient Age\"], \"614\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:M\", \"pathology:Hernia\", \"Patient Age:overall_Patient Age\"], \"615\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:M\", \"Patient Age:overall_Patient Age\", \"pathology:overall_pathology\"], \"616\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:M\", \"pathology:Atelectasis\", \"Patient Age:overall_Patient Age\"], \"617\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:M\", \"pathology:Consolidation\", \"Patient Age:overall_Patient Age\"], \"618\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:M\", \"pathology:Infiltration\", \"Patient Age:overall_Patient Age\"], \"619\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:M\", \"pathology:Pneumothorax\", \"Patient Age:overall_Patient Age\"], \"620\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:M\", \"pathology:Edema\", \"Patient Age:overall_Patient Age\"], \"621\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:M\", \"pathology:Emphysema\", \"Patient Age:overall_Patient Age\"], \"622\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:M\", \"pathology:Fibrosis\", \"Patient Age:overall_Patient Age\"], \"623\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:M\", \"pathology:Effusion\", \"Patient Age:overall_Patient Age\"], \"624\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:M\", \"pathology:Pneumonia\", \"Patient Age:overall_Patient Age\"], \"625\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:M\", \"pathology:Pleural_Thickening\", \"Patient Age:overall_Patient Age\"], \"626\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:M\", \"pathology:Cardiomegaly\", \"Patient Age:overall_Patient Age\"], \"627\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:M\", \"pathology:Nodule\", \"Patient Age:overall_Patient Age\"], \"628\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:M\", \"pathology:Mass\", \"Patient Age:overall_Patient Age\"], \"629\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:M\", \"pathology:Hernia\", \"Patient Age:overall_Patient Age\"], \"630\": [\"metric:Sensitivity\", \"Patient Gender:M\", \"Patient Age:overall_Patient Age\", \"pathology:overall_pathology\"], \"631\": [\"metric:Sensitivity\", \"Patient Gender:M\", \"pathology:Atelectasis\", \"Patient Age:overall_Patient Age\"], \"632\": [\"metric:Sensitivity\", \"Patient Gender:M\", \"pathology:Consolidation\", \"Patient Age:overall_Patient Age\"], \"633\": [\"metric:Sensitivity\", \"Patient Gender:M\", \"pathology:Infiltration\", \"Patient Age:overall_Patient Age\"], \"634\": [\"metric:Sensitivity\", \"Patient Gender:M\", \"pathology:Pneumothorax\", \"Patient Age:overall_Patient Age\"], \"635\": [\"metric:Sensitivity\", \"Patient Gender:M\", \"pathology:Edema\", \"Patient Age:overall_Patient Age\"], \"636\": [\"metric:Sensitivity\", \"Patient Gender:M\", \"pathology:Emphysema\", \"Patient Age:overall_Patient Age\"], \"637\": [\"metric:Sensitivity\", \"Patient Gender:M\", \"pathology:Fibrosis\", \"Patient Age:overall_Patient Age\"], \"638\": [\"metric:Sensitivity\", \"Patient Gender:M\", \"pathology:Effusion\", \"Patient Age:overall_Patient Age\"], \"639\": [\"metric:Sensitivity\", \"Patient Gender:M\", \"pathology:Pneumonia\", \"Patient Age:overall_Patient Age\"], \"640\": [\"metric:Sensitivity\", \"Patient Gender:M\", \"pathology:Pleural_Thickening\", \"Patient Age:overall_Patient Age\"], \"641\": [\"metric:Sensitivity\", \"Patient Gender:M\", \"pathology:Cardiomegaly\", \"Patient Age:overall_Patient Age\"], \"642\": [\"metric:Sensitivity\", \"Patient Gender:M\", \"pathology:Nodule\", \"Patient Age:overall_Patient Age\"], \"643\": [\"metric:Sensitivity\", \"Patient Gender:M\", \"pathology:Mass\", \"Patient Age:overall_Patient Age\"], \"644\": [\"metric:Sensitivity\", \"Patient Gender:M\", \"pathology:Hernia\", \"Patient Age:overall_Patient Age\"], \"645\": [\"metric:Specificity\", \"Patient Gender:M\", \"Patient Age:overall_Patient Age\", \"pathology:overall_pathology\"], \"646\": [\"metric:Specificity\", \"Patient Gender:M\", \"pathology:Atelectasis\", \"Patient Age:overall_Patient Age\"], \"647\": [\"metric:Specificity\", \"Patient Gender:M\", \"pathology:Consolidation\", \"Patient Age:overall_Patient Age\"], \"648\": [\"metric:Specificity\", \"Patient Gender:M\", \"pathology:Infiltration\", \"Patient Age:overall_Patient Age\"], \"649\": [\"metric:Specificity\", \"Patient Gender:M\", \"pathology:Pneumothorax\", \"Patient Age:overall_Patient Age\"], \"650\": [\"metric:Specificity\", \"Patient Gender:M\", \"pathology:Edema\", \"Patient Age:overall_Patient Age\"], \"651\": [\"metric:Specificity\", \"Patient Gender:M\", \"pathology:Emphysema\", \"Patient Age:overall_Patient Age\"], \"652\": [\"metric:Specificity\", \"Patient Gender:M\", \"pathology:Fibrosis\", \"Patient Age:overall_Patient Age\"], \"653\": [\"metric:Specificity\", \"Patient Gender:M\", \"pathology:Effusion\", \"Patient Age:overall_Patient Age\"], \"654\": [\"metric:Specificity\", \"Patient Gender:M\", \"pathology:Pneumonia\", \"Patient Age:overall_Patient Age\"], \"655\": [\"metric:Specificity\", \"Patient Gender:M\", \"pathology:Pleural_Thickening\", \"Patient Age:overall_Patient Age\"], \"656\": [\"metric:Specificity\", \"Patient Gender:M\", \"pathology:Cardiomegaly\", \"Patient Age:overall_Patient Age\"], \"657\": [\"metric:Specificity\", \"Patient Gender:M\", \"pathology:Nodule\", \"Patient Age:overall_Patient Age\"], \"658\": [\"metric:Specificity\", \"Patient Gender:M\", \"pathology:Mass\", \"Patient Age:overall_Patient Age\"], \"659\": [\"metric:Specificity\", \"Patient Gender:M\", \"pathology:Hernia\", \"Patient Age:overall_Patient Age\"], \"660\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:F\", \"Patient Age:overall_Patient Age\", \"pathology:overall_pathology\"], \"661\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:F\", \"pathology:Atelectasis\", \"Patient Age:overall_Patient Age\"], \"662\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:F\", \"pathology:Consolidation\", \"Patient Age:overall_Patient Age\"], \"663\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:F\", \"pathology:Infiltration\", \"Patient Age:overall_Patient Age\"], \"664\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:F\", \"pathology:Pneumothorax\", \"Patient Age:overall_Patient Age\"], \"665\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:F\", \"pathology:Edema\", \"Patient Age:overall_Patient Age\"], \"666\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:F\", \"pathology:Emphysema\", \"Patient Age:overall_Patient Age\"], \"667\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:F\", \"pathology:Fibrosis\", \"Patient Age:overall_Patient Age\"], \"668\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:F\", \"pathology:Effusion\", \"Patient Age:overall_Patient Age\"], \"669\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:F\", \"pathology:Pneumonia\", \"Patient Age:overall_Patient Age\"], \"670\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:F\", \"pathology:Pleural_Thickening\", \"Patient Age:overall_Patient Age\"], \"671\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:F\", \"pathology:Cardiomegaly\", \"Patient Age:overall_Patient Age\"], \"672\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:F\", \"pathology:Nodule\", \"Patient Age:overall_Patient Age\"], \"673\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:F\", \"pathology:Mass\", \"Patient Age:overall_Patient Age\"], \"674\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:F\", \"pathology:Hernia\", \"Patient Age:overall_Patient Age\"], \"675\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:F\", \"Patient Age:overall_Patient Age\", \"pathology:overall_pathology\"], \"676\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:F\", \"pathology:Atelectasis\", \"Patient Age:overall_Patient Age\"], \"677\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:F\", \"pathology:Consolidation\", \"Patient Age:overall_Patient Age\"], \"678\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:F\", \"pathology:Infiltration\", \"Patient Age:overall_Patient Age\"], \"679\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:F\", \"pathology:Pneumothorax\", \"Patient Age:overall_Patient Age\"], \"680\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:F\", \"pathology:Edema\", \"Patient Age:overall_Patient Age\"], \"681\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:F\", \"pathology:Emphysema\", \"Patient Age:overall_Patient Age\"], \"682\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:F\", \"pathology:Fibrosis\", \"Patient Age:overall_Patient Age\"], \"683\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:F\", \"pathology:Effusion\", \"Patient Age:overall_Patient Age\"], \"684\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:F\", \"pathology:Pneumonia\", \"Patient Age:overall_Patient Age\"], \"685\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:F\", \"pathology:Pleural_Thickening\", \"Patient Age:overall_Patient Age\"], \"686\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:F\", \"pathology:Cardiomegaly\", \"Patient Age:overall_Patient Age\"], \"687\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:F\", \"pathology:Nodule\", \"Patient Age:overall_Patient Age\"], \"688\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:F\", \"pathology:Mass\", \"Patient Age:overall_Patient Age\"], \"689\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:F\", \"pathology:Hernia\", \"Patient Age:overall_Patient Age\"], \"690\": [\"metric:Sensitivity\", \"Patient Gender:F\", \"Patient Age:overall_Patient Age\", \"pathology:overall_pathology\"], \"691\": [\"metric:Sensitivity\", \"Patient Gender:F\", \"pathology:Atelectasis\", \"Patient Age:overall_Patient Age\"], \"692\": [\"metric:Sensitivity\", \"Patient Gender:F\", \"pathology:Consolidation\", \"Patient Age:overall_Patient Age\"], \"693\": [\"metric:Sensitivity\", \"Patient Gender:F\", \"pathology:Infiltration\", \"Patient Age:overall_Patient Age\"], \"694\": [\"metric:Sensitivity\", \"Patient Gender:F\", \"pathology:Pneumothorax\", \"Patient Age:overall_Patient Age\"], \"695\": [\"metric:Sensitivity\", \"Patient Gender:F\", \"pathology:Edema\", \"Patient Age:overall_Patient Age\"], \"696\": [\"metric:Sensitivity\", \"Patient Gender:F\", \"pathology:Emphysema\", \"Patient Age:overall_Patient Age\"], \"697\": [\"metric:Sensitivity\", \"Patient Gender:F\", \"pathology:Fibrosis\", \"Patient Age:overall_Patient Age\"], \"698\": [\"metric:Sensitivity\", \"Patient Gender:F\", \"pathology:Effusion\", \"Patient Age:overall_Patient Age\"], \"699\": [\"metric:Sensitivity\", \"Patient Gender:F\", \"pathology:Pneumonia\", \"Patient Age:overall_Patient Age\"], \"700\": [\"metric:Sensitivity\", \"Patient Gender:F\", \"pathology:Pleural_Thickening\", \"Patient Age:overall_Patient Age\"], \"701\": [\"metric:Sensitivity\", \"Patient Gender:F\", \"pathology:Cardiomegaly\", \"Patient Age:overall_Patient Age\"], \"702\": [\"metric:Sensitivity\", \"Patient Gender:F\", \"pathology:Nodule\", \"Patient Age:overall_Patient Age\"], \"703\": [\"metric:Sensitivity\", \"Patient Gender:F\", \"pathology:Mass\", \"Patient Age:overall_Patient Age\"], \"704\": [\"metric:Sensitivity\", \"Patient Gender:F\", \"pathology:Hernia\", \"Patient Age:overall_Patient Age\"], \"705\": [\"metric:Specificity\", \"Patient Gender:F\", \"Patient Age:overall_Patient Age\", \"pathology:overall_pathology\"], \"706\": [\"metric:Specificity\", \"Patient Gender:F\", \"pathology:Atelectasis\", \"Patient Age:overall_Patient Age\"], \"707\": [\"metric:Specificity\", \"Patient Gender:F\", \"pathology:Consolidation\", \"Patient Age:overall_Patient Age\"], \"708\": [\"metric:Specificity\", \"Patient Gender:F\", \"pathology:Infiltration\", \"Patient Age:overall_Patient Age\"], \"709\": [\"metric:Specificity\", \"Patient Gender:F\", \"pathology:Pneumothorax\", \"Patient Age:overall_Patient Age\"], \"710\": [\"metric:Specificity\", \"Patient Gender:F\", \"pathology:Edema\", \"Patient Age:overall_Patient Age\"], \"711\": [\"metric:Specificity\", \"Patient Gender:F\", \"pathology:Emphysema\", \"Patient Age:overall_Patient Age\"], \"712\": [\"metric:Specificity\", \"Patient Gender:F\", \"pathology:Fibrosis\", \"Patient Age:overall_Patient Age\"], \"713\": [\"metric:Specificity\", \"Patient Gender:F\", \"pathology:Effusion\", \"Patient Age:overall_Patient Age\"], \"714\": [\"metric:Specificity\", \"Patient Gender:F\", \"pathology:Pneumonia\", \"Patient Age:overall_Patient Age\"], \"715\": [\"metric:Specificity\", \"Patient Gender:F\", \"pathology:Pleural_Thickening\", \"Patient Age:overall_Patient Age\"], \"716\": [\"metric:Specificity\", \"Patient Gender:F\", \"pathology:Cardiomegaly\", \"Patient Age:overall_Patient Age\"], \"717\": [\"metric:Specificity\", \"Patient Gender:F\", \"pathology:Nodule\", \"Patient Age:overall_Patient Age\"], \"718\": [\"metric:Specificity\", \"Patient Gender:F\", \"pathology:Mass\", \"Patient Age:overall_Patient Age\"], \"719\": [\"metric:Specificity\", \"Patient Gender:F\", \"pathology:Hernia\", \"Patient Age:overall_Patient Age\"]}"); + var histories_all = JSON.parse("{\"0\": [\"0.15167980673960318\", \"0.14129280028530336\", \"0.15995072768185709\", \"0.1258001490759194\"], \"1\": [\"0.30952380952380953\", \"0.3939393939393939\", \"0.32653061224489793\", \"0.20689655172413793\"], \"2\": [\"0.10714285714285714\", \"0.17777777777777778\", \"0.06896551724137931\", \"0.026845637583892617\"], \"3\": [\"0.4426229508196721\", \"0.42592592592592593\", \"0.647887323943662\", \"0.3712121212121212\"], \"4\": [\"0.047619047619047616\", \"0.05\", \"0.06\", \"0.4112903225806452\"], \"5\": [\"0.1276595744680851\", \"0.023255813953488372\", \"0.020833333333333332\", \"0.06422018348623854\"], \"6\": [\"0.027777777777777776\", \"0.0\", \"0.027777777777777776\", \"0.01834862385321101\"], \"7\": [\"0.041666666666666664\", \"0.0\", \"0.09375\", \"0.05102040816326531\"], \"8\": [\"0.36363636363636365\", \"0.48148148148148145\", \"0.43902439024390244\", \"0.17708333333333334\"], \"9\": [\"0.0\", \"0.02857142857142857\", \"0.045454545454545456\", \"0.03787878787878788\"], \"10\": [\"0.06451612903225806\", \"0.07407407407407407\", \"0.05\", \"0.16822429906542055\"], \"11\": [\"0.2962962962962963\", \"0.15789473684210525\", \"0.12\", \"0.1\"], \"12\": [\"0.05263157894736842\", \"0.09375\", \"0.175\", \"0.06818181818181818\"], \"13\": [\"0.24242424242424243\", \"0.07142857142857142\", \"0.10526315789473684\", \"0.06\"], \"14\": [\"0.0\", \"0.0\", \"0.058823529411764705\", \"0.0\"], \"15\": [\"0.948161213119298\", \"0.9395606461176224\", \"0.937037604089962\", \"0.9041296306770732\"], \"16\": [\"0.9285714285714286\", \"0.9642857142857143\", \"0.8823529411764706\", \"0.9230769230769231\"], \"17\": [\"1.0\", \"1.0\", \"1.0\", \"0.8333333333333334\"], \"18\": [\"0.7777777777777778\", \"0.5714285714285714\", \"0.5833333333333334\", \"0.6521739130434783\"], \"19\": [\"0.9285714285714286\", \"0.9047619047619048\", \"1.0\", \"0.7096774193548387\"], \"20\": [\"1.0\", \"1.0\", \"0.9714285714285714\", \"1.0\"], \"21\": [\"0.9705882352941176\", \"0.96875\", \"0.9787234042553191\", \"0.8260869565217391\"], \"22\": [\"0.9347826086956522\", \"1.0\", \"0.9803921568627451\", \"0.9649122807017544\"], \"23\": [\"0.9615384615384616\", \"0.9117647058823529\", \"0.8809523809523809\", \"0.9491525423728814\"], \"24\": [\"0.967741935483871\", \"0.9615384615384616\", \"1.0\", \"0.9130434782608695\"], \"25\": [\"0.9487179487179487\", \"0.9705882352941176\", \"1.0\", \"0.9791666666666666\"], \"26\": [\"0.9767441860465116\", \"1.0\", \"1.0\", \"1.0\"], \"27\": [\"0.90625\", \"0.9310344827586207\", \"0.9302325581395349\", \"0.9253731343283582\"], \"28\": [\"0.972972972972973\", \"0.9696969696969697\", \"0.9111111111111111\", \"0.9818181818181818\"], \"29\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"30\": [\"0.61904681412795\", \"0.6113585818942961\", \"0.816754962854707\", \"0.7305053759940978\"], \"31\": [\"0.8666666666666667\", \"0.9285714285714286\", \"0.8\", \"0.8888888888888888\"], \"32\": [\"1.0\", \"1.0\", \"1.0\", \"0.8\"], \"33\": [\"0.9310344827586207\", \"0.8846153846153846\", \"0.9019607843137255\", \"0.8596491228070176\"], \"34\": [\"0.5\", \"0.5\", \"1.0\", \"0.85\"], \"35\": [\"1.0\", \"1.0\", \"0.5\", \"1.0\"], \"36\": [\"0.5\", \"0.0\", \"0.5\", \"0.2\"], \"37\": [\"0.25\", \"0.0\", \"0.75\", \"0.7142857142857143\"], \"38\": [\"0.9411764705882353\", \"0.8125\", \"0.782608695652174\", \"0.85\"], \"39\": [\"0.0\", \"0.5\", \"1.0\", \"0.7142857142857143\"], \"40\": [\"0.5\", \"0.6666666666666666\", \"1.0\", \"0.9473684210526315\"], \"41\": [\"0.8888888888888888\", \"1.0\", \"1.0\", \"1.0\"], \"42\": [\"0.4\", \"0.6\", \"0.7\", \"0.5454545454545454\"], \"43\": [\"0.8888888888888888\", \"0.6666666666666666\", \"0.5\", \"0.8571428571428571\"], \"44\": [\"0.0\", \"0.0\", \"1.0\", \"0.0\"], \"45\": [\"0.46336563851831164\", \"0.48289690046395356\", \"0.5070017410868425\", \"0.3276357598055654\"], \"46\": [\"0.4727272727272727\", \"0.574468085106383\", \"0.47619047619047616\", \"0.28125\"], \"47\": [\"0.21875\", \"0.3018867924528302\", \"0.31645569620253167\", \"0.03333333333333333\"], \"48\": [\"0.17073170731707318\", \"0.11428571428571428\", \"0.21875\", \"0.15306122448979592\"], \"49\": [\"0.3939393939393939\", \"0.3333333333333333\", \"0.4125\", \"0.23157894736842105\"], \"50\": [\"0.359375\", \"0.3\", \"0.41975308641975306\", \"0.3108108108108108\"], \"51\": [\"0.4852941176470588\", \"0.5166666666666667\", \"0.5679012345679012\", \"0.2620689655172414\"], \"52\": [\"0.6515151515151515\", \"0.5245901639344263\", \"0.6329113924050633\", \"0.3716216216216216\"], \"53\": [\"0.4716981132075472\", \"0.6888888888888889\", \"0.6166666666666667\", \"0.4148148148148148\"], \"54\": [\"0.43478260869565216\", \"0.423728813559322\", \"0.48148148148148145\", \"0.14189189189189189\"], \"55\": [\"0.5606060606060606\", \"0.5689655172413793\", \"0.5308641975308642\", \"0.34558823529411764\"], \"56\": [\"0.6885245901639344\", \"0.7241379310344828\", \"0.725\", \"0.7615894039735099\"], \"57\": [\"0.4461538461538462\", \"0.48214285714285715\", \"0.547945205479452\", \"0.4305555555555556\"], \"58\": [\"0.5901639344262295\", \"0.5517241379310345\", \"0.5466666666666666\", \"0.36486486486486486\"], \"59\": [\"0.5428571428571428\", \"0.6557377049180327\", \"0.6049382716049383\", \"0.4838709677419355\"], \"60\": [\"0.1390022332304764\", \"0.12461397321555136\", \"0.14317050475245158\", \"0.14359228947856187\"], \"61\": [\"0.27218934911242604\", \"0.22981366459627328\", \"0.29931972789115646\", \"0.24516129032258063\"], \"62\": [\"0.11578947368421053\", \"0.08994708994708994\", \"0.09142857142857143\", \"0.1206896551724138\"], \"63\": [\"0.38388625592417064\", \"0.3736842105263158\", \"0.40641711229946526\", \"0.3813559322033898\"], \"64\": [\"0.0425531914893617\", \"0.08\", \"0.06944444444444445\", \"0.13653136531365315\"], \"65\": [\"0.030303030303030304\", \"0.078125\", \"0.08870967741935484\", \"0.10380622837370242\"], \"66\": [\"0.03571428571428571\", \"0.041379310344827586\", \"0.05714285714285714\", \"0.0821917808219178\"], \"67\": [\"0.04929577464788732\", \"0.02877697841726619\", \"0.048\", \"0.05855855855855856\"], \"68\": [\"0.3969465648854962\", \"0.3492063492063492\", \"0.35\", \"0.30111524163568776\"], \"69\": [\"0.03164556962025317\", \"0.014492753623188406\", \"0.023255813953488372\", \"0.030508474576271188\"], \"70\": [\"0.06338028169014084\", \"0.06818181818181818\", \"0.1\", \"0.07228915662650602\"], \"71\": [\"0.15294117647058825\", \"0.0958904109589041\", \"0.08064516129032258\", \"0.34615384615384615\"], \"72\": [\"0.16417910447761194\", \"0.16176470588235295\", \"0.2028985507246377\", \"0.045081967213114756\"], \"73\": [\"0.2072072072072072\", \"0.13333333333333333\", \"0.17073170731707318\", \"0.08298755186721991\"], \"74\": [\"0.0\", \"0.0\", \"0.01639344262295082\", \"0.003861003861003861\"], \"75\": [\"0.9333660415310792\", \"0.9279874736119439\", \"0.9221969798271173\", \"0.9308873954815544\"], \"76\": [\"0.8160919540229885\", \"0.9066666666666666\", \"0.8369565217391305\", \"0.8571428571428571\"], \"77\": [\"1.0\", \"1.0\", \"0.953125\", \"0.9433962264150944\"], \"78\": [\"0.6666666666666666\", \"0.6956521739130435\", \"0.5961538461538461\", \"0.723404255319149\"], \"79\": [\"0.9739130434782609\", \"0.9302325581395349\", \"0.9368421052631579\", \"0.9769230769230769\"], \"80\": [\"1.0\", \"0.9907407407407407\", \"0.991304347826087\", \"1.0\"], \"81\": [\"0.9913793103448276\", \"0.967032967032967\", \"0.98989898989899\", \"0.963302752293578\"], \"82\": [\"1.0\", \"0.9690721649484536\", \"0.9736842105263158\", \"0.9832402234636871\"], \"83\": [\"0.904\", \"0.8545454545454545\", \"0.8907563025210085\", \"0.8863636363636364\"], \"84\": [\"0.9795918367346939\", \"0.9591836734693877\", \"1.0\", \"0.9716981132075472\"], \"85\": [\"0.956140350877193\", \"0.9423076923076923\", \"0.944954128440367\", \"0.9210526315789473\"], \"86\": [\"0.9941520467836257\", \"0.9877300613496932\", \"0.9887005649717514\", \"0.9067357512953368\"], \"87\": [\"0.819672131147541\", \"0.85\", \"0.8514851485148515\", \"0.9554140127388535\"], \"88\": [\"0.9655172413793104\", \"0.9482758620689655\", \"0.9568965517241379\", \"0.94375\"], \"89\": [\"1.0\", \"0.9903846153846154\", \"1.0\", \"1.0\"], \"90\": [\"0.7503805957867018\", \"0.6611691277657663\", \"0.7921130753222533\", \"0.8277562300309229\"], \"91\": [\"0.7419354838709677\", \"0.8409090909090909\", \"0.7457627118644068\", \"0.8539325842696629\"], \"92\": [\"1.0\", \"1.0\", \"0.8421052631578947\", \"0.9333333333333333\"], \"93\": [\"0.84375\", \"0.8352941176470589\", \"0.7835051546391752\", \"0.9121621621621622\"], \"94\": [\"0.6666666666666666\", \"0.6666666666666666\", \"0.625\", \"0.925\"], \"95\": [\"1.0\", \"0.9090909090909091\", \"0.9166666666666666\", \"1.0\"], \"96\": [\"0.8333333333333334\", \"0.6666666666666666\", \"0.8888888888888888\", \"0.8571428571428571\"], \"97\": [\"1.0\", \"0.5714285714285714\", \"0.6666666666666666\", \"0.8125\"], \"98\": [\"0.8125\", \"0.7333333333333333\", \"0.7636363636363637\", \"0.84375\"], \"99\": [\"0.7142857142857143\", \"0.3333333333333333\", \"1.0\", \"0.75\"], \"100\": [\"0.6428571428571429\", \"0.6\", \"0.6842105263157895\", \"0.6\"], \"101\": [\"0.9285714285714286\", \"0.7777777777777778\", \"0.7142857142857143\", \"0.8\"], \"102\": [\"0.5\", \"0.5945945945945946\", \"0.6511627906976745\", \"0.6111111111111112\"], \"103\": [\"0.8214285714285714\", \"0.7272727272727273\", \"0.8076923076923077\", \"0.6896551724137931\"], \"104\": [\"0.0\", \"0.0\", \"1.0\", \"1.0\"], \"105\": [\"0.45127331247553704\", \"0.42116439055367694\", \"0.46082969784674394\", \"0.3327267660544629\"], \"106\": [\"0.36597938144329895\", \"0.3541666666666667\", \"0.42777777777777776\", \"0.25\"], \"107\": [\"0.28205128205128205\", \"0.2146118721461187\", \"0.2772727272727273\", \"0.1404494382022472\"], \"108\": [\"0.1875\", \"0.2119205298013245\", \"0.21830985915492956\", \"0.13438735177865613\"], \"109\": [\"0.4534412955465587\", \"0.3669724770642202\", \"0.3991031390134529\", \"0.3518005540166205\"], \"110\": [\"0.49206349206349204\", \"0.47555555555555556\", \"0.5022026431718062\", \"0.3018867924528302\"], \"111\": [\"0.46\", \"0.3876651982378855\", \"0.4260869565217391\", \"0.28150134048257375\"], \"112\": [\"0.4578313253012048\", \"0.4104803493449782\", \"0.4826086956521739\", \"0.45714285714285713\"], \"113\": [\"0.5885416666666666\", \"0.5340909090909091\", \"0.5760869565217391\", \"0.3836065573770492\"], \"114\": [\"0.3855421686746988\", \"0.40869565217391307\", \"0.4661016949152542\", \"0.2647814910025707\"], \"115\": [\"0.45041322314049587\", \"0.4434389140271493\", \"0.4681818181818182\", \"0.37735849056603776\"], \"116\": [\"0.7024793388429752\", \"0.7092511013215859\", \"0.7543103448275862\", \"0.5627009646302251\"], \"117\": [\"0.4716981132075472\", \"0.4271356783919598\", \"0.4387755102040816\", \"0.391644908616188\"], \"118\": [\"0.6140350877192983\", \"0.514018691588785\", \"0.5211267605633803\", \"0.40591397849462363\"], \"119\": [\"0.40625\", \"0.43829787234042555\", \"0.4936708860759494\", \"0.355\"], \"120\": [\"0.11923455215185493\", \"0.13087699439043274\", \"0.1275230072783852\", \"0.13966226265715678\"], \"121\": [\"0.2962962962962963\", \"0.2222222222222222\", \"0.234375\", \"0.10416666666666667\"], \"122\": [\"0.01694915254237288\", \"0.07142857142857142\", \"0.06896551724137931\", \"0.12222222222222222\"], \"123\": [\"0.4098360655737705\", \"0.3389830508474576\", \"0.2459016393442623\", \"0.15053763440860216\"], \"124\": [\"0.04081632653061224\", \"0.0425531914893617\", \"0.07692307692307693\", \"0.19230769230769232\"], \"125\": [\"0.05405405405405406\", \"0.05714285714285714\", \"0.025\", \"0.0\"], \"126\": [\"0.04081632653061224\", \"0.0784313725490196\", \"0.09259259259259259\", \"0.0425531914893617\"], \"127\": [\"0.022727272727272728\", \"0.044444444444444446\", \"0.0\", \"0.10344827586206896\"], \"128\": [\"0.25\", \"0.4634146341463415\", \"0.4090909090909091\", \"0.425\"], \"129\": [\"0.021739130434782608\", \"0.046511627906976744\", \"0.018867924528301886\", \"0.012048192771084338\"], \"130\": [\"0.17073170731707318\", \"0.125\", \"0.16326530612244897\", \"0.07142857142857142\"], \"131\": [\"0.13793103448275862\", \"0.13636363636363635\", \"0.1\", \"0.3409090909090909\"], \"132\": [\"0.11363636363636363\", \"0.12244897959183673\", \"0.1836734693877551\", \"0.1016949152542373\"], \"133\": [\"0.09375\", \"0.08333333333333333\", \"0.16666666666666666\", \"0.08\"], \"134\": [\"0.0\", \"0.0\", \"0.0\", \"0.208955223880597\"], \"135\": [\"0.9388265841207017\", \"0.9136475576691024\", \"0.9344389133985408\", \"0.9467833894060748\"], \"136\": [\"0.6666666666666666\", \"1.0\", \"0.875\", \"0.9230769230769231\"], \"137\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"138\": [\"0.8\", \"0.6\", \"0.7272727272727273\", \"0.875\"], \"139\": [\"1.0\", \"0.9545454545454546\", \"0.9\", \"0.967741935483871\"], \"140\": [\"1.0\", \"0.9705882352941176\", \"1.0\", \"1.0\"], \"141\": [\"1.0\", \"1.0\", \"0.9444444444444444\", \"1.0\"], \"142\": [\"1.0\", \"0.9583333333333334\", \"1.0\", \"0.9607843137254902\"], \"143\": [\"0.9230769230769231\", \"0.7142857142857143\", \"0.9285714285714286\", \"0.7586206896551724\"], \"144\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"145\": [\"0.96\", \"0.9047619047619048\", \"0.9565217391304348\", \"0.8974358974358975\"], \"146\": [\"0.972972972972973\", \"0.9361702127659575\", \"0.9807692307692307\", \"0.8923076923076924\"], \"147\": [\"0.9090909090909091\", \"0.8\", \"0.8695652173913043\", \"0.98\"], \"148\": [\"0.9117647058823529\", \"0.9523809523809523\", \"0.9\", \"1.0\"], \"149\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"150\": [\"0.8202969649398221\", \"0.7276455026455027\", \"0.7268849206349205\", \"0.813955414020745\"], \"151\": [\"0.8\", \"1.0\", \"0.9375\", \"0.9090909090909091\"], \"152\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"153\": [\"0.9615384615384616\", \"0.8333333333333334\", \"0.8333333333333334\", \"0.875\"], \"154\": [\"1.0\", \"0.6666666666666666\", \"0.6666666666666666\", \"0.9375\"], \"155\": [\"1.0\", \"0.6666666666666666\", \"1.0\", \"0.0\"], \"156\": [\"1.0\", \"1.0\", \"0.8333333333333334\", \"1.0\"], \"157\": [\"1.0\", \"0.6666666666666666\", \"0.0\", \"0.75\"], \"158\": [\"0.8333333333333334\", \"0.7037037037037037\", \"0.9\", \"0.8292682926829268\"], \"159\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"160\": [\"0.875\", \"0.75\", \"0.8888888888888888\", \"0.5555555555555556\"], \"161\": [\"0.8\", \"0.5\", \"0.6666666666666666\", \"0.6818181818181818\"], \"162\": [\"0.7142857142857143\", \"0.6\", \"0.75\", \"0.8571428571428571\"], \"163\": [\"0.5\", \"0.8\", \"0.7\", \"1.0\"], \"164\": [\"0.0\", \"0.0\", \"0.0\", \"1.0\"], \"165\": [\"0.3331907318315955\", \"0.3450885022573568\", \"0.33442997150425285\", \"0.3311644925271136\"], \"166\": [\"0.17391304347826086\", \"0.2631578947368421\", \"0.125\", \"0.12244897959183673\"], \"167\": [\"0.1076923076923077\", \"0.2\", \"0.20588235294117646\", \"0.19387755102040816\"], \"168\": [\"0.1\", \"0.13333333333333333\", \"0.14814814814814814\", \"0.15053763440860216\"], \"169\": [\"0.265625\", \"0.3181818181818182\", \"0.2727272727272727\", \"0.3225806451612903\"], \"170\": [\"0.453125\", \"0.5\", \"0.4507042253521127\", \"0.3853211009174312\"], \"171\": [\"0.265625\", \"0.27692307692307694\", \"0.25757575757575757\", \"0.14285714285714285\"], \"172\": [\"0.3384615384615385\", \"0.3484848484848485\", \"0.2777777777777778\", \"0.48514851485148514\"], \"173\": [\"0.4444444444444444\", \"0.47619047619047616\", \"0.5\", \"0.3235294117647059\"], \"174\": [\"0.3076923076923077\", \"0.3880597014925373\", \"0.2676056338028169\", \"0.24074074074074073\"], \"175\": [\"0.41379310344827586\", \"0.3114754098360656\", \"0.3492063492063492\", \"0.35\"], \"176\": [\"0.5901639344262295\", \"0.6984126984126984\", \"0.7391304347826086\", \"0.6666666666666666\"], \"177\": [\"0.3389830508474576\", \"0.2711864406779661\", \"0.3333333333333333\", \"0.4803921568627451\"], \"178\": [\"0.5166666666666667\", \"0.3125\", \"0.43548387096774194\", \"0.3300970873786408\"], \"179\": [\"0.3484848484848485\", \"0.3333333333333333\", \"0.3194444444444444\", \"0.4421052631578947\"], \"180\": [\"0.14190445408932803\", \"0.13909998782121544\", \"0.1701947480063646\", \"0.12517363860159866\"], \"181\": [\"0.2777777777777778\", \"0.29411764705882354\", \"0.34782608695652173\", \"0.2222222222222222\"], \"182\": [\"0.2\", \"0.2\", \"0.038461538461538464\", \"0.030534351145038167\"], \"183\": [\"0.4230769230769231\", \"0.43333333333333335\", \"0.7222222222222222\", \"0.4051724137931034\"], \"184\": [\"0.0\", \"0.05\", \"0.0\", \"0.3963963963963964\"], \"185\": [\"0.1\", \"0.043478260869565216\", \"0.0\", \"0.050505050505050504\"], \"186\": [\"0.0\", \"0.0\", \"0.058823529411764705\", \"0.019417475728155338\"], \"187\": [\"0.07142857142857142\", \"0.0\", \"0.17647058823529413\", \"0.06172839506172839\"], \"188\": [\"0.3333333333333333\", \"0.5\", \"0.42105263157894735\", \"0.18292682926829268\"], \"189\": [\"0.0\", \"0.0\", \"0.0\", \"0.0423728813559322\"], \"190\": [\"0.058823529411764705\", \"0.0\", \"0.0\", \"0.1595744680851064\"], \"191\": [\"0.2222222222222222\", \"0.25\", \"0.09090909090909091\", \"0.08108108108108109\"], \"192\": [\"0.0\", \"0.17647058823529413\", \"0.23529411764705882\", \"0.05555555555555555\"], \"193\": [\"0.3\", \"0.0\", \"0.16666666666666666\", \"0.0449438202247191\"], \"194\": [\"0.0\", \"0.0\", \"0.125\", \"0.0\"], \"195\": [\"0.9340888278388279\", \"0.9755952380952381\", \"0.9621086642825772\", \"0.8973056892089453\"], \"196\": [\"0.9166666666666666\", \"1.0\", \"0.8888888888888888\", \"0.9714285714285714\"], \"197\": [\"1.0\", \"1.0\", \"1.0\", \"0.6666666666666666\"], \"198\": [\"0.5\", \"1.0\", \"0.8\", \"0.6111111111111112\"], \"199\": [\"1.0\", \"0.9166666666666666\", \"1.0\", \"0.6521739130434783\"], \"200\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"201\": [\"1.0\", \"1.0\", \"1.0\", \"0.967741935483871\"], \"202\": [\"0.9375\", \"1.0\", \"1.0\", \"0.9622641509433962\"], \"203\": [\"1.0\", \"0.9375\", \"0.9545454545454546\", \"0.9615384615384616\"], \"204\": [\"0.9230769230769231\", \"0.9333333333333333\", \"1.0\", \"0.875\"], \"205\": [\"1.0\", \"0.9375\", \"1.0\", \"0.975\"], \"206\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"207\": [\"0.8\", \"0.9333333333333333\", \"1.0\", \"0.9193548387096774\"], \"208\": [\"1.0\", \"1.0\", \"0.8260869565217391\", \"1.0\"], \"209\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"210\": [\"0.5842490842490842\", \"0.509920634920635\", \"0.6486016628873772\", \"0.773755816893833\"], \"211\": [\"0.8333333333333334\", \"1.0\", \"0.8\", \"0.9565217391304348\"], \"212\": [\"1.0\", \"1.0\", \"1.0\", \"0.8\"], \"213\": [\"0.8461538461538461\", \"1.0\", \"0.9629629629629629\", \"0.8703703703703703\"], \"214\": [\"0.0\", \"0.5\", \"0.0\", \"0.8461538461538461\"], \"215\": [\"1.0\", \"1.0\", \"0.0\", \"1.0\"], \"216\": [\"0.0\", \"0.0\", \"1.0\", \"0.6666666666666666\"], \"217\": [\"0.5\", \"0.0\", \"1.0\", \"0.7142857142857143\"], \"218\": [\"1.0\", \"0.8888888888888888\", \"0.8888888888888888\", \"0.8823529411764706\"], \"219\": [\"0.0\", \"0.0\", \"0.0\", \"0.7142857142857143\"], \"220\": [\"1.0\", \"0.0\", \"0.0\", \"0.9375\"], \"221\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"222\": [\"0.0\", \"0.75\", \"1.0\", \"0.4444444444444444\"], \"223\": [\"1.0\", \"0.0\", \"0.42857142857142855\", \"1.0\"], \"224\": [\"0.0\", \"0.0\", \"1.0\", \"0.0\"], \"225\": [\"0.4124708429098776\", \"0.4628128697461709\", \"0.5508536123022646\", \"0.3176701124993818\"], \"226\": [\"0.4583333333333333\", \"0.5555555555555556\", \"0.5161290322580645\", \"0.3063063063063063\"], \"227\": [\"0.2\", \"0.25925925925925924\", \"0.375\", \"0.015503875968992248\"], \"228\": [\"0.11764705882352941\", \"0.10526315789473684\", \"0.2857142857142857\", \"0.1375\"], \"229\": [\"0.3333333333333333\", \"0.36666666666666664\", \"0.4878048780487805\", \"0.18292682926829268\"], \"230\": [\"0.35714285714285715\", \"0.2903225806451613\", \"0.4634146341463415\", \"0.2713178294573643\"], \"231\": [\"0.5\", \"0.40625\", \"0.6\", \"0.22900763358778625\"], \"232\": [\"0.5357142857142857\", \"0.53125\", \"0.631578947368421\", \"0.4015748031496063\"], \"233\": [\"0.391304347826087\", \"0.6521739130434783\", \"0.65625\", \"0.42735042735042733\"], \"234\": [\"0.41379310344827586\", \"0.45161290322580644\", \"0.5365853658536586\", \"0.11023622047244094\"], \"235\": [\"0.4482758620689655\", \"0.4838709677419355\", \"0.5609756097560976\", \"0.3305084745762712\"], \"236\": [\"0.75\", \"0.6896551724137931\", \"0.75\", \"0.7404580152671756\"], \"237\": [\"0.2857142857142857\", \"0.5\", \"0.6486486486486487\", \"0.456\"], \"238\": [\"0.4166666666666667\", \"0.5\", \"0.5588235294117647\", \"0.34615384615384615\"], \"239\": [\"0.5666666666666667\", \"0.6875\", \"0.6410256410256411\", \"0.4925373134328358\"], \"240\": [\"0.1550310042295616\", \"0.1410894660894661\", \"0.1473947974546336\", \"0.14249189186163977\"], \"241\": [\"0.3333333333333333\", \"0.5\", \"0.3076923076923077\", \"0.11764705882352941\"], \"242\": [\"0.03225806451612903\", \"0.15\", \"0.09375\", \"0.0\"], \"243\": [\"0.45714285714285713\", \"0.4166666666666667\", \"0.5714285714285714\", \"0.125\"], \"244\": [\"0.09090909090909091\", \"0.05\", \"0.10344827586206896\", \"0.5384615384615384\"], \"245\": [\"0.14814814814814814\", \"0.0\", \"0.038461538461538464\", \"0.2\"], \"246\": [\"0.047619047619047616\", \"0.0\", \"0.0\", \"0.0\"], \"247\": [\"0.0\", \"0.0\", \"0.0\", \"0.0\"], \"248\": [\"0.391304347826087\", \"0.45454545454545453\", \"0.45454545454545453\", \"0.14285714285714285\"], \"249\": [\"0.0\", \"0.05555555555555555\", \"0.08\", \"0.0\"], \"250\": [\"0.07142857142857142\", \"0.18181818181818182\", \"0.09090909090909091\", \"0.23076923076923078\"], \"251\": [\"0.3333333333333333\", \"0.0\", \"0.14285714285714285\", \"0.3333333333333333\"], \"252\": [\"0.1111111111111111\", \"0.0\", \"0.13043478260869565\", \"0.125\"], \"253\": [\"0.15384615384615385\", \"0.16666666666666666\", \"0.05\", \"0.18181818181818182\"], \"254\": [\"0.0\", \"0.0\", \"0.0\", \"0.0\"], \"255\": [\"0.9602427077852775\", \"0.9227122157904998\", \"0.9144758138444801\", \"0.890391156462585\"], \"256\": [\"0.9375\", \"0.9230769230769231\", \"0.875\", \"0.5\"], \"257\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"258\": [\"1.0\", \"0.4\", \"0.42857142857142855\", \"0.8\"], \"259\": [\"0.8888888888888888\", \"0.8888888888888888\", \"1.0\", \"0.875\"], \"260\": [\"1.0\", \"1.0\", \"0.9375\", \"1.0\"], \"261\": [\"0.9473684210526315\", \"0.9473684210526315\", \"0.9565217391304348\", \"0.5333333333333333\"], \"262\": [\"0.9333333333333333\", \"1.0\", \"0.9629629629629629\", \"1.0\"], \"263\": [\"0.9411764705882353\", \"0.8888888888888888\", \"0.8\", \"0.8571428571428571\"], \"264\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"265\": [\"0.9230769230769231\", \"1.0\", \"1.0\", \"1.0\"], \"266\": [\"0.9545454545454546\", \"1.0\", \"1.0\", \"1.0\"], \"267\": [\"0.9545454545454546\", \"0.9285714285714286\", \"0.8421052631578947\", \"1.0\"], \"268\": [\"0.9629629629629629\", \"0.9411764705882353\", \"1.0\", \"0.9\"], \"269\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"270\": [\"0.5937641723356009\", \"0.46707657421943144\", \"0.6676870748299321\", \"0.5267857142857143\"], \"271\": [\"0.8888888888888888\", \"0.8888888888888888\", \"0.8\", \"0.5\"], \"272\": [\"1.0\", \"1.0\", \"1.0\", \"0.0\"], \"273\": [\"1.0\", \"0.7692307692307693\", \"0.8333333333333334\", \"0.6666666666666666\"], \"274\": [\"0.5\", \"0.5\", \"1.0\", \"0.875\"], \"275\": [\"1.0\", \"0.0\", \"0.5\", \"1.0\"], \"276\": [\"0.5\", \"0.0\", \"0.0\", \"0.0\"], \"277\": [\"0.0\", \"0.0\", \"0.0\", \"0.0\"], \"278\": [\"0.9\", \"0.7142857142857143\", \"0.7142857142857143\", \"0.6666666666666666\"], \"279\": [\"0.0\", \"1.0\", \"1.0\", \"0.0\"], \"280\": [\"0.3333333333333333\", \"1.0\", \"1.0\", \"1.0\"], \"281\": [\"0.8571428571428571\", \"0.0\", \"1.0\", \"1.0\"], \"282\": [\"0.6666666666666666\", \"0.0\", \"0.5\", \"1.0\"], \"283\": [\"0.6666666666666666\", \"0.6666666666666666\", \"1.0\", \"0.6666666666666666\"], \"284\": [\"0.0\", \"0.0\", \"0.0\", \"0.0\"], \"285\": [\"0.5001908065575299\", \"0.5059764788213064\", \"0.46346635120589824\", \"0.39749146622211645\"], \"286\": [\"0.4838709677419355\", \"0.6\", \"0.4375\", \"0.11764705882352941\"], \"287\": [\"0.23076923076923078\", \"0.34615384615384615\", \"0.2564102564102564\", \"0.14285714285714285\"], \"288\": [\"0.20833333333333334\", \"0.125\", \"0.16666666666666666\", \"0.2222222222222222\"], \"289\": [\"0.4444444444444444\", \"0.2962962962962963\", \"0.3333333333333333\", \"0.5384615384615384\"], \"290\": [\"0.3611111111111111\", \"0.3103448275862069\", \"0.375\", \"0.5789473684210527\"], \"291\": [\"0.47368421052631576\", \"0.6428571428571429\", \"0.5365853658536586\", \"0.5714285714285714\"], \"292\": [\"0.7368421052631579\", \"0.5172413793103449\", \"0.6341463414634146\", \"0.19047619047619047\"], \"293\": [\"0.5333333333333333\", \"0.7272727272727273\", \"0.5714285714285714\", \"0.3333333333333333\"], \"294\": [\"0.45\", \"0.39285714285714285\", \"0.425\", \"0.3333333333333333\"], \"295\": [\"0.6486486486486487\", \"0.6666666666666666\", \"0.5\", \"0.4444444444444444\"], \"296\": [\"0.6363636363636364\", \"0.7586206896551724\", \"0.7\", \"0.9\"], \"297\": [\"0.5675675675675675\", \"0.4642857142857143\", \"0.4444444444444444\", \"0.2631578947368421\"], \"298\": [\"0.7027027027027027\", \"0.6153846153846154\", \"0.5365853658536586\", \"0.5\"], \"299\": [\"0.525\", \"0.6206896551724138\", \"0.5714285714285714\", \"0.42857142857142855\"], \"300\": [\"0.1469463570917117\", \"0.13135461005054608\", \"0.15366968200659187\", \"0.1498733315595946\"], \"301\": [\"0.2391304347826087\", \"0.29523809523809524\", \"0.32051282051282054\", \"0.18681318681318682\"], \"302\": [\"0.09900990099009901\", \"0.09009009009009009\", \"0.08974358974358974\", \"0.0990990990990991\"], \"303\": [\"0.3305785123966942\", \"0.3333333333333333\", \"0.325\", \"0.2641509433962264\"], \"304\": [\"0.0547945205479452\", \"0.09411764705882353\", \"0.09375\", \"0.27835051546391754\"], \"305\": [\"0.056338028169014086\", \"0.05714285714285714\", \"0.14035087719298245\", \"0.022988505747126436\"], \"306\": [\"0.04\", \"0.06741573033707865\", \"0.07042253521126761\", \"0.1559633027522936\"], \"307\": [\"0.0375\", \"0.011235955056179775\", \"0.018867924528301886\", \"0.031578947368421054\"], \"308\": [\"0.47692307692307695\", \"0.352112676056338\", \"0.38181818181818183\", \"0.21052631578947367\"], \"309\": [\"0.022727272727272728\", \"0.025\", \"0.017241379310344827\", \"0.022222222222222223\"], \"310\": [\"0.09333333333333334\", \"0.0963855421686747\", \"0.11475409836065574\", \"0.0898876404494382\"], \"311\": [\"0.20512820512820512\", \"0.07894736842105263\", \"0.1111111111111111\", \"0.5714285714285714\"], \"312\": [\"0.1875\", \"0.18604651162790697\", \"0.265625\", \"0.06521739130434782\"], \"313\": [\"0.21428571428571427\", \"0.1518987341772152\", \"0.171875\", \"0.1\"], \"314\": [\"0.0\", \"0.0\", \"0.030303030303030304\", \"0.0\"], \"315\": [\"0.9295222170180396\", \"0.932458689086653\", \"0.9225334207275214\", \"0.9205154657992932\"], \"316\": [\"0.86\", \"0.9705882352941176\", \"0.8275862068965517\", \"0.8536585365853658\"], \"317\": [\"1.0\", \"1.0\", \"0.9655172413793104\", \"0.9523809523809523\"], \"318\": [\"0.6666666666666666\", \"0.7419354838709677\", \"0.7037037037037037\", \"0.7692307692307693\"], \"319\": [\"0.9710144927536232\", \"0.9259259259259259\", \"0.9302325581395349\", \"0.9428571428571428\"], \"320\": [\"1.0\", \"1.0\", \"0.98\", \"1.0\"], \"321\": [\"0.9850746268656716\", \"0.94\", \"0.9722222222222222\", \"0.9130434782608695\"], \"322\": [\"1.0\", \"0.96\", \"1.0\", \"0.972972972972973\"], \"323\": [\"0.8571428571428571\", \"0.8676470588235294\", \"0.8076923076923077\", \"0.9285714285714286\"], \"324\": [\"0.9814814814814815\", \"0.9491525423728814\", \"1.0\", \"0.9523809523809523\"], \"325\": [\"0.9552238805970149\", \"0.9464285714285714\", \"0.8913043478260869\", \"0.7906976744186046\"], \"326\": [\"0.9902912621359223\", \"0.9900990099009901\", \"1.0\", \"0.9518072289156626\"], \"327\": [\"0.7741935483870968\", \"0.8301886792452831\", \"0.9069767441860465\", \"0.975\"], \"328\": [\"0.9722222222222222\", \"0.95\", \"0.9302325581395349\", \"0.8846153846153846\"], \"329\": [\"1.0\", \"0.9824561403508771\", \"1.0\", \"1.0\"], \"330\": [\"0.7442568785890488\", \"0.6790118092691623\", \"0.8369942062846646\", \"0.723518392995958\"], \"331\": [\"0.7586206896551724\", \"0.96875\", \"0.8333333333333334\", \"0.7391304347826086\"], \"332\": [\"1.0\", \"1.0\", \"0.875\", \"0.9166666666666666\"], \"333\": [\"0.851063829787234\", \"0.8181818181818182\", \"0.7647058823529411\", \"0.8235294117647058\"], \"334\": [\"0.6666666666666666\", \"0.6666666666666666\", \"0.6666666666666666\", \"0.9310344827586207\"], \"335\": [\"1.0\", \"1.0\", \"0.8888888888888888\", \"1.0\"], \"336\": [\"0.75\", \"0.6666666666666666\", \"0.8333333333333334\", \"0.8947368421052632\"], \"337\": [\"1.0\", \"0.3333333333333333\", \"1.0\", \"0.75\"], \"338\": [\"0.7380952380952381\", \"0.7352941176470589\", \"0.6774193548387096\", \"0.8\"], \"339\": [\"0.6666666666666666\", \"0.4\", \"1.0\", \"0.5\"], \"340\": [\"0.7\", \"0.7272727272727273\", \"0.5833333333333334\", \"0.47058823529411764\"], \"341\": [\"0.8888888888888888\", \"0.75\", \"1.0\", \"0.875\"], \"342\": [\"0.5172413793103449\", \"0.64\", \"0.8095238095238095\", \"0.8571428571428571\"], \"343\": [\"0.8823529411764706\", \"0.8\", \"0.7857142857142857\", \"0.5714285714285714\"], \"344\": [\"0.0\", \"0.0\", \"1.0\", \"0.0\"], \"345\": [\"0.46115996499908746\", \"0.41235144012073616\", \"0.4363357131497031\", \"0.3508912706988956\"], \"346\": [\"0.3805309734513274\", \"0.308411214953271\", \"0.3116883116883117\", \"0.3211009174311927\"], \"347\": [\"0.3106060606060606\", \"0.21705426356589147\", \"0.2828282828282828\", \"0.16666666666666666\"], \"348\": [\"0.14736842105263157\", \"0.24210526315789474\", \"0.2602739726027397\", \"0.20408163265306123\"], \"349\": [\"0.49264705882352944\", \"0.3937007874015748\", \"0.40816326530612246\", \"0.32038834951456313\"], \"350\": [\"0.5144927536231884\", \"0.5111111111111111\", \"0.5\", \"0.34615384615384615\"], \"351\": [\"0.4782608695652174\", \"0.36153846153846153\", \"0.3465346534653465\", \"0.18584070796460178\"], \"352\": [\"0.4460431654676259\", \"0.35294117647058826\", \"0.5094339622641509\", \"0.28125\"], \"353\": [\"0.66\", \"0.5619047619047619\", \"0.5526315789473685\", \"0.4642857142857143\"], \"354\": [\"0.381294964028777\", \"0.417910447761194\", \"0.46226415094339623\", \"0.3125\"], \"355\": [\"0.48484848484848486\", \"0.4140625\", \"0.43157894736842106\", \"0.2956521739130435\"], \"356\": [\"0.7669172932330827\", \"0.7407407407407407\", \"0.7692307692307693\", \"0.79\"], \"357\": [\"0.4247787610619469\", \"0.38596491228070173\", \"0.45348837209302323\", \"0.312\"], \"358\": [\"0.56\", \"0.4596774193548387\", \"0.43010752688172044\", \"0.3898305084745763\"], \"359\": [\"0.4084507042253521\", \"0.4057971014492754\", \"0.3904761904761905\", \"0.5227272727272727\"], \"360\": [\"0.13222209948257632\", \"0.11045798937107018\", \"0.13261570417529836\", \"0.14053076770309197\"], \"361\": [\"0.3116883116883117\", \"0.10714285714285714\", \"0.2753623188405797\", \"0.2694063926940639\"], \"362\": [\"0.1348314606741573\", \"0.08974358974358974\", \"0.09278350515463918\", \"0.1308016877637131\"], \"363\": [\"0.45555555555555555\", \"0.4268292682926829\", \"0.4672897196261682\", \"0.4314516129032258\"], \"364\": [\"0.029411764705882353\", \"0.06153846153846154\", \"0.05\", \"0.05747126436781609\"], \"365\": [\"0.0\", \"0.10344827586206896\", \"0.04477611940298507\", \"0.13861386138613863\"], \"366\": [\"0.03076923076923077\", \"0.0\", \"0.043478260869565216\", \"0.03825136612021858\"], \"367\": [\"0.06451612903225806\", \"0.06\", \"0.06944444444444445\", \"0.07874015748031496\"], \"368\": [\"0.3181818181818182\", \"0.34545454545454546\", \"0.3230769230769231\", \"0.33678756476683935\"], \"369\": [\"0.04285714285714286\", \"0.0\", \"0.028169014084507043\", \"0.03414634146341464\"], \"370\": [\"0.029850746268656716\", \"0.02040816326530612\", \"0.08695652173913043\", \"0.0625\"], \"371\": [\"0.10869565217391304\", \"0.11428571428571428\", \"0.05714285714285714\", \"0.27672955974842767\"], \"372\": [\"0.12962962962962962\", \"0.12\", \"0.14864864864864866\", \"0.03289473684210526\"], \"373\": [\"0.1951219512195122\", \"0.0975609756097561\", \"0.1694915254237288\", \"0.07453416149068323\"], \"374\": [\"0.0\", \"0.0\", \"0.0\", \"0.00510204081632653\"], \"375\": [\"0.93865294797817\", \"0.9208623705424565\", \"0.9184367536978485\", \"0.9301487639759868\"], \"376\": [\"0.7567567567567568\", \"0.8536585365853658\", \"0.8412698412698413\", \"0.86\"], \"377\": [\"1.0\", \"1.0\", \"0.9428571428571428\", \"0.9375\"], \"378\": [\"0.6666666666666666\", \"0.6\", \"0.48\", \"0.6666666666666666\"], \"379\": [\"0.9782608695652174\", \"0.9375\", \"0.9423076923076923\", \"0.9894736842105263\"], \"380\": [\"1.0\", \"0.9743589743589743\", \"1.0\", \"1.0\"], \"381\": [\"1.0\", \"1.0\", \"1.0\", \"0.9767441860465116\"], \"382\": [\"1.0\", \"0.9787234042553191\", \"0.95\", \"0.9859154929577465\"], \"383\": [\"0.9791666666666666\", \"0.8333333333333334\", \"0.9552238805970149\", \"0.8552631578947368\"], \"384\": [\"0.9772727272727273\", \"0.9743589743589743\", \"1.0\", \"0.984375\"], \"385\": [\"0.9574468085106383\", \"0.9375\", \"0.9841269841269841\", \"0.9724770642201835\"], \"386\": [\"1.0\", \"0.9838709677419355\", \"0.979381443298969\", \"0.8727272727272727\"], \"387\": [\"0.8666666666666667\", \"0.8723404255319149\", \"0.8103448275862069\", \"0.9487179487179487\"], \"388\": [\"0.958904109589041\", \"0.9464285714285714\", \"0.9726027397260274\", \"0.9722222222222222\"], \"389\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"390\": [\"0.6877970668786996\", \"0.5342618473280495\", \"0.7163506991093199\", \"0.8431994225778257\"], \"391\": [\"0.7272727272727273\", \"0.5\", \"0.6551724137931034\", \"0.8939393939393939\"], \"392\": [\"1.0\", \"1.0\", \"0.8181818181818182\", \"0.9393939393939394\"], \"393\": [\"0.8367346938775511\", \"0.8536585365853658\", \"0.7936507936507936\", \"0.9385964912280702\"], \"394\": [\"0.6666666666666666\", \"0.6666666666666666\", \"0.5714285714285714\", \"0.9090909090909091\"], \"395\": [\"0.0\", \"0.8571428571428571\", \"1.0\", \"1.0\"], \"396\": [\"1.0\", \"0.0\", \"1.0\", \"0.7777777777777778\"], \"397\": [\"1.0\", \"0.75\", \"0.625\", \"0.8333333333333334\"], \"398\": [\"0.9545454545454546\", \"0.7307692307692307\", \"0.875\", \"0.8552631578947368\"], \"399\": [\"0.75\", \"0.0\", \"1.0\", \"0.875\"], \"400\": [\"0.5\", \"0.25\", \"0.8571428571428571\", \"0.7692307692307693\"], \"401\": [\"1.0\", \"0.8\", \"0.5\", \"0.7586206896551724\"], \"402\": [\"0.4666666666666667\", \"0.5\", \"0.5\", \"0.45454545454545453\"], \"403\": [\"0.7272727272727273\", \"0.5714285714285714\", \"0.8333333333333334\", \"0.8\"], \"404\": [\"0.0\", \"0.0\", \"0.0\", \"1.0\"], \"405\": [\"0.44004082717457116\", \"0.4317335829457151\", \"0.47855976684945184\", \"0.32161781404777523\"], \"406\": [\"0.345679012345679\", \"0.4117647058823529\", \"0.5145631067961165\", \"0.21182266009852216\"], \"407\": [\"0.24509803921568626\", \"0.2111111111111111\", \"0.2727272727272727\", \"0.1271186440677966\"], \"408\": [\"0.24615384615384617\", \"0.16071428571428573\", \"0.17391304347826086\", \"0.09032258064516129\"], \"409\": [\"0.40540540540540543\", \"0.32967032967032966\", \"0.392\", \"0.3643410852713178\"], \"410\": [\"0.4649122807017544\", \"0.4222222222222222\", \"0.5038759689922481\", \"0.27800829875518673\"], \"411\": [\"0.4375\", \"0.422680412371134\", \"0.4883720930232558\", \"0.3230769230769231\"], \"412\": [\"0.4727272727272727\", \"0.4946236559139785\", \"0.4596774193548387\", \"0.5447470817120622\"], \"413\": [\"0.5108695652173914\", \"0.49295774647887325\", \"0.5925925925925926\", \"0.33678756476683935\"], \"414\": [\"0.39090909090909093\", \"0.3958333333333333\", \"0.46923076923076923\", \"0.2413793103448276\"], \"415\": [\"0.4090909090909091\", \"0.4838709677419355\", \"0.496\", \"0.4140625\"], \"416\": [\"0.6238532110091743\", \"0.6630434782608695\", \"0.7421875\", \"0.4549763033175355\"], \"417\": [\"0.5252525252525253\", \"0.4823529411764706\", \"0.42727272727272725\", \"0.43023255813953487\"], \"418\": [\"0.6796116504854369\", \"0.5888888888888889\", \"0.5916666666666667\", \"0.41338582677165353\"], \"419\": [\"0.40350877192982454\", \"0.4845360824742268\", \"0.5757575757575758\", \"0.27238805970149255\"], \"420\": [\"0.13310939085989032\", \"0.12764355814767434\", \"0.12270129693974231\", \"0.14383479184721423\"], \"421\": [\"0.34210526315789475\", \"0.24242424242424243\", \"0.225\", \"0.21428571428571427\"], \"422\": [\"0.02702702702702703\", \"0.029411764705882353\", \"0.058823529411764705\", \"0.038461538461538464\"], \"423\": [\"0.32432432432432434\", \"0.3055555555555556\", \"0.2972972972972973\", \"0.20833333333333334\"], \"424\": [\"0.0625\", \"0.03333333333333333\", \"0.06060606060606061\", \"0.4166666666666667\"], \"425\": [\"0.08333333333333333\", \"0.05263157894736842\", \"0.0\", \"0.0\"], \"426\": [\"0.0625\", \"0.03225806451612903\", \"0.11428571428571428\", \"0.041666666666666664\"], \"427\": [\"0.03333333333333333\", \"0.037037037037037035\", \"0.0\", \"0.13043478260869565\"], \"428\": [\"0.32\", \"0.4583333333333333\", \"0.375\", \"0.16666666666666666\"], \"429\": [\"0.03333333333333333\", \"0.0\", \"0.03125\", \"0.0\"], \"430\": [\"0.14285714285714285\", \"0.1724137931034483\", \"0.2222222222222222\", \"0.0\"], \"431\": [\"0.17647058823529413\", \"0.1111111111111111\", \"0.0\", \"0.4444444444444444\"], \"432\": [\"0.1724137931034483\", \"0.1875\", \"0.125\", \"0.08\"], \"433\": [\"0.08333333333333333\", \"0.125\", \"0.20833333333333334\", \"0.2727272727272727\"], \"434\": [\"0.0\", \"0.0\", \"0.0\", \"0.0\"], \"435\": [\"0.9290293040293041\", \"0.9034037658125451\", \"0.9313895534290272\", \"nan\"], \"436\": [\"0.6666666666666666\", \"1.0\", \"1.0\", \"nan\"], \"437\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"438\": [\"0.75\", \"0.5714285714285714\", \"0.6666666666666666\", \"0.75\"], \"439\": [\"1.0\", \"1.0\", \"0.9\", \"1.0\"], \"440\": [\"1.0\", \"0.9583333333333334\", \"1.0\", \"1.0\"], \"441\": [\"1.0\", \"1.0\", \"0.875\", \"1.0\"], \"442\": [\"1.0\", \"0.9375\", \"1.0\", \"0.8\"], \"443\": [\"0.875\", \"0.6842105263157895\", \"0.9473684210526315\", \"1.0\"], \"444\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"445\": [\"0.9230769230769231\", \"0.8571428571428571\", \"0.9375\", \"1.0\"], \"446\": [\"0.9583333333333334\", \"0.9117647058823529\", \"1.0\", \"1.0\"], \"447\": [\"0.8333333333333334\", \"0.8181818181818182\", \"0.8181818181818182\", \"1.0\"], \"448\": [\"1.0\", \"0.9090909090909091\", \"0.8947368421052632\", \"1.0\"], \"449\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"450\": [\"0.8511381475667189\", \"0.639075630252101\", \"0.6036368393511251\", \"0.6845238095238095\"], \"451\": [\"0.9285714285714286\", \"1.0\", \"1.0\", \"1.0\"], \"452\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"453\": [\"0.9230769230769231\", \"0.7857142857142857\", \"0.8461538461538461\", \"0.8333333333333334\"], \"454\": [\"1.0\", \"1.0\", \"0.6666666666666666\", \"1.0\"], \"455\": [\"1.0\", \"0.5\", \"0.0\", \"0.0\"], \"456\": [\"1.0\", \"1.0\", \"0.8\", \"1.0\"], \"457\": [\"1.0\", \"0.5\", \"0.0\", \"0.75\"], \"458\": [\"0.8\", \"0.6470588235294118\", \"0.9\", \"1.0\"], \"459\": [\"1.0\", \"0.0\", \"1.0\", \"0.0\"], \"460\": [\"0.8\", \"0.7142857142857143\", \"0.8571428571428571\", \"0.0\"], \"461\": [\"0.75\", \"0.25\", \"0.0\", \"1.0\"], \"462\": [\"0.7142857142857143\", \"0.75\", \"0.6666666666666666\", \"1.0\"], \"463\": [\"1.0\", \"0.8\", \"0.7142857142857143\", \"1.0\"], \"464\": [\"0.0\", \"0.0\", \"0.0\", \"0.0\"], \"465\": [\"0.29699419261565124\", \"0.3609064517578566\", \"0.33548282375472904\", \"0.22609632431061\"], \"466\": [\"0.07407407407407407\", \"0.2857142857142857\", \"0.08823529411764706\", \"0.0\"], \"467\": [\"0.1\", \"0.21428571428571427\", \"0.21951219512195122\", \"0.07407407407407407\"], \"468\": [\"0.10714285714285714\", \"0.13793103448275862\", \"0.13333333333333333\", \"0.13636363636363635\"], \"469\": [\"0.23076923076923078\", \"0.30952380952380953\", \"0.225\", \"0.2222222222222222\"], \"470\": [\"0.4358974358974359\", \"0.5609756097560976\", \"0.5116279069767442\", \"0.6785714285714286\"], \"471\": [\"0.23076923076923078\", \"0.2857142857142857\", \"0.18421052631578946\", \"0.14814814814814814\"], \"472\": [\"0.275\", \"0.36585365853658536\", \"0.3023255813953488\", \"0.16666666666666666\"], \"473\": [\"0.45161290322580644\", \"0.5\", \"0.5454545454545454\", \"0.16666666666666666\"], \"474\": [\"0.275\", \"0.4186046511627907\", \"0.2619047619047619\", \"0.25\"], \"475\": [\"0.3333333333333333\", \"0.3333333333333333\", \"0.4166666666666667\", \"0.10714285714285714\"], \"476\": [\"0.6216216216216216\", \"0.7948717948717948\", \"0.7674418604651163\", \"0.7916666666666666\"], \"477\": [\"0.29411764705882354\", \"0.2571428571428571\", \"0.24324324324324326\", \"0.11538461538461539\"], \"478\": [\"0.4358974358974359\", \"0.2631578947368421\", \"0.4722222222222222\", \"0.2727272727272727\"], \"479\": [\"0.2926829268292683\", \"0.32558139534883723\", \"0.32558139534883723\", \"0.03571428571428571\"], \"480\": [\"0.09297161172161171\", \"0.13094288134514181\", \"0.1326188689191785\", \"0.14368282395551332\"], \"481\": [\"0.1875\", \"0.19047619047619047\", \"0.25\", \"0.058823529411764705\"], \"482\": [\"0.0\", \"0.13636363636363635\", \"0.08333333333333333\", \"0.15625\"], \"483\": [\"0.5416666666666666\", \"0.391304347826087\", \"0.16666666666666666\", \"0.13043478260869565\"], \"484\": [\"0.0\", \"0.058823529411764705\", \"0.10526315789473684\", \"0.09259259259259259\"], \"485\": [\"0.0\", \"0.0625\", \"0.05263157894736842\", \"0.0\"], \"486\": [\"0.0\", \"0.15\", \"0.05263157894736842\", \"0.04285714285714286\"], \"487\": [\"0.0\", \"0.05555555555555555\", \"0.0\", \"0.08571428571428572\"], \"488\": [\"0.13333333333333333\", \"0.47058823529411764\", \"0.45\", \"0.5357142857142857\"], \"489\": [\"0.0\", \"0.1111111111111111\", \"0.0\", \"0.016129032258064516\"], \"490\": [\"0.23076923076923078\", \"0.05263157894736842\", \"0.09090909090909091\", \"0.1111111111111111\"], \"491\": [\"0.08333333333333333\", \"0.15384615384615385\", \"0.2\", \"0.3142857142857143\"], \"492\": [\"0.0\", \"0.0\", \"0.29411764705882354\", \"0.11764705882352941\"], \"493\": [\"0.125\", \"0.0\", \"0.1111111111111111\", \"0.0\"], \"494\": [\"0.0\", \"0.0\", \"0.0\", \"0.35\"], \"495\": [\"0.9635854341736695\", \"0.9365079365079365\", \"0.9401439204070783\", \"0.9440289858837501\"], \"496\": [\"0.6666666666666666\", \"1.0\", \"0.8\", \"0.9230769230769231\"], \"497\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"498\": [\"1.0\", \"0.6666666666666666\", \"0.8\", \"0.9166666666666666\"], \"499\": [\"1.0\", \"0.8888888888888888\", \"0.9\", \"0.9629629629629629\"], \"500\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"501\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"502\": [\"1.0\", \"1.0\", \"1.0\", \"0.9782608695652174\"], \"503\": [\"1.0\", \"0.7777777777777778\", \"0.8888888888888888\", \"0.72\"], \"504\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"505\": [\"1.0\", \"1.0\", \"1.0\", \"0.8888888888888888\"], \"506\": [\"1.0\", \"1.0\", \"0.9473684210526315\", \"0.8478260869565217\"], \"507\": [\"1.0\", \"0.7777777777777778\", \"0.9166666666666666\", \"0.9787234042553191\"], \"508\": [\"0.8235294117647058\", \"1.0\", \"0.9090909090909091\", \"1.0\"], \"509\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"510\": [\"0.3392857142857143\", \"0.7285714285714285\", \"0.6707482993197279\", \"0.7186293436293436\"], \"511\": [\"0.5\", \"1.0\", \"0.8571428571428571\", \"0.8\"], \"512\": [\"0.0\", \"1.0\", \"1.0\", \"1.0\"], \"513\": [\"1.0\", \"0.9\", \"0.8\", \"0.9\"], \"514\": [\"0.0\", \"0.5\", \"0.6666666666666666\", \"0.8333333333333334\"], \"515\": [\"0.0\", \"1.0\", \"1.0\", \"0.0\"], \"516\": [\"0.0\", \"1.0\", \"1.0\", \"1.0\"], \"517\": [\"0.0\", \"1.0\", \"0.0\", \"0.75\"], \"518\": [\"1.0\", \"0.8\", \"0.9\", \"0.8108108108108109\"], \"519\": [\"0.0\", \"1.0\", \"0.0\", \"1.0\"], \"520\": [\"1.0\", \"1.0\", \"1.0\", \"0.5555555555555556\"], \"521\": [\"1.0\", \"1.0\", \"0.6666666666666666\", \"0.6111111111111112\"], \"522\": [\"0.0\", \"0.0\", \"0.8333333333333334\", \"0.8\"], \"523\": [\"0.25\", \"0.0\", \"0.6666666666666666\", \"0.0\"], \"524\": [\"0.0\", \"0.0\", \"0.0\", \"1.0\"], \"525\": [\"0.39054952103579105\", \"0.3182374690526864\", \"0.3326565455951891\", \"0.3700917774819926\"], \"526\": [\"0.3157894736842105\", \"0.22727272727272727\", \"0.18181818181818182\", \"0.15789473684210525\"], \"527\": [\"0.12\", \"0.17391304347826086\", \"0.18518518518518517\", \"0.23943661971830985\"], \"528\": [\"0.08333333333333333\", \"0.125\", \"0.16666666666666666\", \"0.15492957746478872\"], \"529\": [\"0.32\", \"0.3333333333333333\", \"0.34615384615384615\", \"0.3466666666666667\"], \"530\": [\"0.48\", \"0.4\", \"0.35714285714285715\", \"0.2839506172839506\"], \"531\": [\"0.32\", \"0.2608695652173913\", \"0.35714285714285715\", \"0.14102564102564102\"], \"532\": [\"0.44\", \"0.32\", \"0.2413793103448276\", \"0.5844155844155844\"], \"533\": [\"0.43478260869565216\", \"0.4375\", \"0.42105263157894735\", \"0.4090909090909091\"], \"534\": [\"0.36\", \"0.3333333333333333\", \"0.27586206896551724\", \"0.2375\"], \"535\": [\"0.5454545454545454\", \"0.28\", \"0.25925925925925924\", \"0.4444444444444444\"], \"536\": [\"0.5416666666666666\", \"0.5416666666666666\", \"0.6923076923076923\", \"0.6190476190476191\"], \"537\": [\"0.4\", \"0.2916666666666667\", \"0.4782608695652174\", \"0.6052631578947368\"], \"538\": [\"0.6666666666666666\", \"0.38461538461538464\", \"0.38461538461538464\", \"0.345679012345679\"], \"539\": [\"0.44\", \"0.34615384615384615\", \"0.3103448275862069\", \"0.6119402985074627\"], \"540\": [\"0.14173370901378063\", \"0.13031525043854597\", \"0.14351981400010655\", \"0.141466821116307\"], \"541\": [\"0.27413127413127414\", \"0.23387096774193547\", \"0.2824427480916031\", \"0.2127659574468085\"], \"542\": [\"0.10197368421052631\", \"0.10774410774410774\", \"0.09764309764309764\", \"0.09931506849315068\"], \"543\": [\"0.41369047619047616\", \"0.4012738853503185\", \"0.4376899696048632\", \"0.3431542461005199\"], \"544\": [\"0.048034934497816595\", \"0.08677685950413223\", \"0.0728744939271255\", \"0.21822033898305085\"], \"545\": [\"0.0547945205479452\", \"0.07075471698113207\", \"0.05909090909090909\", \"0.07956989247311828\"], \"546\": [\"0.039647577092511016\", \"0.049107142857142856\", \"0.0635593220338983\", \"0.06097560975609756\"], \"547\": [\"0.043478260869565216\", \"0.03333333333333333\", \"0.04854368932038835\", \"0.06382978723404255\"], \"548\": [\"0.3755868544600939\", \"0.3711340206185567\", \"0.36633663366336633\", \"0.2979683972911964\"], \"549\": [\"0.020833333333333332\", \"0.026785714285714284\", \"0.03418803418803419\", \"0.027559055118110236\"], \"550\": [\"0.09259259259259259\", \"0.07692307692307693\", \"0.10909090909090909\", \"0.09669811320754718\"], \"551\": [\"0.16428571428571428\", \"0.11504424778761062\", \"0.08928571428571429\", \"0.30689655172413793\"], \"552\": [\"0.13488372093023257\", \"0.14285714285714285\", \"0.17647058823529413\", \"0.05897435897435897\"], \"553\": [\"0.22033898305084745\", \"0.10880829015544041\", \"0.15196078431372548\", \"0.07729468599033816\"], \"554\": [\"0.0\", \"0.0\", \"0.020100502512562814\", \"0.03731343283582089\"], \"555\": [\"0.9365988342313647\", \"0.9291284563353369\", \"0.929652834298313\", \"0.9295580959292421\"], \"556\": [\"0.851063829787234\", \"0.9259259259259259\", \"0.8590604026845637\", \"0.8819444444444444\"], \"557\": [\"0.9895833333333334\", \"0.9883720930232558\", \"0.9736842105263158\", \"0.935064935064935\"], \"558\": [\"0.703125\", \"0.6521739130434783\", \"0.6219512195121951\", \"0.7261904761904762\"], \"559\": [\"0.9473684210526315\", \"0.9361702127659575\", \"0.9512195121951219\", \"0.9312169312169312\"], \"560\": [\"0.988950276243094\", \"0.9824561403508771\", \"0.9895287958115183\", \"1.0\"], \"561\": [\"0.9826589595375722\", \"0.9559748427672956\", \"0.9771428571428571\", \"0.9289940828402367\"], \"562\": [\"0.9844559585492227\", \"0.976878612716763\", \"0.9804878048780488\", \"0.9789473684210527\"], \"563\": [\"0.9144385026737968\", \"0.8677248677248677\", \"0.9043062200956937\", \"0.8853211009174312\"], \"564\": [\"0.98125\", \"0.9685534591194969\", \"0.9887005649717514\", \"0.9673202614379085\"], \"565\": [\"0.9565217391304348\", \"0.9428571428571428\", \"0.9581151832460733\", \"0.9282700421940928\"], \"566\": [\"0.9884615384615385\", \"0.9777777777777777\", \"0.9899665551839465\", \"0.9353099730458221\"], \"567\": [\"0.8648648648648649\", \"0.8805031446540881\", \"0.8789473684210526\", \"0.955719557195572\"], \"568\": [\"0.9596412556053812\", \"0.9578947368421052\", \"0.9420289855072463\", \"0.9595141700404858\"], \"569\": [\"1.0\", \"0.994535519125683\", \"1.0\", \"1.0\"], \"570\": [\"0.7095821637351534\", \"0.6701680619138815\", \"0.7876582550825294\", \"0.826863016443639\"], \"571\": [\"0.7717391304347826\", \"0.8529411764705882\", \"0.7789473684210526\", \"0.8661417322834646\"], \"572\": [\"0.96875\", \"0.9696969696969697\", \"0.90625\", \"0.9206349206349206\"], \"573\": [\"0.879746835443038\", \"0.84\", \"0.8228571428571428\", \"0.8959276018099548\"], \"574\": [\"0.55\", \"0.7\", \"0.6923076923076923\", \"0.8879310344827587\"], \"575\": [\"0.8571428571428571\", \"0.8333333333333334\", \"0.8666666666666667\", \"1.0\"], \"576\": [\"0.75\", \"0.6111111111111112\", \"0.7894736842105263\", \"0.7142857142857143\"], \"577\": [\"0.75\", \"0.6363636363636364\", \"0.7142857142857143\", \"0.8\"], \"578\": [\"0.8333333333333334\", \"0.7422680412371134\", \"0.7872340425531915\", \"0.8407643312101911\"], \"579\": [\"0.625\", \"0.5454545454545454\", \"0.8\", \"0.7368421052631579\"], \"580\": [\"0.7142857142857143\", \"0.6153846153846154\", \"0.75\", \"0.7068965517241379\"], \"581\": [\"0.8846153846153846\", \"0.6842105263157895\", \"0.7692307692307693\", \"0.7876106194690266\"], \"582\": [\"0.5370370370370371\", \"0.6274509803921569\", \"0.6290322580645161\", \"0.6571428571428571\"], \"583\": [\"0.8125\", \"0.7241379310344828\", \"0.7209302325581395\", \"0.7619047619047619\"], \"584\": [\"0.0\", \"0.0\", \"1.0\", \"1.0\"], \"585\": [\"0.45019792413476545\", \"0.43749158332902266\", \"0.4662505547608729\", \"0.331339758461629\"], \"586\": [\"0.38961038961038963\", \"0.3968253968253968\", \"0.4050632911392405\", \"0.23782771535580524\"], \"587\": [\"0.25815217391304346\", \"0.24285714285714285\", \"0.2928759894459103\", \"0.12040133779264214\"], \"588\": [\"0.1859504132231405\", \"0.19313304721030042\", \"0.21610169491525424\", \"0.13863636363636364\"], \"589\": [\"0.4263157894736842\", \"0.37393767705382436\", \"0.4051948051948052\", \"0.3229357798165138\"], \"590\": [\"0.4637305699481865\", \"0.4602739726027397\", \"0.4772727272727273\", \"0.3141025641025641\"], \"591\": [\"0.4381443298969072\", \"0.41643835616438357\", \"0.4362244897959184\", \"0.25363489499192243\"], \"592\": [\"0.4896907216494845\", \"0.4543010752688172\", \"0.5062972292191436\", \"0.4421553090332805\"], \"593\": [\"0.5625\", \"0.5734265734265734\", \"0.5962145110410094\", \"0.38293650793650796\"], \"594\": [\"0.4005102040816326\", \"0.41397849462365593\", \"0.43640897755610975\", \"0.23052959501557632\"], \"595\": [\"0.4731182795698925\", \"0.46218487394957986\", \"0.48284960422163586\", \"0.3648424543946932\"], \"596\": [\"0.6871657754010695\", \"0.7252747252747253\", \"0.7437185929648241\", \"0.6332116788321168\"], \"597\": [\"0.4624277456647399\", \"0.42168674698795183\", \"0.4785100286532951\", \"0.41373801916932906\"], \"598\": [\"0.6079545454545454\", \"0.5141242937853108\", \"0.529891304347826\", \"0.38287560581583197\"], \"599\": [\"0.4575\", \"0.47643979057591623\", \"0.5208845208845209\", \"0.40092879256965946\"], \"600\": [\"0.1476509761123425\", \"0.1346574748651364\", \"0.14807438235896836\", \"0.1413716383184272\"], \"601\": [\"0.2671232876712329\", \"0.2611464968152866\", \"0.2857142857142857\", \"0.2073732718894009\"], \"602\": [\"0.10303030303030303\", \"0.10344827586206896\", \"0.08783783783783784\", \"0.06343283582089553\"], \"603\": [\"0.3548387096774194\", \"0.3743016759776536\", \"0.41916167664670656\", \"0.32793522267206476\"], \"604\": [\"0.05555555555555555\", \"0.08088235294117647\", \"0.072\", \"0.34913793103448276\"], \"605\": [\"0.06666666666666667\", \"0.06896551724137931\", \"0.08108108108108109\", \"0.03553299492385787\"], \"606\": [\"0.047619047619047616\", \"0.05714285714285714\", \"0.07575757575757576\", \"0.0847457627118644\"], \"607\": [\"0.040983606557377046\", \"0.023622047244094488\", \"0.047619047619047616\", \"0.05527638190954774\"], \"608\": [\"0.415929203539823\", \"0.3805309734513274\", \"0.3627450980392157\", \"0.19230769230769232\"], \"609\": [\"0.014705882352941176\", \"0.0234375\", \"0.03305785123966942\", \"0.03056768558951965\"], \"610\": [\"0.11382113821138211\", \"0.09230769230769231\", \"0.12173913043478261\", \"0.11057692307692307\"], \"611\": [\"0.18840579710144928\", \"0.11290322580645161\", \"0.07407407407407407\", \"0.3645833333333333\"], \"612\": [\"0.15267175572519084\", \"0.18840579710144928\", \"0.20689655172413793\", \"0.06349206349206349\"], \"613\": [\"0.2457627118644068\", \"0.11811023622047244\", \"0.16964285714285715\", \"0.09424083769633508\"], \"614\": [\"0.0\", \"0.0\", \"0.03571428571428571\", \"0.0\"], \"615\": [\"0.9342102989849421\", \"0.9334210036254339\", \"0.9345687246395652\", \"0.9209422736564626\"], \"616\": [\"0.88\", \"0.9545454545454546\", \"0.8769230769230769\", \"0.9102564102564102\"], \"617\": [\"0.9821428571428571\", \"1.0\", \"0.984375\", \"0.8888888888888888\"], \"618\": [\"0.6857142857142857\", \"0.7045454545454546\", \"0.7111111111111111\", \"0.7083333333333334\"], \"619\": [\"0.9578947368421052\", \"0.9425287356321839\", \"0.9425287356321839\", \"0.8412698412698413\"], \"620\": [\"1.0\", \"0.9906542056074766\", \"0.9900990099009901\", \"1.0\"], \"621\": [\"0.9894736842105263\", \"0.963855421686747\", \"0.975\", \"0.9491525423728814\"], \"622\": [\"0.98989898989899\", \"0.96875\", \"1.0\", \"0.9583333333333334\"], \"623\": [\"0.8796296296296297\", \"0.8727272727272727\", \"0.8818181818181818\", \"0.9469026548672567\"], \"624\": [\"0.9764705882352941\", \"0.9578947368421052\", \"0.978021978021978\", \"0.9393939393939394\"], \"625\": [\"0.9591836734693877\", \"0.9247311827956989\", \"0.9278350515463918\", \"0.8850574712643678\"], \"626\": [\"0.9868421052631579\", \"0.968944099378882\", \"1.0\", \"0.9798994974874372\"], \"627\": [\"0.8111111111111111\", \"0.8705882352941177\", \"0.90625\", \"0.9433962264150944\"], \"628\": [\"0.9805825242718447\", \"0.9583333333333334\", \"0.91\", \"0.9423076923076923\"], \"629\": [\"1.0\", \"0.9897959183673469\", \"1.0\", \"1.0\"], \"630\": [\"0.7389092369795136\", \"0.6759304185056064\", \"0.8190937777082355\", \"0.7544370763705553\"], \"631\": [\"0.8125\", \"0.9318181818181818\", \"0.84\", \"0.8653846153846154\"], \"632\": [\"0.9444444444444444\", \"1.0\", \"0.9285714285714286\", \"0.85\"], \"633\": [\"0.8571428571428571\", \"0.8375\", \"0.8433734939759037\", \"0.8526315789473684\"], \"634\": [\"0.6363636363636364\", \"0.6875\", \"0.6428571428571429\", \"0.8901098901098901\"], \"635\": [\"1.0\", \"0.8888888888888888\", \"0.9\", \"1.0\"], \"636\": [\"0.8571428571428571\", \"0.7272727272727273\", \"0.8333333333333334\", \"0.8695652173913043\"], \"637\": [\"0.8333333333333334\", \"0.5\", \"1.0\", \"0.7333333333333333\"], \"638\": [\"0.7833333333333333\", \"0.7543859649122807\", \"0.74\", \"0.8536585365853658\"], \"639\": [\"0.5\", \"0.42857142857142855\", \"0.6666666666666666\", \"0.6363636363636364\"], \"640\": [\"0.7777777777777778\", \"0.631578947368421\", \"0.6666666666666666\", \"0.696969696969697\"], \"641\": [\"0.8666666666666667\", \"0.5833333333333334\", \"1.0\", \"0.8974358974358975\"], \"642\": [\"0.5405405405405406\", \"0.7027027027027027\", \"0.7272727272727273\", \"0.6666666666666666\"], \"643\": [\"0.9354838709677419\", \"0.7894736842105263\", \"0.6785714285714286\", \"0.75\"], \"644\": [\"0.0\", \"0.0\", \"1.0\", \"0.0\"], \"645\": [\"0.440446459150375\", \"0.42510261878864913\", \"0.46122761607505225\", \"0.32615800612559154\"], \"646\": [\"0.3815028901734104\", \"0.35195530726256985\", \"0.35185185185185186\", \"0.29218106995884774\"], \"647\": [\"0.270935960591133\", \"0.23902439024390243\", \"0.3181818181818182\", \"0.08727272727272728\"], \"648\": [\"0.16666666666666666\", \"0.21678321678321677\", \"0.24806201550387597\", \"0.17\"], \"649\": [\"0.43333333333333335\", \"0.3961352657004831\", \"0.41414141414141414\", \"0.25980392156862747\"], \"650\": [\"0.47417840375586856\", \"0.4953271028037383\", \"0.49504950495049505\", \"0.3402777777777778\"], \"651\": [\"0.4392523364485981\", \"0.37735849056603776\", \"0.39\", \"0.20588235294117646\"], \"652\": [\"0.4558139534883721\", \"0.42857142857142855\", \"0.5169082125603864\", \"0.32857142857142857\"], \"653\": [\"0.5900621118012422\", \"0.5783132530120482\", \"0.5987654320987654\", \"0.421259842519685\"], \"654\": [\"0.3824884792626728\", \"0.4212962962962963\", \"0.4320388349514563\", \"0.21830985915492956\"], \"655\": [\"0.4630541871921182\", \"0.4215686274509804\", \"0.4712041884816754\", \"0.29389312977099236\"], \"656\": [\"0.7281553398058253\", \"0.7393364928909952\", \"0.7596153846153846\", \"0.76171875\"], \"657\": [\"0.3967391304347826\", \"0.3978494623655914\", \"0.4860335195530726\", \"0.36101083032490977\"], \"658\": [\"0.531578947368421\", \"0.45098039215686275\", \"0.4945652173913043\", \"0.36162361623616235\"], \"659\": [\"0.45248868778280543\", \"0.4369369369369369\", \"0.4807692307692308\", \"0.46440677966101696\"], \"660\": [\"0.1333867466706706\", \"0.12197964588582617\", \"0.13770426307812497\", \"0.13960555433407368\"], \"661\": [\"0.2831858407079646\", \"0.18681318681318682\", \"0.2782608695652174\", \"0.21666666666666667\"], \"662\": [\"0.10071942446043165\", \"0.11382113821138211\", \"0.10738255033557047\", \"0.12974683544303797\"], \"663\": [\"0.4866666666666667\", \"0.43703703703703706\", \"0.4567901234567901\", \"0.35454545454545455\"], \"664\": [\"0.038834951456310676\", \"0.09433962264150944\", \"0.07377049180327869\", \"0.09166666666666666\"], \"665\": [\"0.04040404040404041\", \"0.07291666666666667\", \"0.03669724770642202\", \"0.11194029850746269\"], \"666\": [\"0.0297029702970297\", \"0.03571428571428571\", \"0.04807692307692308\", \"0.0390625\"], \"667\": [\"0.047058823529411764\", \"0.04819277108433735\", \"0.04950495049504951\", \"0.07344632768361582\"], \"668\": [\"0.33\", \"0.35802469135802467\", \"0.37\", \"0.3716475095785441\"], \"669\": [\"0.028846153846153848\", \"0.03125\", \"0.035398230088495575\", \"0.025089605734767026\"], \"670\": [\"0.06451612903225806\", \"0.05128205128205128\", \"0.09523809523809523\", \"0.08333333333333333\"], \"671\": [\"0.14084507042253522\", \"0.11764705882352941\", \"0.10344827586206896\", \"0.27835051546391754\"], \"672\": [\"0.10714285714285714\", \"0.06976744186046512\", \"0.14285714285714285\", \"0.05472636815920398\"], \"673\": [\"0.1694915254237288\", \"0.09090909090909091\", \"0.13043478260869565\", \"0.06278026905829596\"], \"674\": [\"0.0\", \"0.0\", \"0.0\", \"0.06147540983606557\"], \"675\": [\"0.9396421350323848\", \"0.9220924677068109\", \"0.9233724987753907\", \"0.9301819355485296\"], \"676\": [\"0.8181818181818182\", \"0.8985507246376812\", \"0.8452380952380952\", \"0.8484848484848485\"], \"677\": [\"1.0\", \"0.972972972972973\", \"0.96\", \"0.96\"], \"678\": [\"0.7241379310344828\", \"0.56\", \"0.5135135135135135\", \"0.75\"], \"679\": [\"0.9342105263157895\", \"0.9259259259259259\", \"0.961038961038961\", \"0.9761904761904762\"], \"680\": [\"0.975\", \"0.96875\", \"0.9888888888888889\", \"1.0\"], \"681\": [\"0.9743589743589743\", \"0.9473684210526315\", \"0.9789473684210527\", \"0.9181818181818182\"], \"682\": [\"0.9787234042553191\", \"0.987012987012987\", \"0.9591836734693877\", \"0.9894179894179894\"], \"683\": [\"0.9620253164556962\", \"0.8607594936708861\", \"0.9292929292929293\", \"0.819047619047619\"], \"684\": [\"0.9866666666666667\", \"0.984375\", \"1.0\", \"0.9885057471264368\"], \"685\": [\"0.9534883720930233\", \"0.9634146341463414\", \"0.9893617021276596\", \"0.9533333333333334\"], \"686\": [\"0.9907407407407407\", \"0.9908256880733946\", \"0.9787234042553191\", \"0.8837209302325582\"], \"687\": [\"0.9157894736842105\", \"0.8918918918918919\", \"0.851063829787234\", \"0.9636363636363636\"], \"688\": [\"0.9416666666666667\", \"0.9574468085106383\", \"0.9719626168224299\", \"0.972027972027972\"], \"689\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"690\": [\"0.6642635505380603\", \"0.6526643990929705\", \"0.7112926529932314\", \"0.8291058679328652\"], \"691\": [\"0.7272727272727273\", \"0.7083333333333334\", \"0.7111111111111111\", \"0.8666666666666667\"], \"692\": [\"1.0\", \"0.9333333333333333\", \"0.8888888888888888\", \"0.9534883720930233\"], \"693\": [\"0.9012345679012346\", \"0.8428571428571429\", \"0.8043478260869565\", \"0.9285714285714286\"], \"694\": [\"0.4444444444444444\", \"0.7142857142857143\", \"0.75\", \"0.88\"], \"695\": [\"0.6666666666666666\", \"0.7777777777777778\", \"0.8\", \"1.0\"], \"696\": [\"0.6\", \"0.42857142857142855\", \"0.7142857142857143\", \"0.5263157894736842\"], \"697\": [\"0.6666666666666666\", \"0.8\", \"0.5555555555555556\", \"0.8666666666666667\"], \"698\": [\"0.9166666666666666\", \"0.725\", \"0.8409090909090909\", \"0.8362068965517241\"], \"699\": [\"0.75\", \"0.75\", \"1.0\", \"0.875\"], \"700\": [\"0.6\", \"0.5714285714285714\", \"0.9090909090909091\", \"0.72\"], \"701\": [\"0.9090909090909091\", \"0.8571428571428571\", \"0.6666666666666666\", \"0.7297297297297297\"], \"702\": [\"0.5294117647058824\", \"0.42857142857142855\", \"0.5172413793103449\", \"0.6470588235294118\"], \"703\": [\"0.5882352941176471\", \"0.6\", \"0.8\", \"0.7777777777777778\"], \"704\": [\"0.0\", \"0.0\", \"0.0\", \"1.0\"], \"705\": [\"0.462035012368655\", \"0.4535518716910922\", \"0.4708278174364068\", \"0.33260458878166077\"], \"706\": [\"0.4\", \"0.45588235294117646\", \"0.461038961038961\", \"0.19243986254295534\"], \"707\": [\"0.24242424242424243\", \"0.2482758620689655\", \"0.26519337016574585\", \"0.14860681114551083\"], \"708\": [\"0.21428571428571427\", \"0.15555555555555556\", \"0.17757009345794392\", \"0.1125\"], \"709\": [\"0.4176470588235294\", \"0.3424657534246575\", \"0.39572192513368987\", \"0.36070381231671556\"], \"710\": [\"0.4508670520231214\", \"0.4105960264900662\", \"0.4587628865979381\", \"0.2916666666666667\"], \"711\": [\"0.4367816091954023\", \"0.47058823529411764\", \"0.484375\", \"0.2910662824207493\"], \"712\": [\"0.5317919075144508\", \"0.49032258064516127\", \"0.49473684210526314\", \"0.5327635327635327\"], \"713\": [\"0.5314685314685315\", \"0.5666666666666667\", \"0.5935483870967742\", \"0.344\"], \"714\": [\"0.4228571428571429\", \"0.40384615384615385\", \"0.441025641025641\", \"0.24022346368715083\"], \"715\": [\"0.48520710059171596\", \"0.5163398692810458\", \"0.4946808510638298\", \"0.41935483870967744\"], \"716\": [\"0.6369047619047619\", \"0.7058823529411765\", \"0.7263157894736842\", \"0.5205479452054794\"], \"717\": [\"0.5370370370370371\", \"0.4520547945205479\", \"0.47058823529411764\", \"0.45558739255014324\"], \"718\": [\"0.6975308641975309\", \"0.6\", \"0.5652173913043478\", \"0.3994252873563218\"], \"719\": [\"0.46368715083798884\", \"0.53125\", \"0.5628140703517588\", \"0.3475783475783476\"]}"); + var thresholds_all = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\", \"19\": \"0.7\", \"20\": \"0.7\", \"21\": \"0.7\", \"22\": \"0.7\", \"23\": \"0.7\", \"24\": \"0.7\", \"25\": \"0.7\", \"26\": \"0.7\", \"27\": \"0.7\", \"28\": \"0.7\", \"29\": \"0.7\", \"30\": \"0.7\", \"31\": \"0.7\", \"32\": \"0.7\", \"33\": \"0.7\", \"34\": \"0.7\", \"35\": \"0.7\", \"36\": \"0.7\", \"37\": \"0.7\", \"38\": \"0.7\", \"39\": \"0.7\", \"40\": \"0.7\", \"41\": \"0.7\", \"42\": \"0.7\", \"43\": \"0.7\", \"44\": \"0.7\", \"45\": \"0.7\", \"46\": \"0.7\", \"47\": \"0.7\", \"48\": \"0.7\", \"49\": \"0.7\", \"50\": \"0.7\", \"51\": \"0.7\", \"52\": \"0.7\", \"53\": \"0.7\", \"54\": \"0.7\", \"55\": \"0.7\", \"56\": \"0.7\", \"57\": \"0.7\", \"58\": \"0.7\", \"59\": \"0.7\", \"60\": \"0.7\", \"61\": \"0.7\", \"62\": \"0.7\", \"63\": \"0.7\", \"64\": \"0.7\", \"65\": \"0.7\", \"66\": \"0.7\", \"67\": \"0.7\", \"68\": \"0.7\", \"69\": \"0.7\", \"70\": \"0.7\", \"71\": \"0.7\", \"72\": \"0.7\", \"73\": \"0.7\", \"74\": \"0.7\", \"75\": \"0.7\", \"76\": \"0.7\", \"77\": \"0.7\", \"78\": \"0.7\", \"79\": \"0.7\", \"80\": \"0.7\", \"81\": \"0.7\", \"82\": \"0.7\", \"83\": \"0.7\", \"84\": \"0.7\", \"85\": \"0.7\", \"86\": \"0.7\", \"87\": \"0.7\", \"88\": \"0.7\", \"89\": \"0.7\", \"90\": \"0.7\", \"91\": \"0.7\", \"92\": \"0.7\", \"93\": \"0.7\", \"94\": \"0.7\", \"95\": \"0.7\", \"96\": \"0.7\", \"97\": \"0.7\", \"98\": \"0.7\", \"99\": \"0.7\", \"100\": \"0.7\", \"101\": \"0.7\", \"102\": \"0.7\", \"103\": \"0.7\", \"104\": \"0.7\", \"105\": \"0.7\", \"106\": \"0.7\", \"107\": \"0.7\", \"108\": \"0.7\", \"109\": \"0.7\", \"110\": \"0.7\", \"111\": \"0.7\", \"112\": \"0.7\", \"113\": \"0.7\", \"114\": \"0.7\", \"115\": \"0.7\", \"116\": \"0.7\", \"117\": \"0.7\", \"118\": \"0.7\", \"119\": \"0.7\", \"120\": \"0.7\", \"121\": \"0.7\", \"122\": \"0.7\", \"123\": \"0.7\", \"124\": \"0.7\", \"125\": \"0.7\", \"126\": \"0.7\", \"127\": \"0.7\", \"128\": \"0.7\", \"129\": \"0.7\", \"130\": \"0.7\", \"131\": \"0.7\", \"132\": \"0.7\", \"133\": \"0.7\", \"134\": \"0.7\", \"135\": \"0.7\", \"136\": \"0.7\", \"137\": \"0.7\", \"138\": \"0.7\", \"139\": \"0.7\", \"140\": \"0.7\", \"141\": \"0.7\", \"142\": \"0.7\", \"143\": \"0.7\", \"144\": \"0.7\", \"145\": \"0.7\", \"146\": \"0.7\", \"147\": \"0.7\", \"148\": \"0.7\", \"149\": \"0.7\", \"150\": \"0.7\", \"151\": \"0.7\", \"152\": \"0.7\", \"153\": \"0.7\", \"154\": \"0.7\", \"155\": \"0.7\", \"156\": \"0.7\", \"157\": \"0.7\", \"158\": \"0.7\", \"159\": \"0.7\", \"160\": \"0.7\", \"161\": \"0.7\", \"162\": \"0.7\", \"163\": \"0.7\", \"164\": \"0.7\", \"165\": \"0.7\", \"166\": \"0.7\", \"167\": \"0.7\", \"168\": \"0.7\", \"169\": \"0.7\", \"170\": \"0.7\", \"171\": \"0.7\", \"172\": \"0.7\", \"173\": \"0.7\", \"174\": \"0.7\", \"175\": \"0.7\", \"176\": \"0.7\", \"177\": \"0.7\", \"178\": \"0.7\", \"179\": \"0.7\", \"180\": \"0.7\", \"181\": \"0.7\", \"182\": \"0.7\", \"183\": \"0.7\", \"184\": \"0.7\", \"185\": \"0.7\", \"186\": \"0.7\", \"187\": \"0.7\", \"188\": \"0.7\", \"189\": \"0.7\", \"190\": \"0.7\", \"191\": \"0.7\", \"192\": \"0.7\", \"193\": \"0.7\", \"194\": \"0.7\", \"195\": \"0.7\", \"196\": \"0.7\", \"197\": \"0.7\", \"198\": \"0.7\", \"199\": \"0.7\", \"200\": \"0.7\", \"201\": \"0.7\", \"202\": \"0.7\", \"203\": \"0.7\", \"204\": \"0.7\", \"205\": \"0.7\", \"206\": \"0.7\", \"207\": \"0.7\", \"208\": \"0.7\", \"209\": \"0.7\", \"210\": \"0.7\", \"211\": \"0.7\", \"212\": \"0.7\", \"213\": \"0.7\", \"214\": \"0.7\", \"215\": \"0.7\", \"216\": \"0.7\", \"217\": \"0.7\", \"218\": \"0.7\", \"219\": \"0.7\", \"220\": \"0.7\", \"221\": \"0.7\", \"222\": \"0.7\", \"223\": \"0.7\", \"224\": \"0.7\", \"225\": \"0.7\", \"226\": \"0.7\", \"227\": \"0.7\", \"228\": \"0.7\", \"229\": \"0.7\", \"230\": \"0.7\", \"231\": \"0.7\", \"232\": \"0.7\", \"233\": \"0.7\", \"234\": \"0.7\", \"235\": \"0.7\", \"236\": \"0.7\", \"237\": \"0.7\", \"238\": \"0.7\", \"239\": \"0.7\", \"240\": \"0.7\", \"241\": \"0.7\", \"242\": \"0.7\", \"243\": \"0.7\", \"244\": \"0.7\", \"245\": \"0.7\", \"246\": \"0.7\", \"247\": \"0.7\", \"248\": \"0.7\", \"249\": \"0.7\", \"250\": \"0.7\", \"251\": \"0.7\", \"252\": \"0.7\", \"253\": \"0.7\", \"254\": \"0.7\", \"255\": \"0.7\", \"256\": \"0.7\", \"257\": \"0.7\", \"258\": \"0.7\", \"259\": \"0.7\", \"260\": \"0.7\", \"261\": \"0.7\", \"262\": \"0.7\", \"263\": \"0.7\", \"264\": \"0.7\", \"265\": \"0.7\", \"266\": \"0.7\", \"267\": \"0.7\", \"268\": \"0.7\", \"269\": \"0.7\", \"270\": \"0.7\", \"271\": \"0.7\", \"272\": \"0.7\", \"273\": \"0.7\", \"274\": \"0.7\", \"275\": \"0.7\", \"276\": \"0.7\", \"277\": \"0.7\", \"278\": \"0.7\", \"279\": \"0.7\", \"280\": \"0.7\", \"281\": \"0.7\", \"282\": \"0.7\", \"283\": \"0.7\", \"284\": \"0.7\", \"285\": \"0.7\", \"286\": \"0.7\", \"287\": \"0.7\", \"288\": \"0.7\", \"289\": \"0.7\", \"290\": \"0.7\", \"291\": \"0.7\", \"292\": \"0.7\", \"293\": \"0.7\", \"294\": \"0.7\", \"295\": \"0.7\", \"296\": \"0.7\", \"297\": \"0.7\", \"298\": \"0.7\", \"299\": \"0.7\", \"300\": \"0.7\", \"301\": \"0.7\", \"302\": \"0.7\", \"303\": \"0.7\", \"304\": \"0.7\", \"305\": \"0.7\", \"306\": \"0.7\", \"307\": \"0.7\", \"308\": \"0.7\", \"309\": \"0.7\", \"310\": \"0.7\", \"311\": \"0.7\", \"312\": \"0.7\", \"313\": \"0.7\", \"314\": \"0.7\", \"315\": \"0.7\", \"316\": \"0.7\", \"317\": \"0.7\", \"318\": \"0.7\", \"319\": \"0.7\", \"320\": \"0.7\", \"321\": \"0.7\", \"322\": \"0.7\", \"323\": \"0.7\", \"324\": \"0.7\", \"325\": \"0.7\", \"326\": \"0.7\", \"327\": \"0.7\", \"328\": \"0.7\", \"329\": \"0.7\", \"330\": \"0.7\", \"331\": \"0.7\", \"332\": \"0.7\", \"333\": \"0.7\", \"334\": \"0.7\", \"335\": \"0.7\", \"336\": \"0.7\", \"337\": \"0.7\", \"338\": \"0.7\", \"339\": \"0.7\", \"340\": \"0.7\", \"341\": \"0.7\", \"342\": \"0.7\", \"343\": \"0.7\", \"344\": \"0.7\", \"345\": \"0.7\", \"346\": \"0.7\", \"347\": \"0.7\", \"348\": \"0.7\", \"349\": \"0.7\", \"350\": \"0.7\", \"351\": \"0.7\", \"352\": \"0.7\", \"353\": \"0.7\", \"354\": \"0.7\", \"355\": \"0.7\", \"356\": \"0.7\", \"357\": \"0.7\", \"358\": \"0.7\", \"359\": \"0.7\", \"360\": \"0.7\", \"361\": \"0.7\", \"362\": \"0.7\", \"363\": \"0.7\", \"364\": \"0.7\", \"365\": \"0.7\", \"366\": \"0.7\", \"367\": \"0.7\", \"368\": \"0.7\", \"369\": \"0.7\", \"370\": \"0.7\", \"371\": \"0.7\", \"372\": \"0.7\", \"373\": \"0.7\", \"374\": \"0.7\", \"375\": \"0.7\", \"376\": \"0.7\", \"377\": \"0.7\", \"378\": \"0.7\", \"379\": \"0.7\", \"380\": \"0.7\", \"381\": \"0.7\", \"382\": \"0.7\", \"383\": \"0.7\", \"384\": \"0.7\", \"385\": \"0.7\", \"386\": \"0.7\", \"387\": \"0.7\", \"388\": \"0.7\", \"389\": \"0.7\", \"390\": \"0.7\", \"391\": \"0.7\", \"392\": \"0.7\", \"393\": \"0.7\", \"394\": \"0.7\", \"395\": \"0.7\", \"396\": \"0.7\", \"397\": \"0.7\", \"398\": \"0.7\", \"399\": \"0.7\", \"400\": \"0.7\", \"401\": \"0.7\", \"402\": \"0.7\", \"403\": \"0.7\", \"404\": \"0.7\", \"405\": \"0.7\", \"406\": \"0.7\", \"407\": \"0.7\", \"408\": \"0.7\", \"409\": \"0.7\", \"410\": \"0.7\", \"411\": \"0.7\", \"412\": \"0.7\", \"413\": \"0.7\", \"414\": \"0.7\", \"415\": \"0.7\", \"416\": \"0.7\", \"417\": \"0.7\", \"418\": \"0.7\", \"419\": \"0.7\", \"420\": \"0.7\", \"421\": \"0.7\", \"422\": \"0.7\", \"423\": \"0.7\", \"424\": \"0.7\", \"425\": \"0.7\", \"426\": \"0.7\", \"427\": \"0.7\", \"428\": \"0.7\", \"429\": \"0.7\", \"430\": \"0.7\", \"431\": \"0.7\", \"432\": \"0.7\", \"433\": \"0.7\", \"434\": \"0.7\", \"435\": \"0.7\", \"436\": \"0.7\", \"437\": \"0.7\", \"438\": \"0.7\", \"439\": \"0.7\", \"440\": \"0.7\", \"441\": \"0.7\", \"442\": \"0.7\", \"443\": \"0.7\", \"444\": \"0.7\", \"445\": \"0.7\", \"446\": \"0.7\", \"447\": \"0.7\", \"448\": \"0.7\", \"449\": \"0.7\", \"450\": \"0.7\", \"451\": \"0.7\", \"452\": \"0.7\", \"453\": \"0.7\", \"454\": \"0.7\", \"455\": \"0.7\", \"456\": \"0.7\", \"457\": \"0.7\", \"458\": \"0.7\", \"459\": \"0.7\", \"460\": \"0.7\", \"461\": \"0.7\", \"462\": \"0.7\", \"463\": \"0.7\", \"464\": \"0.7\", \"465\": \"0.7\", \"466\": \"0.7\", \"467\": \"0.7\", \"468\": \"0.7\", \"469\": \"0.7\", \"470\": \"0.7\", \"471\": \"0.7\", \"472\": \"0.7\", \"473\": \"0.7\", \"474\": \"0.7\", \"475\": \"0.7\", \"476\": \"0.7\", \"477\": \"0.7\", \"478\": \"0.7\", \"479\": \"0.7\", \"480\": \"0.7\", \"481\": \"0.7\", \"482\": \"0.7\", \"483\": \"0.7\", \"484\": \"0.7\", \"485\": \"0.7\", \"486\": \"0.7\", \"487\": \"0.7\", \"488\": \"0.7\", \"489\": \"0.7\", \"490\": \"0.7\", \"491\": \"0.7\", \"492\": \"0.7\", \"493\": \"0.7\", \"494\": \"0.7\", \"495\": \"0.7\", \"496\": \"0.7\", \"497\": \"0.7\", \"498\": \"0.7\", \"499\": \"0.7\", \"500\": \"0.7\", \"501\": \"0.7\", \"502\": \"0.7\", \"503\": \"0.7\", \"504\": \"0.7\", \"505\": \"0.7\", \"506\": \"0.7\", \"507\": \"0.7\", \"508\": \"0.7\", \"509\": \"0.7\", \"510\": \"0.7\", \"511\": \"0.7\", \"512\": \"0.7\", \"513\": \"0.7\", \"514\": \"0.7\", \"515\": \"0.7\", \"516\": \"0.7\", \"517\": \"0.7\", \"518\": \"0.7\", \"519\": \"0.7\", \"520\": \"0.7\", \"521\": \"0.7\", \"522\": \"0.7\", \"523\": \"0.7\", \"524\": \"0.7\", \"525\": \"0.7\", \"526\": \"0.7\", \"527\": \"0.7\", \"528\": \"0.7\", \"529\": \"0.7\", \"530\": \"0.7\", \"531\": \"0.7\", \"532\": \"0.7\", \"533\": \"0.7\", \"534\": \"0.7\", \"535\": \"0.7\", \"536\": \"0.7\", \"537\": \"0.7\", \"538\": \"0.7\", \"539\": \"0.7\", \"540\": \"0.7\", \"541\": \"0.7\", \"542\": \"0.7\", \"543\": \"0.7\", \"544\": \"0.7\", \"545\": \"0.7\", \"546\": \"0.7\", \"547\": \"0.7\", \"548\": \"0.7\", \"549\": \"0.7\", \"550\": \"0.7\", \"551\": \"0.7\", \"552\": \"0.7\", \"553\": \"0.7\", \"554\": \"0.7\", \"555\": \"0.7\", \"556\": \"0.7\", \"557\": \"0.7\", \"558\": \"0.7\", \"559\": \"0.7\", \"560\": \"0.7\", \"561\": \"0.7\", \"562\": \"0.7\", \"563\": \"0.7\", \"564\": \"0.7\", \"565\": \"0.7\", \"566\": \"0.7\", \"567\": \"0.7\", \"568\": \"0.7\", \"569\": \"0.7\", \"570\": \"0.7\", \"571\": \"0.7\", \"572\": \"0.7\", \"573\": \"0.7\", \"574\": \"0.7\", \"575\": \"0.7\", \"576\": \"0.7\", \"577\": \"0.7\", \"578\": \"0.7\", \"579\": \"0.7\", \"580\": \"0.7\", \"581\": \"0.7\", \"582\": \"0.7\", \"583\": \"0.7\", \"584\": \"0.7\", \"585\": \"0.7\", \"586\": \"0.7\", \"587\": \"0.7\", \"588\": \"0.7\", \"589\": \"0.7\", \"590\": \"0.7\", \"591\": \"0.7\", \"592\": \"0.7\", \"593\": \"0.7\", \"594\": \"0.7\", \"595\": \"0.7\", \"596\": \"0.7\", \"597\": \"0.7\", \"598\": \"0.7\", \"599\": \"0.7\", \"600\": \"0.7\", \"601\": \"0.7\", \"602\": \"0.7\", \"603\": \"0.7\", \"604\": \"0.7\", \"605\": \"0.7\", \"606\": \"0.7\", \"607\": \"0.7\", \"608\": \"0.7\", \"609\": \"0.7\", \"610\": \"0.7\", \"611\": \"0.7\", \"612\": \"0.7\", \"613\": \"0.7\", \"614\": \"0.7\", \"615\": \"0.7\", \"616\": \"0.7\", \"617\": \"0.7\", \"618\": \"0.7\", \"619\": \"0.7\", \"620\": \"0.7\", \"621\": \"0.7\", \"622\": \"0.7\", \"623\": \"0.7\", \"624\": \"0.7\", \"625\": \"0.7\", \"626\": \"0.7\", \"627\": \"0.7\", \"628\": \"0.7\", \"629\": \"0.7\", \"630\": \"0.7\", \"631\": \"0.7\", \"632\": \"0.7\", \"633\": \"0.7\", \"634\": \"0.7\", \"635\": \"0.7\", \"636\": \"0.7\", \"637\": \"0.7\", \"638\": \"0.7\", \"639\": \"0.7\", \"640\": \"0.7\", \"641\": \"0.7\", \"642\": \"0.7\", \"643\": \"0.7\", \"644\": \"0.7\", \"645\": \"0.7\", \"646\": \"0.7\", \"647\": \"0.7\", \"648\": \"0.7\", \"649\": \"0.7\", \"650\": \"0.7\", \"651\": \"0.7\", \"652\": \"0.7\", \"653\": \"0.7\", \"654\": \"0.7\", \"655\": \"0.7\", \"656\": \"0.7\", \"657\": \"0.7\", \"658\": \"0.7\", \"659\": \"0.7\", \"660\": \"0.7\", \"661\": \"0.7\", \"662\": \"0.7\", \"663\": \"0.7\", \"664\": \"0.7\", \"665\": \"0.7\", \"666\": \"0.7\", \"667\": \"0.7\", \"668\": \"0.7\", \"669\": \"0.7\", \"670\": \"0.7\", \"671\": \"0.7\", \"672\": \"0.7\", \"673\": \"0.7\", \"674\": \"0.7\", \"675\": \"0.7\", \"676\": \"0.7\", \"677\": \"0.7\", \"678\": \"0.7\", \"679\": \"0.7\", \"680\": \"0.7\", \"681\": \"0.7\", \"682\": \"0.7\", \"683\": \"0.7\", \"684\": \"0.7\", \"685\": \"0.7\", \"686\": \"0.7\", \"687\": \"0.7\", \"688\": \"0.7\", \"689\": \"0.7\", \"690\": \"0.7\", \"691\": \"0.7\", \"692\": \"0.7\", \"693\": \"0.7\", \"694\": \"0.7\", \"695\": \"0.7\", \"696\": \"0.7\", \"697\": \"0.7\", \"698\": \"0.7\", \"699\": \"0.7\", \"700\": \"0.7\", \"701\": \"0.7\", \"702\": \"0.7\", \"703\": \"0.7\", \"704\": \"0.7\", \"705\": \"0.7\", \"706\": \"0.7\", \"707\": \"0.7\", \"708\": \"0.7\", \"709\": \"0.7\", \"710\": \"0.7\", \"711\": \"0.7\", \"712\": \"0.7\", \"713\": \"0.7\", \"714\": \"0.7\", \"715\": \"0.7\", \"716\": \"0.7\", \"717\": \"0.7\", \"718\": \"0.7\", \"719\": \"0.7\"}"); + var trends_all = JSON.parse("{\"0\": \"neutral\", \"1\": \"negative\", \"2\": \"negative\", \"3\": \"neutral\", \"4\": \"positive\", \"5\": \"negative\", \"6\": \"neutral\", \"7\": \"positive\", \"8\": \"negative\", \"9\": \"positive\", \"10\": \"positive\", \"11\": \"negative\", \"12\": \"positive\", \"13\": \"negative\", \"14\": \"neutral\", \"15\": \"negative\", \"16\": \"neutral\", \"17\": \"negative\", \"18\": \"negative\", \"19\": \"negative\", \"20\": \"neutral\", \"21\": \"negative\", \"22\": \"neutral\", \"23\": \"neutral\", \"24\": \"negative\", \"25\": \"positive\", \"26\": \"neutral\", \"27\": \"neutral\", \"28\": \"neutral\", \"29\": \"neutral\", \"30\": \"positive\", \"31\": \"neutral\", \"32\": \"negative\", \"33\": \"negative\", \"34\": \"positive\", \"35\": \"negative\", \"36\": \"negative\", \"37\": \"positive\", \"38\": \"negative\", \"39\": \"positive\", \"40\": \"positive\", \"41\": \"positive\", \"42\": \"positive\", \"43\": \"negative\", \"44\": \"positive\", \"45\": \"negative\", \"46\": \"negative\", \"47\": \"negative\", \"48\": \"neutral\", \"49\": \"negative\", \"50\": \"neutral\", \"51\": \"negative\", \"52\": \"negative\", \"53\": \"negative\", \"54\": \"negative\", \"55\": \"negative\", \"56\": \"positive\", \"57\": \"neutral\", \"58\": \"negative\", \"59\": \"negative\", \"60\": \"neutral\", \"61\": \"neutral\", \"62\": \"neutral\", \"63\": \"neutral\", \"64\": \"positive\", \"65\": \"positive\", \"66\": \"positive\", \"67\": \"neutral\", \"68\": \"negative\", \"69\": \"neutral\", \"70\": \"neutral\", \"71\": \"positive\", \"72\": \"negative\", \"73\": \"negative\", \"74\": \"neutral\", \"75\": \"neutral\", \"76\": \"neutral\", \"77\": \"negative\", \"78\": \"neutral\", \"79\": \"neutral\", \"80\": \"neutral\", \"81\": \"neutral\", \"82\": \"neutral\", \"83\": \"neutral\", \"84\": \"neutral\", \"85\": \"negative\", \"86\": \"negative\", \"87\": \"positive\", \"88\": \"neutral\", \"89\": \"neutral\", \"90\": \"positive\", \"91\": \"positive\", \"92\": \"negative\", \"93\": \"positive\", \"94\": \"positive\", \"95\": \"neutral\", \"96\": \"positive\", \"97\": \"negative\", \"98\": \"positive\", \"99\": \"positive\", \"100\": \"neutral\", \"101\": \"negative\", \"102\": \"positive\", \"103\": \"negative\", \"104\": \"positive\", \"105\": \"negative\", \"106\": \"negative\", \"107\": \"negative\", \"108\": \"negative\", \"109\": \"negative\", \"110\": \"negative\", \"111\": \"negative\", \"112\": \"neutral\", \"113\": \"negative\", \"114\": \"negative\", \"115\": \"negative\", \"116\": \"negative\", \"117\": \"negative\", \"118\": \"negative\", \"119\": \"neutral\", \"120\": \"neutral\", \"121\": \"negative\", \"122\": \"positive\", \"123\": \"negative\", \"124\": \"positive\", \"125\": \"negative\", \"126\": \"neutral\", \"127\": \"positive\", \"128\": \"positive\", \"129\": \"neutral\", \"130\": \"negative\", \"131\": \"positive\", \"132\": \"neutral\", \"133\": \"neutral\", \"134\": \"positive\", \"135\": \"neutral\", \"136\": \"positive\", \"137\": \"neutral\", \"138\": \"positive\", \"139\": \"negative\", \"140\": \"neutral\", \"141\": \"neutral\", \"142\": \"neutral\", \"143\": \"negative\", \"144\": \"neutral\", \"145\": \"negative\", \"146\": \"negative\", \"147\": \"positive\", \"148\": \"positive\", \"149\": \"neutral\", \"150\": \"neutral\", \"151\": \"positive\", \"152\": \"neutral\", \"153\": \"negative\", \"154\": \"negative\", \"155\": \"negative\", \"156\": \"negative\", \"157\": \"negative\", \"158\": \"positive\", \"159\": \"neutral\", \"160\": \"negative\", \"161\": \"negative\", \"162\": \"positive\", \"163\": \"positive\", \"164\": \"positive\", \"165\": \"neutral\", \"166\": \"negative\", \"167\": \"positive\", \"168\": \"positive\", \"169\": \"positive\", \"170\": \"negative\", \"171\": \"negative\", \"172\": \"positive\", \"173\": \"negative\", \"174\": \"negative\", \"175\": \"negative\", \"176\": \"positive\", \"177\": \"positive\", \"178\": \"negative\", \"179\": \"positive\", \"180\": \"neutral\", \"181\": \"negative\", \"182\": \"negative\", \"183\": \"positive\", \"184\": \"positive\", \"185\": \"negative\", \"186\": \"positive\", \"187\": \"positive\", \"188\": \"negative\", \"189\": \"positive\", \"190\": \"positive\", \"191\": \"negative\", \"192\": \"positive\", \"193\": \"negative\", \"194\": \"positive\", \"195\": \"negative\", \"196\": \"neutral\", \"197\": \"negative\", \"198\": \"positive\", \"199\": \"negative\", \"200\": \"neutral\", \"201\": \"neutral\", \"202\": \"neutral\", \"203\": \"neutral\", \"204\": \"neutral\", \"205\": \"neutral\", \"206\": \"neutral\", \"207\": \"positive\", \"208\": \"negative\", \"209\": \"neutral\", \"210\": \"positive\", \"211\": \"positive\", \"212\": \"negative\", \"213\": \"neutral\", \"214\": \"positive\", \"215\": \"negative\", \"216\": \"positive\", \"217\": \"positive\", \"218\": \"negative\", \"219\": \"positive\", \"220\": \"negative\", \"221\": \"neutral\", \"222\": \"positive\", \"223\": \"positive\", \"224\": \"positive\", \"225\": \"negative\", \"226\": \"negative\", \"227\": \"negative\", \"228\": \"positive\", \"229\": \"negative\", \"230\": \"neutral\", \"231\": \"negative\", \"232\": \"negative\", \"233\": \"positive\", \"234\": \"negative\", \"235\": \"negative\", \"236\": \"neutral\", \"237\": \"positive\", \"238\": \"negative\", \"239\": \"negative\", \"240\": \"neutral\", \"241\": \"negative\", \"242\": \"negative\", \"243\": \"negative\", \"244\": \"positive\", \"245\": \"positive\", \"246\": \"negative\", \"247\": \"neutral\", \"248\": \"negative\", \"249\": \"neutral\", \"250\": \"positive\", \"251\": \"positive\", \"252\": \"positive\", \"253\": \"neutral\", \"254\": \"neutral\", \"255\": \"negative\", \"256\": \"negative\", \"257\": \"neutral\", \"258\": \"negative\", \"259\": \"neutral\", \"260\": \"neutral\", \"261\": \"negative\", \"262\": \"positive\", \"263\": \"negative\", \"264\": \"neutral\", \"265\": \"positive\", \"266\": \"positive\", \"267\": \"neutral\", \"268\": \"negative\", \"269\": \"neutral\", \"270\": \"neutral\", \"271\": \"negative\", \"272\": \"negative\", \"273\": \"negative\", \"274\": \"positive\", \"275\": \"positive\", \"276\": \"negative\", \"277\": \"neutral\", \"278\": \"negative\", \"279\": \"neutral\", \"280\": \"positive\", \"281\": \"positive\", \"282\": \"positive\", \"283\": \"positive\", \"284\": \"neutral\", \"285\": \"negative\", \"286\": \"negative\", \"287\": \"negative\", \"288\": \"neutral\", \"289\": \"positive\", \"290\": \"positive\", \"291\": \"positive\", \"292\": \"negative\", \"293\": \"negative\", \"294\": \"negative\", \"295\": \"negative\", \"296\": \"positive\", \"297\": \"negative\", \"298\": \"negative\", \"299\": \"negative\", \"300\": \"neutral\", \"301\": \"negative\", \"302\": \"neutral\", \"303\": \"negative\", \"304\": \"positive\", \"305\": \"neutral\", \"306\": \"positive\", \"307\": \"neutral\", \"308\": \"negative\", \"309\": \"neutral\", \"310\": \"neutral\", \"311\": \"positive\", \"312\": \"negative\", \"313\": \"negative\", \"314\": \"neutral\", \"315\": \"neutral\", \"316\": \"negative\", \"317\": \"negative\", \"318\": \"positive\", \"319\": \"neutral\", \"320\": \"neutral\", \"321\": \"negative\", \"322\": \"neutral\", \"323\": \"positive\", \"324\": \"neutral\", \"325\": \"negative\", \"326\": \"negative\", \"327\": \"positive\", \"328\": \"negative\", \"329\": \"neutral\", \"330\": \"neutral\", \"331\": \"negative\", \"332\": \"negative\", \"333\": \"negative\", \"334\": \"positive\", \"335\": \"negative\", \"336\": \"positive\", \"337\": \"neutral\", \"338\": \"positive\", \"339\": \"neutral\", \"340\": \"negative\", \"341\": \"positive\", \"342\": \"positive\", \"343\": \"negative\", \"344\": \"positive\", \"345\": \"negative\", \"346\": \"negative\", \"347\": \"negative\", \"348\": \"positive\", \"349\": \"negative\", \"350\": \"negative\", \"351\": \"negative\", \"352\": \"negative\", \"353\": \"negative\", \"354\": \"negative\", \"355\": \"negative\", \"356\": \"neutral\", \"357\": \"negative\", \"358\": \"negative\", \"359\": \"positive\", \"360\": \"neutral\", \"361\": \"neutral\", \"362\": \"neutral\", \"363\": \"neutral\", \"364\": \"neutral\", \"365\": \"positive\", \"366\": \"neutral\", \"367\": \"neutral\", \"368\": \"neutral\", \"369\": \"neutral\", \"370\": \"positive\", \"371\": \"positive\", \"372\": \"negative\", \"373\": \"negative\", \"374\": \"neutral\", \"375\": \"neutral\", \"376\": \"positive\", \"377\": \"negative\", \"378\": \"negative\", \"379\": \"neutral\", \"380\": \"neutral\", \"381\": \"neutral\", \"382\": \"neutral\", \"383\": \"negative\", \"384\": \"neutral\", \"385\": \"neutral\", \"386\": \"negative\", \"387\": \"positive\", \"388\": \"neutral\", \"389\": \"neutral\", \"390\": \"positive\", \"391\": \"positive\", \"392\": \"negative\", \"393\": \"positive\", \"394\": \"positive\", \"395\": \"positive\", \"396\": \"positive\", \"397\": \"negative\", \"398\": \"negative\", \"399\": \"positive\", \"400\": \"positive\", \"401\": \"negative\", \"402\": \"neutral\", \"403\": \"positive\", \"404\": \"positive\", \"405\": \"negative\", \"406\": \"negative\", \"407\": \"negative\", \"408\": \"negative\", \"409\": \"neutral\", \"410\": \"negative\", \"411\": \"negative\", \"412\": \"positive\", \"413\": \"negative\", \"414\": \"negative\", \"415\": \"neutral\", \"416\": \"negative\", \"417\": \"negative\", \"418\": \"negative\", \"419\": \"negative\", \"420\": \"neutral\", \"421\": \"negative\", \"422\": \"neutral\", \"423\": \"negative\", \"424\": \"positive\", \"425\": \"negative\", \"426\": \"neutral\", \"427\": \"positive\", \"428\": \"negative\", \"429\": \"neutral\", \"430\": \"negative\", \"431\": \"positive\", \"432\": \"negative\", \"433\": \"positive\", \"434\": \"neutral\", \"435\": \"neutral\", \"436\": \"neutral\", \"437\": \"neutral\", \"438\": \"neutral\", \"439\": \"negative\", \"440\": \"neutral\", \"441\": \"negative\", \"442\": \"negative\", \"443\": \"positive\", \"444\": \"neutral\", \"445\": \"positive\", \"446\": \"positive\", \"447\": \"positive\", \"448\": \"neutral\", \"449\": \"neutral\", \"450\": \"negative\", \"451\": \"positive\", \"452\": \"neutral\", \"453\": \"negative\", \"454\": \"negative\", \"455\": \"negative\", \"456\": \"negative\", \"457\": \"negative\", \"458\": \"positive\", \"459\": \"negative\", \"460\": \"negative\", \"461\": \"positive\", \"462\": \"positive\", \"463\": \"neutral\", \"464\": \"neutral\", \"465\": \"negative\", \"466\": \"negative\", \"467\": \"neutral\", \"468\": \"neutral\", \"469\": \"negative\", \"470\": \"positive\", \"471\": \"negative\", \"472\": \"negative\", \"473\": \"negative\", \"474\": \"negative\", \"475\": \"negative\", \"476\": \"positive\", \"477\": \"negative\", \"478\": \"negative\", \"479\": \"negative\", \"480\": \"positive\", \"481\": \"negative\", \"482\": \"positive\", \"483\": \"negative\", \"484\": \"positive\", \"485\": \"neutral\", \"486\": \"neutral\", \"487\": \"positive\", \"488\": \"positive\", \"489\": \"neutral\", \"490\": \"negative\", \"491\": \"positive\", \"492\": \"positive\", \"493\": \"negative\", \"494\": \"positive\", \"495\": \"neutral\", \"496\": \"positive\", \"497\": \"neutral\", \"498\": \"negative\", \"499\": \"negative\", \"500\": \"neutral\", \"501\": \"neutral\", \"502\": \"neutral\", \"503\": \"negative\", \"504\": \"neutral\", \"505\": \"negative\", \"506\": \"negative\", \"507\": \"neutral\", \"508\": \"positive\", \"509\": \"neutral\", \"510\": \"positive\", \"511\": \"positive\", \"512\": \"positive\", \"513\": \"negative\", \"514\": \"positive\", \"515\": \"neutral\", \"516\": \"positive\", \"517\": \"positive\", \"518\": \"negative\", \"519\": \"positive\", \"520\": \"negative\", \"521\": \"negative\", \"522\": \"positive\", \"523\": \"neutral\", \"524\": \"positive\", \"525\": \"neutral\", \"526\": \"negative\", \"527\": \"positive\", \"528\": \"positive\", \"529\": \"neutral\", \"530\": \"negative\", \"531\": \"negative\", \"532\": \"positive\", \"533\": \"neutral\", \"534\": \"negative\", \"535\": \"negative\", \"536\": \"positive\", \"537\": \"positive\", \"538\": \"negative\", \"539\": \"positive\", \"540\": \"neutral\", \"541\": \"negative\", \"542\": \"neutral\", \"543\": \"negative\", \"544\": \"positive\", \"545\": \"neutral\", \"546\": \"neutral\", \"547\": \"neutral\", \"548\": \"negative\", \"549\": \"neutral\", \"550\": \"neutral\", \"551\": \"positive\", \"552\": \"negative\", \"553\": \"negative\", \"554\": \"positive\", \"555\": \"neutral\", \"556\": \"neutral\", \"557\": \"negative\", \"558\": \"neutral\", \"559\": \"neutral\", \"560\": \"neutral\", \"561\": \"negative\", \"562\": \"neutral\", \"563\": \"neutral\", \"564\": \"neutral\", \"565\": \"neutral\", \"566\": \"negative\", \"567\": \"positive\", \"568\": \"neutral\", \"569\": \"neutral\", \"570\": \"positive\", \"571\": \"positive\", \"572\": \"negative\", \"573\": \"neutral\", \"574\": \"positive\", \"575\": \"positive\", \"576\": \"neutral\", \"577\": \"positive\", \"578\": \"neutral\", \"579\": \"positive\", \"580\": \"positive\", \"581\": \"negative\", \"582\": \"positive\", \"583\": \"negative\", \"584\": \"positive\", \"585\": \"negative\", \"586\": \"negative\", \"587\": \"negative\", \"588\": \"negative\", \"589\": \"negative\", \"590\": \"negative\", \"591\": \"negative\", \"592\": \"neutral\", \"593\": \"negative\", \"594\": \"negative\", \"595\": \"negative\", \"596\": \"negative\", \"597\": \"neutral\", \"598\": \"negative\", \"599\": \"negative\", \"600\": \"neutral\", \"601\": \"negative\", \"602\": \"negative\", \"603\": \"neutral\", \"604\": \"positive\", \"605\": \"neutral\", \"606\": \"positive\", \"607\": \"neutral\", \"608\": \"negative\", \"609\": \"neutral\", \"610\": \"neutral\", \"611\": \"positive\", \"612\": \"negative\", \"613\": \"negative\", \"614\": \"neutral\", \"615\": \"neutral\", \"616\": \"neutral\", \"617\": \"negative\", \"618\": \"neutral\", \"619\": \"negative\", \"620\": \"neutral\", \"621\": \"negative\", \"622\": \"neutral\", \"623\": \"positive\", \"624\": \"neutral\", \"625\": \"negative\", \"626\": \"neutral\", \"627\": \"positive\", \"628\": \"negative\", \"629\": \"neutral\", \"630\": \"positive\", \"631\": \"neutral\", \"632\": \"negative\", \"633\": \"neutral\", \"634\": \"positive\", \"635\": \"neutral\", \"636\": \"positive\", \"637\": \"positive\", \"638\": \"positive\", \"639\": \"positive\", \"640\": \"negative\", \"641\": \"positive\", \"642\": \"positive\", \"643\": \"negative\", \"644\": \"positive\", \"645\": \"negative\", \"646\": \"negative\", \"647\": \"negative\", \"648\": \"neutral\", \"649\": \"negative\", \"650\": \"negative\", \"651\": \"negative\", \"652\": \"negative\", \"653\": \"negative\", \"654\": \"negative\", \"655\": \"negative\", \"656\": \"positive\", \"657\": \"neutral\", \"658\": \"negative\", \"659\": \"neutral\", \"660\": \"neutral\", \"661\": \"negative\", \"662\": \"neutral\", \"663\": \"negative\", \"664\": \"positive\", \"665\": \"positive\", \"666\": \"neutral\", \"667\": \"neutral\", \"668\": \"positive\", \"669\": \"neutral\", \"670\": \"positive\", \"671\": \"positive\", \"672\": \"neutral\", \"673\": \"negative\", \"674\": \"positive\", \"675\": \"neutral\", \"676\": \"neutral\", \"677\": \"negative\", \"678\": \"neutral\", \"679\": \"positive\", \"680\": \"neutral\", \"681\": \"negative\", \"682\": \"neutral\", \"683\": \"negative\", \"684\": \"neutral\", \"685\": \"neutral\", \"686\": \"negative\", \"687\": \"positive\", \"688\": \"positive\", \"689\": \"neutral\", \"690\": \"positive\", \"691\": \"positive\", \"692\": \"negative\", \"693\": \"neutral\", \"694\": \"positive\", \"695\": \"positive\", \"696\": \"neutral\", \"697\": \"positive\", \"698\": \"negative\", \"699\": \"positive\", \"700\": \"positive\", \"701\": \"negative\", \"702\": \"positive\", \"703\": \"positive\", \"704\": \"positive\", \"705\": \"negative\", \"706\": \"negative\", \"707\": \"negative\", \"708\": \"negative\", \"709\": \"negative\", \"710\": \"negative\", \"711\": \"negative\", \"712\": \"neutral\", \"713\": \"negative\", \"714\": \"negative\", \"715\": \"negative\", \"716\": \"negative\", \"717\": \"negative\", \"718\": \"negative\", \"719\": \"negative\"}"); + var passed_all = JSON.parse("{\"0\": false, \"1\": false, \"2\": false, \"3\": false, \"4\": false, \"5\": false, \"6\": false, \"7\": false, \"8\": false, \"9\": false, \"10\": false, \"11\": false, \"12\": false, \"13\": false, \"14\": false, \"15\": true, \"16\": true, \"17\": true, \"18\": false, \"19\": true, \"20\": true, \"21\": true, \"22\": true, \"23\": true, \"24\": true, \"25\": true, \"26\": true, \"27\": true, \"28\": true, \"29\": true, \"30\": true, \"31\": true, \"32\": true, \"33\": true, \"34\": true, \"35\": true, \"36\": false, \"37\": true, \"38\": true, \"39\": true, \"40\": true, \"41\": true, \"42\": false, \"43\": true, \"44\": false, \"45\": false, \"46\": false, \"47\": false, \"48\": false, \"49\": false, \"50\": false, \"51\": false, \"52\": false, \"53\": false, \"54\": false, \"55\": false, \"56\": true, \"57\": false, \"58\": false, \"59\": false, \"60\": false, \"61\": false, \"62\": false, \"63\": false, \"64\": false, \"65\": false, \"66\": false, \"67\": false, \"68\": false, \"69\": false, \"70\": false, \"71\": false, \"72\": false, \"73\": false, \"74\": false, \"75\": true, \"76\": true, \"77\": true, \"78\": true, \"79\": true, \"80\": true, \"81\": true, \"82\": true, \"83\": true, \"84\": true, \"85\": true, \"86\": true, \"87\": true, \"88\": true, \"89\": true, \"90\": true, \"91\": true, \"92\": true, \"93\": true, \"94\": true, \"95\": true, \"96\": true, \"97\": true, \"98\": true, \"99\": true, \"100\": false, \"101\": true, \"102\": false, \"103\": false, \"104\": true, \"105\": false, \"106\": false, \"107\": false, \"108\": false, \"109\": false, \"110\": false, \"111\": false, \"112\": false, \"113\": false, \"114\": false, \"115\": false, \"116\": false, \"117\": false, \"118\": false, \"119\": false, \"120\": false, \"121\": false, \"122\": false, \"123\": false, \"124\": false, \"125\": false, \"126\": false, \"127\": false, \"128\": false, \"129\": false, \"130\": false, \"131\": false, \"132\": false, \"133\": false, \"134\": false, \"135\": true, \"136\": true, \"137\": true, \"138\": true, \"139\": true, \"140\": true, \"141\": true, \"142\": true, \"143\": true, \"144\": true, \"145\": true, \"146\": true, \"147\": true, \"148\": true, \"149\": true, \"150\": true, \"151\": true, \"152\": true, \"153\": true, \"154\": true, \"155\": false, \"156\": true, \"157\": true, \"158\": true, \"159\": true, \"160\": false, \"161\": false, \"162\": true, \"163\": true, \"164\": true, \"165\": false, \"166\": false, \"167\": false, \"168\": false, \"169\": false, \"170\": false, \"171\": false, \"172\": false, \"173\": false, \"174\": false, \"175\": false, \"176\": false, \"177\": false, \"178\": false, \"179\": false, \"180\": false, \"181\": false, \"182\": false, \"183\": false, \"184\": false, \"185\": false, \"186\": false, \"187\": false, \"188\": false, \"189\": false, \"190\": false, \"191\": false, \"192\": false, \"193\": false, \"194\": false, \"195\": true, \"196\": true, \"197\": false, \"198\": false, \"199\": false, \"200\": true, \"201\": true, \"202\": true, \"203\": true, \"204\": true, \"205\": true, \"206\": true, \"207\": true, \"208\": true, \"209\": true, \"210\": true, \"211\": true, \"212\": true, \"213\": true, \"214\": true, \"215\": true, \"216\": false, \"217\": true, \"218\": true, \"219\": true, \"220\": true, \"221\": true, \"222\": false, \"223\": true, \"224\": false, \"225\": false, \"226\": false, \"227\": false, \"228\": false, \"229\": false, \"230\": false, \"231\": false, \"232\": false, \"233\": false, \"234\": false, \"235\": false, \"236\": true, \"237\": false, \"238\": false, \"239\": false, \"240\": false, \"241\": false, \"242\": false, \"243\": false, \"244\": false, \"245\": false, \"246\": false, \"247\": false, \"248\": false, \"249\": false, \"250\": false, \"251\": false, \"252\": false, \"253\": false, \"254\": false, \"255\": true, \"256\": false, \"257\": true, \"258\": true, \"259\": true, \"260\": true, \"261\": false, \"262\": true, \"263\": true, \"264\": true, \"265\": true, \"266\": true, \"267\": true, \"268\": true, \"269\": true, \"270\": false, \"271\": false, \"272\": false, \"273\": false, \"274\": true, \"275\": true, \"276\": false, \"277\": false, \"278\": false, \"279\": false, \"280\": true, \"281\": true, \"282\": true, \"283\": false, \"284\": false, \"285\": false, \"286\": false, \"287\": false, \"288\": false, \"289\": false, \"290\": false, \"291\": false, \"292\": false, \"293\": false, \"294\": false, \"295\": false, \"296\": true, \"297\": false, \"298\": false, \"299\": false, \"300\": false, \"301\": false, \"302\": false, \"303\": false, \"304\": false, \"305\": false, \"306\": false, \"307\": false, \"308\": false, \"309\": false, \"310\": false, \"311\": false, \"312\": false, \"313\": false, \"314\": false, \"315\": true, \"316\": true, \"317\": true, \"318\": true, \"319\": true, \"320\": true, \"321\": true, \"322\": true, \"323\": true, \"324\": true, \"325\": true, \"326\": true, \"327\": true, \"328\": true, \"329\": true, \"330\": true, \"331\": true, \"332\": true, \"333\": true, \"334\": true, \"335\": true, \"336\": true, \"337\": true, \"338\": true, \"339\": false, \"340\": false, \"341\": true, \"342\": true, \"343\": false, \"344\": false, \"345\": false, \"346\": false, \"347\": false, \"348\": false, \"349\": false, \"350\": false, \"351\": false, \"352\": false, \"353\": false, \"354\": false, \"355\": false, \"356\": true, \"357\": false, \"358\": false, \"359\": false, \"360\": false, \"361\": false, \"362\": false, \"363\": false, \"364\": false, \"365\": false, \"366\": false, \"367\": false, \"368\": false, \"369\": false, \"370\": false, \"371\": false, \"372\": false, \"373\": false, \"374\": false, \"375\": true, \"376\": true, \"377\": true, \"378\": false, \"379\": true, \"380\": true, \"381\": true, \"382\": true, \"383\": true, \"384\": true, \"385\": true, \"386\": true, \"387\": true, \"388\": true, \"389\": true, \"390\": true, \"391\": true, \"392\": true, \"393\": true, \"394\": true, \"395\": true, \"396\": true, \"397\": true, \"398\": true, \"399\": true, \"400\": true, \"401\": true, \"402\": false, \"403\": true, \"404\": true, \"405\": false, \"406\": false, \"407\": false, \"408\": false, \"409\": false, \"410\": false, \"411\": false, \"412\": false, \"413\": false, \"414\": false, \"415\": false, \"416\": false, \"417\": false, \"418\": false, \"419\": false, \"420\": false, \"421\": false, \"422\": false, \"423\": false, \"424\": false, \"425\": false, \"426\": false, \"427\": false, \"428\": false, \"429\": false, \"430\": false, \"431\": false, \"432\": false, \"433\": false, \"434\": false, \"435\": false, \"436\": false, \"437\": true, \"438\": true, \"439\": true, \"440\": true, \"441\": true, \"442\": true, \"443\": true, \"444\": true, \"445\": true, \"446\": true, \"447\": true, \"448\": true, \"449\": true, \"450\": false, \"451\": true, \"452\": true, \"453\": true, \"454\": true, \"455\": false, \"456\": true, \"457\": true, \"458\": true, \"459\": false, \"460\": false, \"461\": true, \"462\": true, \"463\": true, \"464\": false, \"465\": false, \"466\": false, \"467\": false, \"468\": false, \"469\": false, \"470\": false, \"471\": false, \"472\": false, \"473\": false, \"474\": false, \"475\": false, \"476\": true, \"477\": false, \"478\": false, \"479\": false, \"480\": false, \"481\": false, \"482\": false, \"483\": false, \"484\": false, \"485\": false, \"486\": false, \"487\": false, \"488\": false, \"489\": false, \"490\": false, \"491\": false, \"492\": false, \"493\": false, \"494\": false, \"495\": true, \"496\": true, \"497\": true, \"498\": true, \"499\": true, \"500\": true, \"501\": true, \"502\": true, \"503\": true, \"504\": true, \"505\": true, \"506\": true, \"507\": true, \"508\": true, \"509\": true, \"510\": true, \"511\": true, \"512\": true, \"513\": true, \"514\": true, \"515\": false, \"516\": true, \"517\": true, \"518\": true, \"519\": true, \"520\": false, \"521\": false, \"522\": true, \"523\": false, \"524\": true, \"525\": false, \"526\": false, \"527\": false, \"528\": false, \"529\": false, \"530\": false, \"531\": false, \"532\": false, \"533\": false, \"534\": false, \"535\": false, \"536\": false, \"537\": false, \"538\": false, \"539\": false, \"540\": false, \"541\": false, \"542\": false, \"543\": false, \"544\": false, \"545\": false, \"546\": false, \"547\": false, \"548\": false, \"549\": false, \"550\": false, \"551\": false, \"552\": false, \"553\": false, \"554\": false, \"555\": true, \"556\": true, \"557\": true, \"558\": true, \"559\": true, \"560\": true, \"561\": true, \"562\": true, \"563\": true, \"564\": true, \"565\": true, \"566\": true, \"567\": true, \"568\": true, \"569\": true, \"570\": true, \"571\": true, \"572\": true, \"573\": true, \"574\": true, \"575\": true, \"576\": true, \"577\": true, \"578\": true, \"579\": true, \"580\": true, \"581\": true, \"582\": false, \"583\": true, \"584\": true, \"585\": false, \"586\": false, \"587\": false, \"588\": false, \"589\": false, \"590\": false, \"591\": false, \"592\": false, \"593\": false, \"594\": false, \"595\": false, \"596\": false, \"597\": false, \"598\": false, \"599\": false, \"600\": false, \"601\": false, \"602\": false, \"603\": false, \"604\": false, \"605\": false, \"606\": false, \"607\": false, \"608\": false, \"609\": false, \"610\": false, \"611\": false, \"612\": false, \"613\": false, \"614\": false, \"615\": true, \"616\": true, \"617\": true, \"618\": true, \"619\": true, \"620\": true, \"621\": true, \"622\": true, \"623\": true, \"624\": true, \"625\": true, \"626\": true, \"627\": true, \"628\": true, \"629\": true, \"630\": true, \"631\": true, \"632\": true, \"633\": true, \"634\": true, \"635\": true, \"636\": true, \"637\": true, \"638\": true, \"639\": false, \"640\": false, \"641\": true, \"642\": false, \"643\": true, \"644\": false, \"645\": false, \"646\": false, \"647\": false, \"648\": false, \"649\": false, \"650\": false, \"651\": false, \"652\": false, \"653\": false, \"654\": false, \"655\": false, \"656\": true, \"657\": false, \"658\": false, \"659\": false, \"660\": false, \"661\": false, \"662\": false, \"663\": false, \"664\": false, \"665\": false, \"666\": false, \"667\": false, \"668\": false, \"669\": false, \"670\": false, \"671\": false, \"672\": false, \"673\": false, \"674\": false, \"675\": true, \"676\": true, \"677\": true, \"678\": true, \"679\": true, \"680\": true, \"681\": true, \"682\": true, \"683\": true, \"684\": true, \"685\": true, \"686\": true, \"687\": true, \"688\": true, \"689\": true, \"690\": true, \"691\": true, \"692\": true, \"693\": true, \"694\": true, \"695\": true, \"696\": false, \"697\": true, \"698\": true, \"699\": true, \"700\": true, \"701\": true, \"702\": false, \"703\": true, \"704\": true, \"705\": false, \"706\": false, \"707\": false, \"708\": false, \"709\": false, \"710\": false, \"711\": false, \"712\": false, \"713\": false, \"714\": false, \"715\": false, \"716\": false, \"717\": false, \"718\": false, \"719\": false}"); + var names_all = JSON.parse("{\"0\": \"Positive Predictive Value (PPV)\", \"1\": \"Positive Predictive Value (PPV)\", \"2\": \"Positive Predictive Value (PPV)\", \"3\": \"Positive Predictive Value (PPV)\", \"4\": \"Positive Predictive Value (PPV)\", \"5\": \"Positive Predictive Value (PPV)\", \"6\": \"Positive Predictive Value (PPV)\", \"7\": \"Positive Predictive Value (PPV)\", \"8\": \"Positive Predictive Value (PPV)\", \"9\": \"Positive Predictive Value (PPV)\", \"10\": \"Positive Predictive Value (PPV)\", \"11\": \"Positive Predictive Value (PPV)\", \"12\": \"Positive Predictive Value (PPV)\", \"13\": \"Positive Predictive Value (PPV)\", \"14\": \"Positive Predictive Value (PPV)\", \"15\": \"Negative Predictive Value (NPV)\", \"16\": \"Negative Predictive Value (NPV)\", \"17\": \"Negative Predictive Value (NPV)\", \"18\": \"Negative Predictive Value (NPV)\", \"19\": \"Negative Predictive Value (NPV)\", \"20\": \"Negative Predictive Value (NPV)\", \"21\": \"Negative Predictive Value (NPV)\", \"22\": \"Negative Predictive Value (NPV)\", \"23\": \"Negative Predictive Value (NPV)\", \"24\": \"Negative Predictive Value (NPV)\", \"25\": \"Negative Predictive Value (NPV)\", \"26\": \"Negative Predictive Value (NPV)\", \"27\": \"Negative Predictive Value (NPV)\", \"28\": \"Negative Predictive Value (NPV)\", \"29\": \"Negative Predictive Value (NPV)\", \"30\": \"Sensitivity\", \"31\": \"Sensitivity\", \"32\": \"Sensitivity\", \"33\": \"Sensitivity\", \"34\": \"Sensitivity\", \"35\": \"Sensitivity\", \"36\": \"Sensitivity\", \"37\": \"Sensitivity\", \"38\": \"Sensitivity\", \"39\": \"Sensitivity\", \"40\": \"Sensitivity\", \"41\": \"Sensitivity\", \"42\": \"Sensitivity\", \"43\": \"Sensitivity\", \"44\": \"Sensitivity\", \"45\": \"Specificity\", \"46\": \"Specificity\", \"47\": \"Specificity\", \"48\": \"Specificity\", \"49\": \"Specificity\", \"50\": \"Specificity\", \"51\": \"Specificity\", \"52\": \"Specificity\", \"53\": \"Specificity\", \"54\": \"Specificity\", \"55\": \"Specificity\", \"56\": \"Specificity\", \"57\": \"Specificity\", \"58\": \"Specificity\", \"59\": \"Specificity\", \"60\": \"Positive Predictive Value (PPV)\", \"61\": \"Positive Predictive Value (PPV)\", \"62\": \"Positive Predictive Value (PPV)\", \"63\": \"Positive Predictive Value (PPV)\", \"64\": \"Positive Predictive Value (PPV)\", \"65\": \"Positive Predictive Value (PPV)\", \"66\": \"Positive Predictive Value (PPV)\", \"67\": \"Positive Predictive Value (PPV)\", \"68\": \"Positive Predictive Value (PPV)\", \"69\": \"Positive Predictive Value (PPV)\", \"70\": \"Positive Predictive Value (PPV)\", \"71\": \"Positive Predictive Value (PPV)\", \"72\": \"Positive Predictive Value (PPV)\", \"73\": \"Positive Predictive Value (PPV)\", \"74\": \"Positive Predictive Value (PPV)\", \"75\": \"Negative Predictive Value (NPV)\", \"76\": \"Negative Predictive Value (NPV)\", \"77\": \"Negative Predictive Value (NPV)\", \"78\": \"Negative Predictive Value (NPV)\", \"79\": \"Negative Predictive Value (NPV)\", \"80\": \"Negative Predictive Value (NPV)\", \"81\": \"Negative Predictive Value (NPV)\", \"82\": \"Negative Predictive Value (NPV)\", \"83\": \"Negative Predictive Value (NPV)\", \"84\": \"Negative Predictive Value (NPV)\", \"85\": \"Negative Predictive Value (NPV)\", \"86\": \"Negative Predictive Value (NPV)\", \"87\": \"Negative Predictive Value (NPV)\", \"88\": \"Negative Predictive Value (NPV)\", \"89\": \"Negative Predictive Value (NPV)\", \"90\": \"Sensitivity\", \"91\": \"Sensitivity\", \"92\": \"Sensitivity\", \"93\": \"Sensitivity\", \"94\": \"Sensitivity\", \"95\": \"Sensitivity\", \"96\": \"Sensitivity\", \"97\": \"Sensitivity\", \"98\": \"Sensitivity\", \"99\": \"Sensitivity\", \"100\": \"Sensitivity\", \"101\": \"Sensitivity\", \"102\": \"Sensitivity\", \"103\": \"Sensitivity\", \"104\": \"Sensitivity\", \"105\": \"Specificity\", \"106\": \"Specificity\", \"107\": \"Specificity\", \"108\": \"Specificity\", \"109\": \"Specificity\", \"110\": \"Specificity\", \"111\": \"Specificity\", \"112\": \"Specificity\", \"113\": \"Specificity\", \"114\": \"Specificity\", \"115\": \"Specificity\", \"116\": \"Specificity\", \"117\": \"Specificity\", \"118\": \"Specificity\", \"119\": \"Specificity\", \"120\": \"Positive Predictive Value (PPV)\", \"121\": \"Positive Predictive Value (PPV)\", \"122\": \"Positive Predictive Value (PPV)\", \"123\": \"Positive Predictive Value (PPV)\", \"124\": \"Positive Predictive Value (PPV)\", \"125\": \"Positive Predictive Value (PPV)\", \"126\": \"Positive Predictive Value (PPV)\", \"127\": \"Positive Predictive Value (PPV)\", \"128\": \"Positive Predictive Value (PPV)\", \"129\": \"Positive Predictive Value (PPV)\", \"130\": \"Positive Predictive Value (PPV)\", \"131\": \"Positive Predictive Value (PPV)\", \"132\": \"Positive Predictive Value (PPV)\", \"133\": \"Positive Predictive Value (PPV)\", \"134\": \"Positive Predictive Value (PPV)\", \"135\": \"Negative Predictive Value (NPV)\", \"136\": \"Negative Predictive Value (NPV)\", \"137\": \"Negative Predictive Value (NPV)\", \"138\": \"Negative Predictive Value (NPV)\", \"139\": \"Negative Predictive Value (NPV)\", \"140\": \"Negative Predictive Value (NPV)\", \"141\": \"Negative Predictive Value (NPV)\", \"142\": \"Negative Predictive Value (NPV)\", \"143\": \"Negative Predictive Value (NPV)\", \"144\": \"Negative Predictive Value (NPV)\", \"145\": \"Negative Predictive Value (NPV)\", \"146\": \"Negative Predictive Value (NPV)\", \"147\": \"Negative Predictive Value (NPV)\", \"148\": \"Negative Predictive Value (NPV)\", \"149\": \"Negative Predictive Value (NPV)\", \"150\": \"Sensitivity\", \"151\": \"Sensitivity\", \"152\": \"Sensitivity\", \"153\": \"Sensitivity\", \"154\": \"Sensitivity\", \"155\": \"Sensitivity\", \"156\": \"Sensitivity\", \"157\": \"Sensitivity\", \"158\": \"Sensitivity\", \"159\": \"Sensitivity\", \"160\": \"Sensitivity\", \"161\": \"Sensitivity\", \"162\": \"Sensitivity\", \"163\": \"Sensitivity\", \"164\": \"Sensitivity\", \"165\": \"Specificity\", \"166\": \"Specificity\", \"167\": \"Specificity\", \"168\": \"Specificity\", \"169\": \"Specificity\", \"170\": \"Specificity\", \"171\": \"Specificity\", \"172\": \"Specificity\", \"173\": \"Specificity\", \"174\": \"Specificity\", \"175\": \"Specificity\", \"176\": \"Specificity\", \"177\": \"Specificity\", \"178\": \"Specificity\", \"179\": \"Specificity\", \"180\": \"Positive Predictive Value (PPV)\", \"181\": \"Positive Predictive Value (PPV)\", \"182\": \"Positive Predictive Value (PPV)\", \"183\": \"Positive Predictive Value (PPV)\", \"184\": \"Positive Predictive Value (PPV)\", \"185\": \"Positive Predictive Value (PPV)\", \"186\": \"Positive Predictive Value (PPV)\", \"187\": \"Positive Predictive Value (PPV)\", \"188\": \"Positive Predictive Value (PPV)\", \"189\": \"Positive Predictive Value (PPV)\", \"190\": \"Positive Predictive Value (PPV)\", \"191\": \"Positive Predictive Value (PPV)\", \"192\": \"Positive Predictive Value (PPV)\", \"193\": \"Positive Predictive Value (PPV)\", \"194\": \"Positive Predictive Value (PPV)\", \"195\": \"Negative Predictive Value (NPV)\", \"196\": \"Negative Predictive Value (NPV)\", \"197\": \"Negative Predictive Value (NPV)\", \"198\": \"Negative Predictive Value (NPV)\", \"199\": \"Negative Predictive Value (NPV)\", \"200\": \"Negative Predictive Value (NPV)\", \"201\": \"Negative Predictive Value (NPV)\", \"202\": \"Negative Predictive Value (NPV)\", \"203\": \"Negative Predictive Value (NPV)\", \"204\": \"Negative Predictive Value (NPV)\", \"205\": \"Negative Predictive Value (NPV)\", \"206\": \"Negative Predictive Value (NPV)\", \"207\": \"Negative Predictive Value (NPV)\", \"208\": \"Negative Predictive Value (NPV)\", \"209\": \"Negative Predictive Value (NPV)\", \"210\": \"Sensitivity\", \"211\": \"Sensitivity\", \"212\": \"Sensitivity\", \"213\": \"Sensitivity\", \"214\": \"Sensitivity\", \"215\": \"Sensitivity\", \"216\": \"Sensitivity\", \"217\": \"Sensitivity\", \"218\": \"Sensitivity\", \"219\": \"Sensitivity\", \"220\": \"Sensitivity\", \"221\": \"Sensitivity\", \"222\": \"Sensitivity\", \"223\": \"Sensitivity\", \"224\": \"Sensitivity\", \"225\": \"Specificity\", \"226\": \"Specificity\", \"227\": \"Specificity\", \"228\": \"Specificity\", \"229\": \"Specificity\", \"230\": \"Specificity\", \"231\": \"Specificity\", \"232\": \"Specificity\", \"233\": \"Specificity\", \"234\": \"Specificity\", \"235\": \"Specificity\", \"236\": \"Specificity\", \"237\": \"Specificity\", \"238\": \"Specificity\", \"239\": \"Specificity\", \"240\": \"Positive Predictive Value (PPV)\", \"241\": \"Positive Predictive Value (PPV)\", \"242\": \"Positive Predictive Value (PPV)\", \"243\": \"Positive Predictive Value (PPV)\", \"244\": \"Positive Predictive Value (PPV)\", \"245\": \"Positive Predictive Value (PPV)\", \"246\": \"Positive Predictive Value (PPV)\", \"247\": \"Positive Predictive Value (PPV)\", \"248\": \"Positive Predictive Value (PPV)\", \"249\": \"Positive Predictive Value (PPV)\", \"250\": \"Positive Predictive Value (PPV)\", \"251\": \"Positive Predictive Value (PPV)\", \"252\": \"Positive Predictive Value (PPV)\", \"253\": \"Positive Predictive Value (PPV)\", \"254\": \"Positive Predictive Value (PPV)\", \"255\": \"Negative Predictive Value (NPV)\", \"256\": \"Negative Predictive Value (NPV)\", \"257\": \"Negative Predictive Value (NPV)\", \"258\": \"Negative Predictive Value (NPV)\", \"259\": \"Negative Predictive Value (NPV)\", \"260\": \"Negative Predictive Value (NPV)\", \"261\": \"Negative Predictive Value (NPV)\", \"262\": \"Negative Predictive Value (NPV)\", \"263\": \"Negative Predictive Value (NPV)\", \"264\": \"Negative Predictive Value (NPV)\", \"265\": \"Negative Predictive Value (NPV)\", \"266\": \"Negative Predictive Value (NPV)\", \"267\": \"Negative Predictive Value (NPV)\", \"268\": \"Negative Predictive Value (NPV)\", \"269\": \"Negative Predictive Value (NPV)\", \"270\": \"Sensitivity\", \"271\": \"Sensitivity\", \"272\": \"Sensitivity\", \"273\": \"Sensitivity\", \"274\": \"Sensitivity\", \"275\": \"Sensitivity\", \"276\": \"Sensitivity\", \"277\": \"Sensitivity\", \"278\": \"Sensitivity\", \"279\": \"Sensitivity\", \"280\": \"Sensitivity\", \"281\": \"Sensitivity\", \"282\": \"Sensitivity\", \"283\": \"Sensitivity\", \"284\": \"Sensitivity\", \"285\": \"Specificity\", \"286\": \"Specificity\", \"287\": \"Specificity\", \"288\": \"Specificity\", \"289\": \"Specificity\", \"290\": \"Specificity\", \"291\": \"Specificity\", \"292\": \"Specificity\", \"293\": \"Specificity\", \"294\": \"Specificity\", \"295\": \"Specificity\", \"296\": \"Specificity\", \"297\": \"Specificity\", \"298\": \"Specificity\", \"299\": \"Specificity\", \"300\": \"Positive Predictive Value (PPV)\", \"301\": \"Positive Predictive Value (PPV)\", \"302\": \"Positive Predictive Value (PPV)\", \"303\": \"Positive Predictive Value (PPV)\", \"304\": \"Positive Predictive Value (PPV)\", \"305\": \"Positive Predictive Value (PPV)\", \"306\": \"Positive Predictive Value (PPV)\", \"307\": \"Positive Predictive Value (PPV)\", \"308\": \"Positive Predictive Value (PPV)\", \"309\": \"Positive Predictive Value (PPV)\", \"310\": \"Positive Predictive Value (PPV)\", \"311\": \"Positive Predictive Value (PPV)\", \"312\": \"Positive Predictive Value (PPV)\", \"313\": \"Positive Predictive Value (PPV)\", \"314\": \"Positive Predictive Value (PPV)\", \"315\": \"Negative Predictive Value (NPV)\", \"316\": \"Negative Predictive Value (NPV)\", \"317\": \"Negative Predictive Value (NPV)\", \"318\": \"Negative Predictive Value (NPV)\", \"319\": \"Negative Predictive Value (NPV)\", \"320\": \"Negative Predictive Value (NPV)\", \"321\": \"Negative Predictive Value (NPV)\", \"322\": \"Negative Predictive Value (NPV)\", \"323\": \"Negative Predictive Value (NPV)\", \"324\": \"Negative Predictive Value (NPV)\", \"325\": \"Negative Predictive Value (NPV)\", \"326\": \"Negative Predictive Value (NPV)\", \"327\": \"Negative Predictive Value (NPV)\", \"328\": \"Negative Predictive Value (NPV)\", \"329\": \"Negative Predictive Value (NPV)\", \"330\": \"Sensitivity\", \"331\": \"Sensitivity\", \"332\": \"Sensitivity\", \"333\": \"Sensitivity\", \"334\": \"Sensitivity\", \"335\": \"Sensitivity\", \"336\": \"Sensitivity\", \"337\": \"Sensitivity\", \"338\": \"Sensitivity\", \"339\": \"Sensitivity\", \"340\": \"Sensitivity\", \"341\": \"Sensitivity\", \"342\": \"Sensitivity\", \"343\": \"Sensitivity\", \"344\": \"Sensitivity\", \"345\": \"Specificity\", \"346\": \"Specificity\", \"347\": \"Specificity\", \"348\": \"Specificity\", \"349\": \"Specificity\", \"350\": \"Specificity\", \"351\": \"Specificity\", \"352\": \"Specificity\", \"353\": \"Specificity\", \"354\": \"Specificity\", \"355\": \"Specificity\", \"356\": \"Specificity\", \"357\": \"Specificity\", \"358\": \"Specificity\", \"359\": \"Specificity\", \"360\": \"Positive Predictive Value (PPV)\", \"361\": \"Positive Predictive Value (PPV)\", \"362\": \"Positive Predictive Value (PPV)\", \"363\": \"Positive Predictive Value (PPV)\", \"364\": \"Positive Predictive Value (PPV)\", \"365\": \"Positive Predictive Value (PPV)\", \"366\": \"Positive Predictive Value (PPV)\", \"367\": \"Positive Predictive Value (PPV)\", \"368\": \"Positive Predictive Value (PPV)\", \"369\": \"Positive Predictive Value (PPV)\", \"370\": \"Positive Predictive Value (PPV)\", \"371\": \"Positive Predictive Value (PPV)\", \"372\": \"Positive Predictive Value (PPV)\", \"373\": \"Positive Predictive Value (PPV)\", \"374\": \"Positive Predictive Value (PPV)\", \"375\": \"Negative Predictive Value (NPV)\", \"376\": \"Negative Predictive Value (NPV)\", \"377\": \"Negative Predictive Value (NPV)\", \"378\": \"Negative Predictive Value (NPV)\", \"379\": \"Negative Predictive Value (NPV)\", \"380\": \"Negative Predictive Value (NPV)\", \"381\": \"Negative Predictive Value (NPV)\", \"382\": \"Negative Predictive Value (NPV)\", \"383\": \"Negative Predictive Value (NPV)\", \"384\": \"Negative Predictive Value (NPV)\", \"385\": \"Negative Predictive Value (NPV)\", \"386\": \"Negative Predictive Value (NPV)\", \"387\": \"Negative Predictive Value (NPV)\", \"388\": \"Negative Predictive Value (NPV)\", \"389\": \"Negative Predictive Value (NPV)\", \"390\": \"Sensitivity\", \"391\": \"Sensitivity\", \"392\": \"Sensitivity\", \"393\": \"Sensitivity\", \"394\": \"Sensitivity\", \"395\": \"Sensitivity\", \"396\": \"Sensitivity\", \"397\": \"Sensitivity\", \"398\": \"Sensitivity\", \"399\": \"Sensitivity\", \"400\": \"Sensitivity\", \"401\": \"Sensitivity\", \"402\": \"Sensitivity\", \"403\": \"Sensitivity\", \"404\": \"Sensitivity\", \"405\": \"Specificity\", \"406\": \"Specificity\", \"407\": \"Specificity\", \"408\": \"Specificity\", \"409\": \"Specificity\", \"410\": \"Specificity\", \"411\": \"Specificity\", \"412\": \"Specificity\", \"413\": \"Specificity\", \"414\": \"Specificity\", \"415\": \"Specificity\", \"416\": \"Specificity\", \"417\": \"Specificity\", \"418\": \"Specificity\", \"419\": \"Specificity\", \"420\": \"Positive Predictive Value (PPV)\", \"421\": \"Positive Predictive Value (PPV)\", \"422\": \"Positive Predictive Value (PPV)\", \"423\": \"Positive Predictive Value (PPV)\", \"424\": \"Positive Predictive Value (PPV)\", \"425\": \"Positive Predictive Value (PPV)\", \"426\": \"Positive Predictive Value (PPV)\", \"427\": \"Positive Predictive Value (PPV)\", \"428\": \"Positive Predictive Value (PPV)\", \"429\": \"Positive Predictive Value (PPV)\", \"430\": \"Positive Predictive Value (PPV)\", \"431\": \"Positive Predictive Value (PPV)\", \"432\": \"Positive Predictive Value (PPV)\", \"433\": \"Positive Predictive Value (PPV)\", \"434\": \"Positive Predictive Value (PPV)\", \"435\": \"Negative Predictive Value (NPV)\", \"436\": \"Negative Predictive Value (NPV)\", \"437\": \"Negative Predictive Value (NPV)\", \"438\": \"Negative Predictive Value (NPV)\", \"439\": \"Negative Predictive Value (NPV)\", \"440\": \"Negative Predictive Value (NPV)\", \"441\": \"Negative Predictive Value (NPV)\", \"442\": \"Negative Predictive Value (NPV)\", \"443\": \"Negative Predictive Value (NPV)\", \"444\": \"Negative Predictive Value (NPV)\", \"445\": \"Negative Predictive Value (NPV)\", \"446\": \"Negative Predictive Value (NPV)\", \"447\": \"Negative Predictive Value (NPV)\", \"448\": \"Negative Predictive Value (NPV)\", \"449\": \"Negative Predictive Value (NPV)\", \"450\": \"Sensitivity\", \"451\": \"Sensitivity\", \"452\": \"Sensitivity\", \"453\": \"Sensitivity\", \"454\": \"Sensitivity\", \"455\": \"Sensitivity\", \"456\": \"Sensitivity\", \"457\": \"Sensitivity\", \"458\": \"Sensitivity\", \"459\": \"Sensitivity\", \"460\": \"Sensitivity\", \"461\": \"Sensitivity\", \"462\": \"Sensitivity\", \"463\": \"Sensitivity\", \"464\": \"Sensitivity\", \"465\": \"Specificity\", \"466\": \"Specificity\", \"467\": \"Specificity\", \"468\": \"Specificity\", \"469\": \"Specificity\", \"470\": \"Specificity\", \"471\": \"Specificity\", \"472\": \"Specificity\", \"473\": \"Specificity\", \"474\": \"Specificity\", \"475\": \"Specificity\", \"476\": \"Specificity\", \"477\": \"Specificity\", \"478\": \"Specificity\", \"479\": \"Specificity\", \"480\": \"Positive Predictive Value (PPV)\", \"481\": \"Positive Predictive Value (PPV)\", \"482\": \"Positive Predictive Value (PPV)\", \"483\": \"Positive Predictive Value (PPV)\", \"484\": \"Positive Predictive Value (PPV)\", \"485\": \"Positive Predictive Value (PPV)\", \"486\": \"Positive Predictive Value (PPV)\", \"487\": \"Positive Predictive Value (PPV)\", \"488\": \"Positive Predictive Value (PPV)\", \"489\": \"Positive Predictive Value (PPV)\", \"490\": \"Positive Predictive Value (PPV)\", \"491\": \"Positive Predictive Value (PPV)\", \"492\": \"Positive Predictive Value (PPV)\", \"493\": \"Positive Predictive Value (PPV)\", \"494\": \"Positive Predictive Value (PPV)\", \"495\": \"Negative Predictive Value (NPV)\", \"496\": \"Negative Predictive Value (NPV)\", \"497\": \"Negative Predictive Value (NPV)\", \"498\": \"Negative Predictive Value (NPV)\", \"499\": \"Negative Predictive Value (NPV)\", \"500\": \"Negative Predictive Value (NPV)\", \"501\": \"Negative Predictive Value (NPV)\", \"502\": \"Negative Predictive Value (NPV)\", \"503\": \"Negative Predictive Value (NPV)\", \"504\": \"Negative Predictive Value (NPV)\", \"505\": \"Negative Predictive Value (NPV)\", \"506\": \"Negative Predictive Value (NPV)\", \"507\": \"Negative Predictive Value (NPV)\", \"508\": \"Negative Predictive Value (NPV)\", \"509\": \"Negative Predictive Value (NPV)\", \"510\": \"Sensitivity\", \"511\": \"Sensitivity\", \"512\": \"Sensitivity\", \"513\": \"Sensitivity\", \"514\": \"Sensitivity\", \"515\": \"Sensitivity\", \"516\": \"Sensitivity\", \"517\": \"Sensitivity\", \"518\": \"Sensitivity\", \"519\": \"Sensitivity\", \"520\": \"Sensitivity\", \"521\": \"Sensitivity\", \"522\": \"Sensitivity\", \"523\": \"Sensitivity\", \"524\": \"Sensitivity\", \"525\": \"Specificity\", \"526\": \"Specificity\", \"527\": \"Specificity\", \"528\": \"Specificity\", \"529\": \"Specificity\", \"530\": \"Specificity\", \"531\": \"Specificity\", \"532\": \"Specificity\", \"533\": \"Specificity\", \"534\": \"Specificity\", \"535\": \"Specificity\", \"536\": \"Specificity\", \"537\": \"Specificity\", \"538\": \"Specificity\", \"539\": \"Specificity\", \"540\": \"Positive Predictive Value (PPV)\", \"541\": \"Positive Predictive Value (PPV)\", \"542\": \"Positive Predictive Value (PPV)\", \"543\": \"Positive Predictive Value (PPV)\", \"544\": \"Positive Predictive Value (PPV)\", \"545\": \"Positive Predictive Value (PPV)\", \"546\": \"Positive Predictive Value (PPV)\", \"547\": \"Positive Predictive Value (PPV)\", \"548\": \"Positive Predictive Value (PPV)\", \"549\": \"Positive Predictive Value (PPV)\", \"550\": \"Positive Predictive Value (PPV)\", \"551\": \"Positive Predictive Value (PPV)\", \"552\": \"Positive Predictive Value (PPV)\", \"553\": \"Positive Predictive Value (PPV)\", \"554\": \"Positive Predictive Value (PPV)\", \"555\": \"Negative Predictive Value (NPV)\", \"556\": \"Negative Predictive Value (NPV)\", \"557\": \"Negative Predictive Value (NPV)\", \"558\": \"Negative Predictive Value (NPV)\", \"559\": \"Negative Predictive Value (NPV)\", \"560\": \"Negative Predictive Value (NPV)\", \"561\": \"Negative Predictive Value (NPV)\", \"562\": \"Negative Predictive Value (NPV)\", \"563\": \"Negative Predictive Value (NPV)\", \"564\": \"Negative Predictive Value (NPV)\", \"565\": \"Negative Predictive Value (NPV)\", \"566\": \"Negative Predictive Value (NPV)\", \"567\": \"Negative Predictive Value (NPV)\", \"568\": \"Negative Predictive Value (NPV)\", \"569\": \"Negative Predictive Value (NPV)\", \"570\": \"Sensitivity\", \"571\": \"Sensitivity\", \"572\": \"Sensitivity\", \"573\": \"Sensitivity\", \"574\": \"Sensitivity\", \"575\": \"Sensitivity\", \"576\": \"Sensitivity\", \"577\": \"Sensitivity\", \"578\": \"Sensitivity\", \"579\": \"Sensitivity\", \"580\": \"Sensitivity\", \"581\": \"Sensitivity\", \"582\": \"Sensitivity\", \"583\": \"Sensitivity\", \"584\": \"Sensitivity\", \"585\": \"Specificity\", \"586\": \"Specificity\", \"587\": \"Specificity\", \"588\": \"Specificity\", \"589\": \"Specificity\", \"590\": \"Specificity\", \"591\": \"Specificity\", \"592\": \"Specificity\", \"593\": \"Specificity\", \"594\": \"Specificity\", \"595\": \"Specificity\", \"596\": \"Specificity\", \"597\": \"Specificity\", \"598\": \"Specificity\", \"599\": \"Specificity\", \"600\": \"Positive Predictive Value (PPV)\", \"601\": \"Positive Predictive Value (PPV)\", \"602\": \"Positive Predictive Value (PPV)\", \"603\": \"Positive Predictive Value (PPV)\", \"604\": \"Positive Predictive Value (PPV)\", \"605\": \"Positive Predictive Value (PPV)\", \"606\": \"Positive Predictive Value (PPV)\", \"607\": \"Positive Predictive Value (PPV)\", \"608\": \"Positive Predictive Value (PPV)\", \"609\": \"Positive Predictive Value (PPV)\", \"610\": \"Positive Predictive Value (PPV)\", \"611\": \"Positive Predictive Value (PPV)\", \"612\": \"Positive Predictive Value (PPV)\", \"613\": \"Positive Predictive Value (PPV)\", \"614\": \"Positive Predictive Value (PPV)\", \"615\": \"Negative Predictive Value (NPV)\", \"616\": \"Negative Predictive Value (NPV)\", \"617\": \"Negative Predictive Value (NPV)\", \"618\": \"Negative Predictive Value (NPV)\", \"619\": \"Negative Predictive Value (NPV)\", \"620\": \"Negative Predictive Value (NPV)\", \"621\": \"Negative Predictive Value (NPV)\", \"622\": \"Negative Predictive Value (NPV)\", \"623\": \"Negative Predictive Value (NPV)\", \"624\": \"Negative Predictive Value (NPV)\", \"625\": \"Negative Predictive Value (NPV)\", \"626\": \"Negative Predictive Value (NPV)\", \"627\": \"Negative Predictive Value (NPV)\", \"628\": \"Negative Predictive Value (NPV)\", \"629\": \"Negative Predictive Value (NPV)\", \"630\": \"Sensitivity\", \"631\": \"Sensitivity\", \"632\": \"Sensitivity\", \"633\": \"Sensitivity\", \"634\": \"Sensitivity\", \"635\": \"Sensitivity\", \"636\": \"Sensitivity\", \"637\": \"Sensitivity\", \"638\": \"Sensitivity\", \"639\": \"Sensitivity\", \"640\": \"Sensitivity\", \"641\": \"Sensitivity\", \"642\": \"Sensitivity\", \"643\": \"Sensitivity\", \"644\": \"Sensitivity\", \"645\": \"Specificity\", \"646\": \"Specificity\", \"647\": \"Specificity\", \"648\": \"Specificity\", \"649\": \"Specificity\", \"650\": \"Specificity\", \"651\": \"Specificity\", \"652\": \"Specificity\", \"653\": \"Specificity\", \"654\": \"Specificity\", \"655\": \"Specificity\", \"656\": \"Specificity\", \"657\": \"Specificity\", \"658\": \"Specificity\", \"659\": \"Specificity\", \"660\": \"Positive Predictive Value (PPV)\", \"661\": \"Positive Predictive Value (PPV)\", \"662\": \"Positive Predictive Value (PPV)\", \"663\": \"Positive Predictive Value (PPV)\", \"664\": \"Positive Predictive Value (PPV)\", \"665\": \"Positive Predictive Value (PPV)\", \"666\": \"Positive Predictive Value (PPV)\", \"667\": \"Positive Predictive Value (PPV)\", \"668\": \"Positive Predictive Value (PPV)\", \"669\": \"Positive Predictive Value (PPV)\", \"670\": \"Positive Predictive Value (PPV)\", \"671\": \"Positive Predictive Value (PPV)\", \"672\": \"Positive Predictive Value (PPV)\", \"673\": \"Positive Predictive Value (PPV)\", \"674\": \"Positive Predictive Value (PPV)\", \"675\": \"Negative Predictive Value (NPV)\", \"676\": \"Negative Predictive Value (NPV)\", \"677\": \"Negative Predictive Value (NPV)\", \"678\": \"Negative Predictive Value (NPV)\", \"679\": \"Negative Predictive Value (NPV)\", \"680\": \"Negative Predictive Value (NPV)\", \"681\": \"Negative Predictive Value (NPV)\", \"682\": \"Negative Predictive Value (NPV)\", \"683\": \"Negative Predictive Value (NPV)\", \"684\": \"Negative Predictive Value (NPV)\", \"685\": \"Negative Predictive Value (NPV)\", \"686\": \"Negative Predictive Value (NPV)\", \"687\": \"Negative Predictive Value (NPV)\", \"688\": \"Negative Predictive Value (NPV)\", \"689\": \"Negative Predictive Value (NPV)\", \"690\": \"Sensitivity\", \"691\": \"Sensitivity\", \"692\": \"Sensitivity\", \"693\": \"Sensitivity\", \"694\": \"Sensitivity\", \"695\": \"Sensitivity\", \"696\": \"Sensitivity\", \"697\": \"Sensitivity\", \"698\": \"Sensitivity\", \"699\": \"Sensitivity\", \"700\": \"Sensitivity\", \"701\": \"Sensitivity\", \"702\": \"Sensitivity\", \"703\": \"Sensitivity\", \"704\": \"Sensitivity\", \"705\": \"Specificity\", \"706\": \"Specificity\", \"707\": \"Specificity\", \"708\": \"Specificity\", \"709\": \"Specificity\", \"710\": \"Specificity\", \"711\": \"Specificity\", \"712\": \"Specificity\", \"713\": \"Specificity\", \"714\": \"Specificity\", \"715\": \"Specificity\", \"716\": \"Specificity\", \"717\": \"Specificity\", \"718\": \"Specificity\", \"719\": \"Specificity\"}"); + var timestamps_all = JSON.parse("{\"0\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"1\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"2\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"3\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"4\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"5\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"6\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"7\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"8\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"9\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"10\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"11\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"12\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"13\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"14\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"15\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"16\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"17\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"18\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"19\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"20\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"21\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"22\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"23\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"24\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"25\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"26\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"27\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"28\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"29\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"30\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"31\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"32\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"33\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"34\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"35\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"36\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"37\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"38\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"39\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"40\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"41\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"42\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"43\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"44\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"45\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"46\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"47\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"48\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"49\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"50\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"51\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"52\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"53\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"54\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"55\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"56\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"57\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"58\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"59\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"60\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"61\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"62\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"63\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"64\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"65\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"66\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"67\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"68\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"69\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"70\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"71\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"72\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"73\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"74\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"75\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"76\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"77\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"78\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"79\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"80\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"81\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"82\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"83\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"84\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"85\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"86\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"87\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"88\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"89\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"90\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"91\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"92\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"93\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"94\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"95\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"96\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"97\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"98\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"99\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"100\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"101\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"102\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"103\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"104\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"105\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"106\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"107\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"108\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"109\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"110\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"111\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"112\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"113\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"114\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"115\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"116\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"117\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"118\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"119\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"120\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"121\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"122\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"123\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"124\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"125\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"126\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"127\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"128\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"129\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"130\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"131\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"132\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"133\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"134\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"135\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"136\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"137\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"138\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"139\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"140\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"141\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"142\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"143\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"144\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"145\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"146\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"147\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"148\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"149\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"150\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"151\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"152\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"153\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"154\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"155\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"156\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"157\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"158\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"159\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"160\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"161\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"162\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"163\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"164\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"165\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"166\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"167\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"168\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"169\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"170\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"171\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"172\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"173\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"174\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"175\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"176\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"177\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"178\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"179\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"180\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"181\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"182\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"183\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"184\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"185\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"186\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"187\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"188\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"189\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"190\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"191\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"192\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"193\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"194\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"195\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"196\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"197\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"198\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"199\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"200\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"201\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"202\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"203\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"204\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"205\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"206\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"207\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"208\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"209\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"210\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"211\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"212\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"213\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"214\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"215\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"216\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"217\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"218\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"219\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"220\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"221\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"222\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"223\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"224\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"225\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"226\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"227\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"228\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"229\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"230\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"231\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"232\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"233\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"234\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"235\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"236\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"237\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"238\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"239\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"240\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"241\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"242\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"243\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"244\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"245\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"246\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"247\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"248\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"249\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"250\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"251\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"252\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"253\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"254\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"255\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"256\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"257\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"258\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"259\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"260\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"261\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"262\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"263\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"264\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"265\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"266\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"267\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"268\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"269\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"270\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"271\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"272\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"273\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"274\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"275\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"276\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"277\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"278\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"279\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"280\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"281\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"282\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"283\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"284\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"285\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"286\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"287\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"288\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"289\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"290\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"291\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"292\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"293\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"294\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"295\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"296\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"297\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"298\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"299\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"300\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"301\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"302\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"303\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"304\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"305\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"306\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"307\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"308\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"309\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"310\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"311\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"312\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"313\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"314\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"315\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"316\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"317\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"318\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"319\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"320\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"321\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"322\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"323\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"324\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"325\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"326\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"327\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"328\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"329\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"330\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"331\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"332\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"333\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"334\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"335\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"336\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"337\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"338\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"339\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"340\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"341\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"342\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"343\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"344\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"345\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"346\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"347\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"348\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"349\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"350\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"351\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"352\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"353\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"354\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"355\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"356\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"357\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"358\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"359\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"360\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"361\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"362\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"363\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"364\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"365\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"366\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"367\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"368\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"369\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"370\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"371\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"372\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"373\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"374\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"375\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"376\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"377\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"378\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"379\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"380\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"381\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"382\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"383\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"384\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"385\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"386\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"387\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"388\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"389\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"390\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"391\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"392\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"393\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"394\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"395\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"396\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"397\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"398\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"399\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"400\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"401\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"402\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"403\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"404\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"405\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"406\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"407\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"408\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"409\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"410\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"411\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"412\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"413\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"414\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"415\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"416\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"417\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"418\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"419\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"420\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"421\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"422\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"423\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"424\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"425\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"426\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"427\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"428\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"429\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"430\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"431\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"432\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"433\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"434\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"435\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"436\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"437\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"438\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"439\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"440\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"441\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"442\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"443\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"444\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"445\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"446\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"447\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"448\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"449\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"450\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"451\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"452\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"453\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"454\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"455\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"456\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"457\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"458\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"459\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"460\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"461\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"462\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"463\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"464\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"465\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"466\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"467\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"468\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"469\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"470\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"471\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"472\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"473\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"474\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"475\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"476\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"477\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"478\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"479\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"480\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"481\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"482\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"483\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"484\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"485\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"486\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"487\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"488\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"489\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"490\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"491\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"492\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"493\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"494\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"495\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"496\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"497\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"498\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"499\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"500\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"501\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"502\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"503\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"504\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"505\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"506\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"507\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"508\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"509\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"510\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"511\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"512\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"513\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"514\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"515\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"516\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"517\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"518\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"519\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"520\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"521\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"522\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"523\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"524\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"525\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"526\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"527\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"528\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"529\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"530\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"531\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"532\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"533\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"534\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"535\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"536\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"537\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"538\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"539\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"540\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"541\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"542\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"543\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"544\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"545\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"546\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"547\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"548\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"549\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"550\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"551\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"552\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"553\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"554\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"555\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"556\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"557\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"558\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"559\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"560\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"561\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"562\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"563\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"564\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"565\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"566\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"567\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"568\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"569\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"570\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"571\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"572\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"573\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"574\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"575\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"576\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"577\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"578\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"579\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"580\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"581\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"582\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"583\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"584\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"585\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"586\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"587\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"588\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"589\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"590\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"591\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"592\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"593\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"594\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"595\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"596\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"597\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"598\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"599\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"600\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"601\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"602\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"603\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"604\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"605\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"606\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"607\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"608\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"609\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"610\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"611\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"612\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"613\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"614\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"615\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"616\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"617\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"618\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"619\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"620\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"621\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"622\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"623\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"624\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"625\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"626\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"627\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"628\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"629\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"630\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"631\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"632\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"633\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"634\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"635\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"636\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"637\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"638\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"639\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"640\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"641\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"642\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"643\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"644\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"645\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"646\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"647\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"648\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"649\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"650\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"651\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"652\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"653\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"654\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"655\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"656\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"657\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"658\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"659\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"660\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"661\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"662\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"663\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"664\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"665\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"666\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"667\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"668\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"669\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"670\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"671\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"672\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"673\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"674\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"675\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"676\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"677\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"678\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"679\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"680\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"681\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"682\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"683\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"684\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"685\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"686\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"687\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"688\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"689\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"690\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"691\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"692\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"693\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"694\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"695\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"696\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"697\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"698\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"699\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"700\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"701\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"702\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"703\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"704\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"705\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"706\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"707\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"708\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"709\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"710\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"711\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"712\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"713\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"714\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"715\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"716\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"717\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"718\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"719\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"]}"); + + var radioGroups = {}; + var labelGroups = {}; + for (let i = 0; i < inputs_all.length; i++) { + var input = inputs_all[i]; + var label = label_slice_selection[i]; + var groupName = input.name; + if (!radioGroups[groupName]) { + radioGroups[groupName] = []; + labelGroups[groupName] = []; + } + radioGroups[groupName].push(input); + labelGroups[groupName].push(label); + } + + // use radioGroups to loop through selection changing only one element at a time + for (let i = 0; i < selection.length; i++) { + for (let j = 0; j < inputs_all.length; j++) { + if (inputs_all[j].name === selection[i].split(":")[0]) { + radio_group = radioGroups[selection[i].split(":")[0]]; + label_group = labelGroups[selection[i].split(":")[0]]; + for (let k = 0; k < radio_group.length; k++) { + selection_copy = selection.slice(); + selection_copy[i] = selection[i].split(":")[0] + ":" + radio_group[k].value; + // get idx of slices where all elements match + var idx = Object.keys(slices_all).find(key => JSON.stringify(slices_all[key].sort()) === JSON.stringify(selection_copy.sort())); + if (idx === undefined) { + // set radio button to disabled and cursor to not allowed and color to gray if idx is undefined + radio_group[k].disabled = true; + label_group[k].style.cursor = "not-allowed"; + label_group[k].style.color = "gray"; + label_group[k].style.backgroundColor = "rgba(125, 125, 125, 0.2)"; + } + else { + radio_group[k].disabled = false; + label_group[k].style.cursor = "pointer"; + } + } + } + } + } + + traces = []; + var plot_number = parseInt(plot_selected.value.split(" ")[1]-1); + for (let i = 0; i < selections.length; i++) { + if (selections[i] === null) { + continue; + } + selection = selections[i] + + // get idx of slices where all elements match + var idx = Object.keys(slices_all).find(key => JSON.stringify(slices_all[key].sort()) === JSON.stringify(selection)); + var history_data = []; + for (let i = 0; i < histories_all[idx].length; i++) { + history_data.push(parseFloat(histories_all[idx][i])); + } + var timestamp_data = []; + for (let i = 0; i < timestamps_all[idx].length; i++) { + timestamp_data.push(timestamps_all[idx][i]); + } + threshold = parseFloat(thresholds_all[idx]); + trend = trends_all[idx]; + passed = passed_all[idx]; + name = names_all[idx]; + + // if trend is "positive" set keyword to upwards, if trend is "negative" set keyword to downwards, else set keyword to flat + if (trend === "positive") { + var trend_keyword = "upwards"; + } else if (trend === "negative") { + var trend_keyword = "downwards"; + } else { + var trend_keyword = "flat"; + } + + // if passed is true set keyword to Above, if passed is false set keyword to Below + if (passed) { + var passed_keyword = "above"; + } + else { + var passed_keyword = "below"; + } + + // create title for plot: Current {metric name} is trending {trend_keyword} and is {passed_keyword} the threshold. + // get number of nulls in selections, if 9 then plot title, else don't plot title + console.log(selections) + var nulls = 0; + for (let i = 0; i < selections.length; i++) { + if (selections[i] === null) { + nulls += 1; + } + } + if (nulls === 10) { + var plot_title = "Current " + name + " is trending " + trend_keyword + " and is " + passed_keyword + " the threshold."; + var showlegend = false; + } + else { + var plot_title = ""; + var showlegend = true; + } + name = "" + suffix = " ( " + for (let i = 0; i < selection.length; i++) { + if (selection[i].split(":")[0] === "metric") { + name += selection[i].split(":")[1]; + } + else { + if (selection[i].split(":")[1].includes("overall")) { + continue; + } else { + suffix += selection[i]; + suffix += ", "; + } + } + } + if (suffix === " ( ") { + name += ""; + } + else { + suffix = suffix.slice(0, -2); + name += suffix + " )"; + } + + var trace = { + // range of x is the length of the list of floats + x: timestamp_data, + y: history_data, + mode: 'lines+markers', + type: 'scatter', + marker: {color: plot_colors[i+1]}, + line: {color: plot_colors[i+1]}, + name: name, + }; + traces.push(trace); + } + + if (nulls === 10) { + var threshold_trace = { + x: timestamp_data, + y: Array.from({length: history_data.length}, (_, i) => threshold), + mode: 'lines', + type: 'scatter', + marker: {color: 'rgb(0,0,0)'}, + line: {color: 'rgb(0,0,0)', dash: 'dot'}, + name: '', + }; + traces.push(threshold_trace); + } + var layout = { + title: { + text: plot_title, + font: { + family: 'Arial, Helvetica, sans-serif', + size: 18, + } + }, + paper_bgcolor: 'rgba(0,0,0,0)', + plot_bgcolor: 'rgba(0,0,0,0)', + xaxis: { + zeroline: false, + showticklabels: false, + showgrid: false, + }, + yaxis: { + gridcolor: '#ffffff', + }, + showlegend: showlegend, + margin: { + l: 50, + r: 50, + b: 50, + t: 50, + pad: 4 + }, + // set height and width of plot to extra-wide to fit the plot + height: 500, + width: 900, + } + Plotly.newPlot(plot, traces, layout, {displayModeBar: false}); + } + + + + // Define a function to update the plot based on selected filters + function updatePlot() { + const inputs = document.querySelectorAll('#slice-selection input[type="radio"]:checked'); + var plot_selection = document.querySelectorAll('#plot-selection input[type="radio"]'); + var plot_selected = document.querySelectorAll('#plot-selection input[type="radio"]:checked')[0]; + // get number from value in plot_selected "Plot 1" -> 1 + var label_selection = document.querySelectorAll('#plot-selection label'); + var label_slice_selection = document.querySelectorAll('#slice-selection label'); + + // get all inputs values from div class radio-buttons + // get name of inputs + var inputs_name = []; + var inputs_value = []; + for (let i = 0; i < inputs.length; i++) { + inputs_name.push(inputs[i].name); + inputs_value.push(inputs[i].value); + } + + var plot_number = parseInt(plot_selected.value.split(" ")[1]-1); + var selection = []; + for (let i = 0; i < inputs_value.length; i++) { + selection.push(inputs_name[i] + ":" + inputs_value[i]); + } + selection.sort(); + selections[plot_number] = selection; + + // if plot_selected is "+" then add new radio button to plot_selection called "Plot N" where last plot is N-1 but keep "+" at end and set new radio button to checked for second last element + if (plot_selected.value === "+") { + // if 10 plots already exist, don't add new plot and gray out "+" + if (plot_selection.length === 13) { + plot_selected.checked = false; + label_selection[-1].style.color = "gray"; + return; + } + var new_plot = document.createElement("input"); + new_plot.type = "radio"; + new_plot.id = "Plot " + (plot_selection.length); + new_plot.name = "plot"; + new_plot.value = "Plot " + (plot_selection.length); + new_plot.checked = true; + var new_label = document.createElement("label"); + new_label.htmlFor = "Plot " + (plot_selection.length); + new_label.innerHTML = "Plot " + (plot_selection.length); + + // Parse plot_color to get r, g, b values + var plot_color = plot_colors[plot_selection.length] + const [r, g, b] = plot_color.match(/\d+/g); + const rgbaColor = `rgba(${r}, ${g}, ${b}, 0.2)`; + // set background color of new radio button to plot_color + new_label.style.backgroundColor = rgbaColor; + new_label.style.border = "2px solid " + plot_color; + new_label.style.color = plot_color; + + // insert new radio button and label before "+" radio button and after last radio button + plot_selected.insertAdjacentElement("beforebegin", new_plot); + plot_selected.insertAdjacentElement("beforebegin", new_label); + // Add event listener to new radio button + new_plot.addEventListener('change', updatePlot); + + // set plot_selected to new plot + plot_selected = new_plot + + for (let i = 0; i < label_selection.length-1; i++) { + plot_selection[i].checked = false; + label_selection[i].style.backgroundColor = "#ffffff"; + label_selection[i].style.border = "2px solid #DADCE0"; + label_selection[i].style.color = "#000000"; + } + } else { + for (let i = 0; i < plot_selection.length-1; i++) { + if (plot_selection[i].value !== plot_selected.value) { + plot_selection[i].checked = false; + label_selection[i].style.backgroundColor = "#ffffff"; + label_selection[i].style.border = "2px solid #DADCE0"; + label_selection[i].style.color = "#000000"; + } + else { + var plot_color = plot_colors[i+1] + const [r, g, b] = plot_color.match(/\d+/g); + const rgbaColor = `rgba(${r}, ${g}, ${b}, 0.2)`; + plot_selected.checked = true; + label_selection[i].style.backgroundColor = rgbaColor; + label_selection[i].style.border = "2px solid " + plot_color; + label_selection[i].style.color = plot_color; + } + } + } + var slices_all = JSON.parse("{\"0\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"pathology:overall_pathology\", \"Patient Gender:overall_Patient Gender\"], \"1\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"pathology:Atelectasis\", \"Patient Gender:overall_Patient Gender\"], \"2\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"pathology:Consolidation\", \"Patient Gender:overall_Patient Gender\"], \"3\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"pathology:Infiltration\", \"Patient Gender:overall_Patient Gender\"], \"4\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"pathology:Pneumothorax\", \"Patient Gender:overall_Patient Gender\"], \"5\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"pathology:Edema\", \"Patient Gender:overall_Patient Gender\"], \"6\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"pathology:Emphysema\", \"Patient Gender:overall_Patient Gender\"], \"7\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"pathology:Fibrosis\", \"Patient Gender:overall_Patient Gender\"], \"8\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"pathology:Effusion\", \"Patient Gender:overall_Patient Gender\"], \"9\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"pathology:Pneumonia\", \"Patient Gender:overall_Patient Gender\"], \"10\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"pathology:Pleural_Thickening\", \"Patient Gender:overall_Patient Gender\"], \"11\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"pathology:Cardiomegaly\", \"Patient Gender:overall_Patient Gender\"], \"12\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"pathology:Nodule\", \"Patient Gender:overall_Patient Gender\"], \"13\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"pathology:Mass\", \"Patient Gender:overall_Patient Gender\"], \"14\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"pathology:Hernia\", \"Patient Gender:overall_Patient Gender\"], \"15\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"pathology:overall_pathology\", \"Patient Gender:overall_Patient Gender\"], \"16\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"pathology:Atelectasis\", \"Patient Gender:overall_Patient Gender\"], \"17\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"pathology:Consolidation\", \"Patient Gender:overall_Patient Gender\"], \"18\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"pathology:Infiltration\", \"Patient Gender:overall_Patient Gender\"], \"19\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"pathology:Pneumothorax\", \"Patient Gender:overall_Patient Gender\"], \"20\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"pathology:Edema\", \"Patient Gender:overall_Patient Gender\"], \"21\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"pathology:Emphysema\", \"Patient Gender:overall_Patient Gender\"], \"22\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"pathology:Fibrosis\", \"Patient Gender:overall_Patient Gender\"], \"23\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"pathology:Effusion\", \"Patient Gender:overall_Patient Gender\"], \"24\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"pathology:Pneumonia\", \"Patient Gender:overall_Patient Gender\"], \"25\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"pathology:Pleural_Thickening\", \"Patient Gender:overall_Patient Gender\"], \"26\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"pathology:Cardiomegaly\", \"Patient Gender:overall_Patient Gender\"], \"27\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"pathology:Nodule\", \"Patient Gender:overall_Patient Gender\"], \"28\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"pathology:Mass\", \"Patient Gender:overall_Patient Gender\"], \"29\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"pathology:Hernia\", \"Patient Gender:overall_Patient Gender\"], \"30\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"pathology:overall_pathology\", \"Patient Gender:overall_Patient Gender\"], \"31\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"pathology:Atelectasis\", \"Patient Gender:overall_Patient Gender\"], \"32\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"pathology:Consolidation\", \"Patient Gender:overall_Patient Gender\"], \"33\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"pathology:Infiltration\", \"Patient Gender:overall_Patient Gender\"], \"34\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"pathology:Pneumothorax\", \"Patient Gender:overall_Patient Gender\"], \"35\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"pathology:Edema\", \"Patient Gender:overall_Patient Gender\"], \"36\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"pathology:Emphysema\", \"Patient Gender:overall_Patient Gender\"], \"37\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"pathology:Fibrosis\", \"Patient Gender:overall_Patient Gender\"], \"38\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"pathology:Effusion\", \"Patient Gender:overall_Patient Gender\"], \"39\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"pathology:Pneumonia\", \"Patient Gender:overall_Patient Gender\"], \"40\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"pathology:Pleural_Thickening\", \"Patient Gender:overall_Patient Gender\"], \"41\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"pathology:Cardiomegaly\", \"Patient Gender:overall_Patient Gender\"], \"42\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"pathology:Nodule\", \"Patient Gender:overall_Patient Gender\"], \"43\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"pathology:Mass\", \"Patient Gender:overall_Patient Gender\"], \"44\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"pathology:Hernia\", \"Patient Gender:overall_Patient Gender\"], \"45\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"pathology:overall_pathology\", \"Patient Gender:overall_Patient Gender\"], \"46\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"pathology:Atelectasis\", \"Patient Gender:overall_Patient Gender\"], \"47\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"pathology:Consolidation\", \"Patient Gender:overall_Patient Gender\"], \"48\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"pathology:Infiltration\", \"Patient Gender:overall_Patient Gender\"], \"49\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"pathology:Pneumothorax\", \"Patient Gender:overall_Patient Gender\"], \"50\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"pathology:Edema\", \"Patient Gender:overall_Patient Gender\"], \"51\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"pathology:Emphysema\", \"Patient Gender:overall_Patient Gender\"], \"52\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"pathology:Fibrosis\", \"Patient Gender:overall_Patient Gender\"], \"53\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"pathology:Effusion\", \"Patient Gender:overall_Patient Gender\"], \"54\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"pathology:Pneumonia\", \"Patient Gender:overall_Patient Gender\"], \"55\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"pathology:Pleural_Thickening\", \"Patient Gender:overall_Patient Gender\"], \"56\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"pathology:Cardiomegaly\", \"Patient Gender:overall_Patient Gender\"], \"57\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"pathology:Nodule\", \"Patient Gender:overall_Patient Gender\"], \"58\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"pathology:Mass\", \"Patient Gender:overall_Patient Gender\"], \"59\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"pathology:Hernia\", \"Patient Gender:overall_Patient Gender\"], \"60\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"pathology:overall_pathology\", \"Patient Gender:overall_Patient Gender\"], \"61\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"pathology:Atelectasis\", \"Patient Gender:overall_Patient Gender\"], \"62\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"pathology:Consolidation\", \"Patient Gender:overall_Patient Gender\"], \"63\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"pathology:Infiltration\", \"Patient Gender:overall_Patient Gender\"], \"64\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"pathology:Pneumothorax\", \"Patient Gender:overall_Patient Gender\"], \"65\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"pathology:Edema\", \"Patient Gender:overall_Patient Gender\"], \"66\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"pathology:Emphysema\", \"Patient Gender:overall_Patient Gender\"], \"67\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"pathology:Fibrosis\", \"Patient Gender:overall_Patient Gender\"], \"68\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"pathology:Effusion\", \"Patient Gender:overall_Patient Gender\"], \"69\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"pathology:Pneumonia\", \"Patient Gender:overall_Patient Gender\"], \"70\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"pathology:Pleural_Thickening\", \"Patient Gender:overall_Patient Gender\"], \"71\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"pathology:Cardiomegaly\", \"Patient Gender:overall_Patient Gender\"], \"72\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"pathology:Nodule\", \"Patient Gender:overall_Patient Gender\"], \"73\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"pathology:Mass\", \"Patient Gender:overall_Patient Gender\"], \"74\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"pathology:Hernia\", \"Patient Gender:overall_Patient Gender\"], \"75\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"pathology:overall_pathology\", \"Patient Gender:overall_Patient Gender\"], \"76\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"pathology:Atelectasis\", \"Patient Gender:overall_Patient Gender\"], \"77\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"pathology:Consolidation\", \"Patient Gender:overall_Patient Gender\"], \"78\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"pathology:Infiltration\", \"Patient Gender:overall_Patient Gender\"], \"79\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"pathology:Pneumothorax\", \"Patient Gender:overall_Patient Gender\"], \"80\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"pathology:Edema\", \"Patient Gender:overall_Patient Gender\"], \"81\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"pathology:Emphysema\", \"Patient Gender:overall_Patient Gender\"], \"82\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"pathology:Fibrosis\", \"Patient Gender:overall_Patient Gender\"], \"83\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"pathology:Effusion\", \"Patient Gender:overall_Patient Gender\"], \"84\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"pathology:Pneumonia\", \"Patient Gender:overall_Patient Gender\"], \"85\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"pathology:Pleural_Thickening\", \"Patient Gender:overall_Patient Gender\"], \"86\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"pathology:Cardiomegaly\", \"Patient Gender:overall_Patient Gender\"], \"87\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"pathology:Nodule\", \"Patient Gender:overall_Patient Gender\"], \"88\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"pathology:Mass\", \"Patient Gender:overall_Patient Gender\"], \"89\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"pathology:Hernia\", \"Patient Gender:overall_Patient Gender\"], \"90\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"pathology:overall_pathology\", \"Patient Gender:overall_Patient Gender\"], \"91\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"pathology:Atelectasis\", \"Patient Gender:overall_Patient Gender\"], \"92\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"pathology:Consolidation\", \"Patient Gender:overall_Patient Gender\"], \"93\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"pathology:Infiltration\", \"Patient Gender:overall_Patient Gender\"], \"94\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"pathology:Pneumothorax\", \"Patient Gender:overall_Patient Gender\"], \"95\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"pathology:Edema\", \"Patient Gender:overall_Patient Gender\"], \"96\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"pathology:Emphysema\", \"Patient Gender:overall_Patient Gender\"], \"97\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"pathology:Fibrosis\", \"Patient Gender:overall_Patient Gender\"], \"98\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"pathology:Effusion\", \"Patient Gender:overall_Patient Gender\"], \"99\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"pathology:Pneumonia\", \"Patient Gender:overall_Patient Gender\"], \"100\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"pathology:Pleural_Thickening\", \"Patient Gender:overall_Patient Gender\"], \"101\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"pathology:Cardiomegaly\", \"Patient Gender:overall_Patient Gender\"], \"102\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"pathology:Nodule\", \"Patient Gender:overall_Patient Gender\"], \"103\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"pathology:Mass\", \"Patient Gender:overall_Patient Gender\"], \"104\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"pathology:Hernia\", \"Patient Gender:overall_Patient Gender\"], \"105\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"pathology:overall_pathology\", \"Patient Gender:overall_Patient Gender\"], \"106\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"pathology:Atelectasis\", \"Patient Gender:overall_Patient Gender\"], \"107\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"pathology:Consolidation\", \"Patient Gender:overall_Patient Gender\"], \"108\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"pathology:Infiltration\", \"Patient Gender:overall_Patient Gender\"], \"109\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"pathology:Pneumothorax\", \"Patient Gender:overall_Patient Gender\"], \"110\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"pathology:Edema\", \"Patient Gender:overall_Patient Gender\"], \"111\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"pathology:Emphysema\", \"Patient Gender:overall_Patient Gender\"], \"112\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"pathology:Fibrosis\", \"Patient Gender:overall_Patient Gender\"], \"113\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"pathology:Effusion\", \"Patient Gender:overall_Patient Gender\"], \"114\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"pathology:Pneumonia\", \"Patient Gender:overall_Patient Gender\"], \"115\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"pathology:Pleural_Thickening\", \"Patient Gender:overall_Patient Gender\"], \"116\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"pathology:Cardiomegaly\", \"Patient Gender:overall_Patient Gender\"], \"117\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"pathology:Nodule\", \"Patient Gender:overall_Patient Gender\"], \"118\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"pathology:Mass\", \"Patient Gender:overall_Patient Gender\"], \"119\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"pathology:Hernia\", \"Patient Gender:overall_Patient Gender\"], \"120\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"pathology:overall_pathology\", \"Patient Gender:overall_Patient Gender\"], \"121\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"pathology:Atelectasis\", \"Patient Gender:overall_Patient Gender\"], \"122\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"pathology:Consolidation\", \"Patient Gender:overall_Patient Gender\"], \"123\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"pathology:Infiltration\", \"Patient Gender:overall_Patient Gender\"], \"124\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"pathology:Pneumothorax\", \"Patient Gender:overall_Patient Gender\"], \"125\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"pathology:Edema\", \"Patient Gender:overall_Patient Gender\"], \"126\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"pathology:Emphysema\", \"Patient Gender:overall_Patient Gender\"], \"127\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"pathology:Fibrosis\", \"Patient Gender:overall_Patient Gender\"], \"128\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"pathology:Effusion\", \"Patient Gender:overall_Patient Gender\"], \"129\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"pathology:Pneumonia\", \"Patient Gender:overall_Patient Gender\"], \"130\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"pathology:Pleural_Thickening\", \"Patient Gender:overall_Patient Gender\"], \"131\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"pathology:Cardiomegaly\", \"Patient Gender:overall_Patient Gender\"], \"132\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"pathology:Nodule\", \"Patient Gender:overall_Patient Gender\"], \"133\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"pathology:Mass\", \"Patient Gender:overall_Patient Gender\"], \"134\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"pathology:Hernia\", \"Patient Gender:overall_Patient Gender\"], \"135\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"pathology:overall_pathology\", \"Patient Gender:overall_Patient Gender\"], \"136\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"pathology:Atelectasis\", \"Patient Gender:overall_Patient Gender\"], \"137\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"pathology:Consolidation\", \"Patient Gender:overall_Patient Gender\"], \"138\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"pathology:Infiltration\", \"Patient Gender:overall_Patient Gender\"], \"139\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"pathology:Pneumothorax\", \"Patient Gender:overall_Patient Gender\"], \"140\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"pathology:Edema\", \"Patient Gender:overall_Patient Gender\"], \"141\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"pathology:Emphysema\", \"Patient Gender:overall_Patient Gender\"], \"142\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"pathology:Fibrosis\", \"Patient Gender:overall_Patient Gender\"], \"143\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"pathology:Effusion\", \"Patient Gender:overall_Patient Gender\"], \"144\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"pathology:Pneumonia\", \"Patient Gender:overall_Patient Gender\"], \"145\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"pathology:Pleural_Thickening\", \"Patient Gender:overall_Patient Gender\"], \"146\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"pathology:Cardiomegaly\", \"Patient Gender:overall_Patient Gender\"], \"147\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"pathology:Nodule\", \"Patient Gender:overall_Patient Gender\"], \"148\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"pathology:Mass\", \"Patient Gender:overall_Patient Gender\"], \"149\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"pathology:Hernia\", \"Patient Gender:overall_Patient Gender\"], \"150\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"pathology:overall_pathology\", \"Patient Gender:overall_Patient Gender\"], \"151\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"pathology:Atelectasis\", \"Patient Gender:overall_Patient Gender\"], \"152\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"pathology:Consolidation\", \"Patient Gender:overall_Patient Gender\"], \"153\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"pathology:Infiltration\", \"Patient Gender:overall_Patient Gender\"], \"154\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"pathology:Pneumothorax\", \"Patient Gender:overall_Patient Gender\"], \"155\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"pathology:Edema\", \"Patient Gender:overall_Patient Gender\"], \"156\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"pathology:Emphysema\", \"Patient Gender:overall_Patient Gender\"], \"157\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"pathology:Fibrosis\", \"Patient Gender:overall_Patient Gender\"], \"158\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"pathology:Effusion\", \"Patient Gender:overall_Patient Gender\"], \"159\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"pathology:Pneumonia\", \"Patient Gender:overall_Patient Gender\"], \"160\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"pathology:Pleural_Thickening\", \"Patient Gender:overall_Patient Gender\"], \"161\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"pathology:Cardiomegaly\", \"Patient Gender:overall_Patient Gender\"], \"162\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"pathology:Nodule\", \"Patient Gender:overall_Patient Gender\"], \"163\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"pathology:Mass\", \"Patient Gender:overall_Patient Gender\"], \"164\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"pathology:Hernia\", \"Patient Gender:overall_Patient Gender\"], \"165\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"pathology:overall_pathology\", \"Patient Gender:overall_Patient Gender\"], \"166\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"pathology:Atelectasis\", \"Patient Gender:overall_Patient Gender\"], \"167\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"pathology:Consolidation\", \"Patient Gender:overall_Patient Gender\"], \"168\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"pathology:Infiltration\", \"Patient Gender:overall_Patient Gender\"], \"169\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"pathology:Pneumothorax\", \"Patient Gender:overall_Patient Gender\"], \"170\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"pathology:Edema\", \"Patient Gender:overall_Patient Gender\"], \"171\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"pathology:Emphysema\", \"Patient Gender:overall_Patient Gender\"], \"172\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"pathology:Fibrosis\", \"Patient Gender:overall_Patient Gender\"], \"173\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"pathology:Effusion\", \"Patient Gender:overall_Patient Gender\"], \"174\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"pathology:Pneumonia\", \"Patient Gender:overall_Patient Gender\"], \"175\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"pathology:Pleural_Thickening\", \"Patient Gender:overall_Patient Gender\"], \"176\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"pathology:Cardiomegaly\", \"Patient Gender:overall_Patient Gender\"], \"177\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"pathology:Nodule\", \"Patient Gender:overall_Patient Gender\"], \"178\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"pathology:Mass\", \"Patient Gender:overall_Patient Gender\"], \"179\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"pathology:Hernia\", \"Patient Gender:overall_Patient Gender\"], \"180\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:overall_pathology\"], \"181\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Atelectasis\"], \"182\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Consolidation\"], \"183\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Infiltration\"], \"184\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Pneumothorax\"], \"185\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Edema\"], \"186\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Emphysema\"], \"187\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Fibrosis\"], \"188\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Effusion\"], \"189\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Pneumonia\"], \"190\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Pleural_Thickening\"], \"191\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Cardiomegaly\"], \"192\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Nodule\"], \"193\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Mass\"], \"194\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Hernia\"], \"195\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:overall_pathology\"], \"196\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Atelectasis\"], \"197\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Consolidation\"], \"198\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Infiltration\"], \"199\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Pneumothorax\"], \"200\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Edema\"], \"201\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Emphysema\"], \"202\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Fibrosis\"], \"203\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Effusion\"], \"204\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Pneumonia\"], \"205\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Pleural_Thickening\"], \"206\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Cardiomegaly\"], \"207\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Nodule\"], \"208\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Mass\"], \"209\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Hernia\"], \"210\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:overall_pathology\"], \"211\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Atelectasis\"], \"212\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Consolidation\"], \"213\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Infiltration\"], \"214\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Pneumothorax\"], \"215\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Edema\"], \"216\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Emphysema\"], \"217\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Fibrosis\"], \"218\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Effusion\"], \"219\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Pneumonia\"], \"220\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Pleural_Thickening\"], \"221\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Cardiomegaly\"], \"222\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Nodule\"], \"223\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Mass\"], \"224\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Hernia\"], \"225\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:overall_pathology\"], \"226\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Atelectasis\"], \"227\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Consolidation\"], \"228\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Infiltration\"], \"229\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Pneumothorax\"], \"230\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Edema\"], \"231\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Emphysema\"], \"232\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Fibrosis\"], \"233\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Effusion\"], \"234\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Pneumonia\"], \"235\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Pleural_Thickening\"], \"236\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Cardiomegaly\"], \"237\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Nodule\"], \"238\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Mass\"], \"239\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:M\", \"pathology:Hernia\"], \"240\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:overall_pathology\"], \"241\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Atelectasis\"], \"242\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Consolidation\"], \"243\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Infiltration\"], \"244\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Pneumothorax\"], \"245\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Edema\"], \"246\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Emphysema\"], \"247\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Fibrosis\"], \"248\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Effusion\"], \"249\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Pneumonia\"], \"250\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Pleural_Thickening\"], \"251\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Cardiomegaly\"], \"252\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Nodule\"], \"253\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Mass\"], \"254\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Hernia\"], \"255\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:overall_pathology\"], \"256\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Atelectasis\"], \"257\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Consolidation\"], \"258\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Infiltration\"], \"259\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Pneumothorax\"], \"260\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Edema\"], \"261\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Emphysema\"], \"262\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Fibrosis\"], \"263\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Effusion\"], \"264\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Pneumonia\"], \"265\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Pleural_Thickening\"], \"266\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Cardiomegaly\"], \"267\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Nodule\"], \"268\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Mass\"], \"269\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Hernia\"], \"270\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:overall_pathology\"], \"271\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Atelectasis\"], \"272\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Consolidation\"], \"273\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Infiltration\"], \"274\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Pneumothorax\"], \"275\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Edema\"], \"276\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Emphysema\"], \"277\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Fibrosis\"], \"278\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Effusion\"], \"279\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Pneumonia\"], \"280\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Pleural_Thickening\"], \"281\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Cardiomegaly\"], \"282\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Nodule\"], \"283\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Mass\"], \"284\": [\"metric:Sensitivity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Hernia\"], \"285\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:overall_pathology\"], \"286\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Atelectasis\"], \"287\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Consolidation\"], \"288\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Infiltration\"], \"289\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Pneumothorax\"], \"290\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Edema\"], \"291\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Emphysema\"], \"292\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Fibrosis\"], \"293\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Effusion\"], \"294\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Pneumonia\"], \"295\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Pleural_Thickening\"], \"296\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Cardiomegaly\"], \"297\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Nodule\"], \"298\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Mass\"], \"299\": [\"metric:Specificity\", \"Patient Age:[19 - 35]\", \"Patient Gender:F\", \"pathology:Hernia\"], \"300\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:overall_pathology\"], \"301\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Atelectasis\"], \"302\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Consolidation\"], \"303\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Infiltration\"], \"304\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Pneumothorax\"], \"305\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Edema\"], \"306\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Emphysema\"], \"307\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Fibrosis\"], \"308\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Effusion\"], \"309\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Pneumonia\"], \"310\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Pleural_Thickening\"], \"311\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Cardiomegaly\"], \"312\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Nodule\"], \"313\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Mass\"], \"314\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Hernia\"], \"315\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:overall_pathology\"], \"316\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Atelectasis\"], \"317\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Consolidation\"], \"318\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Infiltration\"], \"319\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Pneumothorax\"], \"320\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Edema\"], \"321\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Emphysema\"], \"322\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Fibrosis\"], \"323\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Effusion\"], \"324\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Pneumonia\"], \"325\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Pleural_Thickening\"], \"326\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Cardiomegaly\"], \"327\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Nodule\"], \"328\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Mass\"], \"329\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Hernia\"], \"330\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:overall_pathology\"], \"331\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Atelectasis\"], \"332\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Consolidation\"], \"333\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Infiltration\"], \"334\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Pneumothorax\"], \"335\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Edema\"], \"336\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Emphysema\"], \"337\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Fibrosis\"], \"338\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Effusion\"], \"339\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Pneumonia\"], \"340\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Pleural_Thickening\"], \"341\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Cardiomegaly\"], \"342\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Nodule\"], \"343\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Mass\"], \"344\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Hernia\"], \"345\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:overall_pathology\"], \"346\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Atelectasis\"], \"347\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Consolidation\"], \"348\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Infiltration\"], \"349\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Pneumothorax\"], \"350\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Edema\"], \"351\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Emphysema\"], \"352\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Fibrosis\"], \"353\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Effusion\"], \"354\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Pneumonia\"], \"355\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Pleural_Thickening\"], \"356\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Cardiomegaly\"], \"357\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Nodule\"], \"358\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Mass\"], \"359\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:M\", \"pathology:Hernia\"], \"360\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:overall_pathology\"], \"361\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Atelectasis\"], \"362\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Consolidation\"], \"363\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Infiltration\"], \"364\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Pneumothorax\"], \"365\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Edema\"], \"366\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Emphysema\"], \"367\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Fibrosis\"], \"368\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Effusion\"], \"369\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Pneumonia\"], \"370\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Pleural_Thickening\"], \"371\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Cardiomegaly\"], \"372\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Nodule\"], \"373\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Mass\"], \"374\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Hernia\"], \"375\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:overall_pathology\"], \"376\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Atelectasis\"], \"377\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Consolidation\"], \"378\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Infiltration\"], \"379\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Pneumothorax\"], \"380\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Edema\"], \"381\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Emphysema\"], \"382\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Fibrosis\"], \"383\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Effusion\"], \"384\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Pneumonia\"], \"385\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Pleural_Thickening\"], \"386\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Cardiomegaly\"], \"387\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Nodule\"], \"388\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Mass\"], \"389\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Hernia\"], \"390\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:overall_pathology\"], \"391\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Atelectasis\"], \"392\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Consolidation\"], \"393\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Infiltration\"], \"394\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Pneumothorax\"], \"395\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Edema\"], \"396\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Emphysema\"], \"397\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Fibrosis\"], \"398\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Effusion\"], \"399\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Pneumonia\"], \"400\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Pleural_Thickening\"], \"401\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Cardiomegaly\"], \"402\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Nodule\"], \"403\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Mass\"], \"404\": [\"metric:Sensitivity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Hernia\"], \"405\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:overall_pathology\"], \"406\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Atelectasis\"], \"407\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Consolidation\"], \"408\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Infiltration\"], \"409\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Pneumothorax\"], \"410\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Edema\"], \"411\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Emphysema\"], \"412\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Fibrosis\"], \"413\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Effusion\"], \"414\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Pneumonia\"], \"415\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Pleural_Thickening\"], \"416\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Cardiomegaly\"], \"417\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Nodule\"], \"418\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Mass\"], \"419\": [\"metric:Specificity\", \"Patient Age:[35 - 65]\", \"Patient Gender:F\", \"pathology:Hernia\"], \"420\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:overall_pathology\"], \"421\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Atelectasis\"], \"422\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Consolidation\"], \"423\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Infiltration\"], \"424\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Pneumothorax\"], \"425\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Edema\"], \"426\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Emphysema\"], \"427\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Fibrosis\"], \"428\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Effusion\"], \"429\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Pneumonia\"], \"430\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Pleural_Thickening\"], \"431\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Cardiomegaly\"], \"432\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Nodule\"], \"433\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Mass\"], \"434\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Hernia\"], \"435\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:overall_pathology\"], \"436\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Atelectasis\"], \"437\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Consolidation\"], \"438\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Infiltration\"], \"439\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Pneumothorax\"], \"440\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Edema\"], \"441\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Emphysema\"], \"442\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Fibrosis\"], \"443\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Effusion\"], \"444\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Pneumonia\"], \"445\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Pleural_Thickening\"], \"446\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Cardiomegaly\"], \"447\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Nodule\"], \"448\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Mass\"], \"449\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Hernia\"], \"450\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:overall_pathology\"], \"451\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Atelectasis\"], \"452\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Consolidation\"], \"453\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Infiltration\"], \"454\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Pneumothorax\"], \"455\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Edema\"], \"456\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Emphysema\"], \"457\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Fibrosis\"], \"458\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Effusion\"], \"459\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Pneumonia\"], \"460\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Pleural_Thickening\"], \"461\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Cardiomegaly\"], \"462\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Nodule\"], \"463\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Mass\"], \"464\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Hernia\"], \"465\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:overall_pathology\"], \"466\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Atelectasis\"], \"467\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Consolidation\"], \"468\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Infiltration\"], \"469\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Pneumothorax\"], \"470\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Edema\"], \"471\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Emphysema\"], \"472\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Fibrosis\"], \"473\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Effusion\"], \"474\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Pneumonia\"], \"475\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Pleural_Thickening\"], \"476\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Cardiomegaly\"], \"477\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Nodule\"], \"478\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Mass\"], \"479\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:M\", \"pathology:Hernia\"], \"480\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:overall_pathology\"], \"481\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Atelectasis\"], \"482\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Consolidation\"], \"483\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Infiltration\"], \"484\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Pneumothorax\"], \"485\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Edema\"], \"486\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Emphysema\"], \"487\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Fibrosis\"], \"488\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Effusion\"], \"489\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Pneumonia\"], \"490\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Pleural_Thickening\"], \"491\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Cardiomegaly\"], \"492\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Nodule\"], \"493\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Mass\"], \"494\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Hernia\"], \"495\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:overall_pathology\"], \"496\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Atelectasis\"], \"497\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Consolidation\"], \"498\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Infiltration\"], \"499\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Pneumothorax\"], \"500\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Edema\"], \"501\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Emphysema\"], \"502\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Fibrosis\"], \"503\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Effusion\"], \"504\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Pneumonia\"], \"505\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Pleural_Thickening\"], \"506\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Cardiomegaly\"], \"507\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Nodule\"], \"508\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Mass\"], \"509\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Hernia\"], \"510\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:overall_pathology\"], \"511\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Atelectasis\"], \"512\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Consolidation\"], \"513\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Infiltration\"], \"514\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Pneumothorax\"], \"515\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Edema\"], \"516\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Emphysema\"], \"517\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Fibrosis\"], \"518\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Effusion\"], \"519\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Pneumonia\"], \"520\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Pleural_Thickening\"], \"521\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Cardiomegaly\"], \"522\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Nodule\"], \"523\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Mass\"], \"524\": [\"metric:Sensitivity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Hernia\"], \"525\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:overall_pathology\"], \"526\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Atelectasis\"], \"527\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Consolidation\"], \"528\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Infiltration\"], \"529\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Pneumothorax\"], \"530\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Edema\"], \"531\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Emphysema\"], \"532\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Fibrosis\"], \"533\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Effusion\"], \"534\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Pneumonia\"], \"535\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Pleural_Thickening\"], \"536\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Cardiomegaly\"], \"537\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Nodule\"], \"538\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Mass\"], \"539\": [\"metric:Specificity\", \"Patient Age:[65 - 100]\", \"Patient Gender:F\", \"pathology:Hernia\"], \"540\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Age:overall_Patient Age\", \"pathology:overall_pathology\", \"Patient Gender:overall_Patient Gender\"], \"541\": [\"metric:Positive Predictive Value (PPV)\", \"pathology:Atelectasis\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"542\": [\"metric:Positive Predictive Value (PPV)\", \"pathology:Consolidation\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"543\": [\"metric:Positive Predictive Value (PPV)\", \"pathology:Infiltration\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"544\": [\"metric:Positive Predictive Value (PPV)\", \"pathology:Pneumothorax\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"545\": [\"metric:Positive Predictive Value (PPV)\", \"pathology:Edema\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"546\": [\"metric:Positive Predictive Value (PPV)\", \"pathology:Emphysema\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"547\": [\"metric:Positive Predictive Value (PPV)\", \"pathology:Fibrosis\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"548\": [\"metric:Positive Predictive Value (PPV)\", \"pathology:Effusion\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"549\": [\"metric:Positive Predictive Value (PPV)\", \"pathology:Pneumonia\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"550\": [\"metric:Positive Predictive Value (PPV)\", \"pathology:Pleural_Thickening\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"551\": [\"metric:Positive Predictive Value (PPV)\", \"pathology:Cardiomegaly\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"552\": [\"metric:Positive Predictive Value (PPV)\", \"pathology:Nodule\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"553\": [\"metric:Positive Predictive Value (PPV)\", \"pathology:Mass\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"554\": [\"metric:Positive Predictive Value (PPV)\", \"pathology:Hernia\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"555\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Age:overall_Patient Age\", \"pathology:overall_pathology\", \"Patient Gender:overall_Patient Gender\"], \"556\": [\"metric:Negative Predictive Value (NPV)\", \"pathology:Atelectasis\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"557\": [\"metric:Negative Predictive Value (NPV)\", \"pathology:Consolidation\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"558\": [\"metric:Negative Predictive Value (NPV)\", \"pathology:Infiltration\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"559\": [\"metric:Negative Predictive Value (NPV)\", \"pathology:Pneumothorax\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"560\": [\"metric:Negative Predictive Value (NPV)\", \"pathology:Edema\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"561\": [\"metric:Negative Predictive Value (NPV)\", \"pathology:Emphysema\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"562\": [\"metric:Negative Predictive Value (NPV)\", \"pathology:Fibrosis\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"563\": [\"metric:Negative Predictive Value (NPV)\", \"pathology:Effusion\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"564\": [\"metric:Negative Predictive Value (NPV)\", \"pathology:Pneumonia\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"565\": [\"metric:Negative Predictive Value (NPV)\", \"pathology:Pleural_Thickening\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"566\": [\"metric:Negative Predictive Value (NPV)\", \"pathology:Cardiomegaly\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"567\": [\"metric:Negative Predictive Value (NPV)\", \"pathology:Nodule\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"568\": [\"metric:Negative Predictive Value (NPV)\", \"pathology:Mass\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"569\": [\"metric:Negative Predictive Value (NPV)\", \"pathology:Hernia\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"570\": [\"metric:Sensitivity\", \"Patient Age:overall_Patient Age\", \"pathology:overall_pathology\", \"Patient Gender:overall_Patient Gender\"], \"571\": [\"metric:Sensitivity\", \"pathology:Atelectasis\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"572\": [\"metric:Sensitivity\", \"pathology:Consolidation\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"573\": [\"metric:Sensitivity\", \"pathology:Infiltration\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"574\": [\"metric:Sensitivity\", \"pathology:Pneumothorax\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"575\": [\"metric:Sensitivity\", \"pathology:Edema\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"576\": [\"metric:Sensitivity\", \"pathology:Emphysema\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"577\": [\"metric:Sensitivity\", \"pathology:Fibrosis\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"578\": [\"metric:Sensitivity\", \"pathology:Effusion\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"579\": [\"metric:Sensitivity\", \"pathology:Pneumonia\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"580\": [\"metric:Sensitivity\", \"pathology:Pleural_Thickening\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"581\": [\"metric:Sensitivity\", \"pathology:Cardiomegaly\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"582\": [\"metric:Sensitivity\", \"pathology:Nodule\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"583\": [\"metric:Sensitivity\", \"pathology:Mass\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"584\": [\"metric:Sensitivity\", \"pathology:Hernia\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"585\": [\"metric:Specificity\", \"Patient Age:overall_Patient Age\", \"pathology:overall_pathology\", \"Patient Gender:overall_Patient Gender\"], \"586\": [\"metric:Specificity\", \"pathology:Atelectasis\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"587\": [\"metric:Specificity\", \"pathology:Consolidation\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"588\": [\"metric:Specificity\", \"pathology:Infiltration\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"589\": [\"metric:Specificity\", \"pathology:Pneumothorax\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"590\": [\"metric:Specificity\", \"pathology:Edema\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"591\": [\"metric:Specificity\", \"pathology:Emphysema\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"592\": [\"metric:Specificity\", \"pathology:Fibrosis\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"593\": [\"metric:Specificity\", \"pathology:Effusion\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"594\": [\"metric:Specificity\", \"pathology:Pneumonia\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"595\": [\"metric:Specificity\", \"pathology:Pleural_Thickening\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"596\": [\"metric:Specificity\", \"pathology:Cardiomegaly\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"597\": [\"metric:Specificity\", \"pathology:Nodule\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"598\": [\"metric:Specificity\", \"pathology:Mass\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"599\": [\"metric:Specificity\", \"pathology:Hernia\", \"Patient Age:overall_Patient Age\", \"Patient Gender:overall_Patient Gender\"], \"600\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:M\", \"Patient Age:overall_Patient Age\", \"pathology:overall_pathology\"], \"601\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:M\", \"pathology:Atelectasis\", \"Patient Age:overall_Patient Age\"], \"602\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:M\", \"pathology:Consolidation\", \"Patient Age:overall_Patient Age\"], \"603\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:M\", \"pathology:Infiltration\", \"Patient Age:overall_Patient Age\"], \"604\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:M\", \"pathology:Pneumothorax\", \"Patient Age:overall_Patient Age\"], \"605\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:M\", \"pathology:Edema\", \"Patient Age:overall_Patient Age\"], \"606\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:M\", \"pathology:Emphysema\", \"Patient Age:overall_Patient Age\"], \"607\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:M\", \"pathology:Fibrosis\", \"Patient Age:overall_Patient Age\"], \"608\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:M\", \"pathology:Effusion\", \"Patient Age:overall_Patient Age\"], \"609\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:M\", \"pathology:Pneumonia\", \"Patient Age:overall_Patient Age\"], \"610\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:M\", \"pathology:Pleural_Thickening\", \"Patient Age:overall_Patient Age\"], \"611\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:M\", \"pathology:Cardiomegaly\", \"Patient Age:overall_Patient Age\"], \"612\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:M\", \"pathology:Nodule\", \"Patient Age:overall_Patient Age\"], \"613\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:M\", \"pathology:Mass\", \"Patient Age:overall_Patient Age\"], \"614\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:M\", \"pathology:Hernia\", \"Patient Age:overall_Patient Age\"], \"615\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:M\", \"Patient Age:overall_Patient Age\", \"pathology:overall_pathology\"], \"616\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:M\", \"pathology:Atelectasis\", \"Patient Age:overall_Patient Age\"], \"617\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:M\", \"pathology:Consolidation\", \"Patient Age:overall_Patient Age\"], \"618\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:M\", \"pathology:Infiltration\", \"Patient Age:overall_Patient Age\"], \"619\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:M\", \"pathology:Pneumothorax\", \"Patient Age:overall_Patient Age\"], \"620\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:M\", \"pathology:Edema\", \"Patient Age:overall_Patient Age\"], \"621\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:M\", \"pathology:Emphysema\", \"Patient Age:overall_Patient Age\"], \"622\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:M\", \"pathology:Fibrosis\", \"Patient Age:overall_Patient Age\"], \"623\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:M\", \"pathology:Effusion\", \"Patient Age:overall_Patient Age\"], \"624\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:M\", \"pathology:Pneumonia\", \"Patient Age:overall_Patient Age\"], \"625\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:M\", \"pathology:Pleural_Thickening\", \"Patient Age:overall_Patient Age\"], \"626\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:M\", \"pathology:Cardiomegaly\", \"Patient Age:overall_Patient Age\"], \"627\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:M\", \"pathology:Nodule\", \"Patient Age:overall_Patient Age\"], \"628\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:M\", \"pathology:Mass\", \"Patient Age:overall_Patient Age\"], \"629\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:M\", \"pathology:Hernia\", \"Patient Age:overall_Patient Age\"], \"630\": [\"metric:Sensitivity\", \"Patient Gender:M\", \"Patient Age:overall_Patient Age\", \"pathology:overall_pathology\"], \"631\": [\"metric:Sensitivity\", \"Patient Gender:M\", \"pathology:Atelectasis\", \"Patient Age:overall_Patient Age\"], \"632\": [\"metric:Sensitivity\", \"Patient Gender:M\", \"pathology:Consolidation\", \"Patient Age:overall_Patient Age\"], \"633\": [\"metric:Sensitivity\", \"Patient Gender:M\", \"pathology:Infiltration\", \"Patient Age:overall_Patient Age\"], \"634\": [\"metric:Sensitivity\", \"Patient Gender:M\", \"pathology:Pneumothorax\", \"Patient Age:overall_Patient Age\"], \"635\": [\"metric:Sensitivity\", \"Patient Gender:M\", \"pathology:Edema\", \"Patient Age:overall_Patient Age\"], \"636\": [\"metric:Sensitivity\", \"Patient Gender:M\", \"pathology:Emphysema\", \"Patient Age:overall_Patient Age\"], \"637\": [\"metric:Sensitivity\", \"Patient Gender:M\", \"pathology:Fibrosis\", \"Patient Age:overall_Patient Age\"], \"638\": [\"metric:Sensitivity\", \"Patient Gender:M\", \"pathology:Effusion\", \"Patient Age:overall_Patient Age\"], \"639\": [\"metric:Sensitivity\", \"Patient Gender:M\", \"pathology:Pneumonia\", \"Patient Age:overall_Patient Age\"], \"640\": [\"metric:Sensitivity\", \"Patient Gender:M\", \"pathology:Pleural_Thickening\", \"Patient Age:overall_Patient Age\"], \"641\": [\"metric:Sensitivity\", \"Patient Gender:M\", \"pathology:Cardiomegaly\", \"Patient Age:overall_Patient Age\"], \"642\": [\"metric:Sensitivity\", \"Patient Gender:M\", \"pathology:Nodule\", \"Patient Age:overall_Patient Age\"], \"643\": [\"metric:Sensitivity\", \"Patient Gender:M\", \"pathology:Mass\", \"Patient Age:overall_Patient Age\"], \"644\": [\"metric:Sensitivity\", \"Patient Gender:M\", \"pathology:Hernia\", \"Patient Age:overall_Patient Age\"], \"645\": [\"metric:Specificity\", \"Patient Gender:M\", \"Patient Age:overall_Patient Age\", \"pathology:overall_pathology\"], \"646\": [\"metric:Specificity\", \"Patient Gender:M\", \"pathology:Atelectasis\", \"Patient Age:overall_Patient Age\"], \"647\": [\"metric:Specificity\", \"Patient Gender:M\", \"pathology:Consolidation\", \"Patient Age:overall_Patient Age\"], \"648\": [\"metric:Specificity\", \"Patient Gender:M\", \"pathology:Infiltration\", \"Patient Age:overall_Patient Age\"], \"649\": [\"metric:Specificity\", \"Patient Gender:M\", \"pathology:Pneumothorax\", \"Patient Age:overall_Patient Age\"], \"650\": [\"metric:Specificity\", \"Patient Gender:M\", \"pathology:Edema\", \"Patient Age:overall_Patient Age\"], \"651\": [\"metric:Specificity\", \"Patient Gender:M\", \"pathology:Emphysema\", \"Patient Age:overall_Patient Age\"], \"652\": [\"metric:Specificity\", \"Patient Gender:M\", \"pathology:Fibrosis\", \"Patient Age:overall_Patient Age\"], \"653\": [\"metric:Specificity\", \"Patient Gender:M\", \"pathology:Effusion\", \"Patient Age:overall_Patient Age\"], \"654\": [\"metric:Specificity\", \"Patient Gender:M\", \"pathology:Pneumonia\", \"Patient Age:overall_Patient Age\"], \"655\": [\"metric:Specificity\", \"Patient Gender:M\", \"pathology:Pleural_Thickening\", \"Patient Age:overall_Patient Age\"], \"656\": [\"metric:Specificity\", \"Patient Gender:M\", \"pathology:Cardiomegaly\", \"Patient Age:overall_Patient Age\"], \"657\": [\"metric:Specificity\", \"Patient Gender:M\", \"pathology:Nodule\", \"Patient Age:overall_Patient Age\"], \"658\": [\"metric:Specificity\", \"Patient Gender:M\", \"pathology:Mass\", \"Patient Age:overall_Patient Age\"], \"659\": [\"metric:Specificity\", \"Patient Gender:M\", \"pathology:Hernia\", \"Patient Age:overall_Patient Age\"], \"660\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:F\", \"Patient Age:overall_Patient Age\", \"pathology:overall_pathology\"], \"661\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:F\", \"pathology:Atelectasis\", \"Patient Age:overall_Patient Age\"], \"662\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:F\", \"pathology:Consolidation\", \"Patient Age:overall_Patient Age\"], \"663\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:F\", \"pathology:Infiltration\", \"Patient Age:overall_Patient Age\"], \"664\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:F\", \"pathology:Pneumothorax\", \"Patient Age:overall_Patient Age\"], \"665\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:F\", \"pathology:Edema\", \"Patient Age:overall_Patient Age\"], \"666\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:F\", \"pathology:Emphysema\", \"Patient Age:overall_Patient Age\"], \"667\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:F\", \"pathology:Fibrosis\", \"Patient Age:overall_Patient Age\"], \"668\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:F\", \"pathology:Effusion\", \"Patient Age:overall_Patient Age\"], \"669\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:F\", \"pathology:Pneumonia\", \"Patient Age:overall_Patient Age\"], \"670\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:F\", \"pathology:Pleural_Thickening\", \"Patient Age:overall_Patient Age\"], \"671\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:F\", \"pathology:Cardiomegaly\", \"Patient Age:overall_Patient Age\"], \"672\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:F\", \"pathology:Nodule\", \"Patient Age:overall_Patient Age\"], \"673\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:F\", \"pathology:Mass\", \"Patient Age:overall_Patient Age\"], \"674\": [\"metric:Positive Predictive Value (PPV)\", \"Patient Gender:F\", \"pathology:Hernia\", \"Patient Age:overall_Patient Age\"], \"675\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:F\", \"Patient Age:overall_Patient Age\", \"pathology:overall_pathology\"], \"676\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:F\", \"pathology:Atelectasis\", \"Patient Age:overall_Patient Age\"], \"677\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:F\", \"pathology:Consolidation\", \"Patient Age:overall_Patient Age\"], \"678\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:F\", \"pathology:Infiltration\", \"Patient Age:overall_Patient Age\"], \"679\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:F\", \"pathology:Pneumothorax\", \"Patient Age:overall_Patient Age\"], \"680\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:F\", \"pathology:Edema\", \"Patient Age:overall_Patient Age\"], \"681\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:F\", \"pathology:Emphysema\", \"Patient Age:overall_Patient Age\"], \"682\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:F\", \"pathology:Fibrosis\", \"Patient Age:overall_Patient Age\"], \"683\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:F\", \"pathology:Effusion\", \"Patient Age:overall_Patient Age\"], \"684\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:F\", \"pathology:Pneumonia\", \"Patient Age:overall_Patient Age\"], \"685\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:F\", \"pathology:Pleural_Thickening\", \"Patient Age:overall_Patient Age\"], \"686\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:F\", \"pathology:Cardiomegaly\", \"Patient Age:overall_Patient Age\"], \"687\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:F\", \"pathology:Nodule\", \"Patient Age:overall_Patient Age\"], \"688\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:F\", \"pathology:Mass\", \"Patient Age:overall_Patient Age\"], \"689\": [\"metric:Negative Predictive Value (NPV)\", \"Patient Gender:F\", \"pathology:Hernia\", \"Patient Age:overall_Patient Age\"], \"690\": [\"metric:Sensitivity\", \"Patient Gender:F\", \"Patient Age:overall_Patient Age\", \"pathology:overall_pathology\"], \"691\": [\"metric:Sensitivity\", \"Patient Gender:F\", \"pathology:Atelectasis\", \"Patient Age:overall_Patient Age\"], \"692\": [\"metric:Sensitivity\", \"Patient Gender:F\", \"pathology:Consolidation\", \"Patient Age:overall_Patient Age\"], \"693\": [\"metric:Sensitivity\", \"Patient Gender:F\", \"pathology:Infiltration\", \"Patient Age:overall_Patient Age\"], \"694\": [\"metric:Sensitivity\", \"Patient Gender:F\", \"pathology:Pneumothorax\", \"Patient Age:overall_Patient Age\"], \"695\": [\"metric:Sensitivity\", \"Patient Gender:F\", \"pathology:Edema\", \"Patient Age:overall_Patient Age\"], \"696\": [\"metric:Sensitivity\", \"Patient Gender:F\", \"pathology:Emphysema\", \"Patient Age:overall_Patient Age\"], \"697\": [\"metric:Sensitivity\", \"Patient Gender:F\", \"pathology:Fibrosis\", \"Patient Age:overall_Patient Age\"], \"698\": [\"metric:Sensitivity\", \"Patient Gender:F\", \"pathology:Effusion\", \"Patient Age:overall_Patient Age\"], \"699\": [\"metric:Sensitivity\", \"Patient Gender:F\", \"pathology:Pneumonia\", \"Patient Age:overall_Patient Age\"], \"700\": [\"metric:Sensitivity\", \"Patient Gender:F\", \"pathology:Pleural_Thickening\", \"Patient Age:overall_Patient Age\"], \"701\": [\"metric:Sensitivity\", \"Patient Gender:F\", \"pathology:Cardiomegaly\", \"Patient Age:overall_Patient Age\"], \"702\": [\"metric:Sensitivity\", \"Patient Gender:F\", \"pathology:Nodule\", \"Patient Age:overall_Patient Age\"], \"703\": [\"metric:Sensitivity\", \"Patient Gender:F\", \"pathology:Mass\", \"Patient Age:overall_Patient Age\"], \"704\": [\"metric:Sensitivity\", \"Patient Gender:F\", \"pathology:Hernia\", \"Patient Age:overall_Patient Age\"], \"705\": [\"metric:Specificity\", \"Patient Gender:F\", \"Patient Age:overall_Patient Age\", \"pathology:overall_pathology\"], \"706\": [\"metric:Specificity\", \"Patient Gender:F\", \"pathology:Atelectasis\", \"Patient Age:overall_Patient Age\"], \"707\": [\"metric:Specificity\", \"Patient Gender:F\", \"pathology:Consolidation\", \"Patient Age:overall_Patient Age\"], \"708\": [\"metric:Specificity\", \"Patient Gender:F\", \"pathology:Infiltration\", \"Patient Age:overall_Patient Age\"], \"709\": [\"metric:Specificity\", \"Patient Gender:F\", \"pathology:Pneumothorax\", \"Patient Age:overall_Patient Age\"], \"710\": [\"metric:Specificity\", \"Patient Gender:F\", \"pathology:Edema\", \"Patient Age:overall_Patient Age\"], \"711\": [\"metric:Specificity\", \"Patient Gender:F\", \"pathology:Emphysema\", \"Patient Age:overall_Patient Age\"], \"712\": [\"metric:Specificity\", \"Patient Gender:F\", \"pathology:Fibrosis\", \"Patient Age:overall_Patient Age\"], \"713\": [\"metric:Specificity\", \"Patient Gender:F\", \"pathology:Effusion\", \"Patient Age:overall_Patient Age\"], \"714\": [\"metric:Specificity\", \"Patient Gender:F\", \"pathology:Pneumonia\", \"Patient Age:overall_Patient Age\"], \"715\": [\"metric:Specificity\", \"Patient Gender:F\", \"pathology:Pleural_Thickening\", \"Patient Age:overall_Patient Age\"], \"716\": [\"metric:Specificity\", \"Patient Gender:F\", \"pathology:Cardiomegaly\", \"Patient Age:overall_Patient Age\"], \"717\": [\"metric:Specificity\", \"Patient Gender:F\", \"pathology:Nodule\", \"Patient Age:overall_Patient Age\"], \"718\": [\"metric:Specificity\", \"Patient Gender:F\", \"pathology:Mass\", \"Patient Age:overall_Patient Age\"], \"719\": [\"metric:Specificity\", \"Patient Gender:F\", \"pathology:Hernia\", \"Patient Age:overall_Patient Age\"]}"); + var histories_all = JSON.parse("{\"0\": [\"0.15167980673960318\", \"0.14129280028530336\", \"0.15995072768185709\", \"0.1258001490759194\"], \"1\": [\"0.30952380952380953\", \"0.3939393939393939\", \"0.32653061224489793\", \"0.20689655172413793\"], \"2\": [\"0.10714285714285714\", \"0.17777777777777778\", \"0.06896551724137931\", \"0.026845637583892617\"], \"3\": [\"0.4426229508196721\", \"0.42592592592592593\", \"0.647887323943662\", \"0.3712121212121212\"], \"4\": [\"0.047619047619047616\", \"0.05\", \"0.06\", \"0.4112903225806452\"], \"5\": [\"0.1276595744680851\", \"0.023255813953488372\", \"0.020833333333333332\", \"0.06422018348623854\"], \"6\": [\"0.027777777777777776\", \"0.0\", \"0.027777777777777776\", \"0.01834862385321101\"], \"7\": [\"0.041666666666666664\", \"0.0\", \"0.09375\", \"0.05102040816326531\"], \"8\": [\"0.36363636363636365\", \"0.48148148148148145\", \"0.43902439024390244\", \"0.17708333333333334\"], \"9\": [\"0.0\", \"0.02857142857142857\", \"0.045454545454545456\", \"0.03787878787878788\"], \"10\": [\"0.06451612903225806\", \"0.07407407407407407\", \"0.05\", \"0.16822429906542055\"], \"11\": [\"0.2962962962962963\", \"0.15789473684210525\", \"0.12\", \"0.1\"], \"12\": [\"0.05263157894736842\", \"0.09375\", \"0.175\", \"0.06818181818181818\"], \"13\": [\"0.24242424242424243\", \"0.07142857142857142\", \"0.10526315789473684\", \"0.06\"], \"14\": [\"0.0\", \"0.0\", \"0.058823529411764705\", \"0.0\"], \"15\": [\"0.948161213119298\", \"0.9395606461176224\", \"0.937037604089962\", \"0.9041296306770732\"], \"16\": [\"0.9285714285714286\", \"0.9642857142857143\", \"0.8823529411764706\", \"0.9230769230769231\"], \"17\": [\"1.0\", \"1.0\", \"1.0\", \"0.8333333333333334\"], \"18\": [\"0.7777777777777778\", \"0.5714285714285714\", \"0.5833333333333334\", \"0.6521739130434783\"], \"19\": [\"0.9285714285714286\", \"0.9047619047619048\", \"1.0\", \"0.7096774193548387\"], \"20\": [\"1.0\", \"1.0\", \"0.9714285714285714\", \"1.0\"], \"21\": [\"0.9705882352941176\", \"0.96875\", \"0.9787234042553191\", \"0.8260869565217391\"], \"22\": [\"0.9347826086956522\", \"1.0\", \"0.9803921568627451\", \"0.9649122807017544\"], \"23\": [\"0.9615384615384616\", \"0.9117647058823529\", \"0.8809523809523809\", \"0.9491525423728814\"], \"24\": [\"0.967741935483871\", \"0.9615384615384616\", \"1.0\", \"0.9130434782608695\"], \"25\": [\"0.9487179487179487\", \"0.9705882352941176\", \"1.0\", \"0.9791666666666666\"], \"26\": [\"0.9767441860465116\", \"1.0\", \"1.0\", \"1.0\"], \"27\": [\"0.90625\", \"0.9310344827586207\", \"0.9302325581395349\", \"0.9253731343283582\"], \"28\": [\"0.972972972972973\", \"0.9696969696969697\", \"0.9111111111111111\", \"0.9818181818181818\"], \"29\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"30\": [\"0.61904681412795\", \"0.6113585818942961\", \"0.816754962854707\", \"0.7305053759940978\"], \"31\": [\"0.8666666666666667\", \"0.9285714285714286\", \"0.8\", \"0.8888888888888888\"], \"32\": [\"1.0\", \"1.0\", \"1.0\", \"0.8\"], \"33\": [\"0.9310344827586207\", \"0.8846153846153846\", \"0.9019607843137255\", \"0.8596491228070176\"], \"34\": [\"0.5\", \"0.5\", \"1.0\", \"0.85\"], \"35\": [\"1.0\", \"1.0\", \"0.5\", \"1.0\"], \"36\": [\"0.5\", \"0.0\", \"0.5\", \"0.2\"], \"37\": [\"0.25\", \"0.0\", \"0.75\", \"0.7142857142857143\"], \"38\": [\"0.9411764705882353\", \"0.8125\", \"0.782608695652174\", \"0.85\"], \"39\": [\"0.0\", \"0.5\", \"1.0\", \"0.7142857142857143\"], \"40\": [\"0.5\", \"0.6666666666666666\", \"1.0\", \"0.9473684210526315\"], \"41\": [\"0.8888888888888888\", \"1.0\", \"1.0\", \"1.0\"], \"42\": [\"0.4\", \"0.6\", \"0.7\", \"0.5454545454545454\"], \"43\": [\"0.8888888888888888\", \"0.6666666666666666\", \"0.5\", \"0.8571428571428571\"], \"44\": [\"0.0\", \"0.0\", \"1.0\", \"0.0\"], \"45\": [\"0.46336563851831164\", \"0.48289690046395356\", \"0.5070017410868425\", \"0.3276357598055654\"], \"46\": [\"0.4727272727272727\", \"0.574468085106383\", \"0.47619047619047616\", \"0.28125\"], \"47\": [\"0.21875\", \"0.3018867924528302\", \"0.31645569620253167\", \"0.03333333333333333\"], \"48\": [\"0.17073170731707318\", \"0.11428571428571428\", \"0.21875\", \"0.15306122448979592\"], \"49\": [\"0.3939393939393939\", \"0.3333333333333333\", \"0.4125\", \"0.23157894736842105\"], \"50\": [\"0.359375\", \"0.3\", \"0.41975308641975306\", \"0.3108108108108108\"], \"51\": [\"0.4852941176470588\", \"0.5166666666666667\", \"0.5679012345679012\", \"0.2620689655172414\"], \"52\": [\"0.6515151515151515\", \"0.5245901639344263\", \"0.6329113924050633\", \"0.3716216216216216\"], \"53\": [\"0.4716981132075472\", \"0.6888888888888889\", \"0.6166666666666667\", \"0.4148148148148148\"], \"54\": [\"0.43478260869565216\", \"0.423728813559322\", \"0.48148148148148145\", \"0.14189189189189189\"], \"55\": [\"0.5606060606060606\", \"0.5689655172413793\", \"0.5308641975308642\", \"0.34558823529411764\"], \"56\": [\"0.6885245901639344\", \"0.7241379310344828\", \"0.725\", \"0.7615894039735099\"], \"57\": [\"0.4461538461538462\", \"0.48214285714285715\", \"0.547945205479452\", \"0.4305555555555556\"], \"58\": [\"0.5901639344262295\", \"0.5517241379310345\", \"0.5466666666666666\", \"0.36486486486486486\"], \"59\": [\"0.5428571428571428\", \"0.6557377049180327\", \"0.6049382716049383\", \"0.4838709677419355\"], \"60\": [\"0.1390022332304764\", \"0.12461397321555136\", \"0.14317050475245158\", \"0.14359228947856187\"], \"61\": [\"0.27218934911242604\", \"0.22981366459627328\", \"0.29931972789115646\", \"0.24516129032258063\"], \"62\": [\"0.11578947368421053\", \"0.08994708994708994\", \"0.09142857142857143\", \"0.1206896551724138\"], \"63\": [\"0.38388625592417064\", \"0.3736842105263158\", \"0.40641711229946526\", \"0.3813559322033898\"], \"64\": [\"0.0425531914893617\", \"0.08\", \"0.06944444444444445\", \"0.13653136531365315\"], \"65\": [\"0.030303030303030304\", \"0.078125\", \"0.08870967741935484\", \"0.10380622837370242\"], \"66\": [\"0.03571428571428571\", \"0.041379310344827586\", \"0.05714285714285714\", \"0.0821917808219178\"], \"67\": [\"0.04929577464788732\", \"0.02877697841726619\", \"0.048\", \"0.05855855855855856\"], \"68\": [\"0.3969465648854962\", \"0.3492063492063492\", \"0.35\", \"0.30111524163568776\"], \"69\": [\"0.03164556962025317\", \"0.014492753623188406\", \"0.023255813953488372\", \"0.030508474576271188\"], \"70\": [\"0.06338028169014084\", \"0.06818181818181818\", \"0.1\", \"0.07228915662650602\"], \"71\": [\"0.15294117647058825\", \"0.0958904109589041\", \"0.08064516129032258\", \"0.34615384615384615\"], \"72\": [\"0.16417910447761194\", \"0.16176470588235295\", \"0.2028985507246377\", \"0.045081967213114756\"], \"73\": [\"0.2072072072072072\", \"0.13333333333333333\", \"0.17073170731707318\", \"0.08298755186721991\"], \"74\": [\"0.0\", \"0.0\", \"0.01639344262295082\", \"0.003861003861003861\"], \"75\": [\"0.9333660415310792\", \"0.9279874736119439\", \"0.9221969798271173\", \"0.9308873954815544\"], \"76\": [\"0.8160919540229885\", \"0.9066666666666666\", \"0.8369565217391305\", \"0.8571428571428571\"], \"77\": [\"1.0\", \"1.0\", \"0.953125\", \"0.9433962264150944\"], \"78\": [\"0.6666666666666666\", \"0.6956521739130435\", \"0.5961538461538461\", \"0.723404255319149\"], \"79\": [\"0.9739130434782609\", \"0.9302325581395349\", \"0.9368421052631579\", \"0.9769230769230769\"], \"80\": [\"1.0\", \"0.9907407407407407\", \"0.991304347826087\", \"1.0\"], \"81\": [\"0.9913793103448276\", \"0.967032967032967\", \"0.98989898989899\", \"0.963302752293578\"], \"82\": [\"1.0\", \"0.9690721649484536\", \"0.9736842105263158\", \"0.9832402234636871\"], \"83\": [\"0.904\", \"0.8545454545454545\", \"0.8907563025210085\", \"0.8863636363636364\"], \"84\": [\"0.9795918367346939\", \"0.9591836734693877\", \"1.0\", \"0.9716981132075472\"], \"85\": [\"0.956140350877193\", \"0.9423076923076923\", \"0.944954128440367\", \"0.9210526315789473\"], \"86\": [\"0.9941520467836257\", \"0.9877300613496932\", \"0.9887005649717514\", \"0.9067357512953368\"], \"87\": [\"0.819672131147541\", \"0.85\", \"0.8514851485148515\", \"0.9554140127388535\"], \"88\": [\"0.9655172413793104\", \"0.9482758620689655\", \"0.9568965517241379\", \"0.94375\"], \"89\": [\"1.0\", \"0.9903846153846154\", \"1.0\", \"1.0\"], \"90\": [\"0.7503805957867018\", \"0.6611691277657663\", \"0.7921130753222533\", \"0.8277562300309229\"], \"91\": [\"0.7419354838709677\", \"0.8409090909090909\", \"0.7457627118644068\", \"0.8539325842696629\"], \"92\": [\"1.0\", \"1.0\", \"0.8421052631578947\", \"0.9333333333333333\"], \"93\": [\"0.84375\", \"0.8352941176470589\", \"0.7835051546391752\", \"0.9121621621621622\"], \"94\": [\"0.6666666666666666\", \"0.6666666666666666\", \"0.625\", \"0.925\"], \"95\": [\"1.0\", \"0.9090909090909091\", \"0.9166666666666666\", \"1.0\"], \"96\": [\"0.8333333333333334\", \"0.6666666666666666\", \"0.8888888888888888\", \"0.8571428571428571\"], \"97\": [\"1.0\", \"0.5714285714285714\", \"0.6666666666666666\", \"0.8125\"], \"98\": [\"0.8125\", \"0.7333333333333333\", \"0.7636363636363637\", \"0.84375\"], \"99\": [\"0.7142857142857143\", \"0.3333333333333333\", \"1.0\", \"0.75\"], \"100\": [\"0.6428571428571429\", \"0.6\", \"0.6842105263157895\", \"0.6\"], \"101\": [\"0.9285714285714286\", \"0.7777777777777778\", \"0.7142857142857143\", \"0.8\"], \"102\": [\"0.5\", \"0.5945945945945946\", \"0.6511627906976745\", \"0.6111111111111112\"], \"103\": [\"0.8214285714285714\", \"0.7272727272727273\", \"0.8076923076923077\", \"0.6896551724137931\"], \"104\": [\"0.0\", \"0.0\", \"1.0\", \"1.0\"], \"105\": [\"0.45127331247553704\", \"0.42116439055367694\", \"0.46082969784674394\", \"0.3327267660544629\"], \"106\": [\"0.36597938144329895\", \"0.3541666666666667\", \"0.42777777777777776\", \"0.25\"], \"107\": [\"0.28205128205128205\", \"0.2146118721461187\", \"0.2772727272727273\", \"0.1404494382022472\"], \"108\": [\"0.1875\", \"0.2119205298013245\", \"0.21830985915492956\", \"0.13438735177865613\"], \"109\": [\"0.4534412955465587\", \"0.3669724770642202\", \"0.3991031390134529\", \"0.3518005540166205\"], \"110\": [\"0.49206349206349204\", \"0.47555555555555556\", \"0.5022026431718062\", \"0.3018867924528302\"], \"111\": [\"0.46\", \"0.3876651982378855\", \"0.4260869565217391\", \"0.28150134048257375\"], \"112\": [\"0.4578313253012048\", \"0.4104803493449782\", \"0.4826086956521739\", \"0.45714285714285713\"], \"113\": [\"0.5885416666666666\", \"0.5340909090909091\", \"0.5760869565217391\", \"0.3836065573770492\"], \"114\": [\"0.3855421686746988\", \"0.40869565217391307\", \"0.4661016949152542\", \"0.2647814910025707\"], \"115\": [\"0.45041322314049587\", \"0.4434389140271493\", \"0.4681818181818182\", \"0.37735849056603776\"], \"116\": [\"0.7024793388429752\", \"0.7092511013215859\", \"0.7543103448275862\", \"0.5627009646302251\"], \"117\": [\"0.4716981132075472\", \"0.4271356783919598\", \"0.4387755102040816\", \"0.391644908616188\"], \"118\": [\"0.6140350877192983\", \"0.514018691588785\", \"0.5211267605633803\", \"0.40591397849462363\"], \"119\": [\"0.40625\", \"0.43829787234042555\", \"0.4936708860759494\", \"0.355\"], \"120\": [\"0.11923455215185493\", \"0.13087699439043274\", \"0.1275230072783852\", \"0.13966226265715678\"], \"121\": [\"0.2962962962962963\", \"0.2222222222222222\", \"0.234375\", \"0.10416666666666667\"], \"122\": [\"0.01694915254237288\", \"0.07142857142857142\", \"0.06896551724137931\", \"0.12222222222222222\"], \"123\": [\"0.4098360655737705\", \"0.3389830508474576\", \"0.2459016393442623\", \"0.15053763440860216\"], \"124\": [\"0.04081632653061224\", \"0.0425531914893617\", \"0.07692307692307693\", \"0.19230769230769232\"], \"125\": [\"0.05405405405405406\", \"0.05714285714285714\", \"0.025\", \"0.0\"], \"126\": [\"0.04081632653061224\", \"0.0784313725490196\", \"0.09259259259259259\", \"0.0425531914893617\"], \"127\": [\"0.022727272727272728\", \"0.044444444444444446\", \"0.0\", \"0.10344827586206896\"], \"128\": [\"0.25\", \"0.4634146341463415\", \"0.4090909090909091\", \"0.425\"], \"129\": [\"0.021739130434782608\", \"0.046511627906976744\", \"0.018867924528301886\", \"0.012048192771084338\"], \"130\": [\"0.17073170731707318\", \"0.125\", \"0.16326530612244897\", \"0.07142857142857142\"], \"131\": [\"0.13793103448275862\", \"0.13636363636363635\", \"0.1\", \"0.3409090909090909\"], \"132\": [\"0.11363636363636363\", \"0.12244897959183673\", \"0.1836734693877551\", \"0.1016949152542373\"], \"133\": [\"0.09375\", \"0.08333333333333333\", \"0.16666666666666666\", \"0.08\"], \"134\": [\"0.0\", \"0.0\", \"0.0\", \"0.208955223880597\"], \"135\": [\"0.9388265841207017\", \"0.9136475576691024\", \"0.9344389133985408\", \"0.9467833894060748\"], \"136\": [\"0.6666666666666666\", \"1.0\", \"0.875\", \"0.9230769230769231\"], \"137\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"138\": [\"0.8\", \"0.6\", \"0.7272727272727273\", \"0.875\"], \"139\": [\"1.0\", \"0.9545454545454546\", \"0.9\", \"0.967741935483871\"], \"140\": [\"1.0\", \"0.9705882352941176\", \"1.0\", \"1.0\"], \"141\": [\"1.0\", \"1.0\", \"0.9444444444444444\", \"1.0\"], \"142\": [\"1.0\", \"0.9583333333333334\", \"1.0\", \"0.9607843137254902\"], \"143\": [\"0.9230769230769231\", \"0.7142857142857143\", \"0.9285714285714286\", \"0.7586206896551724\"], \"144\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"145\": [\"0.96\", \"0.9047619047619048\", \"0.9565217391304348\", \"0.8974358974358975\"], \"146\": [\"0.972972972972973\", \"0.9361702127659575\", \"0.9807692307692307\", \"0.8923076923076924\"], \"147\": [\"0.9090909090909091\", \"0.8\", \"0.8695652173913043\", \"0.98\"], \"148\": [\"0.9117647058823529\", \"0.9523809523809523\", \"0.9\", \"1.0\"], \"149\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"150\": [\"0.8202969649398221\", \"0.7276455026455027\", \"0.7268849206349205\", \"0.813955414020745\"], \"151\": [\"0.8\", \"1.0\", \"0.9375\", \"0.9090909090909091\"], \"152\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"153\": [\"0.9615384615384616\", \"0.8333333333333334\", \"0.8333333333333334\", \"0.875\"], \"154\": [\"1.0\", \"0.6666666666666666\", \"0.6666666666666666\", \"0.9375\"], \"155\": [\"1.0\", \"0.6666666666666666\", \"1.0\", \"0.0\"], \"156\": [\"1.0\", \"1.0\", \"0.8333333333333334\", \"1.0\"], \"157\": [\"1.0\", \"0.6666666666666666\", \"0.0\", \"0.75\"], \"158\": [\"0.8333333333333334\", \"0.7037037037037037\", \"0.9\", \"0.8292682926829268\"], \"159\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"160\": [\"0.875\", \"0.75\", \"0.8888888888888888\", \"0.5555555555555556\"], \"161\": [\"0.8\", \"0.5\", \"0.6666666666666666\", \"0.6818181818181818\"], \"162\": [\"0.7142857142857143\", \"0.6\", \"0.75\", \"0.8571428571428571\"], \"163\": [\"0.5\", \"0.8\", \"0.7\", \"1.0\"], \"164\": [\"0.0\", \"0.0\", \"0.0\", \"1.0\"], \"165\": [\"0.3331907318315955\", \"0.3450885022573568\", \"0.33442997150425285\", \"0.3311644925271136\"], \"166\": [\"0.17391304347826086\", \"0.2631578947368421\", \"0.125\", \"0.12244897959183673\"], \"167\": [\"0.1076923076923077\", \"0.2\", \"0.20588235294117646\", \"0.19387755102040816\"], \"168\": [\"0.1\", \"0.13333333333333333\", \"0.14814814814814814\", \"0.15053763440860216\"], \"169\": [\"0.265625\", \"0.3181818181818182\", \"0.2727272727272727\", \"0.3225806451612903\"], \"170\": [\"0.453125\", \"0.5\", \"0.4507042253521127\", \"0.3853211009174312\"], \"171\": [\"0.265625\", \"0.27692307692307694\", \"0.25757575757575757\", \"0.14285714285714285\"], \"172\": [\"0.3384615384615385\", \"0.3484848484848485\", \"0.2777777777777778\", \"0.48514851485148514\"], \"173\": [\"0.4444444444444444\", \"0.47619047619047616\", \"0.5\", \"0.3235294117647059\"], \"174\": [\"0.3076923076923077\", \"0.3880597014925373\", \"0.2676056338028169\", \"0.24074074074074073\"], \"175\": [\"0.41379310344827586\", \"0.3114754098360656\", \"0.3492063492063492\", \"0.35\"], \"176\": [\"0.5901639344262295\", \"0.6984126984126984\", \"0.7391304347826086\", \"0.6666666666666666\"], \"177\": [\"0.3389830508474576\", \"0.2711864406779661\", \"0.3333333333333333\", \"0.4803921568627451\"], \"178\": [\"0.5166666666666667\", \"0.3125\", \"0.43548387096774194\", \"0.3300970873786408\"], \"179\": [\"0.3484848484848485\", \"0.3333333333333333\", \"0.3194444444444444\", \"0.4421052631578947\"], \"180\": [\"0.14190445408932803\", \"0.13909998782121544\", \"0.1701947480063646\", \"0.12517363860159866\"], \"181\": [\"0.2777777777777778\", \"0.29411764705882354\", \"0.34782608695652173\", \"0.2222222222222222\"], \"182\": [\"0.2\", \"0.2\", \"0.038461538461538464\", \"0.030534351145038167\"], \"183\": [\"0.4230769230769231\", \"0.43333333333333335\", \"0.7222222222222222\", \"0.4051724137931034\"], \"184\": [\"0.0\", \"0.05\", \"0.0\", \"0.3963963963963964\"], \"185\": [\"0.1\", \"0.043478260869565216\", \"0.0\", \"0.050505050505050504\"], \"186\": [\"0.0\", \"0.0\", \"0.058823529411764705\", \"0.019417475728155338\"], \"187\": [\"0.07142857142857142\", \"0.0\", \"0.17647058823529413\", \"0.06172839506172839\"], \"188\": [\"0.3333333333333333\", \"0.5\", \"0.42105263157894735\", \"0.18292682926829268\"], \"189\": [\"0.0\", \"0.0\", \"0.0\", \"0.0423728813559322\"], \"190\": [\"0.058823529411764705\", \"0.0\", \"0.0\", \"0.1595744680851064\"], \"191\": [\"0.2222222222222222\", \"0.25\", \"0.09090909090909091\", \"0.08108108108108109\"], \"192\": [\"0.0\", \"0.17647058823529413\", \"0.23529411764705882\", \"0.05555555555555555\"], \"193\": [\"0.3\", \"0.0\", \"0.16666666666666666\", \"0.0449438202247191\"], \"194\": [\"0.0\", \"0.0\", \"0.125\", \"0.0\"], \"195\": [\"0.9340888278388279\", \"0.9755952380952381\", \"0.9621086642825772\", \"0.8973056892089453\"], \"196\": [\"0.9166666666666666\", \"1.0\", \"0.8888888888888888\", \"0.9714285714285714\"], \"197\": [\"1.0\", \"1.0\", \"1.0\", \"0.6666666666666666\"], \"198\": [\"0.5\", \"1.0\", \"0.8\", \"0.6111111111111112\"], \"199\": [\"1.0\", \"0.9166666666666666\", \"1.0\", \"0.6521739130434783\"], \"200\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"201\": [\"1.0\", \"1.0\", \"1.0\", \"0.967741935483871\"], \"202\": [\"0.9375\", \"1.0\", \"1.0\", \"0.9622641509433962\"], \"203\": [\"1.0\", \"0.9375\", \"0.9545454545454546\", \"0.9615384615384616\"], \"204\": [\"0.9230769230769231\", \"0.9333333333333333\", \"1.0\", \"0.875\"], \"205\": [\"1.0\", \"0.9375\", \"1.0\", \"0.975\"], \"206\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"207\": [\"0.8\", \"0.9333333333333333\", \"1.0\", \"0.9193548387096774\"], \"208\": [\"1.0\", \"1.0\", \"0.8260869565217391\", \"1.0\"], \"209\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"210\": [\"0.5842490842490842\", \"0.509920634920635\", \"0.6486016628873772\", \"0.773755816893833\"], \"211\": [\"0.8333333333333334\", \"1.0\", \"0.8\", \"0.9565217391304348\"], \"212\": [\"1.0\", \"1.0\", \"1.0\", \"0.8\"], \"213\": [\"0.8461538461538461\", \"1.0\", \"0.9629629629629629\", \"0.8703703703703703\"], \"214\": [\"0.0\", \"0.5\", \"0.0\", \"0.8461538461538461\"], \"215\": [\"1.0\", \"1.0\", \"0.0\", \"1.0\"], \"216\": [\"0.0\", \"0.0\", \"1.0\", \"0.6666666666666666\"], \"217\": [\"0.5\", \"0.0\", \"1.0\", \"0.7142857142857143\"], \"218\": [\"1.0\", \"0.8888888888888888\", \"0.8888888888888888\", \"0.8823529411764706\"], \"219\": [\"0.0\", \"0.0\", \"0.0\", \"0.7142857142857143\"], \"220\": [\"1.0\", \"0.0\", \"0.0\", \"0.9375\"], \"221\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"222\": [\"0.0\", \"0.75\", \"1.0\", \"0.4444444444444444\"], \"223\": [\"1.0\", \"0.0\", \"0.42857142857142855\", \"1.0\"], \"224\": [\"0.0\", \"0.0\", \"1.0\", \"0.0\"], \"225\": [\"0.4124708429098776\", \"0.4628128697461709\", \"0.5508536123022646\", \"0.3176701124993818\"], \"226\": [\"0.4583333333333333\", \"0.5555555555555556\", \"0.5161290322580645\", \"0.3063063063063063\"], \"227\": [\"0.2\", \"0.25925925925925924\", \"0.375\", \"0.015503875968992248\"], \"228\": [\"0.11764705882352941\", \"0.10526315789473684\", \"0.2857142857142857\", \"0.1375\"], \"229\": [\"0.3333333333333333\", \"0.36666666666666664\", \"0.4878048780487805\", \"0.18292682926829268\"], \"230\": [\"0.35714285714285715\", \"0.2903225806451613\", \"0.4634146341463415\", \"0.2713178294573643\"], \"231\": [\"0.5\", \"0.40625\", \"0.6\", \"0.22900763358778625\"], \"232\": [\"0.5357142857142857\", \"0.53125\", \"0.631578947368421\", \"0.4015748031496063\"], \"233\": [\"0.391304347826087\", \"0.6521739130434783\", \"0.65625\", \"0.42735042735042733\"], \"234\": [\"0.41379310344827586\", \"0.45161290322580644\", \"0.5365853658536586\", \"0.11023622047244094\"], \"235\": [\"0.4482758620689655\", \"0.4838709677419355\", \"0.5609756097560976\", \"0.3305084745762712\"], \"236\": [\"0.75\", \"0.6896551724137931\", \"0.75\", \"0.7404580152671756\"], \"237\": [\"0.2857142857142857\", \"0.5\", \"0.6486486486486487\", \"0.456\"], \"238\": [\"0.4166666666666667\", \"0.5\", \"0.5588235294117647\", \"0.34615384615384615\"], \"239\": [\"0.5666666666666667\", \"0.6875\", \"0.6410256410256411\", \"0.4925373134328358\"], \"240\": [\"0.1550310042295616\", \"0.1410894660894661\", \"0.1473947974546336\", \"0.14249189186163977\"], \"241\": [\"0.3333333333333333\", \"0.5\", \"0.3076923076923077\", \"0.11764705882352941\"], \"242\": [\"0.03225806451612903\", \"0.15\", \"0.09375\", \"0.0\"], \"243\": [\"0.45714285714285713\", \"0.4166666666666667\", \"0.5714285714285714\", \"0.125\"], \"244\": [\"0.09090909090909091\", \"0.05\", \"0.10344827586206896\", \"0.5384615384615384\"], \"245\": [\"0.14814814814814814\", \"0.0\", \"0.038461538461538464\", \"0.2\"], \"246\": [\"0.047619047619047616\", \"0.0\", \"0.0\", \"0.0\"], \"247\": [\"0.0\", \"0.0\", \"0.0\", \"0.0\"], \"248\": [\"0.391304347826087\", \"0.45454545454545453\", \"0.45454545454545453\", \"0.14285714285714285\"], \"249\": [\"0.0\", \"0.05555555555555555\", \"0.08\", \"0.0\"], \"250\": [\"0.07142857142857142\", \"0.18181818181818182\", \"0.09090909090909091\", \"0.23076923076923078\"], \"251\": [\"0.3333333333333333\", \"0.0\", \"0.14285714285714285\", \"0.3333333333333333\"], \"252\": [\"0.1111111111111111\", \"0.0\", \"0.13043478260869565\", \"0.125\"], \"253\": [\"0.15384615384615385\", \"0.16666666666666666\", \"0.05\", \"0.18181818181818182\"], \"254\": [\"0.0\", \"0.0\", \"0.0\", \"0.0\"], \"255\": [\"0.9602427077852775\", \"0.9227122157904998\", \"0.9144758138444801\", \"0.890391156462585\"], \"256\": [\"0.9375\", \"0.9230769230769231\", \"0.875\", \"0.5\"], \"257\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"258\": [\"1.0\", \"0.4\", \"0.42857142857142855\", \"0.8\"], \"259\": [\"0.8888888888888888\", \"0.8888888888888888\", \"1.0\", \"0.875\"], \"260\": [\"1.0\", \"1.0\", \"0.9375\", \"1.0\"], \"261\": [\"0.9473684210526315\", \"0.9473684210526315\", \"0.9565217391304348\", \"0.5333333333333333\"], \"262\": [\"0.9333333333333333\", \"1.0\", \"0.9629629629629629\", \"1.0\"], \"263\": [\"0.9411764705882353\", \"0.8888888888888888\", \"0.8\", \"0.8571428571428571\"], \"264\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"265\": [\"0.9230769230769231\", \"1.0\", \"1.0\", \"1.0\"], \"266\": [\"0.9545454545454546\", \"1.0\", \"1.0\", \"1.0\"], \"267\": [\"0.9545454545454546\", \"0.9285714285714286\", \"0.8421052631578947\", \"1.0\"], \"268\": [\"0.9629629629629629\", \"0.9411764705882353\", \"1.0\", \"0.9\"], \"269\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"270\": [\"0.5937641723356009\", \"0.46707657421943144\", \"0.6676870748299321\", \"0.5267857142857143\"], \"271\": [\"0.8888888888888888\", \"0.8888888888888888\", \"0.8\", \"0.5\"], \"272\": [\"1.0\", \"1.0\", \"1.0\", \"0.0\"], \"273\": [\"1.0\", \"0.7692307692307693\", \"0.8333333333333334\", \"0.6666666666666666\"], \"274\": [\"0.5\", \"0.5\", \"1.0\", \"0.875\"], \"275\": [\"1.0\", \"0.0\", \"0.5\", \"1.0\"], \"276\": [\"0.5\", \"0.0\", \"0.0\", \"0.0\"], \"277\": [\"0.0\", \"0.0\", \"0.0\", \"0.0\"], \"278\": [\"0.9\", \"0.7142857142857143\", \"0.7142857142857143\", \"0.6666666666666666\"], \"279\": [\"0.0\", \"1.0\", \"1.0\", \"0.0\"], \"280\": [\"0.3333333333333333\", \"1.0\", \"1.0\", \"1.0\"], \"281\": [\"0.8571428571428571\", \"0.0\", \"1.0\", \"1.0\"], \"282\": [\"0.6666666666666666\", \"0.0\", \"0.5\", \"1.0\"], \"283\": [\"0.6666666666666666\", \"0.6666666666666666\", \"1.0\", \"0.6666666666666666\"], \"284\": [\"0.0\", \"0.0\", \"0.0\", \"0.0\"], \"285\": [\"0.5001908065575299\", \"0.5059764788213064\", \"0.46346635120589824\", \"0.39749146622211645\"], \"286\": [\"0.4838709677419355\", \"0.6\", \"0.4375\", \"0.11764705882352941\"], \"287\": [\"0.23076923076923078\", \"0.34615384615384615\", \"0.2564102564102564\", \"0.14285714285714285\"], \"288\": [\"0.20833333333333334\", \"0.125\", \"0.16666666666666666\", \"0.2222222222222222\"], \"289\": [\"0.4444444444444444\", \"0.2962962962962963\", \"0.3333333333333333\", \"0.5384615384615384\"], \"290\": [\"0.3611111111111111\", \"0.3103448275862069\", \"0.375\", \"0.5789473684210527\"], \"291\": [\"0.47368421052631576\", \"0.6428571428571429\", \"0.5365853658536586\", \"0.5714285714285714\"], \"292\": [\"0.7368421052631579\", \"0.5172413793103449\", \"0.6341463414634146\", \"0.19047619047619047\"], \"293\": [\"0.5333333333333333\", \"0.7272727272727273\", \"0.5714285714285714\", \"0.3333333333333333\"], \"294\": [\"0.45\", \"0.39285714285714285\", \"0.425\", \"0.3333333333333333\"], \"295\": [\"0.6486486486486487\", \"0.6666666666666666\", \"0.5\", \"0.4444444444444444\"], \"296\": [\"0.6363636363636364\", \"0.7586206896551724\", \"0.7\", \"0.9\"], \"297\": [\"0.5675675675675675\", \"0.4642857142857143\", \"0.4444444444444444\", \"0.2631578947368421\"], \"298\": [\"0.7027027027027027\", \"0.6153846153846154\", \"0.5365853658536586\", \"0.5\"], \"299\": [\"0.525\", \"0.6206896551724138\", \"0.5714285714285714\", \"0.42857142857142855\"], \"300\": [\"0.1469463570917117\", \"0.13135461005054608\", \"0.15366968200659187\", \"0.1498733315595946\"], \"301\": [\"0.2391304347826087\", \"0.29523809523809524\", \"0.32051282051282054\", \"0.18681318681318682\"], \"302\": [\"0.09900990099009901\", \"0.09009009009009009\", \"0.08974358974358974\", \"0.0990990990990991\"], \"303\": [\"0.3305785123966942\", \"0.3333333333333333\", \"0.325\", \"0.2641509433962264\"], \"304\": [\"0.0547945205479452\", \"0.09411764705882353\", \"0.09375\", \"0.27835051546391754\"], \"305\": [\"0.056338028169014086\", \"0.05714285714285714\", \"0.14035087719298245\", \"0.022988505747126436\"], \"306\": [\"0.04\", \"0.06741573033707865\", \"0.07042253521126761\", \"0.1559633027522936\"], \"307\": [\"0.0375\", \"0.011235955056179775\", \"0.018867924528301886\", \"0.031578947368421054\"], \"308\": [\"0.47692307692307695\", \"0.352112676056338\", \"0.38181818181818183\", \"0.21052631578947367\"], \"309\": [\"0.022727272727272728\", \"0.025\", \"0.017241379310344827\", \"0.022222222222222223\"], \"310\": [\"0.09333333333333334\", \"0.0963855421686747\", \"0.11475409836065574\", \"0.0898876404494382\"], \"311\": [\"0.20512820512820512\", \"0.07894736842105263\", \"0.1111111111111111\", \"0.5714285714285714\"], \"312\": [\"0.1875\", \"0.18604651162790697\", \"0.265625\", \"0.06521739130434782\"], \"313\": [\"0.21428571428571427\", \"0.1518987341772152\", \"0.171875\", \"0.1\"], \"314\": [\"0.0\", \"0.0\", \"0.030303030303030304\", \"0.0\"], \"315\": [\"0.9295222170180396\", \"0.932458689086653\", \"0.9225334207275214\", \"0.9205154657992932\"], \"316\": [\"0.86\", \"0.9705882352941176\", \"0.8275862068965517\", \"0.8536585365853658\"], \"317\": [\"1.0\", \"1.0\", \"0.9655172413793104\", \"0.9523809523809523\"], \"318\": [\"0.6666666666666666\", \"0.7419354838709677\", \"0.7037037037037037\", \"0.7692307692307693\"], \"319\": [\"0.9710144927536232\", \"0.9259259259259259\", \"0.9302325581395349\", \"0.9428571428571428\"], \"320\": [\"1.0\", \"1.0\", \"0.98\", \"1.0\"], \"321\": [\"0.9850746268656716\", \"0.94\", \"0.9722222222222222\", \"0.9130434782608695\"], \"322\": [\"1.0\", \"0.96\", \"1.0\", \"0.972972972972973\"], \"323\": [\"0.8571428571428571\", \"0.8676470588235294\", \"0.8076923076923077\", \"0.9285714285714286\"], \"324\": [\"0.9814814814814815\", \"0.9491525423728814\", \"1.0\", \"0.9523809523809523\"], \"325\": [\"0.9552238805970149\", \"0.9464285714285714\", \"0.8913043478260869\", \"0.7906976744186046\"], \"326\": [\"0.9902912621359223\", \"0.9900990099009901\", \"1.0\", \"0.9518072289156626\"], \"327\": [\"0.7741935483870968\", \"0.8301886792452831\", \"0.9069767441860465\", \"0.975\"], \"328\": [\"0.9722222222222222\", \"0.95\", \"0.9302325581395349\", \"0.8846153846153846\"], \"329\": [\"1.0\", \"0.9824561403508771\", \"1.0\", \"1.0\"], \"330\": [\"0.7442568785890488\", \"0.6790118092691623\", \"0.8369942062846646\", \"0.723518392995958\"], \"331\": [\"0.7586206896551724\", \"0.96875\", \"0.8333333333333334\", \"0.7391304347826086\"], \"332\": [\"1.0\", \"1.0\", \"0.875\", \"0.9166666666666666\"], \"333\": [\"0.851063829787234\", \"0.8181818181818182\", \"0.7647058823529411\", \"0.8235294117647058\"], \"334\": [\"0.6666666666666666\", \"0.6666666666666666\", \"0.6666666666666666\", \"0.9310344827586207\"], \"335\": [\"1.0\", \"1.0\", \"0.8888888888888888\", \"1.0\"], \"336\": [\"0.75\", \"0.6666666666666666\", \"0.8333333333333334\", \"0.8947368421052632\"], \"337\": [\"1.0\", \"0.3333333333333333\", \"1.0\", \"0.75\"], \"338\": [\"0.7380952380952381\", \"0.7352941176470589\", \"0.6774193548387096\", \"0.8\"], \"339\": [\"0.6666666666666666\", \"0.4\", \"1.0\", \"0.5\"], \"340\": [\"0.7\", \"0.7272727272727273\", \"0.5833333333333334\", \"0.47058823529411764\"], \"341\": [\"0.8888888888888888\", \"0.75\", \"1.0\", \"0.875\"], \"342\": [\"0.5172413793103449\", \"0.64\", \"0.8095238095238095\", \"0.8571428571428571\"], \"343\": [\"0.8823529411764706\", \"0.8\", \"0.7857142857142857\", \"0.5714285714285714\"], \"344\": [\"0.0\", \"0.0\", \"1.0\", \"0.0\"], \"345\": [\"0.46115996499908746\", \"0.41235144012073616\", \"0.4363357131497031\", \"0.3508912706988956\"], \"346\": [\"0.3805309734513274\", \"0.308411214953271\", \"0.3116883116883117\", \"0.3211009174311927\"], \"347\": [\"0.3106060606060606\", \"0.21705426356589147\", \"0.2828282828282828\", \"0.16666666666666666\"], \"348\": [\"0.14736842105263157\", \"0.24210526315789474\", \"0.2602739726027397\", \"0.20408163265306123\"], \"349\": [\"0.49264705882352944\", \"0.3937007874015748\", \"0.40816326530612246\", \"0.32038834951456313\"], \"350\": [\"0.5144927536231884\", \"0.5111111111111111\", \"0.5\", \"0.34615384615384615\"], \"351\": [\"0.4782608695652174\", \"0.36153846153846153\", \"0.3465346534653465\", \"0.18584070796460178\"], \"352\": [\"0.4460431654676259\", \"0.35294117647058826\", \"0.5094339622641509\", \"0.28125\"], \"353\": [\"0.66\", \"0.5619047619047619\", \"0.5526315789473685\", \"0.4642857142857143\"], \"354\": [\"0.381294964028777\", \"0.417910447761194\", \"0.46226415094339623\", \"0.3125\"], \"355\": [\"0.48484848484848486\", \"0.4140625\", \"0.43157894736842106\", \"0.2956521739130435\"], \"356\": [\"0.7669172932330827\", \"0.7407407407407407\", \"0.7692307692307693\", \"0.79\"], \"357\": [\"0.4247787610619469\", \"0.38596491228070173\", \"0.45348837209302323\", \"0.312\"], \"358\": [\"0.56\", \"0.4596774193548387\", \"0.43010752688172044\", \"0.3898305084745763\"], \"359\": [\"0.4084507042253521\", \"0.4057971014492754\", \"0.3904761904761905\", \"0.5227272727272727\"], \"360\": [\"0.13222209948257632\", \"0.11045798937107018\", \"0.13261570417529836\", \"0.14053076770309197\"], \"361\": [\"0.3116883116883117\", \"0.10714285714285714\", \"0.2753623188405797\", \"0.2694063926940639\"], \"362\": [\"0.1348314606741573\", \"0.08974358974358974\", \"0.09278350515463918\", \"0.1308016877637131\"], \"363\": [\"0.45555555555555555\", \"0.4268292682926829\", \"0.4672897196261682\", \"0.4314516129032258\"], \"364\": [\"0.029411764705882353\", \"0.06153846153846154\", \"0.05\", \"0.05747126436781609\"], \"365\": [\"0.0\", \"0.10344827586206896\", \"0.04477611940298507\", \"0.13861386138613863\"], \"366\": [\"0.03076923076923077\", \"0.0\", \"0.043478260869565216\", \"0.03825136612021858\"], \"367\": [\"0.06451612903225806\", \"0.06\", \"0.06944444444444445\", \"0.07874015748031496\"], \"368\": [\"0.3181818181818182\", \"0.34545454545454546\", \"0.3230769230769231\", \"0.33678756476683935\"], \"369\": [\"0.04285714285714286\", \"0.0\", \"0.028169014084507043\", \"0.03414634146341464\"], \"370\": [\"0.029850746268656716\", \"0.02040816326530612\", \"0.08695652173913043\", \"0.0625\"], \"371\": [\"0.10869565217391304\", \"0.11428571428571428\", \"0.05714285714285714\", \"0.27672955974842767\"], \"372\": [\"0.12962962962962962\", \"0.12\", \"0.14864864864864866\", \"0.03289473684210526\"], \"373\": [\"0.1951219512195122\", \"0.0975609756097561\", \"0.1694915254237288\", \"0.07453416149068323\"], \"374\": [\"0.0\", \"0.0\", \"0.0\", \"0.00510204081632653\"], \"375\": [\"0.93865294797817\", \"0.9208623705424565\", \"0.9184367536978485\", \"0.9301487639759868\"], \"376\": [\"0.7567567567567568\", \"0.8536585365853658\", \"0.8412698412698413\", \"0.86\"], \"377\": [\"1.0\", \"1.0\", \"0.9428571428571428\", \"0.9375\"], \"378\": [\"0.6666666666666666\", \"0.6\", \"0.48\", \"0.6666666666666666\"], \"379\": [\"0.9782608695652174\", \"0.9375\", \"0.9423076923076923\", \"0.9894736842105263\"], \"380\": [\"1.0\", \"0.9743589743589743\", \"1.0\", \"1.0\"], \"381\": [\"1.0\", \"1.0\", \"1.0\", \"0.9767441860465116\"], \"382\": [\"1.0\", \"0.9787234042553191\", \"0.95\", \"0.9859154929577465\"], \"383\": [\"0.9791666666666666\", \"0.8333333333333334\", \"0.9552238805970149\", \"0.8552631578947368\"], \"384\": [\"0.9772727272727273\", \"0.9743589743589743\", \"1.0\", \"0.984375\"], \"385\": [\"0.9574468085106383\", \"0.9375\", \"0.9841269841269841\", \"0.9724770642201835\"], \"386\": [\"1.0\", \"0.9838709677419355\", \"0.979381443298969\", \"0.8727272727272727\"], \"387\": [\"0.8666666666666667\", \"0.8723404255319149\", \"0.8103448275862069\", \"0.9487179487179487\"], \"388\": [\"0.958904109589041\", \"0.9464285714285714\", \"0.9726027397260274\", \"0.9722222222222222\"], \"389\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"390\": [\"0.6877970668786996\", \"0.5342618473280495\", \"0.7163506991093199\", \"0.8431994225778257\"], \"391\": [\"0.7272727272727273\", \"0.5\", \"0.6551724137931034\", \"0.8939393939393939\"], \"392\": [\"1.0\", \"1.0\", \"0.8181818181818182\", \"0.9393939393939394\"], \"393\": [\"0.8367346938775511\", \"0.8536585365853658\", \"0.7936507936507936\", \"0.9385964912280702\"], \"394\": [\"0.6666666666666666\", \"0.6666666666666666\", \"0.5714285714285714\", \"0.9090909090909091\"], \"395\": [\"0.0\", \"0.8571428571428571\", \"1.0\", \"1.0\"], \"396\": [\"1.0\", \"0.0\", \"1.0\", \"0.7777777777777778\"], \"397\": [\"1.0\", \"0.75\", \"0.625\", \"0.8333333333333334\"], \"398\": [\"0.9545454545454546\", \"0.7307692307692307\", \"0.875\", \"0.8552631578947368\"], \"399\": [\"0.75\", \"0.0\", \"1.0\", \"0.875\"], \"400\": [\"0.5\", \"0.25\", \"0.8571428571428571\", \"0.7692307692307693\"], \"401\": [\"1.0\", \"0.8\", \"0.5\", \"0.7586206896551724\"], \"402\": [\"0.4666666666666667\", \"0.5\", \"0.5\", \"0.45454545454545453\"], \"403\": [\"0.7272727272727273\", \"0.5714285714285714\", \"0.8333333333333334\", \"0.8\"], \"404\": [\"0.0\", \"0.0\", \"0.0\", \"1.0\"], \"405\": [\"0.44004082717457116\", \"0.4317335829457151\", \"0.47855976684945184\", \"0.32161781404777523\"], \"406\": [\"0.345679012345679\", \"0.4117647058823529\", \"0.5145631067961165\", \"0.21182266009852216\"], \"407\": [\"0.24509803921568626\", \"0.2111111111111111\", \"0.2727272727272727\", \"0.1271186440677966\"], \"408\": [\"0.24615384615384617\", \"0.16071428571428573\", \"0.17391304347826086\", \"0.09032258064516129\"], \"409\": [\"0.40540540540540543\", \"0.32967032967032966\", \"0.392\", \"0.3643410852713178\"], \"410\": [\"0.4649122807017544\", \"0.4222222222222222\", \"0.5038759689922481\", \"0.27800829875518673\"], \"411\": [\"0.4375\", \"0.422680412371134\", \"0.4883720930232558\", \"0.3230769230769231\"], \"412\": [\"0.4727272727272727\", \"0.4946236559139785\", \"0.4596774193548387\", \"0.5447470817120622\"], \"413\": [\"0.5108695652173914\", \"0.49295774647887325\", \"0.5925925925925926\", \"0.33678756476683935\"], \"414\": [\"0.39090909090909093\", \"0.3958333333333333\", \"0.46923076923076923\", \"0.2413793103448276\"], \"415\": [\"0.4090909090909091\", \"0.4838709677419355\", \"0.496\", \"0.4140625\"], \"416\": [\"0.6238532110091743\", \"0.6630434782608695\", \"0.7421875\", \"0.4549763033175355\"], \"417\": [\"0.5252525252525253\", \"0.4823529411764706\", \"0.42727272727272725\", \"0.43023255813953487\"], \"418\": [\"0.6796116504854369\", \"0.5888888888888889\", \"0.5916666666666667\", \"0.41338582677165353\"], \"419\": [\"0.40350877192982454\", \"0.4845360824742268\", \"0.5757575757575758\", \"0.27238805970149255\"], \"420\": [\"0.13310939085989032\", \"0.12764355814767434\", \"0.12270129693974231\", \"0.14383479184721423\"], \"421\": [\"0.34210526315789475\", \"0.24242424242424243\", \"0.225\", \"0.21428571428571427\"], \"422\": [\"0.02702702702702703\", \"0.029411764705882353\", \"0.058823529411764705\", \"0.038461538461538464\"], \"423\": [\"0.32432432432432434\", \"0.3055555555555556\", \"0.2972972972972973\", \"0.20833333333333334\"], \"424\": [\"0.0625\", \"0.03333333333333333\", \"0.06060606060606061\", \"0.4166666666666667\"], \"425\": [\"0.08333333333333333\", \"0.05263157894736842\", \"0.0\", \"0.0\"], \"426\": [\"0.0625\", \"0.03225806451612903\", \"0.11428571428571428\", \"0.041666666666666664\"], \"427\": [\"0.03333333333333333\", \"0.037037037037037035\", \"0.0\", \"0.13043478260869565\"], \"428\": [\"0.32\", \"0.4583333333333333\", \"0.375\", \"0.16666666666666666\"], \"429\": [\"0.03333333333333333\", \"0.0\", \"0.03125\", \"0.0\"], \"430\": [\"0.14285714285714285\", \"0.1724137931034483\", \"0.2222222222222222\", \"0.0\"], \"431\": [\"0.17647058823529413\", \"0.1111111111111111\", \"0.0\", \"0.4444444444444444\"], \"432\": [\"0.1724137931034483\", \"0.1875\", \"0.125\", \"0.08\"], \"433\": [\"0.08333333333333333\", \"0.125\", \"0.20833333333333334\", \"0.2727272727272727\"], \"434\": [\"0.0\", \"0.0\", \"0.0\", \"0.0\"], \"435\": [\"0.9290293040293041\", \"0.9034037658125451\", \"0.9313895534290272\", \"nan\"], \"436\": [\"0.6666666666666666\", \"1.0\", \"1.0\", \"nan\"], \"437\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"438\": [\"0.75\", \"0.5714285714285714\", \"0.6666666666666666\", \"0.75\"], \"439\": [\"1.0\", \"1.0\", \"0.9\", \"1.0\"], \"440\": [\"1.0\", \"0.9583333333333334\", \"1.0\", \"1.0\"], \"441\": [\"1.0\", \"1.0\", \"0.875\", \"1.0\"], \"442\": [\"1.0\", \"0.9375\", \"1.0\", \"0.8\"], \"443\": [\"0.875\", \"0.6842105263157895\", \"0.9473684210526315\", \"1.0\"], \"444\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"445\": [\"0.9230769230769231\", \"0.8571428571428571\", \"0.9375\", \"1.0\"], \"446\": [\"0.9583333333333334\", \"0.9117647058823529\", \"1.0\", \"1.0\"], \"447\": [\"0.8333333333333334\", \"0.8181818181818182\", \"0.8181818181818182\", \"1.0\"], \"448\": [\"1.0\", \"0.9090909090909091\", \"0.8947368421052632\", \"1.0\"], \"449\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"450\": [\"0.8511381475667189\", \"0.639075630252101\", \"0.6036368393511251\", \"0.6845238095238095\"], \"451\": [\"0.9285714285714286\", \"1.0\", \"1.0\", \"1.0\"], \"452\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"453\": [\"0.9230769230769231\", \"0.7857142857142857\", \"0.8461538461538461\", \"0.8333333333333334\"], \"454\": [\"1.0\", \"1.0\", \"0.6666666666666666\", \"1.0\"], \"455\": [\"1.0\", \"0.5\", \"0.0\", \"0.0\"], \"456\": [\"1.0\", \"1.0\", \"0.8\", \"1.0\"], \"457\": [\"1.0\", \"0.5\", \"0.0\", \"0.75\"], \"458\": [\"0.8\", \"0.6470588235294118\", \"0.9\", \"1.0\"], \"459\": [\"1.0\", \"0.0\", \"1.0\", \"0.0\"], \"460\": [\"0.8\", \"0.7142857142857143\", \"0.8571428571428571\", \"0.0\"], \"461\": [\"0.75\", \"0.25\", \"0.0\", \"1.0\"], \"462\": [\"0.7142857142857143\", \"0.75\", \"0.6666666666666666\", \"1.0\"], \"463\": [\"1.0\", \"0.8\", \"0.7142857142857143\", \"1.0\"], \"464\": [\"0.0\", \"0.0\", \"0.0\", \"0.0\"], \"465\": [\"0.29699419261565124\", \"0.3609064517578566\", \"0.33548282375472904\", \"0.22609632431061\"], \"466\": [\"0.07407407407407407\", \"0.2857142857142857\", \"0.08823529411764706\", \"0.0\"], \"467\": [\"0.1\", \"0.21428571428571427\", \"0.21951219512195122\", \"0.07407407407407407\"], \"468\": [\"0.10714285714285714\", \"0.13793103448275862\", \"0.13333333333333333\", \"0.13636363636363635\"], \"469\": [\"0.23076923076923078\", \"0.30952380952380953\", \"0.225\", \"0.2222222222222222\"], \"470\": [\"0.4358974358974359\", \"0.5609756097560976\", \"0.5116279069767442\", \"0.6785714285714286\"], \"471\": [\"0.23076923076923078\", \"0.2857142857142857\", \"0.18421052631578946\", \"0.14814814814814814\"], \"472\": [\"0.275\", \"0.36585365853658536\", \"0.3023255813953488\", \"0.16666666666666666\"], \"473\": [\"0.45161290322580644\", \"0.5\", \"0.5454545454545454\", \"0.16666666666666666\"], \"474\": [\"0.275\", \"0.4186046511627907\", \"0.2619047619047619\", \"0.25\"], \"475\": [\"0.3333333333333333\", \"0.3333333333333333\", \"0.4166666666666667\", \"0.10714285714285714\"], \"476\": [\"0.6216216216216216\", \"0.7948717948717948\", \"0.7674418604651163\", \"0.7916666666666666\"], \"477\": [\"0.29411764705882354\", \"0.2571428571428571\", \"0.24324324324324326\", \"0.11538461538461539\"], \"478\": [\"0.4358974358974359\", \"0.2631578947368421\", \"0.4722222222222222\", \"0.2727272727272727\"], \"479\": [\"0.2926829268292683\", \"0.32558139534883723\", \"0.32558139534883723\", \"0.03571428571428571\"], \"480\": [\"0.09297161172161171\", \"0.13094288134514181\", \"0.1326188689191785\", \"0.14368282395551332\"], \"481\": [\"0.1875\", \"0.19047619047619047\", \"0.25\", \"0.058823529411764705\"], \"482\": [\"0.0\", \"0.13636363636363635\", \"0.08333333333333333\", \"0.15625\"], \"483\": [\"0.5416666666666666\", \"0.391304347826087\", \"0.16666666666666666\", \"0.13043478260869565\"], \"484\": [\"0.0\", \"0.058823529411764705\", \"0.10526315789473684\", \"0.09259259259259259\"], \"485\": [\"0.0\", \"0.0625\", \"0.05263157894736842\", \"0.0\"], \"486\": [\"0.0\", \"0.15\", \"0.05263157894736842\", \"0.04285714285714286\"], \"487\": [\"0.0\", \"0.05555555555555555\", \"0.0\", \"0.08571428571428572\"], \"488\": [\"0.13333333333333333\", \"0.47058823529411764\", \"0.45\", \"0.5357142857142857\"], \"489\": [\"0.0\", \"0.1111111111111111\", \"0.0\", \"0.016129032258064516\"], \"490\": [\"0.23076923076923078\", \"0.05263157894736842\", \"0.09090909090909091\", \"0.1111111111111111\"], \"491\": [\"0.08333333333333333\", \"0.15384615384615385\", \"0.2\", \"0.3142857142857143\"], \"492\": [\"0.0\", \"0.0\", \"0.29411764705882354\", \"0.11764705882352941\"], \"493\": [\"0.125\", \"0.0\", \"0.1111111111111111\", \"0.0\"], \"494\": [\"0.0\", \"0.0\", \"0.0\", \"0.35\"], \"495\": [\"0.9635854341736695\", \"0.9365079365079365\", \"0.9401439204070783\", \"0.9440289858837501\"], \"496\": [\"0.6666666666666666\", \"1.0\", \"0.8\", \"0.9230769230769231\"], \"497\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"498\": [\"1.0\", \"0.6666666666666666\", \"0.8\", \"0.9166666666666666\"], \"499\": [\"1.0\", \"0.8888888888888888\", \"0.9\", \"0.9629629629629629\"], \"500\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"501\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"502\": [\"1.0\", \"1.0\", \"1.0\", \"0.9782608695652174\"], \"503\": [\"1.0\", \"0.7777777777777778\", \"0.8888888888888888\", \"0.72\"], \"504\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"505\": [\"1.0\", \"1.0\", \"1.0\", \"0.8888888888888888\"], \"506\": [\"1.0\", \"1.0\", \"0.9473684210526315\", \"0.8478260869565217\"], \"507\": [\"1.0\", \"0.7777777777777778\", \"0.9166666666666666\", \"0.9787234042553191\"], \"508\": [\"0.8235294117647058\", \"1.0\", \"0.9090909090909091\", \"1.0\"], \"509\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"510\": [\"0.3392857142857143\", \"0.7285714285714285\", \"0.6707482993197279\", \"0.7186293436293436\"], \"511\": [\"0.5\", \"1.0\", \"0.8571428571428571\", \"0.8\"], \"512\": [\"0.0\", \"1.0\", \"1.0\", \"1.0\"], \"513\": [\"1.0\", \"0.9\", \"0.8\", \"0.9\"], \"514\": [\"0.0\", \"0.5\", \"0.6666666666666666\", \"0.8333333333333334\"], \"515\": [\"0.0\", \"1.0\", \"1.0\", \"0.0\"], \"516\": [\"0.0\", \"1.0\", \"1.0\", \"1.0\"], \"517\": [\"0.0\", \"1.0\", \"0.0\", \"0.75\"], \"518\": [\"1.0\", \"0.8\", \"0.9\", \"0.8108108108108109\"], \"519\": [\"0.0\", \"1.0\", \"0.0\", \"1.0\"], \"520\": [\"1.0\", \"1.0\", \"1.0\", \"0.5555555555555556\"], \"521\": [\"1.0\", \"1.0\", \"0.6666666666666666\", \"0.6111111111111112\"], \"522\": [\"0.0\", \"0.0\", \"0.8333333333333334\", \"0.8\"], \"523\": [\"0.25\", \"0.0\", \"0.6666666666666666\", \"0.0\"], \"524\": [\"0.0\", \"0.0\", \"0.0\", \"1.0\"], \"525\": [\"0.39054952103579105\", \"0.3182374690526864\", \"0.3326565455951891\", \"0.3700917774819926\"], \"526\": [\"0.3157894736842105\", \"0.22727272727272727\", \"0.18181818181818182\", \"0.15789473684210525\"], \"527\": [\"0.12\", \"0.17391304347826086\", \"0.18518518518518517\", \"0.23943661971830985\"], \"528\": [\"0.08333333333333333\", \"0.125\", \"0.16666666666666666\", \"0.15492957746478872\"], \"529\": [\"0.32\", \"0.3333333333333333\", \"0.34615384615384615\", \"0.3466666666666667\"], \"530\": [\"0.48\", \"0.4\", \"0.35714285714285715\", \"0.2839506172839506\"], \"531\": [\"0.32\", \"0.2608695652173913\", \"0.35714285714285715\", \"0.14102564102564102\"], \"532\": [\"0.44\", \"0.32\", \"0.2413793103448276\", \"0.5844155844155844\"], \"533\": [\"0.43478260869565216\", \"0.4375\", \"0.42105263157894735\", \"0.4090909090909091\"], \"534\": [\"0.36\", \"0.3333333333333333\", \"0.27586206896551724\", \"0.2375\"], \"535\": [\"0.5454545454545454\", \"0.28\", \"0.25925925925925924\", \"0.4444444444444444\"], \"536\": [\"0.5416666666666666\", \"0.5416666666666666\", \"0.6923076923076923\", \"0.6190476190476191\"], \"537\": [\"0.4\", \"0.2916666666666667\", \"0.4782608695652174\", \"0.6052631578947368\"], \"538\": [\"0.6666666666666666\", \"0.38461538461538464\", \"0.38461538461538464\", \"0.345679012345679\"], \"539\": [\"0.44\", \"0.34615384615384615\", \"0.3103448275862069\", \"0.6119402985074627\"], \"540\": [\"0.14173370901378063\", \"0.13031525043854597\", \"0.14351981400010655\", \"0.141466821116307\"], \"541\": [\"0.27413127413127414\", \"0.23387096774193547\", \"0.2824427480916031\", \"0.2127659574468085\"], \"542\": [\"0.10197368421052631\", \"0.10774410774410774\", \"0.09764309764309764\", \"0.09931506849315068\"], \"543\": [\"0.41369047619047616\", \"0.4012738853503185\", \"0.4376899696048632\", \"0.3431542461005199\"], \"544\": [\"0.048034934497816595\", \"0.08677685950413223\", \"0.0728744939271255\", \"0.21822033898305085\"], \"545\": [\"0.0547945205479452\", \"0.07075471698113207\", \"0.05909090909090909\", \"0.07956989247311828\"], \"546\": [\"0.039647577092511016\", \"0.049107142857142856\", \"0.0635593220338983\", \"0.06097560975609756\"], \"547\": [\"0.043478260869565216\", \"0.03333333333333333\", \"0.04854368932038835\", \"0.06382978723404255\"], \"548\": [\"0.3755868544600939\", \"0.3711340206185567\", \"0.36633663366336633\", \"0.2979683972911964\"], \"549\": [\"0.020833333333333332\", \"0.026785714285714284\", \"0.03418803418803419\", \"0.027559055118110236\"], \"550\": [\"0.09259259259259259\", \"0.07692307692307693\", \"0.10909090909090909\", \"0.09669811320754718\"], \"551\": [\"0.16428571428571428\", \"0.11504424778761062\", \"0.08928571428571429\", \"0.30689655172413793\"], \"552\": [\"0.13488372093023257\", \"0.14285714285714285\", \"0.17647058823529413\", \"0.05897435897435897\"], \"553\": [\"0.22033898305084745\", \"0.10880829015544041\", \"0.15196078431372548\", \"0.07729468599033816\"], \"554\": [\"0.0\", \"0.0\", \"0.020100502512562814\", \"0.03731343283582089\"], \"555\": [\"0.9365988342313647\", \"0.9291284563353369\", \"0.929652834298313\", \"0.9295580959292421\"], \"556\": [\"0.851063829787234\", \"0.9259259259259259\", \"0.8590604026845637\", \"0.8819444444444444\"], \"557\": [\"0.9895833333333334\", \"0.9883720930232558\", \"0.9736842105263158\", \"0.935064935064935\"], \"558\": [\"0.703125\", \"0.6521739130434783\", \"0.6219512195121951\", \"0.7261904761904762\"], \"559\": [\"0.9473684210526315\", \"0.9361702127659575\", \"0.9512195121951219\", \"0.9312169312169312\"], \"560\": [\"0.988950276243094\", \"0.9824561403508771\", \"0.9895287958115183\", \"1.0\"], \"561\": [\"0.9826589595375722\", \"0.9559748427672956\", \"0.9771428571428571\", \"0.9289940828402367\"], \"562\": [\"0.9844559585492227\", \"0.976878612716763\", \"0.9804878048780488\", \"0.9789473684210527\"], \"563\": [\"0.9144385026737968\", \"0.8677248677248677\", \"0.9043062200956937\", \"0.8853211009174312\"], \"564\": [\"0.98125\", \"0.9685534591194969\", \"0.9887005649717514\", \"0.9673202614379085\"], \"565\": [\"0.9565217391304348\", \"0.9428571428571428\", \"0.9581151832460733\", \"0.9282700421940928\"], \"566\": [\"0.9884615384615385\", \"0.9777777777777777\", \"0.9899665551839465\", \"0.9353099730458221\"], \"567\": [\"0.8648648648648649\", \"0.8805031446540881\", \"0.8789473684210526\", \"0.955719557195572\"], \"568\": [\"0.9596412556053812\", \"0.9578947368421052\", \"0.9420289855072463\", \"0.9595141700404858\"], \"569\": [\"1.0\", \"0.994535519125683\", \"1.0\", \"1.0\"], \"570\": [\"0.7095821637351534\", \"0.6701680619138815\", \"0.7876582550825294\", \"0.826863016443639\"], \"571\": [\"0.7717391304347826\", \"0.8529411764705882\", \"0.7789473684210526\", \"0.8661417322834646\"], \"572\": [\"0.96875\", \"0.9696969696969697\", \"0.90625\", \"0.9206349206349206\"], \"573\": [\"0.879746835443038\", \"0.84\", \"0.8228571428571428\", \"0.8959276018099548\"], \"574\": [\"0.55\", \"0.7\", \"0.6923076923076923\", \"0.8879310344827587\"], \"575\": [\"0.8571428571428571\", \"0.8333333333333334\", \"0.8666666666666667\", \"1.0\"], \"576\": [\"0.75\", \"0.6111111111111112\", \"0.7894736842105263\", \"0.7142857142857143\"], \"577\": [\"0.75\", \"0.6363636363636364\", \"0.7142857142857143\", \"0.8\"], \"578\": [\"0.8333333333333334\", \"0.7422680412371134\", \"0.7872340425531915\", \"0.8407643312101911\"], \"579\": [\"0.625\", \"0.5454545454545454\", \"0.8\", \"0.7368421052631579\"], \"580\": [\"0.7142857142857143\", \"0.6153846153846154\", \"0.75\", \"0.7068965517241379\"], \"581\": [\"0.8846153846153846\", \"0.6842105263157895\", \"0.7692307692307693\", \"0.7876106194690266\"], \"582\": [\"0.5370370370370371\", \"0.6274509803921569\", \"0.6290322580645161\", \"0.6571428571428571\"], \"583\": [\"0.8125\", \"0.7241379310344828\", \"0.7209302325581395\", \"0.7619047619047619\"], \"584\": [\"0.0\", \"0.0\", \"1.0\", \"1.0\"], \"585\": [\"0.45019792413476545\", \"0.43749158332902266\", \"0.4662505547608729\", \"0.331339758461629\"], \"586\": [\"0.38961038961038963\", \"0.3968253968253968\", \"0.4050632911392405\", \"0.23782771535580524\"], \"587\": [\"0.25815217391304346\", \"0.24285714285714285\", \"0.2928759894459103\", \"0.12040133779264214\"], \"588\": [\"0.1859504132231405\", \"0.19313304721030042\", \"0.21610169491525424\", \"0.13863636363636364\"], \"589\": [\"0.4263157894736842\", \"0.37393767705382436\", \"0.4051948051948052\", \"0.3229357798165138\"], \"590\": [\"0.4637305699481865\", \"0.4602739726027397\", \"0.4772727272727273\", \"0.3141025641025641\"], \"591\": [\"0.4381443298969072\", \"0.41643835616438357\", \"0.4362244897959184\", \"0.25363489499192243\"], \"592\": [\"0.4896907216494845\", \"0.4543010752688172\", \"0.5062972292191436\", \"0.4421553090332805\"], \"593\": [\"0.5625\", \"0.5734265734265734\", \"0.5962145110410094\", \"0.38293650793650796\"], \"594\": [\"0.4005102040816326\", \"0.41397849462365593\", \"0.43640897755610975\", \"0.23052959501557632\"], \"595\": [\"0.4731182795698925\", \"0.46218487394957986\", \"0.48284960422163586\", \"0.3648424543946932\"], \"596\": [\"0.6871657754010695\", \"0.7252747252747253\", \"0.7437185929648241\", \"0.6332116788321168\"], \"597\": [\"0.4624277456647399\", \"0.42168674698795183\", \"0.4785100286532951\", \"0.41373801916932906\"], \"598\": [\"0.6079545454545454\", \"0.5141242937853108\", \"0.529891304347826\", \"0.38287560581583197\"], \"599\": [\"0.4575\", \"0.47643979057591623\", \"0.5208845208845209\", \"0.40092879256965946\"], \"600\": [\"0.1476509761123425\", \"0.1346574748651364\", \"0.14807438235896836\", \"0.1413716383184272\"], \"601\": [\"0.2671232876712329\", \"0.2611464968152866\", \"0.2857142857142857\", \"0.2073732718894009\"], \"602\": [\"0.10303030303030303\", \"0.10344827586206896\", \"0.08783783783783784\", \"0.06343283582089553\"], \"603\": [\"0.3548387096774194\", \"0.3743016759776536\", \"0.41916167664670656\", \"0.32793522267206476\"], \"604\": [\"0.05555555555555555\", \"0.08088235294117647\", \"0.072\", \"0.34913793103448276\"], \"605\": [\"0.06666666666666667\", \"0.06896551724137931\", \"0.08108108108108109\", \"0.03553299492385787\"], \"606\": [\"0.047619047619047616\", \"0.05714285714285714\", \"0.07575757575757576\", \"0.0847457627118644\"], \"607\": [\"0.040983606557377046\", \"0.023622047244094488\", \"0.047619047619047616\", \"0.05527638190954774\"], \"608\": [\"0.415929203539823\", \"0.3805309734513274\", \"0.3627450980392157\", \"0.19230769230769232\"], \"609\": [\"0.014705882352941176\", \"0.0234375\", \"0.03305785123966942\", \"0.03056768558951965\"], \"610\": [\"0.11382113821138211\", \"0.09230769230769231\", \"0.12173913043478261\", \"0.11057692307692307\"], \"611\": [\"0.18840579710144928\", \"0.11290322580645161\", \"0.07407407407407407\", \"0.3645833333333333\"], \"612\": [\"0.15267175572519084\", \"0.18840579710144928\", \"0.20689655172413793\", \"0.06349206349206349\"], \"613\": [\"0.2457627118644068\", \"0.11811023622047244\", \"0.16964285714285715\", \"0.09424083769633508\"], \"614\": [\"0.0\", \"0.0\", \"0.03571428571428571\", \"0.0\"], \"615\": [\"0.9342102989849421\", \"0.9334210036254339\", \"0.9345687246395652\", \"0.9209422736564626\"], \"616\": [\"0.88\", \"0.9545454545454546\", \"0.8769230769230769\", \"0.9102564102564102\"], \"617\": [\"0.9821428571428571\", \"1.0\", \"0.984375\", \"0.8888888888888888\"], \"618\": [\"0.6857142857142857\", \"0.7045454545454546\", \"0.7111111111111111\", \"0.7083333333333334\"], \"619\": [\"0.9578947368421052\", \"0.9425287356321839\", \"0.9425287356321839\", \"0.8412698412698413\"], \"620\": [\"1.0\", \"0.9906542056074766\", \"0.9900990099009901\", \"1.0\"], \"621\": [\"0.9894736842105263\", \"0.963855421686747\", \"0.975\", \"0.9491525423728814\"], \"622\": [\"0.98989898989899\", \"0.96875\", \"1.0\", \"0.9583333333333334\"], \"623\": [\"0.8796296296296297\", \"0.8727272727272727\", \"0.8818181818181818\", \"0.9469026548672567\"], \"624\": [\"0.9764705882352941\", \"0.9578947368421052\", \"0.978021978021978\", \"0.9393939393939394\"], \"625\": [\"0.9591836734693877\", \"0.9247311827956989\", \"0.9278350515463918\", \"0.8850574712643678\"], \"626\": [\"0.9868421052631579\", \"0.968944099378882\", \"1.0\", \"0.9798994974874372\"], \"627\": [\"0.8111111111111111\", \"0.8705882352941177\", \"0.90625\", \"0.9433962264150944\"], \"628\": [\"0.9805825242718447\", \"0.9583333333333334\", \"0.91\", \"0.9423076923076923\"], \"629\": [\"1.0\", \"0.9897959183673469\", \"1.0\", \"1.0\"], \"630\": [\"0.7389092369795136\", \"0.6759304185056064\", \"0.8190937777082355\", \"0.7544370763705553\"], \"631\": [\"0.8125\", \"0.9318181818181818\", \"0.84\", \"0.8653846153846154\"], \"632\": [\"0.9444444444444444\", \"1.0\", \"0.9285714285714286\", \"0.85\"], \"633\": [\"0.8571428571428571\", \"0.8375\", \"0.8433734939759037\", \"0.8526315789473684\"], \"634\": [\"0.6363636363636364\", \"0.6875\", \"0.6428571428571429\", \"0.8901098901098901\"], \"635\": [\"1.0\", \"0.8888888888888888\", \"0.9\", \"1.0\"], \"636\": [\"0.8571428571428571\", \"0.7272727272727273\", \"0.8333333333333334\", \"0.8695652173913043\"], \"637\": [\"0.8333333333333334\", \"0.5\", \"1.0\", \"0.7333333333333333\"], \"638\": [\"0.7833333333333333\", \"0.7543859649122807\", \"0.74\", \"0.8536585365853658\"], \"639\": [\"0.5\", \"0.42857142857142855\", \"0.6666666666666666\", \"0.6363636363636364\"], \"640\": [\"0.7777777777777778\", \"0.631578947368421\", \"0.6666666666666666\", \"0.696969696969697\"], \"641\": [\"0.8666666666666667\", \"0.5833333333333334\", \"1.0\", \"0.8974358974358975\"], \"642\": [\"0.5405405405405406\", \"0.7027027027027027\", \"0.7272727272727273\", \"0.6666666666666666\"], \"643\": [\"0.9354838709677419\", \"0.7894736842105263\", \"0.6785714285714286\", \"0.75\"], \"644\": [\"0.0\", \"0.0\", \"1.0\", \"0.0\"], \"645\": [\"0.440446459150375\", \"0.42510261878864913\", \"0.46122761607505225\", \"0.32615800612559154\"], \"646\": [\"0.3815028901734104\", \"0.35195530726256985\", \"0.35185185185185186\", \"0.29218106995884774\"], \"647\": [\"0.270935960591133\", \"0.23902439024390243\", \"0.3181818181818182\", \"0.08727272727272728\"], \"648\": [\"0.16666666666666666\", \"0.21678321678321677\", \"0.24806201550387597\", \"0.17\"], \"649\": [\"0.43333333333333335\", \"0.3961352657004831\", \"0.41414141414141414\", \"0.25980392156862747\"], \"650\": [\"0.47417840375586856\", \"0.4953271028037383\", \"0.49504950495049505\", \"0.3402777777777778\"], \"651\": [\"0.4392523364485981\", \"0.37735849056603776\", \"0.39\", \"0.20588235294117646\"], \"652\": [\"0.4558139534883721\", \"0.42857142857142855\", \"0.5169082125603864\", \"0.32857142857142857\"], \"653\": [\"0.5900621118012422\", \"0.5783132530120482\", \"0.5987654320987654\", \"0.421259842519685\"], \"654\": [\"0.3824884792626728\", \"0.4212962962962963\", \"0.4320388349514563\", \"0.21830985915492956\"], \"655\": [\"0.4630541871921182\", \"0.4215686274509804\", \"0.4712041884816754\", \"0.29389312977099236\"], \"656\": [\"0.7281553398058253\", \"0.7393364928909952\", \"0.7596153846153846\", \"0.76171875\"], \"657\": [\"0.3967391304347826\", \"0.3978494623655914\", \"0.4860335195530726\", \"0.36101083032490977\"], \"658\": [\"0.531578947368421\", \"0.45098039215686275\", \"0.4945652173913043\", \"0.36162361623616235\"], \"659\": [\"0.45248868778280543\", \"0.4369369369369369\", \"0.4807692307692308\", \"0.46440677966101696\"], \"660\": [\"0.1333867466706706\", \"0.12197964588582617\", \"0.13770426307812497\", \"0.13960555433407368\"], \"661\": [\"0.2831858407079646\", \"0.18681318681318682\", \"0.2782608695652174\", \"0.21666666666666667\"], \"662\": [\"0.10071942446043165\", \"0.11382113821138211\", \"0.10738255033557047\", \"0.12974683544303797\"], \"663\": [\"0.4866666666666667\", \"0.43703703703703706\", \"0.4567901234567901\", \"0.35454545454545455\"], \"664\": [\"0.038834951456310676\", \"0.09433962264150944\", \"0.07377049180327869\", \"0.09166666666666666\"], \"665\": [\"0.04040404040404041\", \"0.07291666666666667\", \"0.03669724770642202\", \"0.11194029850746269\"], \"666\": [\"0.0297029702970297\", \"0.03571428571428571\", \"0.04807692307692308\", \"0.0390625\"], \"667\": [\"0.047058823529411764\", \"0.04819277108433735\", \"0.04950495049504951\", \"0.07344632768361582\"], \"668\": [\"0.33\", \"0.35802469135802467\", \"0.37\", \"0.3716475095785441\"], \"669\": [\"0.028846153846153848\", \"0.03125\", \"0.035398230088495575\", \"0.025089605734767026\"], \"670\": [\"0.06451612903225806\", \"0.05128205128205128\", \"0.09523809523809523\", \"0.08333333333333333\"], \"671\": [\"0.14084507042253522\", \"0.11764705882352941\", \"0.10344827586206896\", \"0.27835051546391754\"], \"672\": [\"0.10714285714285714\", \"0.06976744186046512\", \"0.14285714285714285\", \"0.05472636815920398\"], \"673\": [\"0.1694915254237288\", \"0.09090909090909091\", \"0.13043478260869565\", \"0.06278026905829596\"], \"674\": [\"0.0\", \"0.0\", \"0.0\", \"0.06147540983606557\"], \"675\": [\"0.9396421350323848\", \"0.9220924677068109\", \"0.9233724987753907\", \"0.9301819355485296\"], \"676\": [\"0.8181818181818182\", \"0.8985507246376812\", \"0.8452380952380952\", \"0.8484848484848485\"], \"677\": [\"1.0\", \"0.972972972972973\", \"0.96\", \"0.96\"], \"678\": [\"0.7241379310344828\", \"0.56\", \"0.5135135135135135\", \"0.75\"], \"679\": [\"0.9342105263157895\", \"0.9259259259259259\", \"0.961038961038961\", \"0.9761904761904762\"], \"680\": [\"0.975\", \"0.96875\", \"0.9888888888888889\", \"1.0\"], \"681\": [\"0.9743589743589743\", \"0.9473684210526315\", \"0.9789473684210527\", \"0.9181818181818182\"], \"682\": [\"0.9787234042553191\", \"0.987012987012987\", \"0.9591836734693877\", \"0.9894179894179894\"], \"683\": [\"0.9620253164556962\", \"0.8607594936708861\", \"0.9292929292929293\", \"0.819047619047619\"], \"684\": [\"0.9866666666666667\", \"0.984375\", \"1.0\", \"0.9885057471264368\"], \"685\": [\"0.9534883720930233\", \"0.9634146341463414\", \"0.9893617021276596\", \"0.9533333333333334\"], \"686\": [\"0.9907407407407407\", \"0.9908256880733946\", \"0.9787234042553191\", \"0.8837209302325582\"], \"687\": [\"0.9157894736842105\", \"0.8918918918918919\", \"0.851063829787234\", \"0.9636363636363636\"], \"688\": [\"0.9416666666666667\", \"0.9574468085106383\", \"0.9719626168224299\", \"0.972027972027972\"], \"689\": [\"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"690\": [\"0.6642635505380603\", \"0.6526643990929705\", \"0.7112926529932314\", \"0.8291058679328652\"], \"691\": [\"0.7272727272727273\", \"0.7083333333333334\", \"0.7111111111111111\", \"0.8666666666666667\"], \"692\": [\"1.0\", \"0.9333333333333333\", \"0.8888888888888888\", \"0.9534883720930233\"], \"693\": [\"0.9012345679012346\", \"0.8428571428571429\", \"0.8043478260869565\", \"0.9285714285714286\"], \"694\": [\"0.4444444444444444\", \"0.7142857142857143\", \"0.75\", \"0.88\"], \"695\": [\"0.6666666666666666\", \"0.7777777777777778\", \"0.8\", \"1.0\"], \"696\": [\"0.6\", \"0.42857142857142855\", \"0.7142857142857143\", \"0.5263157894736842\"], \"697\": [\"0.6666666666666666\", \"0.8\", \"0.5555555555555556\", \"0.8666666666666667\"], \"698\": [\"0.9166666666666666\", \"0.725\", \"0.8409090909090909\", \"0.8362068965517241\"], \"699\": [\"0.75\", \"0.75\", \"1.0\", \"0.875\"], \"700\": [\"0.6\", \"0.5714285714285714\", \"0.9090909090909091\", \"0.72\"], \"701\": [\"0.9090909090909091\", \"0.8571428571428571\", \"0.6666666666666666\", \"0.7297297297297297\"], \"702\": [\"0.5294117647058824\", \"0.42857142857142855\", \"0.5172413793103449\", \"0.6470588235294118\"], \"703\": [\"0.5882352941176471\", \"0.6\", \"0.8\", \"0.7777777777777778\"], \"704\": [\"0.0\", \"0.0\", \"0.0\", \"1.0\"], \"705\": [\"0.462035012368655\", \"0.4535518716910922\", \"0.4708278174364068\", \"0.33260458878166077\"], \"706\": [\"0.4\", \"0.45588235294117646\", \"0.461038961038961\", \"0.19243986254295534\"], \"707\": [\"0.24242424242424243\", \"0.2482758620689655\", \"0.26519337016574585\", \"0.14860681114551083\"], \"708\": [\"0.21428571428571427\", \"0.15555555555555556\", \"0.17757009345794392\", \"0.1125\"], \"709\": [\"0.4176470588235294\", \"0.3424657534246575\", \"0.39572192513368987\", \"0.36070381231671556\"], \"710\": [\"0.4508670520231214\", \"0.4105960264900662\", \"0.4587628865979381\", \"0.2916666666666667\"], \"711\": [\"0.4367816091954023\", \"0.47058823529411764\", \"0.484375\", \"0.2910662824207493\"], \"712\": [\"0.5317919075144508\", \"0.49032258064516127\", \"0.49473684210526314\", \"0.5327635327635327\"], \"713\": [\"0.5314685314685315\", \"0.5666666666666667\", \"0.5935483870967742\", \"0.344\"], \"714\": [\"0.4228571428571429\", \"0.40384615384615385\", \"0.441025641025641\", \"0.24022346368715083\"], \"715\": [\"0.48520710059171596\", \"0.5163398692810458\", \"0.4946808510638298\", \"0.41935483870967744\"], \"716\": [\"0.6369047619047619\", \"0.7058823529411765\", \"0.7263157894736842\", \"0.5205479452054794\"], \"717\": [\"0.5370370370370371\", \"0.4520547945205479\", \"0.47058823529411764\", \"0.45558739255014324\"], \"718\": [\"0.6975308641975309\", \"0.6\", \"0.5652173913043478\", \"0.3994252873563218\"], \"719\": [\"0.46368715083798884\", \"0.53125\", \"0.5628140703517588\", \"0.3475783475783476\"]}"); + var thresholds_all = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\", \"19\": \"0.7\", \"20\": \"0.7\", \"21\": \"0.7\", \"22\": \"0.7\", \"23\": \"0.7\", \"24\": \"0.7\", \"25\": \"0.7\", \"26\": \"0.7\", \"27\": \"0.7\", \"28\": \"0.7\", \"29\": \"0.7\", \"30\": \"0.7\", \"31\": \"0.7\", \"32\": \"0.7\", \"33\": \"0.7\", \"34\": \"0.7\", \"35\": \"0.7\", \"36\": \"0.7\", \"37\": \"0.7\", \"38\": \"0.7\", \"39\": \"0.7\", \"40\": \"0.7\", \"41\": \"0.7\", \"42\": \"0.7\", \"43\": \"0.7\", \"44\": \"0.7\", \"45\": \"0.7\", \"46\": \"0.7\", \"47\": \"0.7\", \"48\": \"0.7\", \"49\": \"0.7\", \"50\": \"0.7\", \"51\": \"0.7\", \"52\": \"0.7\", \"53\": \"0.7\", \"54\": \"0.7\", \"55\": \"0.7\", \"56\": \"0.7\", \"57\": \"0.7\", \"58\": \"0.7\", \"59\": \"0.7\", \"60\": \"0.7\", \"61\": \"0.7\", \"62\": \"0.7\", \"63\": \"0.7\", \"64\": \"0.7\", \"65\": \"0.7\", \"66\": \"0.7\", \"67\": \"0.7\", \"68\": \"0.7\", \"69\": \"0.7\", \"70\": \"0.7\", \"71\": \"0.7\", \"72\": \"0.7\", \"73\": \"0.7\", \"74\": \"0.7\", \"75\": \"0.7\", \"76\": \"0.7\", \"77\": \"0.7\", \"78\": \"0.7\", \"79\": \"0.7\", \"80\": \"0.7\", \"81\": \"0.7\", \"82\": \"0.7\", \"83\": \"0.7\", \"84\": \"0.7\", \"85\": \"0.7\", \"86\": \"0.7\", \"87\": \"0.7\", \"88\": \"0.7\", \"89\": \"0.7\", \"90\": \"0.7\", \"91\": \"0.7\", \"92\": \"0.7\", \"93\": \"0.7\", \"94\": \"0.7\", \"95\": \"0.7\", \"96\": \"0.7\", \"97\": \"0.7\", \"98\": \"0.7\", \"99\": \"0.7\", \"100\": \"0.7\", \"101\": \"0.7\", \"102\": \"0.7\", \"103\": \"0.7\", \"104\": \"0.7\", \"105\": \"0.7\", \"106\": \"0.7\", \"107\": \"0.7\", \"108\": \"0.7\", \"109\": \"0.7\", \"110\": \"0.7\", \"111\": \"0.7\", \"112\": \"0.7\", \"113\": \"0.7\", \"114\": \"0.7\", \"115\": \"0.7\", \"116\": \"0.7\", \"117\": \"0.7\", \"118\": \"0.7\", \"119\": \"0.7\", \"120\": \"0.7\", \"121\": \"0.7\", \"122\": \"0.7\", \"123\": \"0.7\", \"124\": \"0.7\", \"125\": \"0.7\", \"126\": \"0.7\", \"127\": \"0.7\", \"128\": \"0.7\", \"129\": \"0.7\", \"130\": \"0.7\", \"131\": \"0.7\", \"132\": \"0.7\", \"133\": \"0.7\", \"134\": \"0.7\", \"135\": \"0.7\", \"136\": \"0.7\", \"137\": \"0.7\", \"138\": \"0.7\", \"139\": \"0.7\", \"140\": \"0.7\", \"141\": \"0.7\", \"142\": \"0.7\", \"143\": \"0.7\", \"144\": \"0.7\", \"145\": \"0.7\", \"146\": \"0.7\", \"147\": \"0.7\", \"148\": \"0.7\", \"149\": \"0.7\", \"150\": \"0.7\", \"151\": \"0.7\", \"152\": \"0.7\", \"153\": \"0.7\", \"154\": \"0.7\", \"155\": \"0.7\", \"156\": \"0.7\", \"157\": \"0.7\", \"158\": \"0.7\", \"159\": \"0.7\", \"160\": \"0.7\", \"161\": \"0.7\", \"162\": \"0.7\", \"163\": \"0.7\", \"164\": \"0.7\", \"165\": \"0.7\", \"166\": \"0.7\", \"167\": \"0.7\", \"168\": \"0.7\", \"169\": \"0.7\", \"170\": \"0.7\", \"171\": \"0.7\", \"172\": \"0.7\", \"173\": \"0.7\", \"174\": \"0.7\", \"175\": \"0.7\", \"176\": \"0.7\", \"177\": \"0.7\", \"178\": \"0.7\", \"179\": \"0.7\", \"180\": \"0.7\", \"181\": \"0.7\", \"182\": \"0.7\", \"183\": \"0.7\", \"184\": \"0.7\", \"185\": \"0.7\", \"186\": \"0.7\", \"187\": \"0.7\", \"188\": \"0.7\", \"189\": \"0.7\", \"190\": \"0.7\", \"191\": \"0.7\", \"192\": \"0.7\", \"193\": \"0.7\", \"194\": \"0.7\", \"195\": \"0.7\", \"196\": \"0.7\", \"197\": \"0.7\", \"198\": \"0.7\", \"199\": \"0.7\", \"200\": \"0.7\", \"201\": \"0.7\", \"202\": \"0.7\", \"203\": \"0.7\", \"204\": \"0.7\", \"205\": \"0.7\", \"206\": \"0.7\", \"207\": \"0.7\", \"208\": \"0.7\", \"209\": \"0.7\", \"210\": \"0.7\", \"211\": \"0.7\", \"212\": \"0.7\", \"213\": \"0.7\", \"214\": \"0.7\", \"215\": \"0.7\", \"216\": \"0.7\", \"217\": \"0.7\", \"218\": \"0.7\", \"219\": \"0.7\", \"220\": \"0.7\", \"221\": \"0.7\", \"222\": \"0.7\", \"223\": \"0.7\", \"224\": \"0.7\", \"225\": \"0.7\", \"226\": \"0.7\", \"227\": \"0.7\", \"228\": \"0.7\", \"229\": \"0.7\", \"230\": \"0.7\", \"231\": \"0.7\", \"232\": \"0.7\", \"233\": \"0.7\", \"234\": \"0.7\", \"235\": \"0.7\", \"236\": \"0.7\", \"237\": \"0.7\", \"238\": \"0.7\", \"239\": \"0.7\", \"240\": \"0.7\", \"241\": \"0.7\", \"242\": \"0.7\", \"243\": \"0.7\", \"244\": \"0.7\", \"245\": \"0.7\", \"246\": \"0.7\", \"247\": \"0.7\", \"248\": \"0.7\", \"249\": \"0.7\", \"250\": \"0.7\", \"251\": \"0.7\", \"252\": \"0.7\", \"253\": \"0.7\", \"254\": \"0.7\", \"255\": \"0.7\", \"256\": \"0.7\", \"257\": \"0.7\", \"258\": \"0.7\", \"259\": \"0.7\", \"260\": \"0.7\", \"261\": \"0.7\", \"262\": \"0.7\", \"263\": \"0.7\", \"264\": \"0.7\", \"265\": \"0.7\", \"266\": \"0.7\", \"267\": \"0.7\", \"268\": \"0.7\", \"269\": \"0.7\", \"270\": \"0.7\", \"271\": \"0.7\", \"272\": \"0.7\", \"273\": \"0.7\", \"274\": \"0.7\", \"275\": \"0.7\", \"276\": \"0.7\", \"277\": \"0.7\", \"278\": \"0.7\", \"279\": \"0.7\", \"280\": \"0.7\", \"281\": \"0.7\", \"282\": \"0.7\", \"283\": \"0.7\", \"284\": \"0.7\", \"285\": \"0.7\", \"286\": \"0.7\", \"287\": \"0.7\", \"288\": \"0.7\", \"289\": \"0.7\", \"290\": \"0.7\", \"291\": \"0.7\", \"292\": \"0.7\", \"293\": \"0.7\", \"294\": \"0.7\", \"295\": \"0.7\", \"296\": \"0.7\", \"297\": \"0.7\", \"298\": \"0.7\", \"299\": \"0.7\", \"300\": \"0.7\", \"301\": \"0.7\", \"302\": \"0.7\", \"303\": \"0.7\", \"304\": \"0.7\", \"305\": \"0.7\", \"306\": \"0.7\", \"307\": \"0.7\", \"308\": \"0.7\", \"309\": \"0.7\", \"310\": \"0.7\", \"311\": \"0.7\", \"312\": \"0.7\", \"313\": \"0.7\", \"314\": \"0.7\", \"315\": \"0.7\", \"316\": \"0.7\", \"317\": \"0.7\", \"318\": \"0.7\", \"319\": \"0.7\", \"320\": \"0.7\", \"321\": \"0.7\", \"322\": \"0.7\", \"323\": \"0.7\", \"324\": \"0.7\", \"325\": \"0.7\", \"326\": \"0.7\", \"327\": \"0.7\", \"328\": \"0.7\", \"329\": \"0.7\", \"330\": \"0.7\", \"331\": \"0.7\", \"332\": \"0.7\", \"333\": \"0.7\", \"334\": \"0.7\", \"335\": \"0.7\", \"336\": \"0.7\", \"337\": \"0.7\", \"338\": \"0.7\", \"339\": \"0.7\", \"340\": \"0.7\", \"341\": \"0.7\", \"342\": \"0.7\", \"343\": \"0.7\", \"344\": \"0.7\", \"345\": \"0.7\", \"346\": \"0.7\", \"347\": \"0.7\", \"348\": \"0.7\", \"349\": \"0.7\", \"350\": \"0.7\", \"351\": \"0.7\", \"352\": \"0.7\", \"353\": \"0.7\", \"354\": \"0.7\", \"355\": \"0.7\", \"356\": \"0.7\", \"357\": \"0.7\", \"358\": \"0.7\", \"359\": \"0.7\", \"360\": \"0.7\", \"361\": \"0.7\", \"362\": \"0.7\", \"363\": \"0.7\", \"364\": \"0.7\", \"365\": \"0.7\", \"366\": \"0.7\", \"367\": \"0.7\", \"368\": \"0.7\", \"369\": \"0.7\", \"370\": \"0.7\", \"371\": \"0.7\", \"372\": \"0.7\", \"373\": \"0.7\", \"374\": \"0.7\", \"375\": \"0.7\", \"376\": \"0.7\", \"377\": \"0.7\", \"378\": \"0.7\", \"379\": \"0.7\", \"380\": \"0.7\", \"381\": \"0.7\", \"382\": \"0.7\", \"383\": \"0.7\", \"384\": \"0.7\", \"385\": \"0.7\", \"386\": \"0.7\", \"387\": \"0.7\", \"388\": \"0.7\", \"389\": \"0.7\", \"390\": \"0.7\", \"391\": \"0.7\", \"392\": \"0.7\", \"393\": \"0.7\", \"394\": \"0.7\", \"395\": \"0.7\", \"396\": \"0.7\", \"397\": \"0.7\", \"398\": \"0.7\", \"399\": \"0.7\", \"400\": \"0.7\", \"401\": \"0.7\", \"402\": \"0.7\", \"403\": \"0.7\", \"404\": \"0.7\", \"405\": \"0.7\", \"406\": \"0.7\", \"407\": \"0.7\", \"408\": \"0.7\", \"409\": \"0.7\", \"410\": \"0.7\", \"411\": \"0.7\", \"412\": \"0.7\", \"413\": \"0.7\", \"414\": \"0.7\", \"415\": \"0.7\", \"416\": \"0.7\", \"417\": \"0.7\", \"418\": \"0.7\", \"419\": \"0.7\", \"420\": \"0.7\", \"421\": \"0.7\", \"422\": \"0.7\", \"423\": \"0.7\", \"424\": \"0.7\", \"425\": \"0.7\", \"426\": \"0.7\", \"427\": \"0.7\", \"428\": \"0.7\", \"429\": \"0.7\", \"430\": \"0.7\", \"431\": \"0.7\", \"432\": \"0.7\", \"433\": \"0.7\", \"434\": \"0.7\", \"435\": \"0.7\", \"436\": \"0.7\", \"437\": \"0.7\", \"438\": \"0.7\", \"439\": \"0.7\", \"440\": \"0.7\", \"441\": \"0.7\", \"442\": \"0.7\", \"443\": \"0.7\", \"444\": \"0.7\", \"445\": \"0.7\", \"446\": \"0.7\", \"447\": \"0.7\", \"448\": \"0.7\", \"449\": \"0.7\", \"450\": \"0.7\", \"451\": \"0.7\", \"452\": \"0.7\", \"453\": \"0.7\", \"454\": \"0.7\", \"455\": \"0.7\", \"456\": \"0.7\", \"457\": \"0.7\", \"458\": \"0.7\", \"459\": \"0.7\", \"460\": \"0.7\", \"461\": \"0.7\", \"462\": \"0.7\", \"463\": \"0.7\", \"464\": \"0.7\", \"465\": \"0.7\", \"466\": \"0.7\", \"467\": \"0.7\", \"468\": \"0.7\", \"469\": \"0.7\", \"470\": \"0.7\", \"471\": \"0.7\", \"472\": \"0.7\", \"473\": \"0.7\", \"474\": \"0.7\", \"475\": \"0.7\", \"476\": \"0.7\", \"477\": \"0.7\", \"478\": \"0.7\", \"479\": \"0.7\", \"480\": \"0.7\", \"481\": \"0.7\", \"482\": \"0.7\", \"483\": \"0.7\", \"484\": \"0.7\", \"485\": \"0.7\", \"486\": \"0.7\", \"487\": \"0.7\", \"488\": \"0.7\", \"489\": \"0.7\", \"490\": \"0.7\", \"491\": \"0.7\", \"492\": \"0.7\", \"493\": \"0.7\", \"494\": \"0.7\", \"495\": \"0.7\", \"496\": \"0.7\", \"497\": \"0.7\", \"498\": \"0.7\", \"499\": \"0.7\", \"500\": \"0.7\", \"501\": \"0.7\", \"502\": \"0.7\", \"503\": \"0.7\", \"504\": \"0.7\", \"505\": \"0.7\", \"506\": \"0.7\", \"507\": \"0.7\", \"508\": \"0.7\", \"509\": \"0.7\", \"510\": \"0.7\", \"511\": \"0.7\", \"512\": \"0.7\", \"513\": \"0.7\", \"514\": \"0.7\", \"515\": \"0.7\", \"516\": \"0.7\", \"517\": \"0.7\", \"518\": \"0.7\", \"519\": \"0.7\", \"520\": \"0.7\", \"521\": \"0.7\", \"522\": \"0.7\", \"523\": \"0.7\", \"524\": \"0.7\", \"525\": \"0.7\", \"526\": \"0.7\", \"527\": \"0.7\", \"528\": \"0.7\", \"529\": \"0.7\", \"530\": \"0.7\", \"531\": \"0.7\", \"532\": \"0.7\", \"533\": \"0.7\", \"534\": \"0.7\", \"535\": \"0.7\", \"536\": \"0.7\", \"537\": \"0.7\", \"538\": \"0.7\", \"539\": \"0.7\", \"540\": \"0.7\", \"541\": \"0.7\", \"542\": \"0.7\", \"543\": \"0.7\", \"544\": \"0.7\", \"545\": \"0.7\", \"546\": \"0.7\", \"547\": \"0.7\", \"548\": \"0.7\", \"549\": \"0.7\", \"550\": \"0.7\", \"551\": \"0.7\", \"552\": \"0.7\", \"553\": \"0.7\", \"554\": \"0.7\", \"555\": \"0.7\", \"556\": \"0.7\", \"557\": \"0.7\", \"558\": \"0.7\", \"559\": \"0.7\", \"560\": \"0.7\", \"561\": \"0.7\", \"562\": \"0.7\", \"563\": \"0.7\", \"564\": \"0.7\", \"565\": \"0.7\", \"566\": \"0.7\", \"567\": \"0.7\", \"568\": \"0.7\", \"569\": \"0.7\", \"570\": \"0.7\", \"571\": \"0.7\", \"572\": \"0.7\", \"573\": \"0.7\", \"574\": \"0.7\", \"575\": \"0.7\", \"576\": \"0.7\", \"577\": \"0.7\", \"578\": \"0.7\", \"579\": \"0.7\", \"580\": \"0.7\", \"581\": \"0.7\", \"582\": \"0.7\", \"583\": \"0.7\", \"584\": \"0.7\", \"585\": \"0.7\", \"586\": \"0.7\", \"587\": \"0.7\", \"588\": \"0.7\", \"589\": \"0.7\", \"590\": \"0.7\", \"591\": \"0.7\", \"592\": \"0.7\", \"593\": \"0.7\", \"594\": \"0.7\", \"595\": \"0.7\", \"596\": \"0.7\", \"597\": \"0.7\", \"598\": \"0.7\", \"599\": \"0.7\", \"600\": \"0.7\", \"601\": \"0.7\", \"602\": \"0.7\", \"603\": \"0.7\", \"604\": \"0.7\", \"605\": \"0.7\", \"606\": \"0.7\", \"607\": \"0.7\", \"608\": \"0.7\", \"609\": \"0.7\", \"610\": \"0.7\", \"611\": \"0.7\", \"612\": \"0.7\", \"613\": \"0.7\", \"614\": \"0.7\", \"615\": \"0.7\", \"616\": \"0.7\", \"617\": \"0.7\", \"618\": \"0.7\", \"619\": \"0.7\", \"620\": \"0.7\", \"621\": \"0.7\", \"622\": \"0.7\", \"623\": \"0.7\", \"624\": \"0.7\", \"625\": \"0.7\", \"626\": \"0.7\", \"627\": \"0.7\", \"628\": \"0.7\", \"629\": \"0.7\", \"630\": \"0.7\", \"631\": \"0.7\", \"632\": \"0.7\", \"633\": \"0.7\", \"634\": \"0.7\", \"635\": \"0.7\", \"636\": \"0.7\", \"637\": \"0.7\", \"638\": \"0.7\", \"639\": \"0.7\", \"640\": \"0.7\", \"641\": \"0.7\", \"642\": \"0.7\", \"643\": \"0.7\", \"644\": \"0.7\", \"645\": \"0.7\", \"646\": \"0.7\", \"647\": \"0.7\", \"648\": \"0.7\", \"649\": \"0.7\", \"650\": \"0.7\", \"651\": \"0.7\", \"652\": \"0.7\", \"653\": \"0.7\", \"654\": \"0.7\", \"655\": \"0.7\", \"656\": \"0.7\", \"657\": \"0.7\", \"658\": \"0.7\", \"659\": \"0.7\", \"660\": \"0.7\", \"661\": \"0.7\", \"662\": \"0.7\", \"663\": \"0.7\", \"664\": \"0.7\", \"665\": \"0.7\", \"666\": \"0.7\", \"667\": \"0.7\", \"668\": \"0.7\", \"669\": \"0.7\", \"670\": \"0.7\", \"671\": \"0.7\", \"672\": \"0.7\", \"673\": \"0.7\", \"674\": \"0.7\", \"675\": \"0.7\", \"676\": \"0.7\", \"677\": \"0.7\", \"678\": \"0.7\", \"679\": \"0.7\", \"680\": \"0.7\", \"681\": \"0.7\", \"682\": \"0.7\", \"683\": \"0.7\", \"684\": \"0.7\", \"685\": \"0.7\", \"686\": \"0.7\", \"687\": \"0.7\", \"688\": \"0.7\", \"689\": \"0.7\", \"690\": \"0.7\", \"691\": \"0.7\", \"692\": \"0.7\", \"693\": \"0.7\", \"694\": \"0.7\", \"695\": \"0.7\", \"696\": \"0.7\", \"697\": \"0.7\", \"698\": \"0.7\", \"699\": \"0.7\", \"700\": \"0.7\", \"701\": \"0.7\", \"702\": \"0.7\", \"703\": \"0.7\", \"704\": \"0.7\", \"705\": \"0.7\", \"706\": \"0.7\", \"707\": \"0.7\", \"708\": \"0.7\", \"709\": \"0.7\", \"710\": \"0.7\", \"711\": \"0.7\", \"712\": \"0.7\", \"713\": \"0.7\", \"714\": \"0.7\", \"715\": \"0.7\", \"716\": \"0.7\", \"717\": \"0.7\", \"718\": \"0.7\", \"719\": \"0.7\"}"); + var trends_all = JSON.parse("{\"0\": \"neutral\", \"1\": \"negative\", \"2\": \"negative\", \"3\": \"neutral\", \"4\": \"positive\", \"5\": \"negative\", \"6\": \"neutral\", \"7\": \"positive\", \"8\": \"negative\", \"9\": \"positive\", \"10\": \"positive\", \"11\": \"negative\", \"12\": \"positive\", \"13\": \"negative\", \"14\": \"neutral\", \"15\": \"negative\", \"16\": \"neutral\", \"17\": \"negative\", \"18\": \"negative\", \"19\": \"negative\", \"20\": \"neutral\", \"21\": \"negative\", \"22\": \"neutral\", \"23\": \"neutral\", \"24\": \"negative\", \"25\": \"positive\", \"26\": \"neutral\", \"27\": \"neutral\", \"28\": \"neutral\", \"29\": \"neutral\", \"30\": \"positive\", \"31\": \"neutral\", \"32\": \"negative\", \"33\": \"negative\", \"34\": \"positive\", \"35\": \"negative\", \"36\": \"negative\", \"37\": \"positive\", \"38\": \"negative\", \"39\": \"positive\", \"40\": \"positive\", \"41\": \"positive\", \"42\": \"positive\", \"43\": \"negative\", \"44\": \"positive\", \"45\": \"negative\", \"46\": \"negative\", \"47\": \"negative\", \"48\": \"neutral\", \"49\": \"negative\", \"50\": \"neutral\", \"51\": \"negative\", \"52\": \"negative\", \"53\": \"negative\", \"54\": \"negative\", \"55\": \"negative\", \"56\": \"positive\", \"57\": \"neutral\", \"58\": \"negative\", \"59\": \"negative\", \"60\": \"neutral\", \"61\": \"neutral\", \"62\": \"neutral\", \"63\": \"neutral\", \"64\": \"positive\", \"65\": \"positive\", \"66\": \"positive\", \"67\": \"neutral\", \"68\": \"negative\", \"69\": \"neutral\", \"70\": \"neutral\", \"71\": \"positive\", \"72\": \"negative\", \"73\": \"negative\", \"74\": \"neutral\", \"75\": \"neutral\", \"76\": \"neutral\", \"77\": \"negative\", \"78\": \"neutral\", \"79\": \"neutral\", \"80\": \"neutral\", \"81\": \"neutral\", \"82\": \"neutral\", \"83\": \"neutral\", \"84\": \"neutral\", \"85\": \"negative\", \"86\": \"negative\", \"87\": \"positive\", \"88\": \"neutral\", \"89\": \"neutral\", \"90\": \"positive\", \"91\": \"positive\", \"92\": \"negative\", \"93\": \"positive\", \"94\": \"positive\", \"95\": \"neutral\", \"96\": \"positive\", \"97\": \"negative\", \"98\": \"positive\", \"99\": \"positive\", \"100\": \"neutral\", \"101\": \"negative\", \"102\": \"positive\", \"103\": \"negative\", \"104\": \"positive\", \"105\": \"negative\", \"106\": \"negative\", \"107\": \"negative\", \"108\": \"negative\", \"109\": \"negative\", \"110\": \"negative\", \"111\": \"negative\", \"112\": \"neutral\", \"113\": \"negative\", \"114\": \"negative\", \"115\": \"negative\", \"116\": \"negative\", \"117\": \"negative\", \"118\": \"negative\", \"119\": \"neutral\", \"120\": \"neutral\", \"121\": \"negative\", \"122\": \"positive\", \"123\": \"negative\", \"124\": \"positive\", \"125\": \"negative\", \"126\": \"neutral\", \"127\": \"positive\", \"128\": \"positive\", \"129\": \"neutral\", \"130\": \"negative\", \"131\": \"positive\", \"132\": \"neutral\", \"133\": \"neutral\", \"134\": \"positive\", \"135\": \"neutral\", \"136\": \"positive\", \"137\": \"neutral\", \"138\": \"positive\", \"139\": \"negative\", \"140\": \"neutral\", \"141\": \"neutral\", \"142\": \"neutral\", \"143\": \"negative\", \"144\": \"neutral\", \"145\": \"negative\", \"146\": \"negative\", \"147\": \"positive\", \"148\": \"positive\", \"149\": \"neutral\", \"150\": \"neutral\", \"151\": \"positive\", \"152\": \"neutral\", \"153\": \"negative\", \"154\": \"negative\", \"155\": \"negative\", \"156\": \"negative\", \"157\": \"negative\", \"158\": \"positive\", \"159\": \"neutral\", \"160\": \"negative\", \"161\": \"negative\", \"162\": \"positive\", \"163\": \"positive\", \"164\": \"positive\", \"165\": \"neutral\", \"166\": \"negative\", \"167\": \"positive\", \"168\": \"positive\", \"169\": \"positive\", \"170\": \"negative\", \"171\": \"negative\", \"172\": \"positive\", \"173\": \"negative\", \"174\": \"negative\", \"175\": \"negative\", \"176\": \"positive\", \"177\": \"positive\", \"178\": \"negative\", \"179\": \"positive\", \"180\": \"neutral\", \"181\": \"negative\", \"182\": \"negative\", \"183\": \"positive\", \"184\": \"positive\", \"185\": \"negative\", \"186\": \"positive\", \"187\": \"positive\", \"188\": \"negative\", \"189\": \"positive\", \"190\": \"positive\", \"191\": \"negative\", \"192\": \"positive\", \"193\": \"negative\", \"194\": \"positive\", \"195\": \"negative\", \"196\": \"neutral\", \"197\": \"negative\", \"198\": \"positive\", \"199\": \"negative\", \"200\": \"neutral\", \"201\": \"neutral\", \"202\": \"neutral\", \"203\": \"neutral\", \"204\": \"neutral\", \"205\": \"neutral\", \"206\": \"neutral\", \"207\": \"positive\", \"208\": \"negative\", \"209\": \"neutral\", \"210\": \"positive\", \"211\": \"positive\", \"212\": \"negative\", \"213\": \"neutral\", \"214\": \"positive\", \"215\": \"negative\", \"216\": \"positive\", \"217\": \"positive\", \"218\": \"negative\", \"219\": \"positive\", \"220\": \"negative\", \"221\": \"neutral\", \"222\": \"positive\", \"223\": \"positive\", \"224\": \"positive\", \"225\": \"negative\", \"226\": \"negative\", \"227\": \"negative\", \"228\": \"positive\", \"229\": \"negative\", \"230\": \"neutral\", \"231\": \"negative\", \"232\": \"negative\", \"233\": \"positive\", \"234\": \"negative\", \"235\": \"negative\", \"236\": \"neutral\", \"237\": \"positive\", \"238\": \"negative\", \"239\": \"negative\", \"240\": \"neutral\", \"241\": \"negative\", \"242\": \"negative\", \"243\": \"negative\", \"244\": \"positive\", \"245\": \"positive\", \"246\": \"negative\", \"247\": \"neutral\", \"248\": \"negative\", \"249\": \"neutral\", \"250\": \"positive\", \"251\": \"positive\", \"252\": \"positive\", \"253\": \"neutral\", \"254\": \"neutral\", \"255\": \"negative\", \"256\": \"negative\", \"257\": \"neutral\", \"258\": \"negative\", \"259\": \"neutral\", \"260\": \"neutral\", \"261\": \"negative\", \"262\": \"positive\", \"263\": \"negative\", \"264\": \"neutral\", \"265\": \"positive\", \"266\": \"positive\", \"267\": \"neutral\", \"268\": \"negative\", \"269\": \"neutral\", \"270\": \"neutral\", \"271\": \"negative\", \"272\": \"negative\", \"273\": \"negative\", \"274\": \"positive\", \"275\": \"positive\", \"276\": \"negative\", \"277\": \"neutral\", \"278\": \"negative\", \"279\": \"neutral\", \"280\": \"positive\", \"281\": \"positive\", \"282\": \"positive\", \"283\": \"positive\", \"284\": \"neutral\", \"285\": \"negative\", \"286\": \"negative\", \"287\": \"negative\", \"288\": \"neutral\", \"289\": \"positive\", \"290\": \"positive\", \"291\": \"positive\", \"292\": \"negative\", \"293\": \"negative\", \"294\": \"negative\", \"295\": \"negative\", \"296\": \"positive\", \"297\": \"negative\", \"298\": \"negative\", \"299\": \"negative\", \"300\": \"neutral\", \"301\": \"negative\", \"302\": \"neutral\", \"303\": \"negative\", \"304\": \"positive\", \"305\": \"neutral\", \"306\": \"positive\", \"307\": \"neutral\", \"308\": \"negative\", \"309\": \"neutral\", \"310\": \"neutral\", \"311\": \"positive\", \"312\": \"negative\", \"313\": \"negative\", \"314\": \"neutral\", \"315\": \"neutral\", \"316\": \"negative\", \"317\": \"negative\", \"318\": \"positive\", \"319\": \"neutral\", \"320\": \"neutral\", \"321\": \"negative\", \"322\": \"neutral\", \"323\": \"positive\", \"324\": \"neutral\", \"325\": \"negative\", \"326\": \"negative\", \"327\": \"positive\", \"328\": \"negative\", \"329\": \"neutral\", \"330\": \"neutral\", \"331\": \"negative\", \"332\": \"negative\", \"333\": \"negative\", \"334\": \"positive\", \"335\": \"negative\", \"336\": \"positive\", \"337\": \"neutral\", \"338\": \"positive\", \"339\": \"neutral\", \"340\": \"negative\", \"341\": \"positive\", \"342\": \"positive\", \"343\": \"negative\", \"344\": \"positive\", \"345\": \"negative\", \"346\": \"negative\", \"347\": \"negative\", \"348\": \"positive\", \"349\": \"negative\", \"350\": \"negative\", \"351\": \"negative\", \"352\": \"negative\", \"353\": \"negative\", \"354\": \"negative\", \"355\": \"negative\", \"356\": \"neutral\", \"357\": \"negative\", \"358\": \"negative\", \"359\": \"positive\", \"360\": \"neutral\", \"361\": \"neutral\", \"362\": \"neutral\", \"363\": \"neutral\", \"364\": \"neutral\", \"365\": \"positive\", \"366\": \"neutral\", \"367\": \"neutral\", \"368\": \"neutral\", \"369\": \"neutral\", \"370\": \"positive\", \"371\": \"positive\", \"372\": \"negative\", \"373\": \"negative\", \"374\": \"neutral\", \"375\": \"neutral\", \"376\": \"positive\", \"377\": \"negative\", \"378\": \"negative\", \"379\": \"neutral\", \"380\": \"neutral\", \"381\": \"neutral\", \"382\": \"neutral\", \"383\": \"negative\", \"384\": \"neutral\", \"385\": \"neutral\", \"386\": \"negative\", \"387\": \"positive\", \"388\": \"neutral\", \"389\": \"neutral\", \"390\": \"positive\", \"391\": \"positive\", \"392\": \"negative\", \"393\": \"positive\", \"394\": \"positive\", \"395\": \"positive\", \"396\": \"positive\", \"397\": \"negative\", \"398\": \"negative\", \"399\": \"positive\", \"400\": \"positive\", \"401\": \"negative\", \"402\": \"neutral\", \"403\": \"positive\", \"404\": \"positive\", \"405\": \"negative\", \"406\": \"negative\", \"407\": \"negative\", \"408\": \"negative\", \"409\": \"neutral\", \"410\": \"negative\", \"411\": \"negative\", \"412\": \"positive\", \"413\": \"negative\", \"414\": \"negative\", \"415\": \"neutral\", \"416\": \"negative\", \"417\": \"negative\", \"418\": \"negative\", \"419\": \"negative\", \"420\": \"neutral\", \"421\": \"negative\", \"422\": \"neutral\", \"423\": \"negative\", \"424\": \"positive\", \"425\": \"negative\", \"426\": \"neutral\", \"427\": \"positive\", \"428\": \"negative\", \"429\": \"neutral\", \"430\": \"negative\", \"431\": \"positive\", \"432\": \"negative\", \"433\": \"positive\", \"434\": \"neutral\", \"435\": \"neutral\", \"436\": \"neutral\", \"437\": \"neutral\", \"438\": \"neutral\", \"439\": \"negative\", \"440\": \"neutral\", \"441\": \"negative\", \"442\": \"negative\", \"443\": \"positive\", \"444\": \"neutral\", \"445\": \"positive\", \"446\": \"positive\", \"447\": \"positive\", \"448\": \"neutral\", \"449\": \"neutral\", \"450\": \"negative\", \"451\": \"positive\", \"452\": \"neutral\", \"453\": \"negative\", \"454\": \"negative\", \"455\": \"negative\", \"456\": \"negative\", \"457\": \"negative\", \"458\": \"positive\", \"459\": \"negative\", \"460\": \"negative\", \"461\": \"positive\", \"462\": \"positive\", \"463\": \"neutral\", \"464\": \"neutral\", \"465\": \"negative\", \"466\": \"negative\", \"467\": \"neutral\", \"468\": \"neutral\", \"469\": \"negative\", \"470\": \"positive\", \"471\": \"negative\", \"472\": \"negative\", \"473\": \"negative\", \"474\": \"negative\", \"475\": \"negative\", \"476\": \"positive\", \"477\": \"negative\", \"478\": \"negative\", \"479\": \"negative\", \"480\": \"positive\", \"481\": \"negative\", \"482\": \"positive\", \"483\": \"negative\", \"484\": \"positive\", \"485\": \"neutral\", \"486\": \"neutral\", \"487\": \"positive\", \"488\": \"positive\", \"489\": \"neutral\", \"490\": \"negative\", \"491\": \"positive\", \"492\": \"positive\", \"493\": \"negative\", \"494\": \"positive\", \"495\": \"neutral\", \"496\": \"positive\", \"497\": \"neutral\", \"498\": \"negative\", \"499\": \"negative\", \"500\": \"neutral\", \"501\": \"neutral\", \"502\": \"neutral\", \"503\": \"negative\", \"504\": \"neutral\", \"505\": \"negative\", \"506\": \"negative\", \"507\": \"neutral\", \"508\": \"positive\", \"509\": \"neutral\", \"510\": \"positive\", \"511\": \"positive\", \"512\": \"positive\", \"513\": \"negative\", \"514\": \"positive\", \"515\": \"neutral\", \"516\": \"positive\", \"517\": \"positive\", \"518\": \"negative\", \"519\": \"positive\", \"520\": \"negative\", \"521\": \"negative\", \"522\": \"positive\", \"523\": \"neutral\", \"524\": \"positive\", \"525\": \"neutral\", \"526\": \"negative\", \"527\": \"positive\", \"528\": \"positive\", \"529\": \"neutral\", \"530\": \"negative\", \"531\": \"negative\", \"532\": \"positive\", \"533\": \"neutral\", \"534\": \"negative\", \"535\": \"negative\", \"536\": \"positive\", \"537\": \"positive\", \"538\": \"negative\", \"539\": \"positive\", \"540\": \"neutral\", \"541\": \"negative\", \"542\": \"neutral\", \"543\": \"negative\", \"544\": \"positive\", \"545\": \"neutral\", \"546\": \"neutral\", \"547\": \"neutral\", \"548\": \"negative\", \"549\": \"neutral\", \"550\": \"neutral\", \"551\": \"positive\", \"552\": \"negative\", \"553\": \"negative\", \"554\": \"positive\", \"555\": \"neutral\", \"556\": \"neutral\", \"557\": \"negative\", \"558\": \"neutral\", \"559\": \"neutral\", \"560\": \"neutral\", \"561\": \"negative\", \"562\": \"neutral\", \"563\": \"neutral\", \"564\": \"neutral\", \"565\": \"neutral\", \"566\": \"negative\", \"567\": \"positive\", \"568\": \"neutral\", \"569\": \"neutral\", \"570\": \"positive\", \"571\": \"positive\", \"572\": \"negative\", \"573\": \"neutral\", \"574\": \"positive\", \"575\": \"positive\", \"576\": \"neutral\", \"577\": \"positive\", \"578\": \"neutral\", \"579\": \"positive\", \"580\": \"positive\", \"581\": \"negative\", \"582\": \"positive\", \"583\": \"negative\", \"584\": \"positive\", \"585\": \"negative\", \"586\": \"negative\", \"587\": \"negative\", \"588\": \"negative\", \"589\": \"negative\", \"590\": \"negative\", \"591\": \"negative\", \"592\": \"neutral\", \"593\": \"negative\", \"594\": \"negative\", \"595\": \"negative\", \"596\": \"negative\", \"597\": \"neutral\", \"598\": \"negative\", \"599\": \"negative\", \"600\": \"neutral\", \"601\": \"negative\", \"602\": \"negative\", \"603\": \"neutral\", \"604\": \"positive\", \"605\": \"neutral\", \"606\": \"positive\", \"607\": \"neutral\", \"608\": \"negative\", \"609\": \"neutral\", \"610\": \"neutral\", \"611\": \"positive\", \"612\": \"negative\", \"613\": \"negative\", \"614\": \"neutral\", \"615\": \"neutral\", \"616\": \"neutral\", \"617\": \"negative\", \"618\": \"neutral\", \"619\": \"negative\", \"620\": \"neutral\", \"621\": \"negative\", \"622\": \"neutral\", \"623\": \"positive\", \"624\": \"neutral\", \"625\": \"negative\", \"626\": \"neutral\", \"627\": \"positive\", \"628\": \"negative\", \"629\": \"neutral\", \"630\": \"positive\", \"631\": \"neutral\", \"632\": \"negative\", \"633\": \"neutral\", \"634\": \"positive\", \"635\": \"neutral\", \"636\": \"positive\", \"637\": \"positive\", \"638\": \"positive\", \"639\": \"positive\", \"640\": \"negative\", \"641\": \"positive\", \"642\": \"positive\", \"643\": \"negative\", \"644\": \"positive\", \"645\": \"negative\", \"646\": \"negative\", \"647\": \"negative\", \"648\": \"neutral\", \"649\": \"negative\", \"650\": \"negative\", \"651\": \"negative\", \"652\": \"negative\", \"653\": \"negative\", \"654\": \"negative\", \"655\": \"negative\", \"656\": \"positive\", \"657\": \"neutral\", \"658\": \"negative\", \"659\": \"neutral\", \"660\": \"neutral\", \"661\": \"negative\", \"662\": \"neutral\", \"663\": \"negative\", \"664\": \"positive\", \"665\": \"positive\", \"666\": \"neutral\", \"667\": \"neutral\", \"668\": \"positive\", \"669\": \"neutral\", \"670\": \"positive\", \"671\": \"positive\", \"672\": \"neutral\", \"673\": \"negative\", \"674\": \"positive\", \"675\": \"neutral\", \"676\": \"neutral\", \"677\": \"negative\", \"678\": \"neutral\", \"679\": \"positive\", \"680\": \"neutral\", \"681\": \"negative\", \"682\": \"neutral\", \"683\": \"negative\", \"684\": \"neutral\", \"685\": \"neutral\", \"686\": \"negative\", \"687\": \"positive\", \"688\": \"positive\", \"689\": \"neutral\", \"690\": \"positive\", \"691\": \"positive\", \"692\": \"negative\", \"693\": \"neutral\", \"694\": \"positive\", \"695\": \"positive\", \"696\": \"neutral\", \"697\": \"positive\", \"698\": \"negative\", \"699\": \"positive\", \"700\": \"positive\", \"701\": \"negative\", \"702\": \"positive\", \"703\": \"positive\", \"704\": \"positive\", \"705\": \"negative\", \"706\": \"negative\", \"707\": \"negative\", \"708\": \"negative\", \"709\": \"negative\", \"710\": \"negative\", \"711\": \"negative\", \"712\": \"neutral\", \"713\": \"negative\", \"714\": \"negative\", \"715\": \"negative\", \"716\": \"negative\", \"717\": \"negative\", \"718\": \"negative\", \"719\": \"negative\"}"); + var passed_all = JSON.parse("{\"0\": false, \"1\": false, \"2\": false, \"3\": false, \"4\": false, \"5\": false, \"6\": false, \"7\": false, \"8\": false, \"9\": false, \"10\": false, \"11\": false, \"12\": false, \"13\": false, \"14\": false, \"15\": true, \"16\": true, \"17\": true, \"18\": false, \"19\": true, \"20\": true, \"21\": true, \"22\": true, \"23\": true, \"24\": true, \"25\": true, \"26\": true, \"27\": true, \"28\": true, \"29\": true, \"30\": true, \"31\": true, \"32\": true, \"33\": true, \"34\": true, \"35\": true, \"36\": false, \"37\": true, \"38\": true, \"39\": true, \"40\": true, \"41\": true, \"42\": false, \"43\": true, \"44\": false, \"45\": false, \"46\": false, \"47\": false, \"48\": false, \"49\": false, \"50\": false, \"51\": false, \"52\": false, \"53\": false, \"54\": false, \"55\": false, \"56\": true, \"57\": false, \"58\": false, \"59\": false, \"60\": false, \"61\": false, \"62\": false, \"63\": false, \"64\": false, \"65\": false, \"66\": false, \"67\": false, \"68\": false, \"69\": false, \"70\": false, \"71\": false, \"72\": false, \"73\": false, \"74\": false, \"75\": true, \"76\": true, \"77\": true, \"78\": true, \"79\": true, \"80\": true, \"81\": true, \"82\": true, \"83\": true, \"84\": true, \"85\": true, \"86\": true, \"87\": true, \"88\": true, \"89\": true, \"90\": true, \"91\": true, \"92\": true, \"93\": true, \"94\": true, \"95\": true, \"96\": true, \"97\": true, \"98\": true, \"99\": true, \"100\": false, \"101\": true, \"102\": false, \"103\": false, \"104\": true, \"105\": false, \"106\": false, \"107\": false, \"108\": false, \"109\": false, \"110\": false, \"111\": false, \"112\": false, \"113\": false, \"114\": false, \"115\": false, \"116\": false, \"117\": false, \"118\": false, \"119\": false, \"120\": false, \"121\": false, \"122\": false, \"123\": false, \"124\": false, \"125\": false, \"126\": false, \"127\": false, \"128\": false, \"129\": false, \"130\": false, \"131\": false, \"132\": false, \"133\": false, \"134\": false, \"135\": true, \"136\": true, \"137\": true, \"138\": true, \"139\": true, \"140\": true, \"141\": true, \"142\": true, \"143\": true, \"144\": true, \"145\": true, \"146\": true, \"147\": true, \"148\": true, \"149\": true, \"150\": true, \"151\": true, \"152\": true, \"153\": true, \"154\": true, \"155\": false, \"156\": true, \"157\": true, \"158\": true, \"159\": true, \"160\": false, \"161\": false, \"162\": true, \"163\": true, \"164\": true, \"165\": false, \"166\": false, \"167\": false, \"168\": false, \"169\": false, \"170\": false, \"171\": false, \"172\": false, \"173\": false, \"174\": false, \"175\": false, \"176\": false, \"177\": false, \"178\": false, \"179\": false, \"180\": false, \"181\": false, \"182\": false, \"183\": false, \"184\": false, \"185\": false, \"186\": false, \"187\": false, \"188\": false, \"189\": false, \"190\": false, \"191\": false, \"192\": false, \"193\": false, \"194\": false, \"195\": true, \"196\": true, \"197\": false, \"198\": false, \"199\": false, \"200\": true, \"201\": true, \"202\": true, \"203\": true, \"204\": true, \"205\": true, \"206\": true, \"207\": true, \"208\": true, \"209\": true, \"210\": true, \"211\": true, \"212\": true, \"213\": true, \"214\": true, \"215\": true, \"216\": false, \"217\": true, \"218\": true, \"219\": true, \"220\": true, \"221\": true, \"222\": false, \"223\": true, \"224\": false, \"225\": false, \"226\": false, \"227\": false, \"228\": false, \"229\": false, \"230\": false, \"231\": false, \"232\": false, \"233\": false, \"234\": false, \"235\": false, \"236\": true, \"237\": false, \"238\": false, \"239\": false, \"240\": false, \"241\": false, \"242\": false, \"243\": false, \"244\": false, \"245\": false, \"246\": false, \"247\": false, \"248\": false, \"249\": false, \"250\": false, \"251\": false, \"252\": false, \"253\": false, \"254\": false, \"255\": true, \"256\": false, \"257\": true, \"258\": true, \"259\": true, \"260\": true, \"261\": false, \"262\": true, \"263\": true, \"264\": true, \"265\": true, \"266\": true, \"267\": true, \"268\": true, \"269\": true, \"270\": false, \"271\": false, \"272\": false, \"273\": false, \"274\": true, \"275\": true, \"276\": false, \"277\": false, \"278\": false, \"279\": false, \"280\": true, \"281\": true, \"282\": true, \"283\": false, \"284\": false, \"285\": false, \"286\": false, \"287\": false, \"288\": false, \"289\": false, \"290\": false, \"291\": false, \"292\": false, \"293\": false, \"294\": false, \"295\": false, \"296\": true, \"297\": false, \"298\": false, \"299\": false, \"300\": false, \"301\": false, \"302\": false, \"303\": false, \"304\": false, \"305\": false, \"306\": false, \"307\": false, \"308\": false, \"309\": false, \"310\": false, \"311\": false, \"312\": false, \"313\": false, \"314\": false, \"315\": true, \"316\": true, \"317\": true, \"318\": true, \"319\": true, \"320\": true, \"321\": true, \"322\": true, \"323\": true, \"324\": true, \"325\": true, \"326\": true, \"327\": true, \"328\": true, \"329\": true, \"330\": true, \"331\": true, \"332\": true, \"333\": true, \"334\": true, \"335\": true, \"336\": true, \"337\": true, \"338\": true, \"339\": false, \"340\": false, \"341\": true, \"342\": true, \"343\": false, \"344\": false, \"345\": false, \"346\": false, \"347\": false, \"348\": false, \"349\": false, \"350\": false, \"351\": false, \"352\": false, \"353\": false, \"354\": false, \"355\": false, \"356\": true, \"357\": false, \"358\": false, \"359\": false, \"360\": false, \"361\": false, \"362\": false, \"363\": false, \"364\": false, \"365\": false, \"366\": false, \"367\": false, \"368\": false, \"369\": false, \"370\": false, \"371\": false, \"372\": false, \"373\": false, \"374\": false, \"375\": true, \"376\": true, \"377\": true, \"378\": false, \"379\": true, \"380\": true, \"381\": true, \"382\": true, \"383\": true, \"384\": true, \"385\": true, \"386\": true, \"387\": true, \"388\": true, \"389\": true, \"390\": true, \"391\": true, \"392\": true, \"393\": true, \"394\": true, \"395\": true, \"396\": true, \"397\": true, \"398\": true, \"399\": true, \"400\": true, \"401\": true, \"402\": false, \"403\": true, \"404\": true, \"405\": false, \"406\": false, \"407\": false, \"408\": false, \"409\": false, \"410\": false, \"411\": false, \"412\": false, \"413\": false, \"414\": false, \"415\": false, \"416\": false, \"417\": false, \"418\": false, \"419\": false, \"420\": false, \"421\": false, \"422\": false, \"423\": false, \"424\": false, \"425\": false, \"426\": false, \"427\": false, \"428\": false, \"429\": false, \"430\": false, \"431\": false, \"432\": false, \"433\": false, \"434\": false, \"435\": false, \"436\": false, \"437\": true, \"438\": true, \"439\": true, \"440\": true, \"441\": true, \"442\": true, \"443\": true, \"444\": true, \"445\": true, \"446\": true, \"447\": true, \"448\": true, \"449\": true, \"450\": false, \"451\": true, \"452\": true, \"453\": true, \"454\": true, \"455\": false, \"456\": true, \"457\": true, \"458\": true, \"459\": false, \"460\": false, \"461\": true, \"462\": true, \"463\": true, \"464\": false, \"465\": false, \"466\": false, \"467\": false, \"468\": false, \"469\": false, \"470\": false, \"471\": false, \"472\": false, \"473\": false, \"474\": false, \"475\": false, \"476\": true, \"477\": false, \"478\": false, \"479\": false, \"480\": false, \"481\": false, \"482\": false, \"483\": false, \"484\": false, \"485\": false, \"486\": false, \"487\": false, \"488\": false, \"489\": false, \"490\": false, \"491\": false, \"492\": false, \"493\": false, \"494\": false, \"495\": true, \"496\": true, \"497\": true, \"498\": true, \"499\": true, \"500\": true, \"501\": true, \"502\": true, \"503\": true, \"504\": true, \"505\": true, \"506\": true, \"507\": true, \"508\": true, \"509\": true, \"510\": true, \"511\": true, \"512\": true, \"513\": true, \"514\": true, \"515\": false, \"516\": true, \"517\": true, \"518\": true, \"519\": true, \"520\": false, \"521\": false, \"522\": true, \"523\": false, \"524\": true, \"525\": false, \"526\": false, \"527\": false, \"528\": false, \"529\": false, \"530\": false, \"531\": false, \"532\": false, \"533\": false, \"534\": false, \"535\": false, \"536\": false, \"537\": false, \"538\": false, \"539\": false, \"540\": false, \"541\": false, \"542\": false, \"543\": false, \"544\": false, \"545\": false, \"546\": false, \"547\": false, \"548\": false, \"549\": false, \"550\": false, \"551\": false, \"552\": false, \"553\": false, \"554\": false, \"555\": true, \"556\": true, \"557\": true, \"558\": true, \"559\": true, \"560\": true, \"561\": true, \"562\": true, \"563\": true, \"564\": true, \"565\": true, \"566\": true, \"567\": true, \"568\": true, \"569\": true, \"570\": true, \"571\": true, \"572\": true, \"573\": true, \"574\": true, \"575\": true, \"576\": true, \"577\": true, \"578\": true, \"579\": true, \"580\": true, \"581\": true, \"582\": false, \"583\": true, \"584\": true, \"585\": false, \"586\": false, \"587\": false, \"588\": false, \"589\": false, \"590\": false, \"591\": false, \"592\": false, \"593\": false, \"594\": false, \"595\": false, \"596\": false, \"597\": false, \"598\": false, \"599\": false, \"600\": false, \"601\": false, \"602\": false, \"603\": false, \"604\": false, \"605\": false, \"606\": false, \"607\": false, \"608\": false, \"609\": false, \"610\": false, \"611\": false, \"612\": false, \"613\": false, \"614\": false, \"615\": true, \"616\": true, \"617\": true, \"618\": true, \"619\": true, \"620\": true, \"621\": true, \"622\": true, \"623\": true, \"624\": true, \"625\": true, \"626\": true, \"627\": true, \"628\": true, \"629\": true, \"630\": true, \"631\": true, \"632\": true, \"633\": true, \"634\": true, \"635\": true, \"636\": true, \"637\": true, \"638\": true, \"639\": false, \"640\": false, \"641\": true, \"642\": false, \"643\": true, \"644\": false, \"645\": false, \"646\": false, \"647\": false, \"648\": false, \"649\": false, \"650\": false, \"651\": false, \"652\": false, \"653\": false, \"654\": false, \"655\": false, \"656\": true, \"657\": false, \"658\": false, \"659\": false, \"660\": false, \"661\": false, \"662\": false, \"663\": false, \"664\": false, \"665\": false, \"666\": false, \"667\": false, \"668\": false, \"669\": false, \"670\": false, \"671\": false, \"672\": false, \"673\": false, \"674\": false, \"675\": true, \"676\": true, \"677\": true, \"678\": true, \"679\": true, \"680\": true, \"681\": true, \"682\": true, \"683\": true, \"684\": true, \"685\": true, \"686\": true, \"687\": true, \"688\": true, \"689\": true, \"690\": true, \"691\": true, \"692\": true, \"693\": true, \"694\": true, \"695\": true, \"696\": false, \"697\": true, \"698\": true, \"699\": true, \"700\": true, \"701\": true, \"702\": false, \"703\": true, \"704\": true, \"705\": false, \"706\": false, \"707\": false, \"708\": false, \"709\": false, \"710\": false, \"711\": false, \"712\": false, \"713\": false, \"714\": false, \"715\": false, \"716\": false, \"717\": false, \"718\": false, \"719\": false}"); + var names_all = JSON.parse("{\"0\": \"Positive Predictive Value (PPV)\", \"1\": \"Positive Predictive Value (PPV)\", \"2\": \"Positive Predictive Value (PPV)\", \"3\": \"Positive Predictive Value (PPV)\", \"4\": \"Positive Predictive Value (PPV)\", \"5\": \"Positive Predictive Value (PPV)\", \"6\": \"Positive Predictive Value (PPV)\", \"7\": \"Positive Predictive Value (PPV)\", \"8\": \"Positive Predictive Value (PPV)\", \"9\": \"Positive Predictive Value (PPV)\", \"10\": \"Positive Predictive Value (PPV)\", \"11\": \"Positive Predictive Value (PPV)\", \"12\": \"Positive Predictive Value (PPV)\", \"13\": \"Positive Predictive Value (PPV)\", \"14\": \"Positive Predictive Value (PPV)\", \"15\": \"Negative Predictive Value (NPV)\", \"16\": \"Negative Predictive Value (NPV)\", \"17\": \"Negative Predictive Value (NPV)\", \"18\": \"Negative Predictive Value (NPV)\", \"19\": \"Negative Predictive Value (NPV)\", \"20\": \"Negative Predictive Value (NPV)\", \"21\": \"Negative Predictive Value (NPV)\", \"22\": \"Negative Predictive Value (NPV)\", \"23\": \"Negative Predictive Value (NPV)\", \"24\": \"Negative Predictive Value (NPV)\", \"25\": \"Negative Predictive Value (NPV)\", \"26\": \"Negative Predictive Value (NPV)\", \"27\": \"Negative Predictive Value (NPV)\", \"28\": \"Negative Predictive Value (NPV)\", \"29\": \"Negative Predictive Value (NPV)\", \"30\": \"Sensitivity\", \"31\": \"Sensitivity\", \"32\": \"Sensitivity\", \"33\": \"Sensitivity\", \"34\": \"Sensitivity\", \"35\": \"Sensitivity\", \"36\": \"Sensitivity\", \"37\": \"Sensitivity\", \"38\": \"Sensitivity\", \"39\": \"Sensitivity\", \"40\": \"Sensitivity\", \"41\": \"Sensitivity\", \"42\": \"Sensitivity\", \"43\": \"Sensitivity\", \"44\": \"Sensitivity\", \"45\": \"Specificity\", \"46\": \"Specificity\", \"47\": \"Specificity\", \"48\": \"Specificity\", \"49\": \"Specificity\", \"50\": \"Specificity\", \"51\": \"Specificity\", \"52\": \"Specificity\", \"53\": \"Specificity\", \"54\": \"Specificity\", \"55\": \"Specificity\", \"56\": \"Specificity\", \"57\": \"Specificity\", \"58\": \"Specificity\", \"59\": \"Specificity\", \"60\": \"Positive Predictive Value (PPV)\", \"61\": \"Positive Predictive Value (PPV)\", \"62\": \"Positive Predictive Value (PPV)\", \"63\": \"Positive Predictive Value (PPV)\", \"64\": \"Positive Predictive Value (PPV)\", \"65\": \"Positive Predictive Value (PPV)\", \"66\": \"Positive Predictive Value (PPV)\", \"67\": \"Positive Predictive Value (PPV)\", \"68\": \"Positive Predictive Value (PPV)\", \"69\": \"Positive Predictive Value (PPV)\", \"70\": \"Positive Predictive Value (PPV)\", \"71\": \"Positive Predictive Value (PPV)\", \"72\": \"Positive Predictive Value (PPV)\", \"73\": \"Positive Predictive Value (PPV)\", \"74\": \"Positive Predictive Value (PPV)\", \"75\": \"Negative Predictive Value (NPV)\", \"76\": \"Negative Predictive Value (NPV)\", \"77\": \"Negative Predictive Value (NPV)\", \"78\": \"Negative Predictive Value (NPV)\", \"79\": \"Negative Predictive Value (NPV)\", \"80\": \"Negative Predictive Value (NPV)\", \"81\": \"Negative Predictive Value (NPV)\", \"82\": \"Negative Predictive Value (NPV)\", \"83\": \"Negative Predictive Value (NPV)\", \"84\": \"Negative Predictive Value (NPV)\", \"85\": \"Negative Predictive Value (NPV)\", \"86\": \"Negative Predictive Value (NPV)\", \"87\": \"Negative Predictive Value (NPV)\", \"88\": \"Negative Predictive Value (NPV)\", \"89\": \"Negative Predictive Value (NPV)\", \"90\": \"Sensitivity\", \"91\": \"Sensitivity\", \"92\": \"Sensitivity\", \"93\": \"Sensitivity\", \"94\": \"Sensitivity\", \"95\": \"Sensitivity\", \"96\": \"Sensitivity\", \"97\": \"Sensitivity\", \"98\": \"Sensitivity\", \"99\": \"Sensitivity\", \"100\": \"Sensitivity\", \"101\": \"Sensitivity\", \"102\": \"Sensitivity\", \"103\": \"Sensitivity\", \"104\": \"Sensitivity\", \"105\": \"Specificity\", \"106\": \"Specificity\", \"107\": \"Specificity\", \"108\": \"Specificity\", \"109\": \"Specificity\", \"110\": \"Specificity\", \"111\": \"Specificity\", \"112\": \"Specificity\", \"113\": \"Specificity\", \"114\": \"Specificity\", \"115\": \"Specificity\", \"116\": \"Specificity\", \"117\": \"Specificity\", \"118\": \"Specificity\", \"119\": \"Specificity\", \"120\": \"Positive Predictive Value (PPV)\", \"121\": \"Positive Predictive Value (PPV)\", \"122\": \"Positive Predictive Value (PPV)\", \"123\": \"Positive Predictive Value (PPV)\", \"124\": \"Positive Predictive Value (PPV)\", \"125\": \"Positive Predictive Value (PPV)\", \"126\": \"Positive Predictive Value (PPV)\", \"127\": \"Positive Predictive Value (PPV)\", \"128\": \"Positive Predictive Value (PPV)\", \"129\": \"Positive Predictive Value (PPV)\", \"130\": \"Positive Predictive Value (PPV)\", \"131\": \"Positive Predictive Value (PPV)\", \"132\": \"Positive Predictive Value (PPV)\", \"133\": \"Positive Predictive Value (PPV)\", \"134\": \"Positive Predictive Value (PPV)\", \"135\": \"Negative Predictive Value (NPV)\", \"136\": \"Negative Predictive Value (NPV)\", \"137\": \"Negative Predictive Value (NPV)\", \"138\": \"Negative Predictive Value (NPV)\", \"139\": \"Negative Predictive Value (NPV)\", \"140\": \"Negative Predictive Value (NPV)\", \"141\": \"Negative Predictive Value (NPV)\", \"142\": \"Negative Predictive Value (NPV)\", \"143\": \"Negative Predictive Value (NPV)\", \"144\": \"Negative Predictive Value (NPV)\", \"145\": \"Negative Predictive Value (NPV)\", \"146\": \"Negative Predictive Value (NPV)\", \"147\": \"Negative Predictive Value (NPV)\", \"148\": \"Negative Predictive Value (NPV)\", \"149\": \"Negative Predictive Value (NPV)\", \"150\": \"Sensitivity\", \"151\": \"Sensitivity\", \"152\": \"Sensitivity\", \"153\": \"Sensitivity\", \"154\": \"Sensitivity\", \"155\": \"Sensitivity\", \"156\": \"Sensitivity\", \"157\": \"Sensitivity\", \"158\": \"Sensitivity\", \"159\": \"Sensitivity\", \"160\": \"Sensitivity\", \"161\": \"Sensitivity\", \"162\": \"Sensitivity\", \"163\": \"Sensitivity\", \"164\": \"Sensitivity\", \"165\": \"Specificity\", \"166\": \"Specificity\", \"167\": \"Specificity\", \"168\": \"Specificity\", \"169\": \"Specificity\", \"170\": \"Specificity\", \"171\": \"Specificity\", \"172\": \"Specificity\", \"173\": \"Specificity\", \"174\": \"Specificity\", \"175\": \"Specificity\", \"176\": \"Specificity\", \"177\": \"Specificity\", \"178\": \"Specificity\", \"179\": \"Specificity\", \"180\": \"Positive Predictive Value (PPV)\", \"181\": \"Positive Predictive Value (PPV)\", \"182\": \"Positive Predictive Value (PPV)\", \"183\": \"Positive Predictive Value (PPV)\", \"184\": \"Positive Predictive Value (PPV)\", \"185\": \"Positive Predictive Value (PPV)\", \"186\": \"Positive Predictive Value (PPV)\", \"187\": \"Positive Predictive Value (PPV)\", \"188\": \"Positive Predictive Value (PPV)\", \"189\": \"Positive Predictive Value (PPV)\", \"190\": \"Positive Predictive Value (PPV)\", \"191\": \"Positive Predictive Value (PPV)\", \"192\": \"Positive Predictive Value (PPV)\", \"193\": \"Positive Predictive Value (PPV)\", \"194\": \"Positive Predictive Value (PPV)\", \"195\": \"Negative Predictive Value (NPV)\", \"196\": \"Negative Predictive Value (NPV)\", \"197\": \"Negative Predictive Value (NPV)\", \"198\": \"Negative Predictive Value (NPV)\", \"199\": \"Negative Predictive Value (NPV)\", \"200\": \"Negative Predictive Value (NPV)\", \"201\": \"Negative Predictive Value (NPV)\", \"202\": \"Negative Predictive Value (NPV)\", \"203\": \"Negative Predictive Value (NPV)\", \"204\": \"Negative Predictive Value (NPV)\", \"205\": \"Negative Predictive Value (NPV)\", \"206\": \"Negative Predictive Value (NPV)\", \"207\": \"Negative Predictive Value (NPV)\", \"208\": \"Negative Predictive Value (NPV)\", \"209\": \"Negative Predictive Value (NPV)\", \"210\": \"Sensitivity\", \"211\": \"Sensitivity\", \"212\": \"Sensitivity\", \"213\": \"Sensitivity\", \"214\": \"Sensitivity\", \"215\": \"Sensitivity\", \"216\": \"Sensitivity\", \"217\": \"Sensitivity\", \"218\": \"Sensitivity\", \"219\": \"Sensitivity\", \"220\": \"Sensitivity\", \"221\": \"Sensitivity\", \"222\": \"Sensitivity\", \"223\": \"Sensitivity\", \"224\": \"Sensitivity\", \"225\": \"Specificity\", \"226\": \"Specificity\", \"227\": \"Specificity\", \"228\": \"Specificity\", \"229\": \"Specificity\", \"230\": \"Specificity\", \"231\": \"Specificity\", \"232\": \"Specificity\", \"233\": \"Specificity\", \"234\": \"Specificity\", \"235\": \"Specificity\", \"236\": \"Specificity\", \"237\": \"Specificity\", \"238\": \"Specificity\", \"239\": \"Specificity\", \"240\": \"Positive Predictive Value (PPV)\", \"241\": \"Positive Predictive Value (PPV)\", \"242\": \"Positive Predictive Value (PPV)\", \"243\": \"Positive Predictive Value (PPV)\", \"244\": \"Positive Predictive Value (PPV)\", \"245\": \"Positive Predictive Value (PPV)\", \"246\": \"Positive Predictive Value (PPV)\", \"247\": \"Positive Predictive Value (PPV)\", \"248\": \"Positive Predictive Value (PPV)\", \"249\": \"Positive Predictive Value (PPV)\", \"250\": \"Positive Predictive Value (PPV)\", \"251\": \"Positive Predictive Value (PPV)\", \"252\": \"Positive Predictive Value (PPV)\", \"253\": \"Positive Predictive Value (PPV)\", \"254\": \"Positive Predictive Value (PPV)\", \"255\": \"Negative Predictive Value (NPV)\", \"256\": \"Negative Predictive Value (NPV)\", \"257\": \"Negative Predictive Value (NPV)\", \"258\": \"Negative Predictive Value (NPV)\", \"259\": \"Negative Predictive Value (NPV)\", \"260\": \"Negative Predictive Value (NPV)\", \"261\": \"Negative Predictive Value (NPV)\", \"262\": \"Negative Predictive Value (NPV)\", \"263\": \"Negative Predictive Value (NPV)\", \"264\": \"Negative Predictive Value (NPV)\", \"265\": \"Negative Predictive Value (NPV)\", \"266\": \"Negative Predictive Value (NPV)\", \"267\": \"Negative Predictive Value (NPV)\", \"268\": \"Negative Predictive Value (NPV)\", \"269\": \"Negative Predictive Value (NPV)\", \"270\": \"Sensitivity\", \"271\": \"Sensitivity\", \"272\": \"Sensitivity\", \"273\": \"Sensitivity\", \"274\": \"Sensitivity\", \"275\": \"Sensitivity\", \"276\": \"Sensitivity\", \"277\": \"Sensitivity\", \"278\": \"Sensitivity\", \"279\": \"Sensitivity\", \"280\": \"Sensitivity\", \"281\": \"Sensitivity\", \"282\": \"Sensitivity\", \"283\": \"Sensitivity\", \"284\": \"Sensitivity\", \"285\": \"Specificity\", \"286\": \"Specificity\", \"287\": \"Specificity\", \"288\": \"Specificity\", \"289\": \"Specificity\", \"290\": \"Specificity\", \"291\": \"Specificity\", \"292\": \"Specificity\", \"293\": \"Specificity\", \"294\": \"Specificity\", \"295\": \"Specificity\", \"296\": \"Specificity\", \"297\": \"Specificity\", \"298\": \"Specificity\", \"299\": \"Specificity\", \"300\": \"Positive Predictive Value (PPV)\", \"301\": \"Positive Predictive Value (PPV)\", \"302\": \"Positive Predictive Value (PPV)\", \"303\": \"Positive Predictive Value (PPV)\", \"304\": \"Positive Predictive Value (PPV)\", \"305\": \"Positive Predictive Value (PPV)\", \"306\": \"Positive Predictive Value (PPV)\", \"307\": \"Positive Predictive Value (PPV)\", \"308\": \"Positive Predictive Value (PPV)\", \"309\": \"Positive Predictive Value (PPV)\", \"310\": \"Positive Predictive Value (PPV)\", \"311\": \"Positive Predictive Value (PPV)\", \"312\": \"Positive Predictive Value (PPV)\", \"313\": \"Positive Predictive Value (PPV)\", \"314\": \"Positive Predictive Value (PPV)\", \"315\": \"Negative Predictive Value (NPV)\", \"316\": \"Negative Predictive Value (NPV)\", \"317\": \"Negative Predictive Value (NPV)\", \"318\": \"Negative Predictive Value (NPV)\", \"319\": \"Negative Predictive Value (NPV)\", \"320\": \"Negative Predictive Value (NPV)\", \"321\": \"Negative Predictive Value (NPV)\", \"322\": \"Negative Predictive Value (NPV)\", \"323\": \"Negative Predictive Value (NPV)\", \"324\": \"Negative Predictive Value (NPV)\", \"325\": \"Negative Predictive Value (NPV)\", \"326\": \"Negative Predictive Value (NPV)\", \"327\": \"Negative Predictive Value (NPV)\", \"328\": \"Negative Predictive Value (NPV)\", \"329\": \"Negative Predictive Value (NPV)\", \"330\": \"Sensitivity\", \"331\": \"Sensitivity\", \"332\": \"Sensitivity\", \"333\": \"Sensitivity\", \"334\": \"Sensitivity\", \"335\": \"Sensitivity\", \"336\": \"Sensitivity\", \"337\": \"Sensitivity\", \"338\": \"Sensitivity\", \"339\": \"Sensitivity\", \"340\": \"Sensitivity\", \"341\": \"Sensitivity\", \"342\": \"Sensitivity\", \"343\": \"Sensitivity\", \"344\": \"Sensitivity\", \"345\": \"Specificity\", \"346\": \"Specificity\", \"347\": \"Specificity\", \"348\": \"Specificity\", \"349\": \"Specificity\", \"350\": \"Specificity\", \"351\": \"Specificity\", \"352\": \"Specificity\", \"353\": \"Specificity\", \"354\": \"Specificity\", \"355\": \"Specificity\", \"356\": \"Specificity\", \"357\": \"Specificity\", \"358\": \"Specificity\", \"359\": \"Specificity\", \"360\": \"Positive Predictive Value (PPV)\", \"361\": \"Positive Predictive Value (PPV)\", \"362\": \"Positive Predictive Value (PPV)\", \"363\": \"Positive Predictive Value (PPV)\", \"364\": \"Positive Predictive Value (PPV)\", \"365\": \"Positive Predictive Value (PPV)\", \"366\": \"Positive Predictive Value (PPV)\", \"367\": \"Positive Predictive Value (PPV)\", \"368\": \"Positive Predictive Value (PPV)\", \"369\": \"Positive Predictive Value (PPV)\", \"370\": \"Positive Predictive Value (PPV)\", \"371\": \"Positive Predictive Value (PPV)\", \"372\": \"Positive Predictive Value (PPV)\", \"373\": \"Positive Predictive Value (PPV)\", \"374\": \"Positive Predictive Value (PPV)\", \"375\": \"Negative Predictive Value (NPV)\", \"376\": \"Negative Predictive Value (NPV)\", \"377\": \"Negative Predictive Value (NPV)\", \"378\": \"Negative Predictive Value (NPV)\", \"379\": \"Negative Predictive Value (NPV)\", \"380\": \"Negative Predictive Value (NPV)\", \"381\": \"Negative Predictive Value (NPV)\", \"382\": \"Negative Predictive Value (NPV)\", \"383\": \"Negative Predictive Value (NPV)\", \"384\": \"Negative Predictive Value (NPV)\", \"385\": \"Negative Predictive Value (NPV)\", \"386\": \"Negative Predictive Value (NPV)\", \"387\": \"Negative Predictive Value (NPV)\", \"388\": \"Negative Predictive Value (NPV)\", \"389\": \"Negative Predictive Value (NPV)\", \"390\": \"Sensitivity\", \"391\": \"Sensitivity\", \"392\": \"Sensitivity\", \"393\": \"Sensitivity\", \"394\": \"Sensitivity\", \"395\": \"Sensitivity\", \"396\": \"Sensitivity\", \"397\": \"Sensitivity\", \"398\": \"Sensitivity\", \"399\": \"Sensitivity\", \"400\": \"Sensitivity\", \"401\": \"Sensitivity\", \"402\": \"Sensitivity\", \"403\": \"Sensitivity\", \"404\": \"Sensitivity\", \"405\": \"Specificity\", \"406\": \"Specificity\", \"407\": \"Specificity\", \"408\": \"Specificity\", \"409\": \"Specificity\", \"410\": \"Specificity\", \"411\": \"Specificity\", \"412\": \"Specificity\", \"413\": \"Specificity\", \"414\": \"Specificity\", \"415\": \"Specificity\", \"416\": \"Specificity\", \"417\": \"Specificity\", \"418\": \"Specificity\", \"419\": \"Specificity\", \"420\": \"Positive Predictive Value (PPV)\", \"421\": \"Positive Predictive Value (PPV)\", \"422\": \"Positive Predictive Value (PPV)\", \"423\": \"Positive Predictive Value (PPV)\", \"424\": \"Positive Predictive Value (PPV)\", \"425\": \"Positive Predictive Value (PPV)\", \"426\": \"Positive Predictive Value (PPV)\", \"427\": \"Positive Predictive Value (PPV)\", \"428\": \"Positive Predictive Value (PPV)\", \"429\": \"Positive Predictive Value (PPV)\", \"430\": \"Positive Predictive Value (PPV)\", \"431\": \"Positive Predictive Value (PPV)\", \"432\": \"Positive Predictive Value (PPV)\", \"433\": \"Positive Predictive Value (PPV)\", \"434\": \"Positive Predictive Value (PPV)\", \"435\": \"Negative Predictive Value (NPV)\", \"436\": \"Negative Predictive Value (NPV)\", \"437\": \"Negative Predictive Value (NPV)\", \"438\": \"Negative Predictive Value (NPV)\", \"439\": \"Negative Predictive Value (NPV)\", \"440\": \"Negative Predictive Value (NPV)\", \"441\": \"Negative Predictive Value (NPV)\", \"442\": \"Negative Predictive Value (NPV)\", \"443\": \"Negative Predictive Value (NPV)\", \"444\": \"Negative Predictive Value (NPV)\", \"445\": \"Negative Predictive Value (NPV)\", \"446\": \"Negative Predictive Value (NPV)\", \"447\": \"Negative Predictive Value (NPV)\", \"448\": \"Negative Predictive Value (NPV)\", \"449\": \"Negative Predictive Value (NPV)\", \"450\": \"Sensitivity\", \"451\": \"Sensitivity\", \"452\": \"Sensitivity\", \"453\": \"Sensitivity\", \"454\": \"Sensitivity\", \"455\": \"Sensitivity\", \"456\": \"Sensitivity\", \"457\": \"Sensitivity\", \"458\": \"Sensitivity\", \"459\": \"Sensitivity\", \"460\": \"Sensitivity\", \"461\": \"Sensitivity\", \"462\": \"Sensitivity\", \"463\": \"Sensitivity\", \"464\": \"Sensitivity\", \"465\": \"Specificity\", \"466\": \"Specificity\", \"467\": \"Specificity\", \"468\": \"Specificity\", \"469\": \"Specificity\", \"470\": \"Specificity\", \"471\": \"Specificity\", \"472\": \"Specificity\", \"473\": \"Specificity\", \"474\": \"Specificity\", \"475\": \"Specificity\", \"476\": \"Specificity\", \"477\": \"Specificity\", \"478\": \"Specificity\", \"479\": \"Specificity\", \"480\": \"Positive Predictive Value (PPV)\", \"481\": \"Positive Predictive Value (PPV)\", \"482\": \"Positive Predictive Value (PPV)\", \"483\": \"Positive Predictive Value (PPV)\", \"484\": \"Positive Predictive Value (PPV)\", \"485\": \"Positive Predictive Value (PPV)\", \"486\": \"Positive Predictive Value (PPV)\", \"487\": \"Positive Predictive Value (PPV)\", \"488\": \"Positive Predictive Value (PPV)\", \"489\": \"Positive Predictive Value (PPV)\", \"490\": \"Positive Predictive Value (PPV)\", \"491\": \"Positive Predictive Value (PPV)\", \"492\": \"Positive Predictive Value (PPV)\", \"493\": \"Positive Predictive Value (PPV)\", \"494\": \"Positive Predictive Value (PPV)\", \"495\": \"Negative Predictive Value (NPV)\", \"496\": \"Negative Predictive Value (NPV)\", \"497\": \"Negative Predictive Value (NPV)\", \"498\": \"Negative Predictive Value (NPV)\", \"499\": \"Negative Predictive Value (NPV)\", \"500\": \"Negative Predictive Value (NPV)\", \"501\": \"Negative Predictive Value (NPV)\", \"502\": \"Negative Predictive Value (NPV)\", \"503\": \"Negative Predictive Value (NPV)\", \"504\": \"Negative Predictive Value (NPV)\", \"505\": \"Negative Predictive Value (NPV)\", \"506\": \"Negative Predictive Value (NPV)\", \"507\": \"Negative Predictive Value (NPV)\", \"508\": \"Negative Predictive Value (NPV)\", \"509\": \"Negative Predictive Value (NPV)\", \"510\": \"Sensitivity\", \"511\": \"Sensitivity\", \"512\": \"Sensitivity\", \"513\": \"Sensitivity\", \"514\": \"Sensitivity\", \"515\": \"Sensitivity\", \"516\": \"Sensitivity\", \"517\": \"Sensitivity\", \"518\": \"Sensitivity\", \"519\": \"Sensitivity\", \"520\": \"Sensitivity\", \"521\": \"Sensitivity\", \"522\": \"Sensitivity\", \"523\": \"Sensitivity\", \"524\": \"Sensitivity\", \"525\": \"Specificity\", \"526\": \"Specificity\", \"527\": \"Specificity\", \"528\": \"Specificity\", \"529\": \"Specificity\", \"530\": \"Specificity\", \"531\": \"Specificity\", \"532\": \"Specificity\", \"533\": \"Specificity\", \"534\": \"Specificity\", \"535\": \"Specificity\", \"536\": \"Specificity\", \"537\": \"Specificity\", \"538\": \"Specificity\", \"539\": \"Specificity\", \"540\": \"Positive Predictive Value (PPV)\", \"541\": \"Positive Predictive Value (PPV)\", \"542\": \"Positive Predictive Value (PPV)\", \"543\": \"Positive Predictive Value (PPV)\", \"544\": \"Positive Predictive Value (PPV)\", \"545\": \"Positive Predictive Value (PPV)\", \"546\": \"Positive Predictive Value (PPV)\", \"547\": \"Positive Predictive Value (PPV)\", \"548\": \"Positive Predictive Value (PPV)\", \"549\": \"Positive Predictive Value (PPV)\", \"550\": \"Positive Predictive Value (PPV)\", \"551\": \"Positive Predictive Value (PPV)\", \"552\": \"Positive Predictive Value (PPV)\", \"553\": \"Positive Predictive Value (PPV)\", \"554\": \"Positive Predictive Value (PPV)\", \"555\": \"Negative Predictive Value (NPV)\", \"556\": \"Negative Predictive Value (NPV)\", \"557\": \"Negative Predictive Value (NPV)\", \"558\": \"Negative Predictive Value (NPV)\", \"559\": \"Negative Predictive Value (NPV)\", \"560\": \"Negative Predictive Value (NPV)\", \"561\": \"Negative Predictive Value (NPV)\", \"562\": \"Negative Predictive Value (NPV)\", \"563\": \"Negative Predictive Value (NPV)\", \"564\": \"Negative Predictive Value (NPV)\", \"565\": \"Negative Predictive Value (NPV)\", \"566\": \"Negative Predictive Value (NPV)\", \"567\": \"Negative Predictive Value (NPV)\", \"568\": \"Negative Predictive Value (NPV)\", \"569\": \"Negative Predictive Value (NPV)\", \"570\": \"Sensitivity\", \"571\": \"Sensitivity\", \"572\": \"Sensitivity\", \"573\": \"Sensitivity\", \"574\": \"Sensitivity\", \"575\": \"Sensitivity\", \"576\": \"Sensitivity\", \"577\": \"Sensitivity\", \"578\": \"Sensitivity\", \"579\": \"Sensitivity\", \"580\": \"Sensitivity\", \"581\": \"Sensitivity\", \"582\": \"Sensitivity\", \"583\": \"Sensitivity\", \"584\": \"Sensitivity\", \"585\": \"Specificity\", \"586\": \"Specificity\", \"587\": \"Specificity\", \"588\": \"Specificity\", \"589\": \"Specificity\", \"590\": \"Specificity\", \"591\": \"Specificity\", \"592\": \"Specificity\", \"593\": \"Specificity\", \"594\": \"Specificity\", \"595\": \"Specificity\", \"596\": \"Specificity\", \"597\": \"Specificity\", \"598\": \"Specificity\", \"599\": \"Specificity\", \"600\": \"Positive Predictive Value (PPV)\", \"601\": \"Positive Predictive Value (PPV)\", \"602\": \"Positive Predictive Value (PPV)\", \"603\": \"Positive Predictive Value (PPV)\", \"604\": \"Positive Predictive Value (PPV)\", \"605\": \"Positive Predictive Value (PPV)\", \"606\": \"Positive Predictive Value (PPV)\", \"607\": \"Positive Predictive Value (PPV)\", \"608\": \"Positive Predictive Value (PPV)\", \"609\": \"Positive Predictive Value (PPV)\", \"610\": \"Positive Predictive Value (PPV)\", \"611\": \"Positive Predictive Value (PPV)\", \"612\": \"Positive Predictive Value (PPV)\", \"613\": \"Positive Predictive Value (PPV)\", \"614\": \"Positive Predictive Value (PPV)\", \"615\": \"Negative Predictive Value (NPV)\", \"616\": \"Negative Predictive Value (NPV)\", \"617\": \"Negative Predictive Value (NPV)\", \"618\": \"Negative Predictive Value (NPV)\", \"619\": \"Negative Predictive Value (NPV)\", \"620\": \"Negative Predictive Value (NPV)\", \"621\": \"Negative Predictive Value (NPV)\", \"622\": \"Negative Predictive Value (NPV)\", \"623\": \"Negative Predictive Value (NPV)\", \"624\": \"Negative Predictive Value (NPV)\", \"625\": \"Negative Predictive Value (NPV)\", \"626\": \"Negative Predictive Value (NPV)\", \"627\": \"Negative Predictive Value (NPV)\", \"628\": \"Negative Predictive Value (NPV)\", \"629\": \"Negative Predictive Value (NPV)\", \"630\": \"Sensitivity\", \"631\": \"Sensitivity\", \"632\": \"Sensitivity\", \"633\": \"Sensitivity\", \"634\": \"Sensitivity\", \"635\": \"Sensitivity\", \"636\": \"Sensitivity\", \"637\": \"Sensitivity\", \"638\": \"Sensitivity\", \"639\": \"Sensitivity\", \"640\": \"Sensitivity\", \"641\": \"Sensitivity\", \"642\": \"Sensitivity\", \"643\": \"Sensitivity\", \"644\": \"Sensitivity\", \"645\": \"Specificity\", \"646\": \"Specificity\", \"647\": \"Specificity\", \"648\": \"Specificity\", \"649\": \"Specificity\", \"650\": \"Specificity\", \"651\": \"Specificity\", \"652\": \"Specificity\", \"653\": \"Specificity\", \"654\": \"Specificity\", \"655\": \"Specificity\", \"656\": \"Specificity\", \"657\": \"Specificity\", \"658\": \"Specificity\", \"659\": \"Specificity\", \"660\": \"Positive Predictive Value (PPV)\", \"661\": \"Positive Predictive Value (PPV)\", \"662\": \"Positive Predictive Value (PPV)\", \"663\": \"Positive Predictive Value (PPV)\", \"664\": \"Positive Predictive Value (PPV)\", \"665\": \"Positive Predictive Value (PPV)\", \"666\": \"Positive Predictive Value (PPV)\", \"667\": \"Positive Predictive Value (PPV)\", \"668\": \"Positive Predictive Value (PPV)\", \"669\": \"Positive Predictive Value (PPV)\", \"670\": \"Positive Predictive Value (PPV)\", \"671\": \"Positive Predictive Value (PPV)\", \"672\": \"Positive Predictive Value (PPV)\", \"673\": \"Positive Predictive Value (PPV)\", \"674\": \"Positive Predictive Value (PPV)\", \"675\": \"Negative Predictive Value (NPV)\", \"676\": \"Negative Predictive Value (NPV)\", \"677\": \"Negative Predictive Value (NPV)\", \"678\": \"Negative Predictive Value (NPV)\", \"679\": \"Negative Predictive Value (NPV)\", \"680\": \"Negative Predictive Value (NPV)\", \"681\": \"Negative Predictive Value (NPV)\", \"682\": \"Negative Predictive Value (NPV)\", \"683\": \"Negative Predictive Value (NPV)\", \"684\": \"Negative Predictive Value (NPV)\", \"685\": \"Negative Predictive Value (NPV)\", \"686\": \"Negative Predictive Value (NPV)\", \"687\": \"Negative Predictive Value (NPV)\", \"688\": \"Negative Predictive Value (NPV)\", \"689\": \"Negative Predictive Value (NPV)\", \"690\": \"Sensitivity\", \"691\": \"Sensitivity\", \"692\": \"Sensitivity\", \"693\": \"Sensitivity\", \"694\": \"Sensitivity\", \"695\": \"Sensitivity\", \"696\": \"Sensitivity\", \"697\": \"Sensitivity\", \"698\": \"Sensitivity\", \"699\": \"Sensitivity\", \"700\": \"Sensitivity\", \"701\": \"Sensitivity\", \"702\": \"Sensitivity\", \"703\": \"Sensitivity\", \"704\": \"Sensitivity\", \"705\": \"Specificity\", \"706\": \"Specificity\", \"707\": \"Specificity\", \"708\": \"Specificity\", \"709\": \"Specificity\", \"710\": \"Specificity\", \"711\": \"Specificity\", \"712\": \"Specificity\", \"713\": \"Specificity\", \"714\": \"Specificity\", \"715\": \"Specificity\", \"716\": \"Specificity\", \"717\": \"Specificity\", \"718\": \"Specificity\", \"719\": \"Specificity\"}"); + var timestamps_all = JSON.parse("{\"0\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"1\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"2\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"3\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"4\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"5\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"6\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"7\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"8\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"9\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"10\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"11\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"12\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"13\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"14\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"15\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"16\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"17\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"18\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"19\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"20\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"21\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"22\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"23\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"24\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"25\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"26\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"27\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"28\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"29\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"30\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"31\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"32\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"33\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"34\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"35\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"36\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"37\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"38\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"39\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"40\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"41\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"42\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"43\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"44\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"45\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"46\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"47\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"48\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"49\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"50\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"51\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"52\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"53\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"54\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"55\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"56\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"57\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"58\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"59\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"60\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"61\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"62\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"63\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"64\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"65\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"66\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"67\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"68\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"69\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"70\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"71\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"72\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"73\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"74\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"75\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"76\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"77\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"78\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"79\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"80\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"81\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"82\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"83\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"84\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"85\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"86\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"87\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"88\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"89\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"90\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"91\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"92\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"93\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"94\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"95\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"96\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"97\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"98\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"99\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"100\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"101\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"102\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"103\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"104\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"105\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"106\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"107\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"108\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"109\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"110\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"111\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"112\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"113\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"114\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"115\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"116\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"117\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"118\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"119\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"120\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"121\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"122\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"123\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"124\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"125\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"126\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"127\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"128\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"129\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"130\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"131\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"132\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"133\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"134\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"135\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"136\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"137\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"138\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"139\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"140\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"141\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"142\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"143\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"144\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"145\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"146\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"147\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"148\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"149\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"150\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"151\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"152\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"153\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"154\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"155\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"156\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"157\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"158\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"159\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"160\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"161\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"162\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"163\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"164\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"165\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"166\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"167\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"168\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"169\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"170\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"171\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"172\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"173\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"174\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"175\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"176\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"177\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"178\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"179\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"180\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"181\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"182\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"183\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"184\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"185\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"186\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"187\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"188\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"189\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"190\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"191\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"192\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"193\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"194\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"195\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"196\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"197\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"198\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"199\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"200\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"201\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"202\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"203\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"204\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"205\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"206\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"207\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"208\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"209\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"210\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"211\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"212\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"213\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"214\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"215\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"216\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"217\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"218\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"219\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"220\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"221\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"222\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"223\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"224\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"225\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"226\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"227\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"228\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"229\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"230\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"231\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"232\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"233\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"234\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"235\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"236\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"237\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"238\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"239\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"240\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"241\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"242\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"243\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"244\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"245\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"246\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"247\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"248\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"249\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"250\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"251\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"252\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"253\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"254\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"255\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"256\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"257\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"258\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"259\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"260\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"261\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"262\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"263\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"264\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"265\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"266\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"267\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"268\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"269\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"270\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"271\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"272\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"273\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"274\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"275\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"276\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"277\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"278\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"279\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"280\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"281\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"282\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"283\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"284\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"285\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"286\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"287\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"288\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"289\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"290\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"291\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"292\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"293\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"294\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"295\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"296\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"297\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"298\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"299\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"300\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"301\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"302\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"303\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"304\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"305\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"306\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"307\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"308\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"309\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"310\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"311\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"312\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"313\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"314\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"315\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"316\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"317\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"318\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"319\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"320\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"321\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"322\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"323\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"324\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"325\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"326\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"327\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"328\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"329\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"330\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"331\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"332\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"333\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"334\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"335\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"336\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"337\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"338\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"339\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"340\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"341\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"342\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"343\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"344\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"345\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"346\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"347\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"348\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"349\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"350\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"351\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"352\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"353\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"354\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"355\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"356\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"357\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"358\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"359\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"360\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"361\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"362\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"363\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"364\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"365\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"366\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"367\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"368\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"369\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"370\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"371\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"372\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"373\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"374\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"375\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"376\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"377\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"378\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"379\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"380\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"381\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"382\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"383\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"384\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"385\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"386\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"387\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"388\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"389\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"390\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"391\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"392\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"393\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"394\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"395\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"396\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"397\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"398\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"399\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"400\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"401\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"402\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"403\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"404\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"405\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"406\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"407\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"408\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"409\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"410\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"411\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"412\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"413\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"414\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"415\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"416\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"417\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"418\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"419\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"420\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"421\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"422\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"423\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"424\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"425\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"426\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"427\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"428\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"429\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"430\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"431\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"432\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"433\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"434\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"435\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"436\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"437\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"438\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"439\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"440\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"441\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"442\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"443\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"444\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"445\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"446\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"447\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"448\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"449\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"450\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"451\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"452\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"453\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"454\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"455\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"456\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"457\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"458\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"459\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"460\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"461\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"462\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"463\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"464\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"465\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"466\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"467\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"468\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"469\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"470\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"471\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"472\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"473\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"474\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"475\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"476\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"477\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"478\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"479\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"480\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"481\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"482\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"483\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"484\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"485\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"486\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"487\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"488\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"489\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"490\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"491\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"492\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"493\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"494\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"495\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"496\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"497\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"498\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"499\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"500\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"501\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"502\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"503\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"504\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"505\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"506\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"507\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"508\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"509\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"510\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"511\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"512\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"513\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"514\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"515\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"516\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"517\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"518\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"519\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"520\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"521\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"522\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"523\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"524\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"525\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"526\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"527\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"528\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"529\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"530\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"531\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"532\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"533\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"534\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"535\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"536\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"537\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"538\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"539\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"540\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"541\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"542\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"543\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"544\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"545\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"546\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"547\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"548\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"549\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"550\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"551\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"552\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"553\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"554\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"555\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"556\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"557\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"558\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"559\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"560\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"561\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"562\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"563\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"564\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"565\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"566\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"567\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"568\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"569\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"570\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"571\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"572\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"573\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"574\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"575\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"576\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"577\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"578\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"579\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"580\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"581\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"582\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"583\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"584\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"585\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"586\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"587\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"588\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"589\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"590\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"591\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"592\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"593\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"594\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"595\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"596\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"597\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"598\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"599\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"600\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"601\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"602\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"603\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"604\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"605\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"606\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"607\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"608\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"609\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"610\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"611\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"612\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"613\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"614\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"615\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"616\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"617\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"618\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"619\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"620\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"621\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"622\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"623\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"624\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"625\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"626\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"627\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"628\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"629\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"630\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"631\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"632\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"633\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"634\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"635\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"636\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"637\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"638\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"639\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"640\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"641\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"642\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"643\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"644\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"645\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"646\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"647\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"648\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"649\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"650\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"651\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"652\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"653\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"654\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"655\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"656\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"657\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"658\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"659\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"660\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"661\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"662\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"663\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"664\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"665\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"666\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"667\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"668\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"669\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"670\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"671\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"672\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"673\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"674\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"675\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"676\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"677\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"678\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"679\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"680\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"681\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"682\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"683\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"684\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"685\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"686\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"687\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"688\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"689\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"690\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"691\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"692\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"693\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"694\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"695\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"696\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"697\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"698\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"699\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"700\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"701\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"702\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"703\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"704\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"705\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"706\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"707\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"708\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"709\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"710\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"711\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"712\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"713\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"714\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"715\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"716\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"717\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"718\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"], \"719\": [\"2023-10-19\", \"2023-10-22\", \"2023-10-30\", \"2023-11-06\"]}"); + + for (let i = 0; i < selection.length; i++) { + // use selection to set label_slice_selection background color + for (let j = 0; j < inputs_all.length; j++) { + if (inputs_all[j].name === selection[i].split(":")[0]) { + if (inputs_all[j].value == selection[i].split(":")[1]) { + inputs_all[j].checked = true; + const [r, g, b] = plot_color.match(/\d+/g); + const rgbaColor = `rgba(${r}, ${g}, ${b}, 0.2)`; + label_slice_selection[j].style.backgroundColor = rgbaColor; + label_slice_selection[j].style.border = "2px solid " + plot_color; + label_slice_selection[j].style.color = plot_color; + } + else { + inputs_all[j].checked = false; + label_slice_selection[j].style.backgroundColor = "#ffffff"; + label_slice_selection[j].style.border = "2px solid #DADCE0"; + label_slice_selection[j].style.color = "#000000"; + } + } + } + } + + var radioGroups = {}; + var labelGroups = {}; + for (let i = 0; i < inputs_all.length; i++) { + var input = inputs_all[i]; + var label = label_slice_selection[i]; + var groupName = input.name; + if (!radioGroups[groupName]) { + radioGroups[groupName] = []; + labelGroups[groupName] = []; + } + radioGroups[groupName].push(input); + labelGroups[groupName].push(label); + } + + // use radioGroups to loop through selection changing only one element at a time + for (let i = 0; i < selection.length; i++) { + for (let j = 0; j < inputs_all.length; j++) { + if (inputs_all[j].name === selection[i].split(":")[0]) { + radio_group = radioGroups[selection[i].split(":")[0]]; + label_group = labelGroups[selection[i].split(":")[0]]; + for (let k = 0; k < radio_group.length; k++) { + selection_copy = selection.slice(); + selection_copy[i] = selection[i].split(":")[0] + ":" + radio_group[k].value; + // get idx of slices where all elements match + var idx = Object.keys(slices_all).find(key => JSON.stringify(slices_all[key].sort()) === JSON.stringify(selection_copy.sort())); + if (idx === undefined) { + // set radio button to disabled and cursor to not allowed and color to gray if idx is undefined + radio_group[k].disabled = true; + label_group[k].style.cursor = "not-allowed"; + label_group[k].style.color = "gray"; + label_group[k].style.backgroundColor = "rgba(125, 125, 125, 0.2)"; + } + else { + radio_group[k].disabled = false; + label_group[k].style.cursor = "pointer"; + } + } + } + } + } + + traces = []; + for (let i = 0; i < selections.length; i++) { + if (selections[i] === null) { + continue; + } + selection = selections[i] + // get idx of slices where all elements match + var idx = Object.keys(slices_all).find(key => JSON.stringify(slices_all[key].sort()) === JSON.stringify(selection)); + var history_data = []; + for (let i = 0; i < histories_all[idx].length; i++) { + history_data.push(parseFloat(histories_all[idx][i])); + } + var timestamp_data = []; + for (let i = 0; i < timestamps_all[idx].length; i++) { + timestamp_data.push(timestamps_all[idx][i]); + } + threshold = parseFloat(thresholds_all[idx]); + trend = trends_all[idx]; + passed = passed_all[idx]; + name = names_all[idx]; + + // if trend is "positive" set keyword to upwards, if trend is "negative" set keyword to downwards, else set keyword to flat + if (trend === "positive") { + var trend_keyword = "upwards"; + } else if (trend === "negative") { + var trend_keyword = "downwards"; + } else { + var trend_keyword = "flat"; + } + + // if passed is true set keyword to Above, if passed is false set keyword to Below + if (passed) { + var passed_keyword = "above"; + } + else { + var passed_keyword = "below"; + } + + // create title for plot: Current {metric name} is trending {trend_keyword} and is {passed_keyword} the threshold. + // get number of nulls in selections, if 9 then plot title, else don't plot title + var nulls = 0; + for (let i = 0; i < selections.length; i++) { + if (selections[i] === null) { + nulls += 1; + } + } + if (nulls === 10) { + var plot_title = "Current " + name + " is trending " + trend_keyword + " and is " + passed_keyword + " the threshold."; + var showlegend = false; + } + else { + var plot_title = ""; + var showlegend = true; + } + name = "" + suffix = " ( " + for (let i = 0; i < selection.length; i++) { + if (selection[i].split(":")[0] === "metric") { + name += selection[i].split(":")[1]; + } + else { + if (selection[i].split(":")[1].includes("overall")) { + continue; + } else { + suffix += selection[i]; + suffix += ", "; + } + } + } + if (suffix === " ( ") { + name += ""; + } + else { + suffix = suffix.slice(0, -2); + name += suffix + " )"; + } + var trace = { + // range of x is the length of the list of floats + x: timestamp_data, + y: history_data, + mode: 'lines+markers', + type: 'scatter', + marker: {color: plot_colors[i+1]}, + line: {color: plot_colors[i+1]}, + name: name, + //name: selection.toString(), + }; + traces.push(trace); + } + + if (nulls === 10) { + var threshold_trace = { + x: timestamp_data, + y: Array.from({length: history_data.length}, (_, i) => threshold), + mode: 'lines', + type: 'scatter', + marker: {color: 'rgb(0,0,0)'}, + line: {color: 'rgb(0,0,0)', dash: 'dot'}, + name: '', + }; + traces.push(threshold_trace); + } + var layout = { + title: { + text: plot_title, + font: { + family: 'Arial, Helvetica, sans-serif', + size: 18, + } + }, + paper_bgcolor: 'rgba(0,0,0,0)', + plot_bgcolor: 'rgba(0,0,0,0)', + xaxis: { + zeroline: false, + showticklabels: false, + showgrid: false, + }, + yaxis: { + gridcolor: '#ffffff', + }, + showlegend: showlegend, + margin: { + l: 50, + r: 50, + b: 50, + t: 50, + pad: 4 + }, + // set height and width of plot to extra-wide to fit the plot + height: 500, + width: 900, + } + Plotly.newPlot(plot, traces, layout, {displayModeBar: false}); + } + // Add event listeners to radio buttons + for (let input of inputs_all) { + input.addEventListener('change', updatePlot); + } + for (let selection of plot_selection) { + selection.addEventListener('change', updatePlotSelection); + } + // Initial update when the page loads + updatePlot(); + \ No newline at end of file diff --git a/api/tutorials/synthea/length_of_stay_report_periodic.html b/api/tutorials/synthea/length_of_stay_report_periodic.html index 5e38f2eb6..7efec01e2 100644 --- a/api/tutorials/synthea/length_of_stay_report_periodic.html +++ b/api/tutorials/synthea/length_of_stay_report_periodic.html @@ -3,6 +3,70 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + @@ -55,6 +119,7 @@ .card { display: flex; flex-wrap: wrap; + flex-basis: 100%; justify-content: left; padding: 1em; border: 1px solid #DADCE0; @@ -420,6 +485,23 @@ } + .radio-buttons #button { + padding-right: 5px; + margin-left: 5px; + margin-right: 0px; + font-size:18px; + font-weight: bold; + cursor: pointer; + color: black; + background-color: #ffffff; + border: 2px solid #DADCE0; + } + + .radio-buttons #button:hover { + color: #0073e4; + } + +
- - - - +
+
@@ -605,7 +680,7 @@

A quick glance of your most import
- 1.0 + 0.87 @@ -615,15 +690,8 @@

A quick glance of your most import 0.7
minimum
threshold
- - -
- -
- -
- - +
+

@@ -645,7 +713,7 @@

A quick glance of your most import
- 0.74 + 0.96 @@ -655,15 +723,8 @@

A quick glance of your most import 0.7
minimum
threshold
- - -
- -
- -
- - +
+

@@ -685,7 +746,7 @@

A quick glance of your most import
- 0.87 + 0.95 @@ -695,15 +756,8 @@

A quick glance of your most import 0.7
minimum
threshold
- - -
- -
- -
- - +
+

@@ -725,7 +779,7 @@

A quick glance of your most import
- 0.93 + 1.0 @@ -735,15 +789,8 @@

A quick glance of your most import 0.7
minimum
threshold
- - -
- -
- -
- - +
+

@@ -856,13 +903,23 @@

A quick glance of your most import -
+

How is your model doing over time?


See how your model is performing over several metrics and subgroups over time.

+ +
+

Multi-plot Selection:

+
+ + + + +
+

Metrics

-
+
@@ -927,7 +984,7 @@

Metrics

Age

-
+
@@ -942,7 +999,7 @@

Age

Gender

-
+
@@ -957,141 +1014,7 @@

Gender

-
- - -
+
@@ -1121,7 +1044,7 @@

Graphics

-
+
@@ -1129,7 +1052,7 @@

Graphics

-
+
@@ -1137,7 +1060,7 @@

Graphics

-
+
@@ -1145,7 +1068,7 @@

Graphics

-
+
@@ -1153,7 +1076,7 @@

Graphics

-
+
@@ -1234,7 +1157,7 @@

Quantitative Analysis

- 0.93 + 0.72 @@ -1244,15 +1167,8 @@

Quantitative Analysis

0.7
minimum
threshold
- - -
- -
- -
- - +
+
@@ -1274,7 +1190,7 @@

Quantitative Analysis

- 1.0 + 0.87 @@ -1284,15 +1200,8 @@

Quantitative Analysis

0.7
minimum
threshold
- - -
- -
- -
- - +
+
@@ -1314,7 +1223,7 @@

Quantitative Analysis

- 0.74 + 0.96 @@ -1324,15 +1233,8 @@

Quantitative Analysis

0.7
minimum
threshold
- - -
- -
- -
- - +
+
@@ -1354,7 +1256,7 @@

Quantitative Analysis

- 0.87 + 0.95 @@ -1364,15 +1266,8 @@

Quantitative Analysis

0.7
minimum
threshold
- - -
- -
- -
- - +
+
@@ -1394,7 +1289,7 @@

Quantitative Analysis

- 0.93 + 1.0 @@ -1404,15 +1299,8 @@

Quantitative Analysis

0.7
minimum
threshold
- - -
- -
- -
- - +
+
@@ -1459,7 +1347,7 @@

Graphics

-
+
@@ -1514,7 +1402,7 @@

Version

- Date: 2023-11-20 + Date: 2023-11-21
@@ -1736,19 +1624,18 @@

Model Parameters

- - - - - +
+

Eval_metric

+ logloss +
-

Seed

- 123 +

Max_depth

+ 2
@@ -1770,19 +1657,11 @@

Seed

-
-

Missing

- nan -
-
-

Eval_metric

- logloss -
@@ -1804,32 +1683,32 @@

Eval_metric

-

Objective

- binary:logistic +

Enable_categorical

+ False
+
+

Learning_rate

+ 0.1 +
-

Gamma

- 10 +

Colsample_bytree

+ 0.7
-
-

Max_depth

- 5 -
@@ -1856,8 +1735,8 @@

Max_depth

-

Min_child_weight

- 3 +

Reg_lambda

+ 1
@@ -1869,6 +1748,11 @@

Min_child_weight

+ + + + +

Random_state

123 @@ -1878,10 +1762,6 @@

Random_state

-
-

Learning_rate

- 0.01 -
@@ -1889,7 +1769,7 @@

Learning_rate

N_estimators

- 250 + 500
@@ -1901,14 +1781,18 @@

N_estimators

+
+

Objective

+ binary:logistic +
-

Enable_categorical

- False +

Missing

+ nan
@@ -1936,18 +1820,14 @@

Enable_categorical

-

Reg_lambda

- 1 +

Min_child_weight

+ 3
-
-

Colsample_bytree

- 1 -
@@ -1958,6 +1838,10 @@

Colsample_bytree

+
+

Gamma

+ 0 +
@@ -1978,6 +1862,10 @@

Colsample_bytree

+
+

Seed

+ 123 +
@@ -2227,7 +2115,6 @@

Ethical Considerations

return true; } } - function setActiveButton() { const buttons = document.querySelectorAll('#contents li'); const sections = document.querySelectorAll('.card'); @@ -2248,7 +2135,781 @@

Ethical Considerations

} } } - document.addEventListener('scroll', setActiveButton); setActiveButton(); + + function generate_model_card_plot() { + var model_card_plots = [] + var overall_indices = [20, 21, 22, 23, 24] + var histories = JSON.parse("{\"0\": [\"0.8793103448275862\", \"0.9112260325449034\", \"0.8575824835984872\", \"0.9230144744587516\", \"0.8175329936926595\", \"0.916584170845128\"], \"1\": [\"0.8450704225352113\", \"0.8883412445283754\", \"0.7961352302411743\", \"0.9208934112141931\", \"0.8666950924061437\", \"0.8012599385166602\"], \"2\": [\"0.9523809523809523\", \"0.9490165279323434\", \"1.0\", \"0.8409656018676719\", \"0.8870390354301704\", \"0.9045440972725609\"], \"3\": [\"0.8955223880597015\", \"0.7809847260980638\", \"1.0\", \"0.8365585183544693\", \"0.9068393699311781\", \"0.9860835232523685\"], \"4\": [\"0.9743935309973046\", \"0.8701731770203791\", \"1.0\", \"1.0\", \"0.9073900095895263\", \"1.0\"], \"5\": [\"0.88\", \"0.8791842592739592\", \"0.8262115616349736\", \"0.9373940238476682\", \"0.8240361248834713\", \"0.8595082519104404\"], \"6\": [\"0.92\", \"0.8476042678401939\", \"0.9652052791499265\", \"0.9222768447320873\", \"0.9612635163689724\", \"0.7668058750835873\"], \"7\": [\"0.8518518518518519\", \"0.6812784060705941\", \"0.6685072239097107\", \"0.773556052849631\", \"0.9131247310352374\", \"0.6604382153005658\"], \"8\": [\"0.8846153846153846\", \"1.0\", \"0.7373973430239029\", \"0.8088822187245996\", \"0.812440929890144\", \"0.7718804326076331\"], \"9\": [\"0.9541062801932366\", \"0.9712658753145598\", \"1.0\", \"1.0\", \"0.7975653265168696\", \"0.934565405819743\"], \"10\": [\"0.8934426229508197\", \"0.7700653475175312\", \"0.8268806521162448\", \"1.0\", \"0.9180948185879803\", \"1.0\"], \"11\": [\"0.8777777777777778\", \"0.7876920965127165\", \"0.7493400363894769\", \"0.9257337904514158\", \"0.7872600500482494\", \"0.9661021479330794\"], \"12\": [\"0.9753086419753086\", \"0.9487799988771382\", \"1.0\", \"0.9030564913453146\", \"1.0\", \"1.0\"], \"13\": [\"0.9239766081871345\", \"0.9803446664763811\", \"0.9659185381219713\", \"1.0\", \"0.7892416791208378\", \"0.9336551556383622\"], \"14\": [\"0.9795242396868412\", \"0.9492236556240479\", \"0.8815904798440254\", \"0.9586394168401164\", \"1.0\", \"1.0\"], \"15\": [\"0.8942307692307693\", \"0.9934397483886594\", \"0.9317532146760295\", \"0.7428577701148424\", \"0.944805631985229\", \"0.8227196994553121\"], \"16\": [\"0.9491525423728814\", \"0.9331639033724253\", \"0.896429628610939\", \"0.9791293390143264\", \"0.9791112207162269\", \"1.0\"], \"17\": [\"0.875\", \"0.7082479018940693\", \"0.802566665945898\", \"0.9714202211916472\", \"0.9315912971695113\", \"0.9467323855074238\"], \"18\": [\"0.9105691056910569\", \"0.7983763656056397\", \"0.8358465799622541\", \"0.8870219049839082\", \"1.0\", \"0.8788616294782583\"], \"19\": [\"0.9568359375\", \"1.0\", \"1.0\", \"1.0\", \"0.9985570257337495\", \"1.0\"], \"20\": [\"0.8938053097345132\", \"0.8438629068410547\", \"0.9780655953026155\", \"0.7787351086407908\", \"0.7891063411584547\", \"0.7244072548738367\"], \"21\": [\"0.9060402684563759\", \"1.0\", \"0.926476632075494\", \"0.8524988854351541\", \"0.7639817203390269\", \"0.8709932381579796\"], \"22\": [\"0.9310344827586207\", \"1.0\", \"0.8126051965537983\", \"0.8653925852663946\", \"0.8302727026390117\", \"0.9627765850564689\"], \"23\": [\"0.9183673469387755\", \"0.9694880736660227\", \"0.7878158795207733\", \"0.721868688061021\", \"0.9269148799390148\", \"0.9546774457015843\"], \"24\": [\"0.9649638143891016\", \"0.9211517538236319\", \"1.0\", \"0.8381534535529309\", \"0.905752056962576\", \"0.9987995055231192\"]}"); + var thresholds = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\", \"19\": \"0.7\", \"20\": \"0.7\", \"21\": \"0.7\", \"22\": \"0.7\", \"23\": \"0.7\", \"24\": \"0.7\"}"); + var timestamps = JSON.parse("{\"0\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"1\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"2\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"3\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"4\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"5\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"6\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"7\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"8\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"9\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"10\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"11\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"12\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"13\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"14\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"15\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"16\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"17\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"18\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"19\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"20\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"21\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"22\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"23\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"24\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"]}"); + + for (let i = 0; i < overall_indices.length; i++) { + var idx = overall_indices[i]; + var model_card_plot = "model-card-plot-" + idx; + var threshold = thresholds[idx]; + var history_data = []; + for (let i = 0; i < histories[idx].length; i++) { + history_data.push(parseFloat(histories[idx][i])); + } + var timestamp_data = []; + for (let i = 0; i < timestamps[idx].length; i++) { + timestamp_data.push(timestamps[idx][i]); + } + + var model_card_fig = { + data: [ + { + x: timestamp_data, + y: history_data, + mode: "lines+markers", + marker: { color: "rgb(31,111,235)" }, + line: { color: "rgb(31,111,235)" }, + showlegend: false, + type: "scatter", + name: "" + }, + { + x: timestamp_data, + y: Array(history_data.length).fill(threshold), + mode: "lines", + line: { color: "black", dash: "dot" }, + showlegend: false, + type: "scatter", + name: "" + } + ], + layout: { + paper_bgcolor: "rgba(0,0,0,0)", + plot_bgcolor: "rgba(0,0,0,0)", + xaxis: { + zeroline: false, + showticklabels: false, + showgrid: false + }, + yaxis: { + gridcolor: "#ffffff" + }, + margin: { l: 0, r: 0, t: 0, b: 0 }, + height: 125, + width: 250 + } + }; + if (history.length > 0) { + Plotly.newPlot(model_card_plot, model_card_fig.data, model_card_fig.layout, {displayModeBar: false}); + } + } + } + generate_model_card_plot(); + + const plot = document.getElementById('plot'); + const inputs_all = document.querySelectorAll('#slice-selection input[type="radio"]'); + const plot_selection = document.querySelectorAll('#plot-selection input[type="radio"]'); + var selections = [null, null, null, null, null, null, null, null, null, null, null]; + var plot_colors = [ + "rgb(0, 115, 228)", + "rgb(31, 119, 180)", + "rgb(255, 127, 14)", + "rgb(44, 160, 44)", + "rgb(214, 39, 40)", + "rgb(148, 103, 189)", + "rgb(140, 86, 75)", + "rgb(227, 119, 194)", + "rgb(127, 127, 127)", + "rgb(188, 189, 34)", + "rgb(23, 190, 207)" + ]; + + function deletePlotSelection(plot_number) { + var plot_selection = document.querySelectorAll('#plot-selection input[type="radio"]'); + var label_selection = document.querySelectorAll('#plot-selection label'); + var label_slice_selection = document.querySelectorAll('#slice-selection label'); + var button_plot_selection = document.querySelectorAll('#plot-selection button'); + + // set last plot to checked + // get plot_selection with name "Plot N" where N is plot_number + for (let i = 0; i < plot_selection.length; i++) { + var plot_name = "Plot " + (plot_number+1) + if (plot_selection[i].value === plot_name) { + plot_number = i; + } + } + plot_selection[plot_number].checked = false; + plot_selection[plot_number-1].checked = true; + + // delete plot_selected and label + plot_selection[plot_number].remove(); + label_selection[plot_number].remove(); + + selections[plot_number] = null; + + // set selection to last plot + selection = selections[plot_number-1]; + plot_color = plot_colors[plot_number-1]; + + // set current plot selection color to plot_color + const [r, g, b] = plot_color.match(/\d+/g); + const rgbaColor = `rgba(${r}, ${g}, ${b}, 0.2)`; + plot_selection[plot_number-1].style.backgroundColor = rgbaColor; + plot_selection[plot_number-1].style.border = "2px solid " + plot_color; + plot_selection[plot_number-1].style.color = plot_color; + + // make visibility of delete button from last plot visible + if (button_plot_selection.length >= 2) { + button_plot_selection[button_plot_selection.length-2].style.visibility = "visible"; + } + + for (let i = 0; i < selection.length; i++) { + // use selection to set label_slice_selection background color + for (let j = 0; j < inputs_all.length; j++) { + if (inputs_all[j].name === selection[i].split(":")[0]) { + if (inputs_all[j].value == selection[i].split(":")[1]) { + inputs_all[j].checked = true; + label_slice_selection[j].style.backgroundColor = rgbaColor; + label_slice_selection[j].style.border = "2px solid " + plot_color; + label_slice_selection[j].style.color = plot_color; + } + } + } + } + updatePlot(); + } + + function updatePlotSelection() { + const inputs = document.querySelectorAll('#slice-selection input[type="radio"]:checked'); + var plot_selection = document.querySelectorAll('#plot-selection input[type="radio"]'); + var plot_selected = document.querySelectorAll('#plot-selection input[type="radio"]:checked')[0]; + // get number from value in plot_selected "Plot 1" -> 1 + var plot_number = parseInt(plot_selected.value.split(" ")[1]); + var label_selection = document.querySelectorAll('#plot-selection label'); + var label_slice_selection = document.querySelectorAll('#slice-selection label'); + var button_plot_selection = document.querySelectorAll('#plot-selection button'); + + // if plot_selected is "+" then add new radio button to plot_selection called "Plot N" where last plot is N-1 but keep "+" at end and set new radio button to checked for second last element + if (plot_selected.value === "+") { + // if 10 plots already exist, don't add new plot and gray out "+" + if (plot_selection.length === 11) { + plot_selected.checked = false; + label_selection[label_selection.length-1].style.color = "gray"; + return; + } + // plot_name should be name of last plot + 1 + if (plot_selection.length === 2) { + var plot_name = "Plot 2" + } else { + var plot_name = "Plot " + (parseInt(plot_selection[plot_selection.length - 2].value.split(" ")[1]) + 1); + } + var new_plot = document.createElement("input"); + new_plot.type = "radio"; + new_plot.id = plot_name; + new_plot.name = "plot"; + new_plot.value = plot_name; + new_plot.checked = true; + var new_label = document.createElement("label"); + new_label.htmlFor = plot_name; + new_label.innerHTML = plot_name; + + // Parse plot_color to get r, g, b values + var plot_color = plot_colors[plot_selection.length] + const [r, g, b] = plot_color.match(/\d+/g); + const rgbaColor = `rgba(${r}, ${g}, ${b}, 0.2)`; + // set background color of new radio button to plot_color + new_label.style.backgroundColor = rgbaColor; + new_label.style.border = "2px solid " + plot_color; + new_label.style.color = plot_color; + + // add button to delete plot + var delete_button = document.createElement("button"); + delete_button.id = "button"; + delete_button.innerHTML = "×"; + delete_button.style.backgroundColor = "transparent"; + delete_button.style.border = "none"; + new_label.style.padding = "1.5px 0px"; + new_label.style.paddingLeft = "10px"; + + new_label.appendChild(delete_button) + + // make delete button from last plot invisible if not Plot 1 + if (plot_selection.length > 2) { + button_plot_selection[button_plot_selection.length-1].style.visibility = "hidden"; + } + // add on_click event to delete button and send plot number to deletePlotSelection + delete_button.onclick = function() {deletePlotSelection(plot_number)}; + + // insert new radio button and label before "+" radio button and after last radio button + plot_selected.insertAdjacentElement("beforebegin", new_plot); + plot_selected.insertAdjacentElement("beforebegin", new_label); + + // Add event listener to new radio button + new_plot.addEventListener('change', updatePlotSelection); + + // set plot_selected to new plot + var plot_selected = new_plot + + for (let i = 0; i < label_selection.length-1; i++) { + plot_selection[i].checked = false; + label_selection[i].style.backgroundColor = "#ffffff"; + label_selection[i].style.border = "2px solid #DADCE0"; + label_selection[i].style.color = "#000000"; + } + + selections[parseInt(plot_selected.value.split(" ")[1]-1)] = selections[parseInt(plot_selected.value.split(" ")[1]-2)] + selection = selections[parseInt(plot_selected.value.split(" ")[1]-1)]; + plot_color = plot_colors[parseInt(plot_selected.value.split(" ")[1])]; + + for (let i = 0; i < selection.length; i++) { + // use selection to set label_slice_selection background color + for (let j = 0; j < inputs_all.length; j++) { + if (inputs_all[j].name === selection[i].split(":")[0]) { + if (inputs_all[j].value == selection[i].split(":")[1]) { + const [r, g, b] = plot_color.match(/\d+/g); + const rgbaColor = `rgba(${r}, ${g}, ${b}, 0.2)`; + inputs_all[j].checked = true; + label_slice_selection[j].style.backgroundColor = rgbaColor; + label_slice_selection[j].style.border = "2px solid " + plot_color; + label_slice_selection[j].style.color = plot_color; + } + else { + inputs_all[j].checked = false; + label_slice_selection[j].style.backgroundColor = "#ffffff"; + label_slice_selection[j].style.border = "2px solid #DADCE0"; + label_slice_selection[j].style.color = "#000000"; + } + } + } + } + } else { + for (let i = 0; i < plot_selection.length-1; i++) { + if (plot_selection[i].value !== plot_selected.value) { + plot_selection[i].checked = false; + label_selection[i].style.backgroundColor = "#ffffff"; + label_selection[i].style.border = "2px solid #DADCE0"; + label_selection[i].style.color = "#000000"; + } + else { + var plot_color = plot_colors[i+1] + const [r, g, b] = plot_color.match(/\d+/g); + const rgbaColor = `rgba(${r}, ${g}, ${b}, 0.2)`; + plot_selected.checked = true; + label_selection[i].style.backgroundColor = rgbaColor; + label_selection[i].style.border = "2px solid " + plot_color; + label_selection[i].style.color = plot_color; + } + } + selection = selections[parseInt(plot_selected.value.split(" ")[1]-1)]; + plot_color = plot_colors[parseInt(plot_selected.value.split(" ")[1])]; + for (let i = 0; i < selection.length; i++) { + // use selection to set label_slice_selection background color + for (let j = 0; j < inputs_all.length; j++) { + if (inputs_all[j].name === selection[i].split(":")[0]) { + if (inputs_all[j].value == selection[i].split(":")[1]) { + inputs_all[j].checked = true; + const [r, g, b] = plot_color.match(/\d+/g); + const rgbaColor = `rgba(${r}, ${g}, ${b}, 0.2)`; + label_slice_selection[j].style.backgroundColor = rgbaColor; + label_slice_selection[j].style.border = "2px solid " + plot_color; + label_slice_selection[j].style.color = plot_color; + } + else { + inputs_all[j].checked = false; + label_slice_selection[j].style.backgroundColor = "#ffffff"; + label_slice_selection[j].style.border = "2px solid #DADCE0"; + label_slice_selection[j].style.color = "#000000"; + } + } + } + } + } + var slices_all = JSON.parse("{\"0\": [\"metric:Accuracy\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"1\": [\"metric:Precision\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"2\": [\"metric:Recall\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"3\": [\"metric:F1 Score\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"4\": [\"metric:AUROC\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"5\": [\"metric:Accuracy\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"6\": [\"metric:Precision\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"7\": [\"metric:Recall\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"8\": [\"metric:F1 Score\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"9\": [\"metric:AUROC\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"10\": [\"metric:Accuracy\", \"gender:M\", \"age:overall_age\"], \"11\": [\"metric:Precision\", \"gender:M\", \"age:overall_age\"], \"12\": [\"metric:Recall\", \"gender:M\", \"age:overall_age\"], \"13\": [\"metric:F1 Score\", \"gender:M\", \"age:overall_age\"], \"14\": [\"metric:AUROC\", \"gender:M\", \"age:overall_age\"], \"15\": [\"metric:Accuracy\", \"gender:F\", \"age:overall_age\"], \"16\": [\"metric:Precision\", \"gender:F\", \"age:overall_age\"], \"17\": [\"metric:Recall\", \"gender:F\", \"age:overall_age\"], \"18\": [\"metric:F1 Score\", \"gender:F\", \"age:overall_age\"], \"19\": [\"metric:AUROC\", \"gender:F\", \"age:overall_age\"], \"20\": [\"metric:Accuracy\", \"age:overall_age\", \"gender:overall_gender\"], \"21\": [\"metric:Precision\", \"age:overall_age\", \"gender:overall_gender\"], \"22\": [\"metric:Recall\", \"age:overall_age\", \"gender:overall_gender\"], \"23\": [\"metric:F1 Score\", \"age:overall_age\", \"gender:overall_gender\"], \"24\": [\"metric:AUROC\", \"age:overall_age\", \"gender:overall_gender\"]}"); + var histories_all = JSON.parse("{\"0\": [\"0.8793103448275862\", \"0.9112260325449034\", \"0.8575824835984872\", \"0.9230144744587516\", \"0.8175329936926595\", \"0.916584170845128\"], \"1\": [\"0.8450704225352113\", \"0.8883412445283754\", \"0.7961352302411743\", \"0.9208934112141931\", \"0.8666950924061437\", \"0.8012599385166602\"], \"2\": [\"0.9523809523809523\", \"0.9490165279323434\", \"1.0\", \"0.8409656018676719\", \"0.8870390354301704\", \"0.9045440972725609\"], \"3\": [\"0.8955223880597015\", \"0.7809847260980638\", \"1.0\", \"0.8365585183544693\", \"0.9068393699311781\", \"0.9860835232523685\"], \"4\": [\"0.9743935309973046\", \"0.8701731770203791\", \"1.0\", \"1.0\", \"0.9073900095895263\", \"1.0\"], \"5\": [\"0.88\", \"0.8791842592739592\", \"0.8262115616349736\", \"0.9373940238476682\", \"0.8240361248834713\", \"0.8595082519104404\"], \"6\": [\"0.92\", \"0.8476042678401939\", \"0.9652052791499265\", \"0.9222768447320873\", \"0.9612635163689724\", \"0.7668058750835873\"], \"7\": [\"0.8518518518518519\", \"0.6812784060705941\", \"0.6685072239097107\", \"0.773556052849631\", \"0.9131247310352374\", \"0.6604382153005658\"], \"8\": [\"0.8846153846153846\", \"1.0\", \"0.7373973430239029\", \"0.8088822187245996\", \"0.812440929890144\", \"0.7718804326076331\"], \"9\": [\"0.9541062801932366\", \"0.9712658753145598\", \"1.0\", \"1.0\", \"0.7975653265168696\", \"0.934565405819743\"], \"10\": [\"0.8934426229508197\", \"0.7700653475175312\", \"0.8268806521162448\", \"1.0\", \"0.9180948185879803\", \"1.0\"], \"11\": [\"0.8777777777777778\", \"0.7876920965127165\", \"0.7493400363894769\", \"0.9257337904514158\", \"0.7872600500482494\", \"0.9661021479330794\"], \"12\": [\"0.9753086419753086\", \"0.9487799988771382\", \"1.0\", \"0.9030564913453146\", \"1.0\", \"1.0\"], \"13\": [\"0.9239766081871345\", \"0.9803446664763811\", \"0.9659185381219713\", \"1.0\", \"0.7892416791208378\", \"0.9336551556383622\"], \"14\": [\"0.9795242396868412\", \"0.9492236556240479\", \"0.8815904798440254\", \"0.9586394168401164\", \"1.0\", \"1.0\"], \"15\": [\"0.8942307692307693\", \"0.9934397483886594\", \"0.9317532146760295\", \"0.7428577701148424\", \"0.944805631985229\", \"0.8227196994553121\"], \"16\": [\"0.9491525423728814\", \"0.9331639033724253\", \"0.896429628610939\", \"0.9791293390143264\", \"0.9791112207162269\", \"1.0\"], \"17\": [\"0.875\", \"0.7082479018940693\", \"0.802566665945898\", \"0.9714202211916472\", \"0.9315912971695113\", \"0.9467323855074238\"], \"18\": [\"0.9105691056910569\", \"0.7983763656056397\", \"0.8358465799622541\", \"0.8870219049839082\", \"1.0\", \"0.8788616294782583\"], \"19\": [\"0.9568359375\", \"1.0\", \"1.0\", \"1.0\", \"0.9985570257337495\", \"1.0\"], \"20\": [\"0.8938053097345132\", \"0.8438629068410547\", \"0.9780655953026155\", \"0.7787351086407908\", \"0.7891063411584547\", \"0.7244072548738367\"], \"21\": [\"0.9060402684563759\", \"1.0\", \"0.926476632075494\", \"0.8524988854351541\", \"0.7639817203390269\", \"0.8709932381579796\"], \"22\": [\"0.9310344827586207\", \"1.0\", \"0.8126051965537983\", \"0.8653925852663946\", \"0.8302727026390117\", \"0.9627765850564689\"], \"23\": [\"0.9183673469387755\", \"0.9694880736660227\", \"0.7878158795207733\", \"0.721868688061021\", \"0.9269148799390148\", \"0.9546774457015843\"], \"24\": [\"0.9649638143891016\", \"0.9211517538236319\", \"1.0\", \"0.8381534535529309\", \"0.905752056962576\", \"0.9987995055231192\"]}"); + var thresholds_all = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\", \"19\": \"0.7\", \"20\": \"0.7\", \"21\": \"0.7\", \"22\": \"0.7\", \"23\": \"0.7\", \"24\": \"0.7\"}"); + var trends_all = JSON.parse("{\"0\": \"neutral\", \"1\": \"neutral\", \"2\": \"negative\", \"3\": \"positive\", \"4\": \"neutral\", \"5\": \"neutral\", \"6\": \"negative\", \"7\": \"neutral\", \"8\": \"negative\", \"9\": \"negative\", \"10\": \"positive\", \"11\": \"positive\", \"12\": \"neutral\", \"13\": \"negative\", \"14\": \"neutral\", \"15\": \"negative\", \"16\": \"positive\", \"17\": \"positive\", \"18\": \"positive\", \"19\": \"neutral\", \"20\": \"negative\", \"21\": \"negative\", \"22\": \"neutral\", \"23\": \"neutral\", \"24\": \"neutral\"}"); + var passed_all = JSON.parse("{\"0\": true, \"1\": true, \"2\": true, \"3\": true, \"4\": true, \"5\": true, \"6\": true, \"7\": false, \"8\": true, \"9\": true, \"10\": true, \"11\": true, \"12\": true, \"13\": true, \"14\": true, \"15\": true, \"16\": true, \"17\": true, \"18\": true, \"19\": true, \"20\": true, \"21\": true, \"22\": true, \"23\": true, \"24\": true}"); + var names_all = JSON.parse("{\"0\": \"Accuracy\", \"1\": \"Precision\", \"2\": \"Recall\", \"3\": \"F1 Score\", \"4\": \"AUROC\", \"5\": \"Accuracy\", \"6\": \"Precision\", \"7\": \"Recall\", \"8\": \"F1 Score\", \"9\": \"AUROC\", \"10\": \"Accuracy\", \"11\": \"Precision\", \"12\": \"Recall\", \"13\": \"F1 Score\", \"14\": \"AUROC\", \"15\": \"Accuracy\", \"16\": \"Precision\", \"17\": \"Recall\", \"18\": \"F1 Score\", \"19\": \"AUROC\", \"20\": \"Accuracy\", \"21\": \"Precision\", \"22\": \"Recall\", \"23\": \"F1 Score\", \"24\": \"AUROC\"}"); + var timestamps_all = JSON.parse("{\"0\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"1\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"2\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"3\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"4\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"5\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"6\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"7\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"8\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"9\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"10\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"11\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"12\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"13\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"14\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"15\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"16\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"17\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"18\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"19\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"20\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"21\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"22\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"23\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"24\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"]}"); + + var radioGroups = {}; + var labelGroups = {}; + for (let i = 0; i < inputs_all.length; i++) { + var input = inputs_all[i]; + var label = label_slice_selection[i]; + var groupName = input.name; + if (!radioGroups[groupName]) { + radioGroups[groupName] = []; + labelGroups[groupName] = []; + } + radioGroups[groupName].push(input); + labelGroups[groupName].push(label); + } + + // use radioGroups to loop through selection changing only one element at a time + for (let i = 0; i < selection.length; i++) { + for (let j = 0; j < inputs_all.length; j++) { + if (inputs_all[j].name === selection[i].split(":")[0]) { + radio_group = radioGroups[selection[i].split(":")[0]]; + label_group = labelGroups[selection[i].split(":")[0]]; + for (let k = 0; k < radio_group.length; k++) { + selection_copy = selection.slice(); + selection_copy[i] = selection[i].split(":")[0] + ":" + radio_group[k].value; + // get idx of slices where all elements match + var idx = Object.keys(slices_all).find(key => JSON.stringify(slices_all[key].sort()) === JSON.stringify(selection_copy.sort())); + if (idx === undefined) { + // set radio button to disabled and cursor to not allowed and color to gray if idx is undefined + radio_group[k].disabled = true; + label_group[k].style.cursor = "not-allowed"; + label_group[k].style.color = "gray"; + label_group[k].style.backgroundColor = "rgba(125, 125, 125, 0.2)"; + } + else { + radio_group[k].disabled = false; + label_group[k].style.cursor = "pointer"; + } + } + } + } + } + + traces = []; + var plot_number = parseInt(plot_selected.value.split(" ")[1]-1); + for (let i = 0; i < selections.length; i++) { + if (selections[i] === null) { + continue; + } + selection = selections[i] + + // get idx of slices where all elements match + var idx = Object.keys(slices_all).find(key => JSON.stringify(slices_all[key].sort()) === JSON.stringify(selection)); + var history_data = []; + for (let i = 0; i < histories_all[idx].length; i++) { + history_data.push(parseFloat(histories_all[idx][i])); + } + var timestamp_data = []; + for (let i = 0; i < timestamps_all[idx].length; i++) { + timestamp_data.push(timestamps_all[idx][i]); + } + threshold = parseFloat(thresholds_all[idx]); + trend = trends_all[idx]; + passed = passed_all[idx]; + name = names_all[idx]; + + // if trend is "positive" set keyword to upwards, if trend is "negative" set keyword to downwards, else set keyword to flat + if (trend === "positive") { + var trend_keyword = "upwards"; + } else if (trend === "negative") { + var trend_keyword = "downwards"; + } else { + var trend_keyword = "flat"; + } + + // if passed is true set keyword to Above, if passed is false set keyword to Below + if (passed) { + var passed_keyword = "above"; + } + else { + var passed_keyword = "below"; + } + + // create title for plot: Current {metric name} is trending {trend_keyword} and is {passed_keyword} the threshold. + // get number of nulls in selections, if 9 then plot title, else don't plot title + console.log(selections) + var nulls = 0; + for (let i = 0; i < selections.length; i++) { + if (selections[i] === null) { + nulls += 1; + } + } + if (nulls === 10) { + var plot_title = "Current " + name + " is trending " + trend_keyword + " and is " + passed_keyword + " the threshold."; + var showlegend = false; + } + else { + var plot_title = ""; + var showlegend = true; + } + name = "" + suffix = " ( " + for (let i = 0; i < selection.length; i++) { + if (selection[i].split(":")[0] === "metric") { + name += selection[i].split(":")[1]; + } + else { + if (selection[i].split(":")[1].includes("overall")) { + continue; + } else { + suffix += selection[i]; + suffix += ", "; + } + } + } + if (suffix === " ( ") { + name += ""; + } + else { + suffix = suffix.slice(0, -2); + name += suffix + " )"; + } + + var trace = { + // range of x is the length of the list of floats + x: timestamp_data, + y: history_data, + mode: 'lines+markers', + type: 'scatter', + marker: {color: plot_colors[i+1]}, + line: {color: plot_colors[i+1]}, + name: name, + }; + traces.push(trace); + } + + if (nulls === 10) { + var threshold_trace = { + x: timestamp_data, + y: Array.from({length: history_data.length}, (_, i) => threshold), + mode: 'lines', + type: 'scatter', + marker: {color: 'rgb(0,0,0)'}, + line: {color: 'rgb(0,0,0)', dash: 'dot'}, + name: '', + }; + traces.push(threshold_trace); + } + var layout = { + title: { + text: plot_title, + font: { + family: 'Arial, Helvetica, sans-serif', + size: 18, + } + }, + paper_bgcolor: 'rgba(0,0,0,0)', + plot_bgcolor: 'rgba(0,0,0,0)', + xaxis: { + zeroline: false, + showticklabels: false, + showgrid: false, + }, + yaxis: { + gridcolor: '#ffffff', + }, + showlegend: showlegend, + margin: { + l: 50, + r: 50, + b: 50, + t: 50, + pad: 4 + }, + // set height and width of plot to extra-wide to fit the plot + height: 500, + width: 900, + } + Plotly.newPlot(plot, traces, layout, {displayModeBar: false}); + } + + + + // Define a function to update the plot based on selected filters + function updatePlot() { + const inputs = document.querySelectorAll('#slice-selection input[type="radio"]:checked'); + var plot_selection = document.querySelectorAll('#plot-selection input[type="radio"]'); + var plot_selected = document.querySelectorAll('#plot-selection input[type="radio"]:checked')[0]; + // get number from value in plot_selected "Plot 1" -> 1 + var label_selection = document.querySelectorAll('#plot-selection label'); + var label_slice_selection = document.querySelectorAll('#slice-selection label'); + + // get all inputs values from div class radio-buttons + // get name of inputs + var inputs_name = []; + var inputs_value = []; + for (let i = 0; i < inputs.length; i++) { + inputs_name.push(inputs[i].name); + inputs_value.push(inputs[i].value); + } + + var plot_number = parseInt(plot_selected.value.split(" ")[1]-1); + var selection = []; + for (let i = 0; i < inputs_value.length; i++) { + selection.push(inputs_name[i] + ":" + inputs_value[i]); + } + selection.sort(); + selections[plot_number] = selection; + + // if plot_selected is "+" then add new radio button to plot_selection called "Plot N" where last plot is N-1 but keep "+" at end and set new radio button to checked for second last element + if (plot_selected.value === "+") { + // if 10 plots already exist, don't add new plot and gray out "+" + if (plot_selection.length === 13) { + plot_selected.checked = false; + label_selection[-1].style.color = "gray"; + return; + } + var new_plot = document.createElement("input"); + new_plot.type = "radio"; + new_plot.id = "Plot " + (plot_selection.length); + new_plot.name = "plot"; + new_plot.value = "Plot " + (plot_selection.length); + new_plot.checked = true; + var new_label = document.createElement("label"); + new_label.htmlFor = "Plot " + (plot_selection.length); + new_label.innerHTML = "Plot " + (plot_selection.length); + + // Parse plot_color to get r, g, b values + var plot_color = plot_colors[plot_selection.length] + const [r, g, b] = plot_color.match(/\d+/g); + const rgbaColor = `rgba(${r}, ${g}, ${b}, 0.2)`; + // set background color of new radio button to plot_color + new_label.style.backgroundColor = rgbaColor; + new_label.style.border = "2px solid " + plot_color; + new_label.style.color = plot_color; + + // insert new radio button and label before "+" radio button and after last radio button + plot_selected.insertAdjacentElement("beforebegin", new_plot); + plot_selected.insertAdjacentElement("beforebegin", new_label); + // Add event listener to new radio button + new_plot.addEventListener('change', updatePlot); + + // set plot_selected to new plot + plot_selected = new_plot + + for (let i = 0; i < label_selection.length-1; i++) { + plot_selection[i].checked = false; + label_selection[i].style.backgroundColor = "#ffffff"; + label_selection[i].style.border = "2px solid #DADCE0"; + label_selection[i].style.color = "#000000"; + } + } else { + for (let i = 0; i < plot_selection.length-1; i++) { + if (plot_selection[i].value !== plot_selected.value) { + plot_selection[i].checked = false; + label_selection[i].style.backgroundColor = "#ffffff"; + label_selection[i].style.border = "2px solid #DADCE0"; + label_selection[i].style.color = "#000000"; + } + else { + var plot_color = plot_colors[i+1] + const [r, g, b] = plot_color.match(/\d+/g); + const rgbaColor = `rgba(${r}, ${g}, ${b}, 0.2)`; + plot_selected.checked = true; + label_selection[i].style.backgroundColor = rgbaColor; + label_selection[i].style.border = "2px solid " + plot_color; + label_selection[i].style.color = plot_color; + } + } + } + var slices_all = JSON.parse("{\"0\": [\"metric:Accuracy\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"1\": [\"metric:Precision\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"2\": [\"metric:Recall\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"3\": [\"metric:F1 Score\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"4\": [\"metric:AUROC\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"5\": [\"metric:Accuracy\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"6\": [\"metric:Precision\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"7\": [\"metric:Recall\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"8\": [\"metric:F1 Score\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"9\": [\"metric:AUROC\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"10\": [\"metric:Accuracy\", \"gender:M\", \"age:overall_age\"], \"11\": [\"metric:Precision\", \"gender:M\", \"age:overall_age\"], \"12\": [\"metric:Recall\", \"gender:M\", \"age:overall_age\"], \"13\": [\"metric:F1 Score\", \"gender:M\", \"age:overall_age\"], \"14\": [\"metric:AUROC\", \"gender:M\", \"age:overall_age\"], \"15\": [\"metric:Accuracy\", \"gender:F\", \"age:overall_age\"], \"16\": [\"metric:Precision\", \"gender:F\", \"age:overall_age\"], \"17\": [\"metric:Recall\", \"gender:F\", \"age:overall_age\"], \"18\": [\"metric:F1 Score\", \"gender:F\", \"age:overall_age\"], \"19\": [\"metric:AUROC\", \"gender:F\", \"age:overall_age\"], \"20\": [\"metric:Accuracy\", \"age:overall_age\", \"gender:overall_gender\"], \"21\": [\"metric:Precision\", \"age:overall_age\", \"gender:overall_gender\"], \"22\": [\"metric:Recall\", \"age:overall_age\", \"gender:overall_gender\"], \"23\": [\"metric:F1 Score\", \"age:overall_age\", \"gender:overall_gender\"], \"24\": [\"metric:AUROC\", \"age:overall_age\", \"gender:overall_gender\"]}"); + var histories_all = JSON.parse("{\"0\": [\"0.8793103448275862\", \"0.9112260325449034\", \"0.8575824835984872\", \"0.9230144744587516\", \"0.8175329936926595\", \"0.916584170845128\"], \"1\": [\"0.8450704225352113\", \"0.8883412445283754\", \"0.7961352302411743\", \"0.9208934112141931\", \"0.8666950924061437\", \"0.8012599385166602\"], \"2\": [\"0.9523809523809523\", \"0.9490165279323434\", \"1.0\", \"0.8409656018676719\", \"0.8870390354301704\", \"0.9045440972725609\"], \"3\": [\"0.8955223880597015\", \"0.7809847260980638\", \"1.0\", \"0.8365585183544693\", \"0.9068393699311781\", \"0.9860835232523685\"], \"4\": [\"0.9743935309973046\", \"0.8701731770203791\", \"1.0\", \"1.0\", \"0.9073900095895263\", \"1.0\"], \"5\": [\"0.88\", \"0.8791842592739592\", \"0.8262115616349736\", \"0.9373940238476682\", \"0.8240361248834713\", \"0.8595082519104404\"], \"6\": [\"0.92\", \"0.8476042678401939\", \"0.9652052791499265\", \"0.9222768447320873\", \"0.9612635163689724\", \"0.7668058750835873\"], \"7\": [\"0.8518518518518519\", \"0.6812784060705941\", \"0.6685072239097107\", \"0.773556052849631\", \"0.9131247310352374\", \"0.6604382153005658\"], \"8\": [\"0.8846153846153846\", \"1.0\", \"0.7373973430239029\", \"0.8088822187245996\", \"0.812440929890144\", \"0.7718804326076331\"], \"9\": [\"0.9541062801932366\", \"0.9712658753145598\", \"1.0\", \"1.0\", \"0.7975653265168696\", \"0.934565405819743\"], \"10\": [\"0.8934426229508197\", \"0.7700653475175312\", \"0.8268806521162448\", \"1.0\", \"0.9180948185879803\", \"1.0\"], \"11\": [\"0.8777777777777778\", \"0.7876920965127165\", \"0.7493400363894769\", \"0.9257337904514158\", \"0.7872600500482494\", \"0.9661021479330794\"], \"12\": [\"0.9753086419753086\", \"0.9487799988771382\", \"1.0\", \"0.9030564913453146\", \"1.0\", \"1.0\"], \"13\": [\"0.9239766081871345\", \"0.9803446664763811\", \"0.9659185381219713\", \"1.0\", \"0.7892416791208378\", \"0.9336551556383622\"], \"14\": [\"0.9795242396868412\", \"0.9492236556240479\", \"0.8815904798440254\", \"0.9586394168401164\", \"1.0\", \"1.0\"], \"15\": [\"0.8942307692307693\", \"0.9934397483886594\", \"0.9317532146760295\", \"0.7428577701148424\", \"0.944805631985229\", \"0.8227196994553121\"], \"16\": [\"0.9491525423728814\", \"0.9331639033724253\", \"0.896429628610939\", \"0.9791293390143264\", \"0.9791112207162269\", \"1.0\"], \"17\": [\"0.875\", \"0.7082479018940693\", \"0.802566665945898\", \"0.9714202211916472\", \"0.9315912971695113\", \"0.9467323855074238\"], \"18\": [\"0.9105691056910569\", \"0.7983763656056397\", \"0.8358465799622541\", \"0.8870219049839082\", \"1.0\", \"0.8788616294782583\"], \"19\": [\"0.9568359375\", \"1.0\", \"1.0\", \"1.0\", \"0.9985570257337495\", \"1.0\"], \"20\": [\"0.8938053097345132\", \"0.8438629068410547\", \"0.9780655953026155\", \"0.7787351086407908\", \"0.7891063411584547\", \"0.7244072548738367\"], \"21\": [\"0.9060402684563759\", \"1.0\", \"0.926476632075494\", \"0.8524988854351541\", \"0.7639817203390269\", \"0.8709932381579796\"], \"22\": [\"0.9310344827586207\", \"1.0\", \"0.8126051965537983\", \"0.8653925852663946\", \"0.8302727026390117\", \"0.9627765850564689\"], \"23\": [\"0.9183673469387755\", \"0.9694880736660227\", \"0.7878158795207733\", \"0.721868688061021\", \"0.9269148799390148\", \"0.9546774457015843\"], \"24\": [\"0.9649638143891016\", \"0.9211517538236319\", \"1.0\", \"0.8381534535529309\", \"0.905752056962576\", \"0.9987995055231192\"]}"); + var thresholds_all = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\", \"19\": \"0.7\", \"20\": \"0.7\", \"21\": \"0.7\", \"22\": \"0.7\", \"23\": \"0.7\", \"24\": \"0.7\"}"); + var trends_all = JSON.parse("{\"0\": \"neutral\", \"1\": \"neutral\", \"2\": \"negative\", \"3\": \"positive\", \"4\": \"neutral\", \"5\": \"neutral\", \"6\": \"negative\", \"7\": \"neutral\", \"8\": \"negative\", \"9\": \"negative\", \"10\": \"positive\", \"11\": \"positive\", \"12\": \"neutral\", \"13\": \"negative\", \"14\": \"neutral\", \"15\": \"negative\", \"16\": \"positive\", \"17\": \"positive\", \"18\": \"positive\", \"19\": \"neutral\", \"20\": \"negative\", \"21\": \"negative\", \"22\": \"neutral\", \"23\": \"neutral\", \"24\": \"neutral\"}"); + var passed_all = JSON.parse("{\"0\": true, \"1\": true, \"2\": true, \"3\": true, \"4\": true, \"5\": true, \"6\": true, \"7\": false, \"8\": true, \"9\": true, \"10\": true, \"11\": true, \"12\": true, \"13\": true, \"14\": true, \"15\": true, \"16\": true, \"17\": true, \"18\": true, \"19\": true, \"20\": true, \"21\": true, \"22\": true, \"23\": true, \"24\": true}"); + var names_all = JSON.parse("{\"0\": \"Accuracy\", \"1\": \"Precision\", \"2\": \"Recall\", \"3\": \"F1 Score\", \"4\": \"AUROC\", \"5\": \"Accuracy\", \"6\": \"Precision\", \"7\": \"Recall\", \"8\": \"F1 Score\", \"9\": \"AUROC\", \"10\": \"Accuracy\", \"11\": \"Precision\", \"12\": \"Recall\", \"13\": \"F1 Score\", \"14\": \"AUROC\", \"15\": \"Accuracy\", \"16\": \"Precision\", \"17\": \"Recall\", \"18\": \"F1 Score\", \"19\": \"AUROC\", \"20\": \"Accuracy\", \"21\": \"Precision\", \"22\": \"Recall\", \"23\": \"F1 Score\", \"24\": \"AUROC\"}"); + var timestamps_all = JSON.parse("{\"0\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"1\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"2\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"3\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"4\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"5\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"6\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"7\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"8\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"9\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"10\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"11\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"12\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"13\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"14\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"15\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"16\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"17\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"18\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"19\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"20\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"21\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"22\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"23\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"], \"24\": [\"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:32\", \"2023-11-21 10:32:33\", \"2023-11-21 10:32:33\"]}"); + + for (let i = 0; i < selection.length; i++) { + // use selection to set label_slice_selection background color + for (let j = 0; j < inputs_all.length; j++) { + if (inputs_all[j].name === selection[i].split(":")[0]) { + if (inputs_all[j].value == selection[i].split(":")[1]) { + inputs_all[j].checked = true; + const [r, g, b] = plot_color.match(/\d+/g); + const rgbaColor = `rgba(${r}, ${g}, ${b}, 0.2)`; + label_slice_selection[j].style.backgroundColor = rgbaColor; + label_slice_selection[j].style.border = "2px solid " + plot_color; + label_slice_selection[j].style.color = plot_color; + } + else { + inputs_all[j].checked = false; + label_slice_selection[j].style.backgroundColor = "#ffffff"; + label_slice_selection[j].style.border = "2px solid #DADCE0"; + label_slice_selection[j].style.color = "#000000"; + } + } + } + } + + var radioGroups = {}; + var labelGroups = {}; + for (let i = 0; i < inputs_all.length; i++) { + var input = inputs_all[i]; + var label = label_slice_selection[i]; + var groupName = input.name; + if (!radioGroups[groupName]) { + radioGroups[groupName] = []; + labelGroups[groupName] = []; + } + radioGroups[groupName].push(input); + labelGroups[groupName].push(label); + } + + // use radioGroups to loop through selection changing only one element at a time + for (let i = 0; i < selection.length; i++) { + for (let j = 0; j < inputs_all.length; j++) { + if (inputs_all[j].name === selection[i].split(":")[0]) { + radio_group = radioGroups[selection[i].split(":")[0]]; + label_group = labelGroups[selection[i].split(":")[0]]; + for (let k = 0; k < radio_group.length; k++) { + selection_copy = selection.slice(); + selection_copy[i] = selection[i].split(":")[0] + ":" + radio_group[k].value; + // get idx of slices where all elements match + var idx = Object.keys(slices_all).find(key => JSON.stringify(slices_all[key].sort()) === JSON.stringify(selection_copy.sort())); + if (idx === undefined) { + // set radio button to disabled and cursor to not allowed and color to gray if idx is undefined + radio_group[k].disabled = true; + label_group[k].style.cursor = "not-allowed"; + label_group[k].style.color = "gray"; + label_group[k].style.backgroundColor = "rgba(125, 125, 125, 0.2)"; + } + else { + radio_group[k].disabled = false; + label_group[k].style.cursor = "pointer"; + } + } + } + } + } + + traces = []; + for (let i = 0; i < selections.length; i++) { + if (selections[i] === null) { + continue; + } + selection = selections[i] + // get idx of slices where all elements match + var idx = Object.keys(slices_all).find(key => JSON.stringify(slices_all[key].sort()) === JSON.stringify(selection)); + var history_data = []; + for (let i = 0; i < histories_all[idx].length; i++) { + history_data.push(parseFloat(histories_all[idx][i])); + } + var timestamp_data = []; + for (let i = 0; i < timestamps_all[idx].length; i++) { + timestamp_data.push(timestamps_all[idx][i]); + } + threshold = parseFloat(thresholds_all[idx]); + trend = trends_all[idx]; + passed = passed_all[idx]; + name = names_all[idx]; + + // if trend is "positive" set keyword to upwards, if trend is "negative" set keyword to downwards, else set keyword to flat + if (trend === "positive") { + var trend_keyword = "upwards"; + } else if (trend === "negative") { + var trend_keyword = "downwards"; + } else { + var trend_keyword = "flat"; + } + + // if passed is true set keyword to Above, if passed is false set keyword to Below + if (passed) { + var passed_keyword = "above"; + } + else { + var passed_keyword = "below"; + } + + // create title for plot: Current {metric name} is trending {trend_keyword} and is {passed_keyword} the threshold. + // get number of nulls in selections, if 9 then plot title, else don't plot title + var nulls = 0; + for (let i = 0; i < selections.length; i++) { + if (selections[i] === null) { + nulls += 1; + } + } + if (nulls === 10) { + var plot_title = "Current " + name + " is trending " + trend_keyword + " and is " + passed_keyword + " the threshold."; + var showlegend = false; + } + else { + var plot_title = ""; + var showlegend = true; + } + name = "" + suffix = " ( " + for (let i = 0; i < selection.length; i++) { + if (selection[i].split(":")[0] === "metric") { + name += selection[i].split(":")[1]; + } + else { + if (selection[i].split(":")[1].includes("overall")) { + continue; + } else { + suffix += selection[i]; + suffix += ", "; + } + } + } + if (suffix === " ( ") { + name += ""; + } + else { + suffix = suffix.slice(0, -2); + name += suffix + " )"; + } + var trace = { + // range of x is the length of the list of floats + x: timestamp_data, + y: history_data, + mode: 'lines+markers', + type: 'scatter', + marker: {color: plot_colors[i+1]}, + line: {color: plot_colors[i+1]}, + name: name, + //name: selection.toString(), + }; + traces.push(trace); + } + + if (nulls === 10) { + var threshold_trace = { + x: timestamp_data, + y: Array.from({length: history_data.length}, (_, i) => threshold), + mode: 'lines', + type: 'scatter', + marker: {color: 'rgb(0,0,0)'}, + line: {color: 'rgb(0,0,0)', dash: 'dot'}, + name: '', + }; + traces.push(threshold_trace); + } + var layout = { + title: { + text: plot_title, + font: { + family: 'Arial, Helvetica, sans-serif', + size: 18, + } + }, + paper_bgcolor: 'rgba(0,0,0,0)', + plot_bgcolor: 'rgba(0,0,0,0)', + xaxis: { + zeroline: false, + showticklabels: false, + showgrid: false, + }, + yaxis: { + gridcolor: '#ffffff', + }, + showlegend: showlegend, + margin: { + l: 50, + r: 50, + b: 50, + t: 50, + pad: 4 + }, + // set height and width of plot to extra-wide to fit the plot + height: 500, + width: 900, + } + Plotly.newPlot(plot, traces, layout, {displayModeBar: false}); + } + // Add event listeners to radio buttons + for (let input of inputs_all) { + input.addEventListener('change', updatePlot); + } + for (let selection of plot_selection) { + selection.addEventListener('change', updatePlotSelection); + } + // Initial update when the page loads + updatePlot(); + \ No newline at end of file diff --git a/api/tutorials/synthea/los_prediction.html b/api/tutorials/synthea/los_prediction.html index 155a1effd..899c57fce 100644 --- a/api/tutorials/synthea/los_prediction.html +++ b/api/tutorials/synthea/los_prediction.html @@ -489,7 +489,7 @@

Import Libraries
-/home/amritk/.cache/pypoetry/virtualenvs/pycyclops-mhx6UJW0-py3.10/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
+/home/amritk/.cache/pypoetry/virtualenvs/pycyclops-wIzUAwxh-py3.10/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
   from .autonotebook import tqdm as notebook_tqdm
 

@@ -681,17 +681,17 @@

Compute length of stay (labels)
-2023-11-20 15:40:06,463 INFO cycquery.orm    - Database setup, ready to run queries!
-2023-11-20 15:40:10,609 INFO cycquery.orm    - Query returned successfully!
-2023-11-20 15:40:10,610 INFO cycquery.utils.profile - Finished executing function run_query in 3.522007 s
-2023-11-20 15:40:12,455 INFO cycquery.orm    - Query returned successfully!
-2023-11-20 15:40:12,457 INFO cycquery.utils.profile - Finished executing function run_query in 1.845816 s
-2023-11-20 15:40:13,745 INFO cycquery.orm    - Query returned successfully!
-2023-11-20 15:40:13,746 INFO cycquery.utils.profile - Finished executing function run_query in 0.357999 s
-2023-11-20 15:40:14,189 INFO cycquery.orm    - Query returned successfully!
-2023-11-20 15:40:14,190 INFO cycquery.utils.profile - Finished executing function run_query in 0.439785 s
-2023-11-20 15:40:14,277 INFO cycquery.orm    - Query returned successfully!
-2023-11-20 15:40:14,278 INFO cycquery.utils.profile - Finished executing function run_query in 0.087144 s
+2023-11-21 10:32:16,868 INFO cycquery.orm    - Database setup, ready to run queries!
+2023-11-21 10:32:20,273 INFO cycquery.orm    - Query returned successfully!
+2023-11-21 10:32:20,274 INFO cycquery.utils.profile - Finished executing function run_query in 2.435702 s
+2023-11-21 10:32:22,077 INFO cycquery.orm    - Query returned successfully!
+2023-11-21 10:32:22,078 INFO cycquery.utils.profile - Finished executing function run_query in 1.802668 s
+2023-11-21 10:32:23,282 INFO cycquery.orm    - Query returned successfully!
+2023-11-21 10:32:23,283 INFO cycquery.utils.profile - Finished executing function run_query in 0.342421 s
+2023-11-21 10:32:23,708 INFO cycquery.orm    - Query returned successfully!
+2023-11-21 10:32:23,709 INFO cycquery.utils.profile - Finished executing function run_query in 0.422492 s
+2023-11-21 10:32:23,788 INFO cycquery.orm    - Query returned successfully!
+2023-11-21 10:32:23,788 INFO cycquery.utils.profile - Finished executing function run_query in 0.078192 s
 
@@ -778,9 +778,9 @@

Drop NaNs based on the
-
- + +
diff --git a/blog/cyclops-alpha-release/index.html b/blog/cyclops-alpha-release/index.html index a96a88116..b9b80cfad 100644 --- a/blog/cyclops-alpha-release/index.html +++ b/blog/cyclops-alpha-release/index.html @@ -5,8 +5,8 @@ CyclOps Alpha Release | CyclOps - - + +

CyclOps Alpha Release

· One min read
Amrit Krishnan

Developing machine learning (ML) systems for clinical use cases is difficult. Furthermore, evaluating ML models diff --git a/blog/index.html b/blog/index.html index d9409d6eb..c65d968be 100644 --- a/blog/index.html +++ b/blog/index.html @@ -5,8 +5,8 @@ Blog | CyclOps - - + +

· One min read
Amrit Krishnan

Developing machine learning (ML) systems for clinical use cases is difficult. Furthermore, evaluating ML models diff --git a/blog/tags/alpha/index.html b/blog/tags/alpha/index.html index 19611f588..734449f87 100644 --- a/blog/tags/alpha/index.html +++ b/blog/tags/alpha/index.html @@ -5,8 +5,8 @@ One post tagged with "alpha" | CyclOps - - + +

One post tagged with "alpha"

View All Tags

· One min read
Amrit Krishnan

Developing machine learning (ML) systems for clinical use cases is difficult. Furthermore, evaluating ML models diff --git a/blog/tags/index.html b/blog/tags/index.html index 7c1f732e6..1d3ecb26e 100644 --- a/blog/tags/index.html +++ b/blog/tags/index.html @@ -5,8 +5,8 @@ Tags | CyclOps - - + +

diff --git a/docs/intro/index.html b/docs/intro/index.html index 0858bed17..882502cb0 100644 --- a/docs/intro/index.html +++ b/docs/intro/index.html @@ -5,8 +5,8 @@ intro | CyclOps - - + +

intro

Getting Started

diff --git a/index.html b/index.html index de8749247..fc871b86d 100644 --- a/index.html +++ b/index.html @@ -5,8 +5,8 @@ CyclOps | CyclOps - - + +

CyclOps

Cyclical development towards Operationalizing ML models for healthcare

Rigorous Evaluation

CyclOps APIs support rigorous evaluation across patient sub-populations

Deployment and Operationalization

By leveraging powerful open source tools, CyclOps provides a modular and extensible MLOps platform for healthcare

Monitoring

CyclOps supports monitoring of clinical ML models for dataset shifts

diff --git a/markdown-page/index.html b/markdown-page/index.html index 49cefc183..51d826a6c 100644 --- a/markdown-page/index.html +++ b/markdown-page/index.html @@ -5,8 +5,8 @@ Markdown page example | CyclOps - - + +