forked from IntelPython/scikit-learn_bench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlog_reg.py
66 lines (56 loc) · 2.91 KB
/
log_reg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# ===============================================================================
# Copyright 2020-2021 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ===============================================================================
import argparse
import bench
from cuml import LogisticRegression
parser = argparse.ArgumentParser(description='cuML logistic '
'regression benchmark')
parser.add_argument('--no-fit-intercept', dest='fit_intercept',
action='store_false', default=True,
help="Don't fit intercept")
parser.add_argument('--solver', default='qn', choices=('qn', 'owl'),
help='Solver to use.')
parser.add_argument('--linesearch-max-iter', type=int, default=50,
help='Maximum iterations per solver outer iteration')
parser.add_argument('--maxiter', type=int, default=100,
help='Maximum iterations for the iterative solver')
parser.add_argument('-C', dest='C', type=float, default=1.0,
help='Regularization parameter')
parser.add_argument('--tol', type=float, default=1e-10,
help='Tolerance for solver. Default is 1e-10.')
params = bench.parse_args(parser)
# Load generated data
X_train, X_test, y_train, y_test = bench.load_data(params)
params.n_classes = y_train[y_train.columns[0]].nunique()
# Create our classifier object
clf = LogisticRegression(penalty='l2', C=params.C,
linesearch_max_iter=params.linesearch_max_iter,
fit_intercept=params.fit_intercept, verbose=params.verbose,
tol=params.tol,
max_iter=params.maxiter, solver=params.solver)
# Time fit and predict
fit_time, _ = bench.measure_function_time(clf.fit, X_train, y_train, params=params)
y_pred = clf.predict(X_train)
train_acc = 100 * bench.accuracy_score(y_pred, y_train)
predict_time, y_pred = bench.measure_function_time(
clf.predict, X_test, params=params)
test_acc = 100 * bench.accuracy_score(y_pred, y_test)
bench.print_output(library='cuml', algorithm='log_reg',
stages=['training', 'prediction'], params=params,
functions=['LogReg.fit', 'LogReg.predict'],
times=[fit_time, predict_time], metric_type='accuracy[%]',
metrics=[train_acc, test_acc], data=[X_train, X_test],
alg_instance=clf)