forked from IntelPython/scikit-learn_bench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdf_clsf.py
98 lines (84 loc) · 4.24 KB
/
df_clsf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# ===============================================================================
# Copyright 2020-2021 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ===============================================================================
import argparse
import bench
import numpy as np
def main():
from sklearn.ensemble import RandomForestClassifier
# Load and convert data
X_train, X_test, y_train, y_test = bench.load_data(params)
# Create our random forest classifier
clf = RandomForestClassifier(criterion=params.criterion,
n_estimators=params.num_trees,
max_depth=params.max_depth,
max_features=params.max_features,
min_samples_split=params.min_samples_split,
max_leaf_nodes=params.max_leaf_nodes,
min_impurity_decrease=params.min_impurity_decrease,
bootstrap=params.bootstrap,
random_state=params.seed,
n_jobs=params.n_jobs)
params.n_classes = len(np.unique(y_train))
fit_time, _ = bench.measure_function_time(clf.fit, X_train, y_train, params=params)
y_pred = clf.predict(X_train)
y_proba = clf.predict_proba(X_train)
train_acc = bench.accuracy_score(y_train, y_pred)
train_log_loss = bench.log_loss(y_train, y_proba)
train_roc_auc = bench.roc_auc_score(y_train, y_proba)
predict_time, y_pred = bench.measure_function_time(
clf.predict, X_test, params=params)
y_proba = clf.predict_proba(X_test)
test_acc = bench.accuracy_score(y_test, y_pred)
test_log_loss = bench.log_loss(y_test, y_proba)
test_roc_auc = bench.roc_auc_score(y_test, y_proba)
bench.print_output(
library='sklearn',
algorithm='df_clsf',
stages=['training', 'prediction'],
params=params,
functions=['df_clsf.fit', 'df_clsf.predict'],
times=[fit_time, predict_time],
metric_type=['accuracy', 'log_loss', 'roc_auc'],
metrics=[
[train_acc, test_acc],
[train_log_loss, test_log_loss],
[train_roc_auc, test_roc_auc],
],
data=[X_train, X_test],
alg_instance=clf,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='scikit-learn random forest '
'classification benchmark')
parser.add_argument('--criterion', type=str, default='gini',
choices=('gini', 'entropy'),
help='The function to measure the quality of a split')
parser.add_argument('--num-trees', type=int, default=100,
help='Number of trees in the forest')
parser.add_argument('--max-features', type=bench.float_or_int_or_str, default=None,
help='Upper bound on features used at each split')
parser.add_argument('--max-depth', type=int, default=None,
help='Upper bound on depth of constructed trees')
parser.add_argument('--min-samples-split', type=bench.float_or_int, default=2,
help='Minimum samples number for node splitting')
parser.add_argument('--max-leaf-nodes', type=int, default=None,
help='Maximum leaf nodes per tree')
parser.add_argument('--min-impurity-decrease', type=float, default=0.,
help='Needed impurity decrease for node splitting')
parser.add_argument('--no-bootstrap', dest='bootstrap', default=True,
action='store_false', help="Don't control bootstraping")
params = bench.parse_args(parser)
bench.run_with_context(params, main)