forked from IntelPython/scikit-learn_bench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdistances.py
44 lines (35 loc) · 1.82 KB
/
distances.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# ===============================================================================
# Copyright 2020-2021 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ===============================================================================
import argparse
import bench
def main():
from sklearn.metrics.pairwise import pairwise_distances
# Load data
X, _, _, _ = bench.load_data(params, generated_data=['X_train'], add_dtype=True)
time, _ = bench.measure_function_time(pairwise_distances, X, metric=params.metric,
n_jobs=params.n_jobs, params=params)
bench.print_output(library='sklearn', algorithm='distances', stages=['computation'],
params=params, functions=[params.metric.capitalize()],
times=[time], metric_type=None, metrics=[None], data=[X],
alg_params={'metric': params.metric})
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='scikit-learn pairwise distances '
'benchmark')
parser.add_argument('--metric', default='cosine',
choices=['cosine', 'correlation'],
help='Metric to test for pairwise distances')
params = bench.parse_args(parser)
bench.run_with_context(params, main)