forked from IntelPython/scikit-learn_bench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtsne.py
71 lines (60 loc) · 2.89 KB
/
tsne.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# ===============================================================================
# Copyright 2020-2021 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ===============================================================================
import bench
import argparse
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
def main():
from sklearn.manifold import TSNE
# Load and convert data
X, _, _, _ = bench.load_data(params)
# Create our TSNE model
tsne = TSNE(n_components=params.n_components, early_exaggeration=params.early_exaggeration,
learning_rate=params.learning_rate, angle=params.angle,
min_grad_norm=params.min_grad_norm, random_state=params.random_state)
fit_time, _ = bench.measure_function_time(tsne.fit, X, params=params)
divergence = tsne.kl_divergence_
bench.print_output(
library='sklearn',
algorithm='TSNE',
stages=['training'],
params=params,
functions=['TSNE.fit'],
times=[fit_time],
metric_type='divergence',
metrics=[divergence],
data=[X],
alg_instance=tsne,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='scikit-learn tsne '
'regression benchmark')
parser.add_argument('--n-components', type=int, default=2,
help='The dimension of the embedded space.')
parser.add_argument('--early-exaggeration', type=float, default=12.0,
help='This factor increases the attractive forces between points '
'and allows points to move around more freely, '
'finding their nearest neighbors more easily.')
parser.add_argument('--learning-rate', type=float, default=200.0,
help='The learning rate for t-SNE is usually in the range [10.0, 1000.0].')
parser.add_argument('--angle', type=float, default=0.5,
help='Angular size. This is the trade-off between speed and accuracy.')
parser.add_argument('--min-grad-norm', type=float, default=1e-7,
help='If the gradient norm is below this threshold,'
'the optimization is stopped.')
parser.add_argument('--random-state', type=int, default=1234)
params = bench.parse_args(parser)
bench.run_with_context(params, main)