-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_logistic_regression_report.py
57 lines (44 loc) · 2.15 KB
/
run_logistic_regression_report.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import datetime
import pandas as pd
import numpy as np
from multiprocessing import Pool, cpu_count
from sklearn.metrics import accuracy_score, log_loss
from sklearn.linear_model import LogisticRegression
from features.data_provider import all_features, other_features, player_features, DataLoader
from notebook_helpers import iterate_simulations, run_lr_model_for_features, simulation_iteration_report
from models.helpers import get_default_parameters, get_best_params
def write_log(filename, text, print_text=False):
with open(filename, "a") as f:
f.write(text + "\n")
if print_text:
print(text)
tournament_parameters = [
('data/original/wc_2018_games_real.csv', 'data/original/wc_2018_bets.csv', "2018-06-14"),
('data/original/wc_2014_games_real.csv', 'data/original/wc_2014_bets.csv', "2014-06-12"),
('data/original/wc_2010_games_real.csv', 'data/original/wc_2010_bets.csv', "2010-06-11")
]
feature_sets = [
("all_features", all_features),
("general_features", other_features),
("player_features", player_features)
]
file_name = "lr_report_full.txt"
reports = []
for (name, feature_set) in feature_sets:
write_log(file_name, str(datetime.datetime.now()))
write_log(file_name, f"Running test for feature set: {name}", print_text=True)
data_loader = DataLoader(feature_set)
X, y = data_loader.get_all_data("home_win")
params = {'n_jobs': cpu_count(), "solver": "newton-cg", 'C': 0.001}
for (tt_file, bet_file, filter_start) in tournament_parameters:
data_loader.set_filter_start(filter_start)
simulations, units, kellys = iterate_simulations(data_loader,
tt_file,
bet_file,
run_lr_model_for_features,
params)
report = simulation_iteration_report(simulations, units, kellys)
report["id"] = f"{name}_{filter_start}"
write_log(file_name, str(report), print_text=True)
reports.append(report)
pd.DataFrame(reports).to_csv("lr_model_report.csv")