-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmvpa_direction.asv
191 lines (128 loc) · 5.71 KB
/
mvpa_direction.asv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
clear all; close all;
% data: anatomical, functonal (task)
% roi: mt and pt
% experimental protocols (knowledge) which trial when
%% directories
subject = 'WJ-Pilot1';
% paths.main = fullfile('~', 'Dropbox', '[WP]', '[Projects]', 'EB-MT', 'Data-MTPilotTask');
% paths.roi = fullfile(paths.main, subject, 'ses-01', 'derivatives');
% paths.beta = fullfile(paths.main, subject, {'ses-02', 'ses-03'}, 'derivatives');
% paths.exp = fullfile(paths.main, subject);
paths.main = fullfile('C:\Dropbox\__Projects\_MT_sound_and_motion\[ScanData]');
paths.roi = fullfile(paths.main, subject);
paths.exp = fullfile(paths.main, subject);
% paths.beta = fullfile(paths.main, subject,'MVPA_2mm')
paths.beta = fullfile(paths.main, subject,'MVPA_3mm')
%% load ROIs (aka .voi files)
% voiFile = fullfile(paths.roi, ['MT_L_from-2mm.voi']);
voiFile = fullfile(paths.roi, ['MT_L_from-3mm.voi']);
roi = xff(voiFile); % HERE!!! this loads in the file
%% setup
% roi
rois = {'rPT'};
% conditions
condnames = {'Right', 'Left', 'Blank'};
% conditions to include in training
includeConds = {'Right', 'Left'};
% labels
labelid = 3; % 2: condition / 3: LR
if labelid == 2
labelMatch = {'Seq', 'Onset', 'Random'}; % 1 = left, 2 = right
elseif labelid == 3
labelMatch = {'left', 'right'};
end
% beta from vmp or glm
betaformat = 1; % 1: vmp; 2: glm
%% load beta weights
for whichroi = 1:length(rois)
roiname = rois(whichroi);
designmat = []; % initialize the design matrix for roi voxels
condsmat = {}; % initialize the conditions matrix for roi voxels
labelsmat = {}; % initialize the labels matrix for roi voxels
for i = 1:length(paths.beta) % for each session
%
% vmpFiles = dir(fullfile(paths.beta{i}, '*2mm*GLM-2G_PreOn-1-PostOn-7_z-t_Trials.vmp'));
% glmFiles = dir(fullfile(paths.beta{i}, '*2mm*.glm'));
vmpFiles = dir(fullfile(paths.beta, '*3mm*GLM-2G_PreOn-1-PostOn-7_z-t_Trials.vmp'));
glmFiles = dir(fullfile(paths.beta, '*3mm*.glm'));
for i2 = 1:length(vmpFiles) % for each vmp file
% load vmp file
if betaformat == 1
vmpPath = fullfile(paths.beta{i}, vmpFiles(i2).name);
vmp = xff(vmpPath); % loading vmp into MATLAB
betaWeights = VMPinVOI(vmp, roi); % get the beta weights by roi
elseif betaformat == 2
glmPath = fullfile(paths.beta{i}, glmFiles(i2).name);
glm = xff(glmPath);
betaWeights = GLMinVOI(glm, roi);
end
% get session and run numbers to load exp protocols
scanInfo = regexp(vmpFiles(i2).name, '.*_ses-(?<ses>\d+)_.*_run-(?<run>\d+)_.*', 'names');
% load experimental protocols
expPattern = sprintf('*_ses-%s_*_run-%s_*.mat', scanInfo.ses, scanInfo.run);
expFile = dir(fullfile(paths.exp, expPattern));
load(fullfile(paths.exp, expFile(1).name), 'emat');
% roi
roiIndx = strcmp({betaWeights.name}, roiname);
if betaformat == 1
designmat = [designmat; betaWeights(roiIndx).beta'];
elseif betaformat == 2
designmat = [designmat; betaWeights(roiIndx).beta(:,1:end-1)'];
end
condsmat = cat(1, condsmat, condnames(emat(:,2))');
labelsmat = cat(1, labelsmat, labelMatch(emat(:,labelid))');
end
end
%% define train and test sets
nconds = length(condnames);
ntrialsPerRun = size(emat,1);
p = 1;
for nruns = 2:12 % this is the cross-validation runs
accuracy = nan(nruns, 3);
ntrials = nan(nruns, 3);
resultsMat = {{}, {}, {}};
for testRun = 1:nruns % the fold
% test set
testIndx = 1+(testRun-1)*ntrialsPerRun : ntrialsPerRun+(testRun-1)*ntrialsPerRun;
testDesign = designmat(testIndx,:);
testLabels = labelsmat(testIndx);
testConds = condsmat(testIndx);
% train set
allIndx = 1:ntrialsPerRun*(nruns-1)+ntrialsPerRun;
trainIndx = setdiff(allIndx, testIndx);
tempConds = condsmat(trainIndx);
tempDesign = designmat(trainIndx,:);
tempLabels = labelsmat(trainIndx);
condIndx = startsWith(tempConds, includeConds);
trainDesign = tempDesign(condIndx,:);
trainLabels = tempLabels(condIndx);
trainConds = tempConds(condIndx);
% run
[model,fitInfo] = fitcecoc(trainDesign, trainLabels);
% [model,fitInfo] = fitclinear(trainDesign, trainLabels); % linear classification model
predictedLabels = predict(model, testDesign);
results = [testLabels, predictedLabels];
% you can consider sem by trial sample (each run = 26 n's
% add/removed)
for i3 = 1:nconds
thisIndx = startsWith(testConds, condnames(i3));
accuracy(testRun,i3) = sum(strcmp(testLabels(thisIndx), predictedLabels(thisIndx)))/sum(thisIndx);
ntrials(testRun,i3) = sum(thisIndx);
resultsMat{i3} = cat(1, resultsMat{i3}, results(thisIndx,:));
end
end
tmp = cellfun(@(x) strcmp(x(:,1), x(:,2)), resultsMat, 'UniformOutput', false);
perfAvg(p,:) = cellfun(@mean, tmp); % averaging the accuracy value at the end
perfSEM(p,:) = cellfun(@(x) std(x) / sqrt(length(x)), tmp);
p = p + 1;
end
figure(1);
subplot(1,3,whichroi);
errorbar(repmat([2:12]',1,3), perfAvg, perfSEM,'o-'); hold on;
plot(2:12, ones(1,11)*(1./length(labelMatch)), 'k--');
legend(condnames);
xlabel('nruns'); ylabel('accuracy');
title(roiname);
ylim([0 1]);
axis('square');
end