-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathregression_vep_testing.m
72 lines (52 loc) · 2.92 KB
/
regression_vep_testing.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
clear
%datatype = 'vep';
datatype = 'vep_psychophysics';
group = 'AM';
%% Load relevant data
subjectList_vep;
idx = cellfun(@(x) strcmpi(x(1:2),group), sID); % select group
sID = sID(idx);
i = 1
sCond = 'congruent';
switch lower(datatype)
case 'vep'
vepDataFile = dir([cd filesep 'output_vep' filesep sID{i} '-vep-' sCond '.mat']);
load([vepDataFile.folder filesep vepDataFile.name]); % loads congruentVep
data = congruentVep; clear congruentVep vepDataFile;
vepFitFile = dir([cd filesep 'fitdata_vep' filesep 'model_fits' filesep sID{i} '_' sCond '.mat']); % vep
load([vepFitFile.folder filesep vepFitFile.name]); % loads p
modelfit = p; clear p vepFitFile;
case 'vep_psychophysics'
psyDataFile = dir([cd filesep 'output_vep_psychophysics' filesep sID{i} '-motor-' sCond '.mat']);
load([psyDataFile.folder filesep psyDataFile.name]); % loads congruentMotor;
data = congruentMotor; clear congruentMotor psyDataFile;
psyFitFile = dir([cd filesep 'fitdata_vep_psychophysics' filesep 'model_fits' filesep sID{i} '_' sCond '.mat']); %psychophysics
load([psyFitFile.folder filesep psyFitFile.name]); % loads p
modelfit = p; clear p psyFitFile;
otherwise
disp([datatype ' is an undefined datatype'])
end
% reduce data to only joystick-used trials
if strcmp(datatype, 'vep_psychophysics')
data.experiment.BEcontrastStart = data.experiment.BEcontrastStart(data.conditionInfo.joyUsedIndex,:);
data.experiment.binoResponseStart = data.experiment.binoResponseStart(data.conditionInfo.joyUsedIndex,:);
data.experiment.BEcontrastEnd = data.experiment.BEcontrastEnd(data.conditionInfo.joyUsedIndex,:);
data.experiment.binoResponseEnd = data.experiment.binoResponseEnd(data.conditionInfo.joyUsedIndex,:);
data.experiment.LEcontrast = data.experiment.LEcontrast(data.conditionInfo.joyUsedIndex,:);
data.experiment.REcontrast = data.experiment.REcontrast(data.conditionInfo.joyUsedIndex,:);
data.experiment.response = data.experiment.response(data.conditionInfo.joyUsedIndex,:);
% update fast eye trials
data.config.fastEye = data.config.fastEye(data.conditionInfo.joyUsedIndex,:);
end
% calibrate response (no model fitting is done otherwise)
[err,predModel,respJoy,respJoyCalib,t,stim,n] = b_s.getErr(modelfit, data);
% vectors
contrastLE = reshape([data.experiment.LEcontrast],1,[])';
contrastRE = reshape([data.experiment.REcontrast],1,[])';
response = reshape(cell2mat(respJoyCalib'),1,[])';
% unclear to me if it's a good idea to zero-center, skip for now
vars = table(contrastLE, contrastRE, contrastLE.*contrastRE, response);
mod = fitlm(vars, 'linear', 'RobustOpts', 'on', 'Intercept', true);
figure(2); clf; hold on;
scatter3(contrastRE,contrastLE, response, 'filled', 'ColorVariable', 'response');
zlabel('response'); ylabel('LE contrast'); xlabel('RE contrast')