-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPlot_Temporal_Model.m
151 lines (120 loc) · 3.97 KB
/
Plot_Temporal_Model.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
% Plot_Temporal_Model.m
%
% Plots each stage of the temporal model
%
% written IF & GMB
%
% 25/02/2023 moved into clean folder (IF)
% 28/02/2023 (gmb) added leaky integrator response (R1)
tp = p2p_c.define_temporalparameters();
% Calculate model response to a standard trial
clear trl;
trl.pw = 0.002;
trl.amp = 3;
trl.dur = .05 ;
trl.freq = 75;
trl.simdur = 1.5; %sec
t_crop = round((trl.dur*1.2)/tp.dt);
trl = p2p_c.define_trial(tp,trl);
trl= p2p_c.convolve_model(tp, trl);
% R1 is not needed to compute spikes, but here it is for plotting:
ptid = find(diff(trl.pt))+1;
ptid = [ptid,ptid(end)+2000]; % recovery from last pulse
R = zeros(1,length(ptid));
% Loop through the events, calculating R1 at the end of the event
% and add impulse responses when R1 peaks and is after the refractory period.
spikeId = zeros(size(R));
trl.R1 = zeros(size(trl.t)); % will hold continuous R1 (leaky integrator) response
lastSpikeTime = -1; % Keep track of time of last spike for refractory period. Start 'fresh'
for i=1:(length(ptid)-1)
tNow = trl.t(ptid(i+1));
delta = trl.t(ptid(i+1))-trl.t(ptid(i)); % time since last 'event'
% Closed form solution to leaky integrator that predicts
% R(i+1) from R(i), delta and tau1:
R(i+1) = exp(-delta/tp.tau1)*[R(i)-trl.pt(ptid(i))*tp.tau1] + trl.pt(ptid(i))*tp.tau1;
ti = 1:(ptid(i+1)-ptid(i));
trl.R1(ptid(i)+ti) = exp(-ti*tp.dt/tp.tau1)*[R(i)-trl.pt(ptid(i))*tp.tau1] + trl.pt(ptid(i))*tp.tau1;
end
tplot = 1000*(trl.t(1:t_crop)-trl.lag);
xlim = 1000*[-trl.lag,trl.dur];
figure(1)
clf
% pulse train
subplot(4,1,1);
plot(tplot, trl.pt(1:t_crop), 'k-');
set(gca, 'YLim', trl.amp*1.2*[-1 1]);
set(gca,'XLim',xlim);
ylabel('Current Amplitude');
xlabel('Time (msec)');
title('Pulse Train');
% R1
subplot(4,1,2)
plot(tplot,1000*trl.R1(1:t_crop),'k-');
ylabel('R_1');
set(gca,'XLim',xlim);
set(gca,'YLim',[-1,1]);
xlabel('Time (msec)');
title('Leaky Integrator Response');
% spikes without refractory period
subplot(4, 1, 3)
spikes = zeros(1, t_crop);
spikes(trl.spikeWhen) = trl.spikes_norefrac;
plot(tplot, spikes(1:t_crop), '--', 'Color', [.7 .7 .7], 'LineWidth', 2); hold on
set(gca,'XLim',xlim);
ylabel('Spikes');
xlabel('Time (msec)');
title('Spikes with No Refractory Period');
% spikes with refractory period
subplot(4, 1, 3)
spikes = zeros(1, t_crop);
spikes(trl.spikeWhen) = trl.spikes;
plot(tplot, spikes(1:t_crop), 'k', 'LineWidth',2);
set(gca,'XLim',xlim);
ylabel('Spikes')
xlabel('Time (msec)');
title('Spikes with Refractory Period');
% response before nonliearity
% subplot(5, 1, 5)
% plot(trl.t(1:tp.tSamp:end), trl.resp_nononlin, 'r');
% ylabel('R_2');
% xlabel('Time (sec)');
% title('Response before nonlinearity')
% response after nonliearity
subplot(5, 1, 5)
hold on
plot([0,trl.dur],[0,0],'k-','LineWidth',4);
plot(trl.t(1:tp.tSamp:end)-trl.lag, trl.resp, 'k-');
set(gca,'YLim',[0,10]);
set(gca,'XLim',[-trl.lag,.75]);
set(gca,'YTick',[0:2:8]);
ylabel('Final Response');
xlabel('Time (sec)');
title('Final Response')
figure(2); clf
subplot(1,3,1)
h = p2p_c.gamma(tp.ncascades,tp.tau2,trl.t);
idx = trl.t(trl.t<1);
plot(trl.t(1:tp.tSamp:800000), h(1:tp.tSamp:800000), 'k-');
xlabel('Time (sec)');
ylabel('Gamma filter response');
title('Gamma filter');
interspike = 1./linspace(1000, 1, 1000);
refrac =(1-exp(-tp.refrac*(interspike+tp.delta)));
subplot(1,3,2)
plot(log10(interspike), (1-refrac), 'k-');
set(gca, 'XTick', log10([0.001 0.01 0.1 1]));
set(gca, 'XTickLabel', [0.001 0.01 0.1 1]*1000);
set(gca, 'XLim', log10([ 0.001 1]));
xlabel('Time since last spike (sec)');
ylabel('Refract attenuation');
title('Refractory Period filter');
logx2raw(10);
subplot(1, 3,3)
x = 0:.1:100;
y = p2p_c.nonlinearity(tp,x);
plot(x, y, 'k-'); hold on
plot(x, x, '--', 'Color', [.5 .5 .5]);
xlabel('Neural response')
ylabel('Neural Compression');
title('Compressive Nonlinearity');
set(gca, 'YLim', [0 22]);