-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSimulateMaps.m
125 lines (112 loc) · 4.97 KB
/
SimulateMaps.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
% SimulateMapseccList
%
% Simulation of ocular dominance, orientation, & on-off organization
% Written by GMB & IF
% 25/02/2023 moved into clean folder (IF)
clear
clear all
rng(1171964) % fix the random number generator. This affects the ocular dominance/orientation maps
% define cortex & visual space
c.cortexHeight = [-35, 35]; % degrees top to bottom, degrees LR,
c.cortexLength = [-5, 72];
c.cropLength = [ 0 70];
v.eccList = [1 2 4 8 16 32];
c.pixpermm =34; % default 6, resolution of electric field sampling, for very small electrodes may need to be decreased
% transform to visual space, this should be scaled to which electrodes you
% are simulating
v.visfieldHeight = [-32,32];
v.visfieldWidth= [-32,32];
v.pixperdeg = 34; %visual field map size and samping
v = p2p_c.define_visualmap(v); % defines the visual map
c = p2p_c.define_cortex(c); % define the properties of the cortical map
[c, v] = p2p_c.generate_corticalmap(c, v); % create ocular dominance/orientation/rf size maps on cortical surface
figNum = 1; figure(figNum); clf;
p2p_c.plotcortgrid(zeros(size(c.X)), c, gray(256), figNum,[ 'title(''cortex'')']); drawnow;
savefig('figures/SimulateMaps_Fig1');
figNum = 10;figure(figNum); clf;
p2p_c.plotretgrid(zeros(size(v.X)), v, gray(256), figNum); drawnow
savefig('figures/SimulateMaps_Fig1_Inset');
% ocular dominance
figNum = 2;figure(figNum); clf;
p2p_c.plotcortgrid(c.ODmap*256, c, gray(256), figNum,[ 'title(''ocular dominance'')']); drawnow;
savefig('figures/SimulateMaps_Fig2');
figNum = 12; figure(figNum); clf;
p2p_c.plotcortgrid(c.ODmap*256, c, gray(256), figNum,[ 'title(''ocular dominance'')']); drawnow; axis square
set(gca, 'YLim', [-2.5 2.5]); set(gca, 'XLim', [5 10]);
savefig('figures/SimulateMaps_Fig2_Inset');
% orientaton
figNum = 3;
figure(figNum); clf;
p2p_c.plotcortgrid((c.ORmap+pi)*256/(2*pi), c, phasemap(256), figNum,[ 'title(''orientation'')']); drawnow;
figNum = 13; figure(figNum); clf;
p2p_c.plotcortgrid((c.ORmap+pi)*256/(2*pi), c, phasemap(256), figNum,[ 'title(''orientation'')']); drawnow; axis square
savefig('figures/SimulateMaps_Fig3');
set(gca, 'XLim', [5 10])
set(gca, 'YLim', [-2.5 2.5]);
savefig('figures/SimulateMaps_Fig3_Inset');
% on vs. off cells
figNum = 4; figure(figNum); clf;
p2p_c.plotcortgrid(c.ONOFFmap*256, c, gray(256), figNum,[ 'title(''on vs. off'')']); drawnow;
savefig('figures/SimulateMaps_Fig4');
figNum =14; figure(figNum); clf;
p2p_c.plotcortgrid(c.ONOFFmap*256, c, gray(256), figNum,[ 'title(''on vs. off '')']); drawnow; axis square
set(gca, 'XLim', [5 10])
set(gca, 'YLim', [-2.5 2.5]);
savefig('figures/SimulateMaps_Fig4_Inset');
% simple vs. complex
figNum = 5;figure(figNum); clf;
mnx =max(abs(c.DISTmap(:)));
p2p_c.plotcortgrid((c.DISTmap+mnx)*256/(2*mnx), c, redgreen(256), figNum,[ 'title(''simple vs. complex'')']); drawnow;
savefig('figures/SimulateMaps_Fig5');
figNum =15; figure(figNum); clf;
p2p_c.plotcortgrid((c.DISTmap+mnx)*256/(2*mnx), c, redgreen(256), figNum,[ 'title(''simple vs. complex '')']); drawnow; axis square
set(gca, 'XLim', [5 10])
set(gca, 'YLim', [-2.5 2.5]);
savefig('figures/SimulateMaps_Fig5_Inset');
%% rfsize
linCoolMap = cool(2048);
compressionFac = .3; % fiddle with this if you'd like.
id = ceil(2047*linspace(0,1,256).^compressionFac)+1;
cmap = linCoolMap(id,:);
figNum = 6; figure(figNum); clf;
mnx =max(abs(c.DISTmap(:)));
p2p_c.plotcortgrid(c.RFsizemap*256/mnx, c, cmap, figNum,[ 'title(''simple vs. complex'')']); drawnow;
savefig('figures/SimulateMaps_Fig6');
origTicks = [0.2,0.4,0.8,1.6,3.2,4.8];
ticks = (origTicks-min(c.RFsizemap(:)))/(max(c.RFsizemap(:))-min(c.RFsizemap(:)));
ticks = ticks.^(compressionFac);
figNum = 16;figure(figNum); clf; image(1,linspace(0,1,256),[1:256]');
set(gca,'Position',[.45,.05,.1,.9]);
set(gca,'YDir','normal');
set(gca,'ytick',ticks);
set(gca,'YTickLabel',num2str(origTicks'));
set(gca,'xtick',[]);
colormap(cool(256));
savefig('figures/SimulateMaps_Fig6_Inset');
set(gca,'FontSize',12);
%%
% save individual receptive fields
lim = 5*v.pixperdeg;
% cortical cells
ct = 1;
n_cells = 12;
figure(7) ; clf
while ct<=n_cells
clist = randperm(prod(size(c.X)));
RF = p2p_c.generate_corticalcell(1000, clist(1), c, v);
mnRF = mean(RF, 3);
if ~isnan(sum(mnRF(:)))
[row, col] = find(abs(mnRF)==max(abs(mnRF(:))));
% lim = sz*1.2;
if row>lim & col>lim & row<size(c.X, 1)-lim & col<size(c.X, 2)-lim
subplot(2, n_cells,ct); colormap(gray(256));
scFac = 127./max(abs(RF(:)));
image(127 +(scFac*RF(row-sz:row+sz, col-sz:col+sz, 1)));axis square; axis off; drawnow;
t = title([round(c.v.ECC(clist(1)), 2) round(c.ODmap(clist(1)), 2)]); set(t, 'FontSize', 6)
subplot(2,n_cells,ct+n_cells); colormap(gray);
image(127 + (scFac*RF(row-sz:row+sz, col-sz:col+sz, 2))); axis square; axis off; drawnow
ct = ct+1;
end
end
end
savefig('figures/SimulateMaps_Fig7');