This repository has been archived by the owner on Aug 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtracker.py
49 lines (44 loc) · 1.72 KB
/
tracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import cv2
import mediapipe as mp
class handTracker:
def __init__(
self, mode=False, maxHands=2, detectionCon=0.5, modelComplexity=1, trackCon=0.5
):
self.mode = mode
self.maxHands = maxHands
self.detectionCon = detectionCon
self.modelComplex = modelComplexity
self.trackCon = trackCon
self.mpHands = mp.solutions.hands
self.hands = self.mpHands.Hands(
self.mode,
self.maxHands,
self.modelComplex,
self.detectionCon,
self.trackCon,
)
self.mpDraw = mp.solutions.drawing_utils
def handsFinder(self, img, draw=True):
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
self.results = self.hands.process(imgRGB)
if self.results.multi_hand_landmarks:
for handlms in self.results.multi_hand_landmarks:
if draw:
self.mpDraw.draw_landmarks(
img, handlms, self.mpHands.HAND_CONNECTIONS
)
return img
def positionFinder(self, img, draw=True):
lmlist = []
if self.results.multi_hand_landmarks:
for idx, handedness in enumerate(self.results.multi_handedness):
Hand = self.results.multi_hand_landmarks[idx]
for id, lm in enumerate(Hand.landmark):
h, w, c = img.shape
if id == 0:
cx, cy = int(lm.x * w), int(lm.y * h)
lmlist.append([handedness.classification[0].label, cx, cy])
if draw:
# Blue
cv2.circle(img, (cx, cy), 10, (194, 67, 25), cv2.FILLED)
return lmlist