-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathadaptation.html
149 lines (112 loc) · 6.17 KB
/
adaptation.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="description" content="">
<meta name="author" content="">
<title>Prof. Saenko's Research Group</title>
<!-- Bootstrap Core CSS -->
<link href="css/bootstrap.min.css" rel="stylesheet">
<!-- Custom CSS -->
<link href="css/modern-business.css" rel="stylesheet">
<!-- Custom Fonts -->
<link href="font-awesome/css/font-awesome.min.css" rel="stylesheet" type="text/css">
<!-- HTML5 Shim and Respond.js IE8 support of HTML5 elements and media queries -->
<!-- WARNING: Respond.js doesn't work if you view the page via file:// -->
<!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
<script src="https://oss.maxcdn.com/libs/respond.js/1.4.2/respond.min.js"></script>
<![endif]-->
</head>
<body>
<!-- Page Content -->
<div class="container">
<!--******************************************-->
<!--begin page content, edit you own page here-->
<h2>Domain Adaptation for Object recognition</h2>
<img style="width: 307px; height: 127px; float: right;" alt="dataset shift" src="./old_projects_files/domain_shift.png" hspace="10" vspace="5">
<p>
Domain adaptation is an important emerging topic in computer vision. This project investigates domain
shift in the context of object recognition.
We introduced a method that adapts object models acquired in a
particular visual domain to new imaging conditions by learning a
transformation that minimizes the effect of domain-induced changes in
the feature distribution. The transformation is learned in a supervised
manner and can be applied to categories for which there are no labeled
examples in the new domain. While we focus our evaluation on object
recognition tasks, the transform-based adaptation technique we develop
is general and could be applied to non-image data. We
experimentally demonstrate the ability of our method to improve
recognition on categories with few or no target domain labels and
moderate to large changes in the imaging conditions.</p>
<p>Please visit the <a href="https://www.eecs.berkeley.edu/~jhoffman/domainadapt/">Domain Adaptation Project</a> webpage for more details and software.
</p>
<h2>Database for Studying Effects of Domain Shift in Object Recognition</h2>
<p class="MSONormal"><img style="width: 310px; height: 185px; float: right;" alt="dataset" src="./old_projects_files/dataset.png" hspace="10" vspace="5">
<p>
Effects of domain shift have been largely overlooked in previous object
recognition studies. We collected a database that allows researchers to
study, evaluate and compare solutions to the domain shift problem by
establishing a multiple-domain labeled dataset and benchmark. In
addition to the domain shift aspects, this database also proposes a
challenging office environment category learning task which reflects
the difficulty of real-world indoor robotic object recognition, and may
serve as a useful testbed for such tasks. It contains a total of 4652
images of 31 categories originating from the following three domains:
images from the web, digital SLR and webcam. </p>
<p>If you use the dataset in your research, please cite:</p>
K. Saenko, B. Kulis, M. Fritz and T. Darrell,
<a href="http://www.cs.uml.edu/~saenko/saenko_eccv_2010.pdf">"Adapting Visual Category Models to New Domains"</a> In Proc. ECCV, September 2010, <st1:city w:st="on">Heraklion, Greece.</p>
<p><strong>Download the database: </strong>
<!--
<a href="http://www.cs.uml.edu/~saenko/data/domain_adaptation_images.tar.gz">images</a>,
<a href="http://www.cs.uml.edu/~saenko/data/domain_adaptation_features_20110616.tar.gz">SURF features</a>,
<a href="http://www.cs.uml.edu/~saenko/data/domain_adaptation_features_20110928.tar.gz">SURF features and object ids</a>,
<span style="color: rgb(200, 0, 0);">NEW</span>
<a href="http://www.cs.uml.edu/~saenko/data/domain_adaptation_decaf_features_20140430.tar.gz">DeCAF features</a>.
-->
<a href="https://drive.google.com/open?id=0B4IapRTv9pJ1WGZVd1VDMmhwdlE">images</a>,
<a href="https://drive.google.com/open?id=0B4IapRTv9pJ1WTVSd2FIcW4wRTA">SURF features</a>,
<a href="https://drive.google.com/open?id=0B4IapRTv9pJ1aWxLY0kxN0JJeXM">SURF features and object ids</a>,
<span style="color: rgb(200, 0, 0);">NEW</span>
<a href="https://drive.google.com/open?id=0B4IapRTv9pJ1eloxMmVNQ2IzS00">DeCAF features</a>.
</p>
<p>The DeCAF features are deep convolutional neural network features computed using the framework in: </p>
J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, T. Darrell.
<a href="http://arxiv.org/abs/1310.1531">"DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition"</a>
International Conference in Machine Learning (ICML), 2014.
<br>
<br>
<p>See also the <a href="https://www.eecs.berkeley.edu/~jhoffman/domainadapt/">Domain Adaptation Project</a> webpage for more results on this dataset and links to software.
</p>
<p><strong>Papers:</strong></p>
B. Kulis, K. Saenko, and T. Darrell, <a href="http://www.cs.uml.edu/~saenko/cvpr_adapt.pdf">
"What You Saw is Not What You Get: Domain Adaptation Using Asymmetric
Kernel Transforms"</a>
In Proc. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2011.
<br>
K. Saenko, B. Kulis, M. Fritz and T.Darrell, <a href="http://www.cs.uml.edu/~saenko/saenko_eccv_2010.pdf">"Adapting
Visual Category Models to New Domains"</a> In Proc. ECCV, September 2010, Heraklion,
Greece. [<a href="./code/DomainTransformsECCV10_v1.tar.gz">code</a>]
[<a href="https://www.eecs.berkeley.edu/~jhoffman/domainadapt/#datasets_code">more code</a>].
<!--******************************************-->
<!--end of page content-->
<!-- Footer -->
<footer>
<div class="row">
<div class="col-lg-12">
<p>Copyright © Kate Saenko 2017</p>
</div>
</div>
</footer>
</div>
<!-- /.container -->
<!-- jQuery -->
<script src="js/jquery.js"></script>
<!-- Bootstrap Core JavaScript -->
<script src="js/bootstrap.min.js"></script>
</body>
</html>