-
Notifications
You must be signed in to change notification settings - Fork 38
/
model_cascade.py
executable file
·216 lines (194 loc) · 10.3 KB
/
model_cascade.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import tensorflow as tf
from tensorpack.tfutils import get_current_tower_context
from tensorpack.tfutils.summary import add_moving_summary
from config import config as cfg
from model_box import clip_boxes
from model_frcnn import BoxProposals, FastRCNNHead, fastrcnn_outputs
from utils.box_ops import pairwise_iou
class CascadeRCNNHead(object):
def __init__(self, proposals,
roi_func, fastrcnn_head_func, gt_targets, image_shape2d, num_classes):
"""
Args:
proposals: BoxProposals
roi_func (boxes -> features): a function to crop features with rois
fastrcnn_head_func (features -> features): the fastrcnn head to apply on the cropped features
gt_targets (gt_boxes, gt_labels):
"""
for k, v in locals().items():
if k != 'self':
setattr(self, k, v)
self.gt_boxes, self.gt_labels = gt_targets
del self.gt_targets
self.num_cascade_stages = len(cfg.CASCADE.IOUS)
self.is_training = get_current_tower_context().is_training
if self.is_training:
@tf.custom_gradient
def scale_gradient(x):
return x, lambda dy: dy * (1.0 / self.num_cascade_stages)
self.scale_gradient = scale_gradient
else:
self.scale_gradient = tf.identity
ious = cfg.CASCADE.IOUS
# It's unclear how to do >3 stages, so it does not make sense to implement them
assert self.num_cascade_stages == 3, "Only 3-stage cascade was implemented!"
with tf.variable_scope('cascade_rcnn_stage1'):
H1, B1 = self.run_head(self.proposals, 0)
with tf.variable_scope('cascade_rcnn_stage2'):
B1_proposal = self.match_box_with_gt(B1, ious[1])
H2, B2 = self.run_head(B1_proposal, 1)
with tf.variable_scope('cascade_rcnn_stage3'):
B2_proposal = self.match_box_with_gt(B2, ious[2])
H3, B3 = self.run_head(B2_proposal, 2)
self._cascade_boxes = [B1, B2, B3]
self._heads = [H1, H2, H3]
def run_head(self, proposals, stage):
"""
Args:
proposals: BoxProposals
stage: 0, 1, 2
Returns:
FastRCNNHead
Nx4, updated boxes
"""
reg_weights = tf.constant(cfg.CASCADE.BBOX_REG_WEIGHTS[stage], dtype=tf.float32)
pooled_feature = self.roi_func(proposals.boxes) # N,C,S,S
pooled_feature = self.scale_gradient(pooled_feature)
head_feature = self.fastrcnn_head_func('head', pooled_feature)
# changed by Paul
label_logits, box_logits = fastrcnn_outputs(
'outputs_new', head_feature, self.num_classes, class_agnostic_regression=True)
head = FastRCNNHead(proposals, box_logits, label_logits, self.gt_boxes, reg_weights)
refined_boxes = head.decoded_output_boxes_class_agnostic()
refined_boxes = clip_boxes(refined_boxes, self.image_shape2d)
return head, tf.stop_gradient(refined_boxes, name='output_boxes')
def match_box_with_gt(self, boxes, iou_threshold):
"""
Args:
boxes: Nx4
Returns:
BoxProposals
"""
if self.is_training:
with tf.name_scope('match_box_with_gt_{}'.format(iou_threshold)):
iou = pairwise_iou(boxes, self.gt_boxes) # NxM
max_iou_per_box = tf.reduce_max(iou, axis=1) # N
best_iou_ind = tf.argmax(iou, axis=1) # N
labels_per_box = tf.gather(self.gt_labels, best_iou_ind)
fg_mask = max_iou_per_box >= iou_threshold
fg_inds_wrt_gt = tf.boolean_mask(best_iou_ind, fg_mask)
labels_per_box = tf.stop_gradient(labels_per_box * tf.cast(fg_mask, tf.int64))
return BoxProposals(boxes, labels_per_box, fg_inds_wrt_gt)
else:
return BoxProposals(boxes)
def losses(self):
ret = []
for idx, head in enumerate(self._heads):
with tf.name_scope('cascade_loss_stage{}'.format(idx + 1)):
ret.extend(head.losses())
return ret
def decoded_output_boxes(self):
"""
Returns:
Nx#classx4
"""
ret = self._cascade_boxes[-1]
ret = tf.expand_dims(ret, 1) # class-agnostic
return tf.tile(ret, [1, self.num_classes, 1])
def output_scores(self, name=None):
"""
Returns:
Nx#class
"""
scores = [head.output_scores('cascade_scores_stage{}'.format(idx + 1))
for idx, head in enumerate(self._heads)]
return tf.multiply(tf.add_n(scores), (1.0 / self.num_cascade_stages), name=name)
class CascadeRCNNHeadWithHardExamples(CascadeRCNNHead):
def __init__(self, proposals, roi_func, fastrcnn_head_func, gt_targets, image_shape2d, num_classes,
hard_negative_features, hard_positive_features, hard_negative_loss_scaling_factor,
hard_positive_loss_scaling_factor, hard_positive_ious, hard_positive_gt_boxes,
hard_positive_jitter_boxes):
super().__init__(proposals, roi_func, fastrcnn_head_func, gt_targets, image_shape2d, num_classes)
self._hard_negative_features = hard_negative_features
self._hard_positive_features = hard_positive_features
self._hard_negative_loss_scaling_factor = hard_negative_loss_scaling_factor
self._hard_positive_loss_scaling_factor = hard_positive_loss_scaling_factor
self._hard_positive_ious = hard_positive_ious
self._hard_positive_gt_boxes = hard_positive_gt_boxes
self._hard_positive_jitter_boxes = hard_positive_jitter_boxes
def _hard_losses(self, negative=True):
if negative:
hard_features = self._hard_negative_features
desc = "neg"
else:
hard_features = self._hard_positive_features
desc = "pos"
losses = []
for cascade_idx, iou_thres in enumerate(cfg.CASCADE.IOUS):
with tf.name_scope('cascade_loss_{}_stage{}'.format(desc, cascade_idx + 1)):
with tf.variable_scope('cascade_rcnn_stage' + str(cascade_idx + 1), reuse=True):
pooled_feature = self.roi_func(None, hard_features[:, cascade_idx])
pooled_feature = self.scale_gradient(pooled_feature)
head_feature = self.fastrcnn_head_func('head', pooled_feature)
# changed by Paul
label_logits, box_logits = fastrcnn_outputs(
'outputs_new', head_feature, self.num_classes, class_agnostic_regression=True)
mean_label = None
box_loss = None
if negative:
labels = tf.zeros((tf.shape(label_logits)[0],), dtype=tf.int64)
else:
labels = tf.cast(tf.greater_equal(self._hard_positive_ious[:, cascade_idx], iou_thres),
tf.int64)
mean_label = tf.reduce_mean(tf.cast(labels, tf.float32),
name='hard_{}_label_mean{}'.format(desc, cascade_idx + 1))
if cfg.USE_REGRESSION_LOSS_ON_HARD_POSITIVES:
labels_bool = tf.cast(labels, tf.bool)
valid = tf.reduce_any(labels_bool)
def make_box_loss():
gt_boxes = tf.boolean_mask(self._hard_positive_gt_boxes, labels_bool)
inp_boxes = tf.boolean_mask(self._hard_positive_jitter_boxes[:, cascade_idx],
labels_bool)
box_logits_masked = tf.boolean_mask(box_logits, labels_bool)
from examples.FasterRCNN.model_box import encode_bbox_target
reg_targets = encode_bbox_target(gt_boxes,
inp_boxes) * cfg.CASCADE.BBOX_REG_WEIGHTS[cascade_idx]
_box_loss = tf.losses.huber_loss(
reg_targets, tf.squeeze(box_logits_masked, axis=1),
reduction=tf.losses.Reduction.SUM)
_box_loss = tf.truediv(
_box_loss, tf.cast(tf.shape(reg_targets)[0], tf.float32))
return _box_loss
box_loss = tf.cond(valid, make_box_loss, lambda: tf.constant(0, dtype=tf.float32))
box_loss = tf.multiply(box_loss, cfg.HARD_POSITIVE_BOX_LOSS_SCALING_FACTOR,
name='hard_{}_box_loss{}'.format(desc, cascade_idx + 1))
losses.append(box_loss)
label_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=label_logits)
if negative:
label_loss *= self._hard_negative_loss_scaling_factor
else:
label_loss *= self._hard_positive_loss_scaling_factor
label_loss = tf.reduce_mean(label_loss, name='hard_{}_label_loss{}'.format(desc, cascade_idx + 1))
prediction = tf.argmax(label_logits, axis=1, name='label_prediction_hard_{}'.format(desc))
correct = tf.cast(tf.equal(prediction, labels), tf.float32)
accuracy = tf.reduce_mean(correct, name='hard_{}_label_accuracy{}'.format(desc, cascade_idx + 1))
losses.append(label_loss)
if mean_label is not None:
add_moving_summary(mean_label)
if box_loss is not None:
add_moving_summary(box_loss)
add_moving_summary(accuracy)
add_moving_summary(label_loss)
return losses
def losses(self):
normal_losses = super().losses()
if self.is_training:
hnl = self._hard_losses(negative=True)
if self._hard_positive_features is not None:
hpl = self._hard_losses(negative=False)
else:
hpl = []
return normal_losses + hnl + hpl
else:
return normal_losses