forked from TRI-ML/packnet-sfm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
64 lines (48 loc) · 1.93 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# Copyright 2020 Toyota Research Institute. All rights reserved.
import argparse
from packnet_sfm.models.model_wrapper import ModelWrapper
from packnet_sfm.models.model_checkpoint import ModelCheckpoint
from packnet_sfm.trainers.horovod_trainer import HorovodTrainer
from packnet_sfm.utils.config import parse_train_file
from packnet_sfm.utils.load import set_debug, filter_args_create
from packnet_sfm.utils.horovod import hvd_init, rank
from packnet_sfm.loggers import WandbLogger
def parse_args():
"""Parse arguments for training script"""
parser = argparse.ArgumentParser(description='PackNet-SfM training script')
parser.add_argument('file', type=str, help='Input file (.ckpt or .yaml)')
args = parser.parse_args()
assert args.file.endswith(('.ckpt', '.yaml')), \
'You need to provide a .ckpt of .yaml file'
return args
def train(file):
"""
Monocular depth estimation training script.
Parameters
----------
file : str
Filepath, can be either a
**.yaml** for a yacs configuration file or a
**.ckpt** for a pre-trained checkpoint file.
"""
# Initialize horovod
hvd_init()
# Produce configuration and checkpoint from filename
config, ckpt = parse_train_file(file)
# Set debug if requested
set_debug(config.debug)
# Wandb Logger
logger = None if config.wandb.dry_run or rank() > 0 \
else filter_args_create(WandbLogger, config.wandb)
# model checkpoint
checkpoint = None if config.checkpoint.filepath is '' or rank() > 0 else \
filter_args_create(ModelCheckpoint, config.checkpoint)
# Initialize model wrapper
model_wrapper = ModelWrapper(config, resume=ckpt, logger=logger)
# Create trainer with args.arch parameters
trainer = HorovodTrainer(**config.arch, checkpoint=checkpoint)
# Train model
trainer.fit(model_wrapper)
if __name__ == '__main__':
args = parse_args()
train(args.file)