-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcrop.py
195 lines (138 loc) · 4.83 KB
/
crop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# from matplotlib import pyplot as plt
# import torch
# from torch.utils.data import DataLoader
# import numpy as np
# import datasets
# data = datasets.LINwithdeletions()
# mydataloader = datasets.MyDataLoader()
# data_iter = DataLoader(data, batch_size=1, shuffle=True, num_workers=1)
# y_list = []
# x_list = []
# cnt = 0
# for x, g, d in data_iter:
# # print(x.size())
# # print(x.min(), x.max())
# x = x[0]
# # print((x.sum(dim=0).sum(dim=0) > 0).numpy().shape)
# # print(x.sum(dim=0).sum(dim=0))
# x1 = np.argmax((x.sum(dim=0).sum(dim=0) > 0).numpy())
# x2 = np.argmax(1 - (x.sum(dim=0).sum(dim=0) > 0)[256:].numpy())+256
# # print(x1, x2)
# y1 = np.argmax((x.sum(dim=0).sum(dim=1) > 0).numpy())
# y2 = np.argmax(1 - (x.sum(dim=0).sum(dim=1) > 0)[64:].numpy())+64
# x_list.append(x1)
# x_list.append(x2)
# y_list.append(y1)
# y_list.append(y2)
# if x1 < 150:
# fig, ax = plt.subplots(figsize=(20,20), nrows=1, ncols=1)
# img = np.zeros((128, 512, 3))
# img[:,:,:2] = np.rollaxis(x.numpy(), 0, 3)
# ax.imshow(img)
# # fig.add_subplot(ax)
# fig.savefig('{}.png'.format(cnt))
# cnt += 1
# elif x2 > 350:
# fig, ax = plt.subplots(figsize=(20,20), nrows=1, ncols=1)
# img = np.zeros((128, 512, 3))
# img[:,:,:2] = np.rollaxis(x.numpy(), 0, 3)
# ax.imshow(img)
# # fig.add_subplot(ax)
# fig.savefig('{}.png'.format(cnt))
# cnt += 1
# if y1 < 32:
# fig, ax = plt.subplots(figsize=(20,20), nrows=1, ncols=1)
# img = np.zeros((128, 512, 3))
# img[:,:,:2] = np.rollaxis(x.numpy(), 0, 3)
# ax.imshow(img)
# # fig.add_subplot(ax)
# fig.savefig('{}.png'.format(cnt))
# cnt += 1
# elif y2 > 96:
# fig, ax = plt.subplots(figsize=(20,20), nrows=1, ncols=1)
# img = np.zeros((128, 512, 3))
# img[:,:,:2] = np.rollaxis(x.numpy(), 0, 3)
# ax.imshow(img)
# # fig.add_subplot(ax)
# fig.savefig('{}.png'.format(cnt))
# cnt += 1
from matplotlib import pyplot as plt
# fig, ax = plt.subplots(figsize=(20,20), nrows=1, ncols=2)
# ax[0].hist(x_list, bins=100)
# ax[1].hist(y_list, bins=100)
# # fig.add_subplot(ax)
# fig.savefig('hist.png')
# print(min(x_list), max(x_list))
# print(min(y_list), max(y_list))
# print(len(data.prt2id))
from skimage.io import imread, imsave
from skimage import img_as_float
from skimage.transform import resize
import os
import numpy as np
basedir = '/home/ubuntu/LIN_deletions/LIN_Normalized_all_size-128-512_train/'
basedirt = '/home/ubuntu/LIN_deletions_cropped/'
if not os.path.exists(basedirt):
os.makedirs(basedirt)
pairs = os.listdir(basedir)
pairs = sorted(pairs)
proteins = []
deletions = []
for pair in pairs:
proteins.append(pair[2:].split('_D_')[0])
# proteins.append(pair[2:].split('_D_')[1])
deletions.append(pair[2:].split('_D_')[1])
proteins = sorted(set(proteins))
deletions = sorted(set(deletions))
images = []
prt2id = dict(zip(proteins, range(len(proteins))))
del2id = dict(zip(deletions, range(len(deletions))))
print(proteins)
print(deletions)
gens = []
deletions = []
from time import time
from tqdm import tqdm
gens_counter = dict()
deletions_counter = dict()
cnt = np.zeros((41, 35))
for pair in tqdm(pairs):
path = basedir + pair + '/'
filenames = list(filter(lambda x: (x.endswith('.jpg') or x.endswith('.jpeg') or x.endswith('.png')), os.listdir(path)))
if not os.path.exists(basedirt + pair + '/'):
os.makedirs(basedirt + pair + '/')
gen = pair[2:].split('_D_')[0]
deletion = pair[2:].split('_D_')[1]
gens_counter[gen] = gens_counter.get(gen, 0) + len(filenames)
deletions_counter[deletion] = deletions_counter.get(deletion, 0) + len(filenames)
cnt[prt2id[gen], del2id[deletion]] = len(filenames)
for filename in filenames:
# s = time()
img = imread(path + filename)
img = img_as_float(img)
# print(time()-s)
# s = time()
img = img[16:-16,128:-128,:]
img = resize(img, (48, 128))
imsave(basedirt + pair + '/' + filename, img)
# for a in sorted(list(gens_counter.keys())[:6]):
# print(a, gens_counter[a])
# for a in sorted(list(deletions_counter.keys())[:6]):
# print(a, deletions_counter[a])
# import seaborn as sns
# fig, ax = plt.subplots(figsize=(40,40))
# sns.heatmap(cnt[:,1:], annot=True, linewidths=.5, ax=ax)
# # fig.add_subplot(ax)
# fig.savefig('class_freq.png')
# print(np.sum(cnt==0))
# from matplotlib import pyplot as plt
# fig, ax = plt.subplots(ncols=2, nrows=1, figsize=(30, 15 ))
# # print(len(gens_counter.keys()))
# # print(gens_counter.keys())
# print(len(deletions_counter.keys()))
# print(deletions_counter.keys())
# print(list(set(gens_counter.keys()) - set(deletions_counter.keys())))
# print(list(set(deletions_counter.keys())-set(gens_counter.keys())))
# ax[0].bar(gens_counter.keys(), gens_counter.values())
# ax[1].bar(deletions_counter.keys(), deletions_counter.values())
# fig.savefig('classes.png')