-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdatasets.py
380 lines (280 loc) · 12.5 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import torch
from torch.autograd import Variable
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
import numpy as np
from numpy.random import multivariate_normal, choice, normal, randint
import torchvision.datasets as dset
import torchvision.transforms as transforms
import os
from skimage.io import imread
from skimage import img_as_float
from skimage.transform import resize
import pandas as pd
class GaussianMixtureDataset(Dataset):
"""Points from multiple gaussians"""
def __init__(self, mean_list, component_size_list):
"""
Generate points from multiple gaussians.
Args:
mean_list: list of mean vectors.
component_size: number of points in one component.
"""
assert len(mean_list) == len(component_size_list)
self.mean_list = mean_list
self.component_size_list = component_size_list
d = len(mean_list[0])
self.data = np.zeros((0, d))
self.n_components = len(mean_list)
for i in range(self.n_components):
self.data = np.concatenate([self.data, multivariate_normal(mean=mean_list[i], cov=np.eye(d), size=component_size_list[i])], axis=0)
self.data = np.asarray(self.data, dtype=np.float32)
def __len__(self):
return self.data.shape[0]
def __getitem__(self, idx):
# return self.data[idx,:]
# print(type(self.mean_list))
return self.mean_list[randint(0, len(self.mean_list))] + normal(size=len(self.mean_list[0]))
class ConditionalGaussianMixtureDataset(Dataset):
"""Points from multiple gaussians"""
def __init__(self, mean_list, component_size_list, component_class_list, n_classes):
"""
Generate points from multiple gaussians.
Args:
mean_list: list of mean vectors.
component_size: number of points in one component.
"""
assert len(mean_list) == len(component_size_list) == len(component_class_list)
self.mean_list = mean_list
self.component_size_list = component_size_list
self.component_class_list = component_class_list
self.n_classes = n_classes
self.d = len(mean_list[0])
self.data = np.zeros((0, self.d + self.n_classes))
self.n_components = len(mean_list)
for i in range(self.n_components):
onehot = np.zeros((component_size_list[i], self.n_classes))
onehot[:,component_class_list[i]] = 1
batch = np.concatenate([multivariate_normal(mean=mean_list[i], cov=np.eye(self.d), size=component_size_list[i]), onehot], axis=1)
self.data = np.concatenate([self.data, batch], axis=0)
self.data = np.asarray(self.data, dtype=np.float32)
def __len__(self):
return self.data.shape[0]
def __getitem__(self, idx):
return self.data[idx,:]
class MNISTDataset(Dataset):
"""Points from multiple gaussians"""
def __init__(self, selected=None, train=True):
self.data = dset.MNIST(root = './data/',
transform=transforms.Compose([
transforms.Scale(32),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]),
download = True, train=train)
if selected is not None:
if train:
labels = self.data.train_labels.numpy()
else:
labels = self.data.test_labels.numpy()
self.index = np.arange(len(self.data))[np.where(labels == selected)[0]]
# self.data = torch.masked_select(self.data.train_data, (self.data.train_labels == selected).view(-1, 1, 1)).view(-1, 1, 32, 32)
else:
self.index = np.arange(len(self.data))
def __len__(self):
return len(self.index)
def __getitem__(self, idx):
return self.data[self.index[idx]][0]
class labeledMNISTDataset(Dataset):
"""Points from multiple gaussians"""
def __init__(self):
self.data = dset.MNIST(root = './data/',
transform=transforms.Compose([
transforms.Scale(32),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]),
download = True)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx]
class MyDataLoader():
'''multiple epochs added'''
def __init__(self):
self.i_epoch = 0
self.last_images = None
def return_iterator(self, dataloader, is_cuda=False, num_passes=None, conditional=False, pictures=False, n_classes=None):
self.i_epoch = 0
while num_passes is None or self.i_epoch < num_passes:
for batch in dataloader:
if not conditional:
if is_cuda:
if type(batch) == list:
batch = [x.cuda() for x in batch]
else:
batch = batch.cuda()
if type(batch) == list:
batch = [Variable(x) for x in batch]
batch[0] = batch[0].float()
else:
batch = Variable(batch).float()
if conditional:
if pictures:
data = batch[0]
labels = batch[1]
if is_cuda:
data = data.cuda()
labels = labels.cuda()
data = Variable(data).float()
labels = Variable(labels)
# print(data.size())
batch = data, labels
else:
if is_cuda:
batch = batch.cuda()
batch = Variable(batch).float()
data = batch[:,:-n_classes]
onehot = batch[:,-n_classes:]
_, label = torch.max(onehot, dim=1)
batch = data, label
yield batch
self.i_epoch += 1
class LINDataset(Dataset):
"""Points from multiple gaussians"""
def __init__(self, proteins=['Arp3'], basedir='/home/ubuntu/LIN/LIN_Normalized_WT_size-48-80_train/', transform=None, conditional=False, highres=False):
if highres:
basedir='/home/ubuntu/LIN128/LIN_Normalized_WT_size-96-160_train/'
if proteins == 'all':
proteins = os.listdir(basedir)
self.proteins = proteins
self.images = []
self.conditional = conditional
self.prt2id = dict(zip(proteins, range(len(proteins))))
self.images = []
self.labels = []
for protein in proteins:
self.path = basedir + protein + '/'
filenames = list(filter(lambda x: (x.endswith('.jpg') or x.endswith('.jpeg') or x.endswith('.png')), os.listdir(self.path)))
self.transform = transform
for filename in filenames:
img = imread(self.path + filename)
img = img_as_float(img)
img = np.rollaxis(img[:,:,:2], 2, 0)
img = np.asarray(img, dtype=np.float32)
img = torch.from_numpy(img)
if self.transform:
img = self.transform(img)
self.images.append(img)
self.labels.append(self.prt2id[protein])
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
if self.conditional:
# print(2*self.labels[idx] + (self.labels[idx] % 2), self.labels[idx])
return self.images[idx], self.labels[idx]#2*self.labels[idx] + (idx % 2) #self.labels[idx]
else:
return self.images[idx]#, 0, 0
class CIFAR(Dataset):
"""Points from multiple gaussians"""
def __init__(self, selected=None, train=True, labeled=False):
self.labeled = labeled
self.data = dset.CIFAR10(root = './cifar/',
transform=transforms.Compose([
# transforms.Scale(32),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]),
download = True, train=train)
if selected is not None:
if train:
labels = self.data.train_labels.numpy()
else:
labels = self.data.test_labels.numpy()
self.index = np.arange(len(self.data))[np.where(labels == selected)[0]]
# self.data = torch.masked_select(self.data.train_data, (self.data.train_labels == selected).view(-1, 1, 1)).view(-1, 1, 32, 32)
else:
self.index = np.arange(len(self.data))
def __len__(self):
return len(self.index)
def __getitem__(self, idx):
if self.labeled:
return self.data[self.index[idx]]
else:
return self.data[self.index[idx]][0]
class LINwithdeletions(Dataset):
"""Points from multiple gaussians"""
def __init__(self, basedir='/home/ubuntu/LIN_deletions/LIN_Normalized_all_size-128-512_train/', transform=None, raw=False, wo_deletions=[]):
df = pd.read_csv('GO_terms.csv')
df = df.fillna(0)
names = df['Unnamed: 0']
df = df.drop(['Unnamed: 0'], axis=1)
# print(df.as_matrix())
go = np.asarray(df.as_matrix(),dtype=int)
# print(go.shape)
# print(len(df.columns))
go_dict = dict()
for i, name in enumerate(df.columns):
go_dict[name] = go[:,i]
self.go_dict = go_dict
# products = np.sum(go[:,np.newaxis,:] * go[:,:,np.newaxis], axis=0)
if not raw:
basedir='/home/ubuntu/LIN_deletions_cropped/'
pairs = os.listdir(basedir)
pairs = sorted(pairs)
proteins = []
deletions = []
for pair in pairs:
proteins.append(pair[2:].split('_D_')[0])
if pair[2:].split('_D_')[1] not in wo_deletions:
deletions.append(pair[2:].split('_D_')[1])
proteins = sorted(set(proteins))
deletions = sorted(set(deletions))
self.pairs = pairs
self.images = []
self.prt2id = dict(zip(proteins, range(len(proteins))))
self.id2prt = dict(zip(range(len(proteins)), proteins))
self.del2id = dict(zip(deletions, range(len(deletions))))
# print(self.prt2id)
# print(self.del2id)
self.images = []
self.gens = []
self.deletions = []
from time import time
from tqdm import tqdm
for pair in tqdm(pairs):
self.path = basedir + pair + '/'
filenames = list(filter(lambda x: (x.endswith('.jpg') or x.endswith('.jpeg') or x.endswith('.png')), os.listdir(self.path)))
self.transform = transform
gen = pair[2:].split('_D_')[0]
deletion = pair[2:].split('_D_')[1]
if deletion in wo_deletions:
continue
for filename in filenames:
# s = time()
img = imread(self.path + filename)
img = img_as_float(img)
# print(1, time()-s)
# s = time()
if raw:
img = img[16:-16,128:-128,:]
img = resize(img, (48, 128))
# print(2, time()-s)
# s = time()
img = np.rollaxis(img[:,:,:2], 2, 0)
img = np.asarray(img, dtype=np.float32)
img = torch.from_numpy(img)
# print(3, time()-s)
# s = time()
if self.transform:
img = self.transform(img)
# print(4, time()-s)
# s = time()
self.images.append(img)
self.gens.append(self.prt2id[gen])
self.deletions.append(self.del2id[deletion])
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
return [self.images[idx], self.gens[idx], self.deletions[idx]]#, self.go_dict[self.id2prt[self.gens[idx]]]]
# return [self.images[idx], idx%44, (idx*idx)%44]