forked from baofff/U-ViT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
176 lines (139 loc) · 5.52 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import torch
import torch.nn as nn
import numpy as np
import os
from tqdm import tqdm
from torchvision.utils import save_image
from absl import logging
def set_logger(log_level='info', fname=None):
import logging as _logging
handler = logging.get_absl_handler()
formatter = _logging.Formatter('%(asctime)s - %(filename)s - %(message)s')
handler.setFormatter(formatter)
logging.set_verbosity(log_level)
if fname is not None:
handler = _logging.FileHandler(fname)
handler.setFormatter(formatter)
logging.get_absl_logger().addHandler(handler)
def dct2str(dct):
return str({k: f'{v:.6g}' for k, v in dct.items()})
def get_nnet(name, **kwargs):
if name == 'uvit':
from libs.uvit import UViT
return UViT(**kwargs)
elif name == 'uvit_t2i':
from libs.uvit_t2i import UViT
return UViT(**kwargs)
else:
raise NotImplementedError(name)
def set_seed(seed: int):
if seed is not None:
torch.manual_seed(seed)
np.random.seed(seed)
def get_optimizer(params, name, **kwargs):
if name == 'adam':
from torch.optim import Adam
return Adam(params, **kwargs)
elif name == 'adamw':
from torch.optim import AdamW
return AdamW(params, **kwargs)
else:
raise NotImplementedError(name)
def customized_lr_scheduler(optimizer, warmup_steps=-1):
from torch.optim.lr_scheduler import LambdaLR
def fn(step):
if warmup_steps > 0:
return min(step / warmup_steps, 1)
else:
return 1
return LambdaLR(optimizer, fn)
def get_lr_scheduler(optimizer, name, **kwargs):
if name == 'customized':
return customized_lr_scheduler(optimizer, **kwargs)
elif name == 'cosine':
from torch.optim.lr_scheduler import CosineAnnealingLR
return CosineAnnealingLR(optimizer, **kwargs)
else:
raise NotImplementedError(name)
def ema(model_dest: nn.Module, model_src: nn.Module, rate):
param_dict_src = dict(model_src.named_parameters())
for p_name, p_dest in model_dest.named_parameters():
p_src = param_dict_src[p_name]
assert p_src is not p_dest
p_dest.data.mul_(rate).add_((1 - rate) * p_src.data)
class TrainState(object):
def __init__(self, optimizer, lr_scheduler, step, nnet=None, nnet_ema=None):
self.optimizer = optimizer
self.lr_scheduler = lr_scheduler
self.step = step
self.nnet = nnet
self.nnet_ema = nnet_ema
def ema_update(self, rate=0.9999):
if self.nnet_ema is not None:
ema(self.nnet_ema, self.nnet, rate)
def save(self, path):
os.makedirs(path, exist_ok=True)
torch.save(self.step, os.path.join(path, 'step.pth'))
for key, val in self.__dict__.items():
if key != 'step' and val is not None:
torch.save(val.state_dict(), os.path.join(path, f'{key}.pth'))
def load(self, path):
logging.info(f'load from {path}')
self.step = torch.load(os.path.join(path, 'step.pth'))
for key, val in self.__dict__.items():
if key != 'step' and val is not None:
val.load_state_dict(torch.load(os.path.join(path, f'{key}.pth'), map_location='cpu'))
def resume(self, ckpt_root, step=None):
if not os.path.exists(ckpt_root):
return
if step is None:
ckpts = list(filter(lambda x: '.ckpt' in x, os.listdir(ckpt_root)))
if not ckpts:
return
steps = map(lambda x: int(x.split(".")[0]), ckpts)
step = max(steps)
ckpt_path = os.path.join(ckpt_root, f'{step}.ckpt')
logging.info(f'resume from {ckpt_path}')
self.load(ckpt_path)
def to(self, device):
for key, val in self.__dict__.items():
if isinstance(val, nn.Module):
val.to(device)
def cnt_params(model):
return sum(param.numel() for param in model.parameters())
def initialize_train_state(config, device):
params = []
nnet = get_nnet(**config.nnet)
params += nnet.parameters()
nnet_ema = get_nnet(**config.nnet)
nnet_ema.eval()
logging.info(f'nnet has {cnt_params(nnet)} parameters')
optimizer = get_optimizer(params, **config.optimizer)
lr_scheduler = get_lr_scheduler(optimizer, **config.lr_scheduler)
train_state = TrainState(optimizer=optimizer, lr_scheduler=lr_scheduler, step=0,
nnet=nnet, nnet_ema=nnet_ema)
train_state.ema_update(0)
train_state.to(device)
return train_state
def amortize(n_samples, batch_size):
k = n_samples // batch_size
r = n_samples % batch_size
return k * [batch_size] if r == 0 else k * [batch_size] + [r]
def sample2dir(accelerator, path, n_samples, mini_batch_size, sample_fn, unpreprocess_fn=None):
os.makedirs(path, exist_ok=True)
idx = 0
batch_size = mini_batch_size * accelerator.num_processes
for _batch_size in tqdm(amortize(n_samples, batch_size), disable=not accelerator.is_main_process, desc='sample2dir'):
samples = unpreprocess_fn(sample_fn(mini_batch_size))
samples = accelerator.gather(samples.contiguous())[:_batch_size]
if accelerator.is_main_process:
for sample in samples:
save_image(sample, os.path.join(path, f"{idx}.png"))
idx += 1
def grad_norm(model):
total_norm = 0.
for p in model.parameters():
param_norm = p.grad.data.norm(2)
total_norm += param_norm.item() ** 2
total_norm = total_norm ** (1. / 2)
return total_norm