-
Notifications
You must be signed in to change notification settings - Fork 53
/
dataSets.py
199 lines (169 loc) · 7.9 KB
/
dataSets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import numpy as np
import tensorflow as tf
import gzip
import os
import platform
import pickle
class DataSet(object):
def __init__(self, dataSetName, is_IID, dtype=tf.float32):
dype = tf.as_dtype(dtype).base_dtype
if dtype not in (tf.uint8, tf.float32):
raise TypeError('Invalid image dtype {}, expected uint8 or float32'.format(dtype))
self.name = dataSetName
self.train_data = None
self.train_label = None
self.test_data = None
self.test_label = None
self.train_data_size = None
self.test_data_size = None
self._index_in_train_epoch = 0
if self.name == 'mnist':
self.mnist_dataset_construct(is_IID, dtype)
elif self.name == 'cifar10':
self.cifar10_dataset_construct(is_IID)
else:
pass
def mnist_dataset_construct(self, is_IID, dtype):
data_dir = r'./data/MNIST'
train_images_path = os.path.join(data_dir, 'train-images-idx3-ubyte.gz')
train_labels_path = os.path.join(data_dir, 'train-labels-idx1-ubyte.gz')
test_images_path = os.path.join(data_dir, 't10k-images-idx3-ubyte.gz')
test_labels_path = os.path.join(data_dir, 't10k-labels-idx1-ubyte.gz')
train_images = extract_images(train_images_path)
train_labels = extract_labels(train_labels_path)
test_images = extract_images(test_images_path)
test_labels = extract_labels(test_labels_path)
assert train_images.shape[0] == train_labels.shape[0]
assert test_images.shape[0] == test_labels.shape[0]
self.train_data_size = train_images.shape[0]
self.test_data_size = test_images.shape[0]
assert train_images.shape[3] == 1
assert test_images.shape[3] == 1
train_images = train_images.reshape(train_images.shape[0], train_images.shape[1] * train_images.shape[2])
test_images = test_images.reshape(test_images.shape[0], test_images.shape[1] * test_images.shape[2])
if dtype == tf.float32:
train_images = train_images.astype(np.float32)
train_images = np.multiply(train_images, 1.0 / 255.0)
test_images = test_images.astype(np.float32)
test_images = np.multiply(test_images, 1.0 / 255.0)
if is_IID == 1:
order = np.arange(self.train_data_size)
np.random.shuffle(order)
self.train_data = train_images[order]
self.train_label = train_labels[order]
else:
labels = np.argmax(train_labels, axis=1)
order = np.argsort(labels)
self.train_data = train_images[order]
self.train_label = train_labels[order]
self.test_data = test_images
self.test_label = test_labels
def cifar10_dataset_construct(self, is_IID):
images, labels = [], []
for filename in ['./data/CIFAR-10/cifar-10-batches-py/data_batch_{}'.format(i) for i in range(1, 6)]:
with open(filename, 'rb') as fo:
if 'Windows' in platform.platform():
cifar10 = pickle.load(fo, encoding='bytes')
elif 'Linux' in platform.platform():
cifar10 = pickle.load(fo, encoding='bytes')
for i in range(len(cifar10[b'labels'])):
image = np.reshape(cifar10[b'data'][i], (3, 32, 32))
image = np.transpose(image, (1, 2, 0))
image = image.astype(float)
images.append(image)
labels += cifar10[b'labels']
images = np.array(images, dtype='float')
labels = np.array(labels, dtype='int')
# self.train_data, self.train_label = images, labels
if is_IID == 1:
order = np.arange(images.shape[0])
np.random.shuffle(order)
self.train_data = images[order]
self.train_label = dense_to_one_hot(labels[order])
else:
order = np.argsort(labels)
self.train_data = images[order]
self.train_label = dense_to_one_hot(labels[order])
images, labels = [], []
with open(r'./data//CIFAR-10/cifar-10-batches-py/test_batch', 'rb') as fo:
if 'Windows' in platform.platform():
cifar10 = pickle.load(fo, encoding='bytes')
elif 'Linux' in platform.platform():
cifar10 = pickle.load(fo, encoding='bytes')
for i in range(len(cifar10[b'labels'])):
image = np.reshape(cifar10[b'data'][i], (3, 32, 32))
image = np.transpose(image, (1, 2, 0))
image = image.astype(float)
images.append(image)
labels += cifar10[b'labels']
images = np.array(images, dtype='float')
labels = np.array(labels, dtype='int')
self.test_label = dense_to_one_hot(labels)
self.test_data = []
shape = (24, 24, 3)
for i in range(images.shape[0]):
old_image = images[i, :, :, :]
old_image = np.pad(old_image, [[4, 4], [4, 4], [0, 0]], 'constant')
left = int((old_image.shape[0] - shape[0]) / 2)
top = int((old_image.shape[1] - shape[1]) / 2)
old_image = old_image[left: left + shape[0], top: top + shape[1], :]
mean = np.mean(old_image)
std = np.max([np.std(old_image),
1.0 / np.sqrt(images.shape[1] * images.shape[2] * images.shape[3])])
new_image = (old_image - mean) / std
self.test_data.append(new_image)
self.test_data = np.array(self.test_data, dtype='float')
self.train_data_size = self.train_data.shape[0]
self.test_data_size = self.test_data.shape[0]
def next_batch(self, batch_size):
start = self._index_in_train_epoch
self._index_in_train_epoch += batch_size
if self._index_in_train_epoch > self.train_data_size:
order = np.arange(self.train_data_size)
np.random.shuffle(order)
self.train_data = self.train_data[order]
self.train_label = self.train_label[order]
start = 0
self._index_in_train_epoch = batch_size
assert batch_size <= self.train_data_size
end = self._index_in_train_epoch
return self.train_data[start: end], self.train_label[start: end]
def _read32(bytestream):
dt = np.dtype(np.uint32).newbyteorder('>')
return np.frombuffer(bytestream.read(4), dtype=dt)[0]
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = np.frombuffer(buf, dtype=np.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def dense_to_one_hot(labels_dense, num_classes=10):
"""Convert class labels from scalars to one-hot vectors."""
num_labels = labels_dense.shape[0]
index_offset = np.arange(num_labels) * num_classes
labels_one_hot = np.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
def extract_labels(filename):
"""Extract the labels into a 1D uint8 numpy array [index]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2049:
raise ValueError(
'Invalid magic number %d in MNIST label file: %s' %
(magic, filename))
num_items = _read32(bytestream)
buf = bytestream.read(num_items)
labels = np.frombuffer(buf, dtype=np.uint8)
return dense_to_one_hot(labels)