forked from OpenGVLab/InternVL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_accelerate.py
377 lines (309 loc) · 14.8 KB
/
main_accelerate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
# --------------------------------------------------------
# InternVL
# Copyright (c) 2022 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import argparse
import datetime
import logging
import os
import random
import time
import warnings
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from accelerate import Accelerator, GradScalerKwargs
from accelerate.logging import get_logger
from config import get_config
from dataset import build_loader2
from ddp_hooks import fp16_compress_hook
from lr_scheduler import build_scheduler
from models import build_model
from optimizer import build_optimizer
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from timm.utils import AverageMeter, ModelEma, accuracy
from tqdm import tqdm
from utils import load_ema_checkpoint, load_pretrained
logger = get_logger(__name__)
warnings.filterwarnings('ignore')
def parse_option():
parser = argparse.ArgumentParser(
'InternVL training and evaluation script', add_help=False)
parser.add_argument('--cfg', type=str, required=True, metavar='FILE', help='path to config file')
parser.add_argument('--opts', help="Modify config options by adding 'KEY VALUE' pairs. ", default=None, nargs='+')
# easy config modification
parser.add_argument('--batch-size', type=int, help='batch size for single GPU')
parser.add_argument('--dataset', type=str, help='dataset name', default=None)
parser.add_argument('--data-path', type=str, help='path to dataset')
parser.add_argument('--zip', action='store_true', help='use zipped dataset instead of folder dataset')
parser.add_argument('--cache-mode', type=str, default='part', choices=['no', 'full', 'part'],
help='no: no cache, '
'full: cache all data, '
'part: sharding the dataset into nonoverlapping pieces and only cache one piece'
)
parser.add_argument('--pretrained', help='pretrained weight from checkpoint, could be imagenet22k pretrained weight')
parser.add_argument('--resume', help='resume from checkpoint')
parser.add_argument('--output', default='work_dirs', type=str, metavar='PATH',
help='root of output folder, the full path is <output>/<model_name>/<tag> (default: output)'
)
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--throughput', action='store_true', help='Test throughput only')
parser.add_argument('--save-ckpt-num', default=1, type=int)
parser.add_argument('--accumulation-steps', type=int, default=1, help='gradient accumulation steps')
parser.add_argument('--disable-grad-scalar', action='store_true', help='disable Grad Scalar')
parser.add_argument(
'--logger',
type=str,
default='tensorboard',
choices=['tensorboard', 'wandb'],
help=(
'Whether to use [tensorboard](https://www.tensorflow.org/tensorboard) or [wandb](https://www.wandb.ai)'
' for experiment tracking and logging of model metrics and model checkpoints'
),
)
args, unparsed = parser.parse_known_args()
config = get_config(args)
config.defrost()
config.TRAIN.OPTIMIZER.USE_ZERO = False
config.OUTPUT += '_deepspeed'
config.DATA.IMG_ON_MEMORY = False
config.freeze()
return args, config
def seed_everything(seed, rank):
seed = seed + rank
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
def save_config(config):
path = os.path.join(config.OUTPUT, 'config.json')
with open(path, 'w') as f:
f.write(config.dump())
logger.info(f'Full config saved to {path}')
def build_criterion(config):
if config.AUG.MIXUP > 0.:
# smoothing is handled with mixup label transform
criterion = SoftTargetCrossEntropy()
elif config.MODEL.LABEL_SMOOTHING > 0.:
criterion = LabelSmoothingCrossEntropy(
smoothing=config.MODEL.LABEL_SMOOTHING)
else:
criterion = torch.nn.CrossEntropyLoss()
return criterion
def scale_learning_rate(config, num_processes):
# linear scale the learning rate according to total batch size, may not be optimal
linear_scaled_lr = config.TRAIN.BASE_LR * \
config.DATA.BATCH_SIZE * num_processes / 512.0
linear_scaled_warmup_lr = config.TRAIN.WARMUP_LR * \
config.DATA.BATCH_SIZE * num_processes / 512.0
linear_scaled_min_lr = config.TRAIN.MIN_LR * \
config.DATA.BATCH_SIZE * num_processes / 512.0
# gradient accumulation also need to scale the learning rate
if config.TRAIN.ACCUMULATION_STEPS > 1:
linear_scaled_lr = linear_scaled_lr * config.TRAIN.ACCUMULATION_STEPS
linear_scaled_warmup_lr = linear_scaled_warmup_lr * config.TRAIN.ACCUMULATION_STEPS
linear_scaled_min_lr = linear_scaled_min_lr * config.TRAIN.ACCUMULATION_STEPS
config.defrost()
config.TRAIN.BASE_LR = linear_scaled_lr
config.TRAIN.WARMUP_LR = linear_scaled_warmup_lr
config.TRAIN.MIN_LR = linear_scaled_min_lr
config.freeze()
logger.info('BASE_LR={}'.format(config.TRAIN.BASE_LR))
logger.info('WARMUP_LR={}'.format(config.TRAIN.WARMUP_LR))
logger.info('MIN_LR={}'.format(config.TRAIN.MIN_LR))
def setup_autoresume(config):
if config.MODEL.RESUME == '' and config.TRAIN.AUTO_RESUME:
last_checkpoint = os.path.join(config.OUTPUT, 'last')
resume_file = last_checkpoint if os.path.exists(last_checkpoint) else None
if resume_file:
if config.MODEL.RESUME:
logger.warning(f'auto-resume changing resume file from {config.MODEL.RESUME} to {resume_file}')
config.defrost()
config.MODEL.RESUME = resume_file
config.freeze()
logger.info(f'auto resuming from {resume_file}')
else:
logger.info(f'no checkpoint found in {config.OUTPUT}, ignoring auto resume')
def load_model_checkpoint(config, model, accelerator):
if config.MODEL.RESUME:
try:
checkpoint = torch.load(config.MODEL.RESUME)['model']
checkpoint = {k.replace('module.', ''): v for k, v in checkpoint.items()}
model.load_state_dict(checkpoint)
except:
accelerator.load_state(config.MODEL.RESUME)
elif config.MODEL.PRETRAINED:
try:
load_pretrained(config, model, logger)
except:
accelerator.load_state(config.MODEL.PRETRAINED)
return model
def save_checkpoint(save_dir, accelerator, epoch, max_acc, config, lr_scheduler=None):
# let accelerator handle the model and optimizer state for ddp and deepspeed.
accelerator.save_state(save_dir)
if accelerator.is_main_process:
save_state = {
'lr_scheduler': lr_scheduler.state_dict(),
'max_acc': max_acc,
'epoch': epoch,
'config': config
}
torch.save(save_state, os.path.join(save_dir, 'additional_state.pth'))
def load_checkpoint_if_needed(accelerator, config, lr_scheduler=None):
setup_autoresume(config)
save_dir = config.MODEL.RESUME
if not save_dir:
return 0.0
accelerator.load_state(save_dir)
checkpoint = torch.load(os.path.join(save_dir, 'additional_state.pth'), map_location='cpu')
if lr_scheduler is not None:
logger.info('resuming lr_scheduler')
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
config.defrost()
config.TRAIN.START_EPOCH = checkpoint['epoch'] + 1
config.freeze()
max_acc = checkpoint.get('max_acc', 0.0)
logger.info(f"=> loaded successfully {config.MODEL.RESUME} (epoch {checkpoint['epoch']})")
return max_acc
def log_model_statistic(model_wo_ddp):
n_parameters = sum(p.numel() for p in model_wo_ddp.parameters()
if p.requires_grad)
logger.info(f'number of params: {n_parameters}')
if hasattr(model_wo_ddp, 'flops'):
flops = model_wo_ddp.flops()
logger.info(f'number of GFLOPs: {flops / 1e9}')
def train_epoch(*, model, optimizer, data_loader, scheduler, criterion, mixup_fn,
accelerator: Accelerator, epoch, config):
model.train()
num_steps = len(data_loader)
batch_time = AverageMeter()
model_time = AverageMeter()
loss_meter = AverageMeter()
end = time.time()
gradient_accumulation_steps = config.TRAIN.ACCUMULATION_STEPS
for step, (samples, targets) in enumerate(data_loader):
iter_begin_time = time.time()
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
with accelerator.accumulate(model):
outputs = model(samples)
loss = criterion(outputs, targets)
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), config.TRAIN.CLIP_GRAD)
optimizer.step()
optimizer.zero_grad()
accelerator.wait_for_everyone()
if (step + 1) % gradient_accumulation_steps == 0:
if scheduler is not None:
scheduler.step_update((epoch * num_steps + step) // gradient_accumulation_steps)
batch_time.update(time.time() - end)
model_time.update(time.time() - iter_begin_time)
loss_meter.update(loss.item())
end = time.time()
if accelerator.is_main_process and step % config.PRINT_FREQ == 0:
lr = optimizer.param_groups[0]['lr']
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
etas = batch_time.avg * (num_steps - step)
logger.info(
f'Train: [{epoch}/{config.TRAIN.EPOCHS}][{step}/{num_steps}]\t'
f'eta {datetime.timedelta(seconds=int(etas))} lr {lr:.10f}\t'
f'time {batch_time.val:.4f} ({batch_time.avg:.4f})\t'
f'model_time {model_time.val:.4f} ({model_time.avg:.4f})\t'
f'loss {loss_meter.val:.8f} ({loss_meter.avg:.4f})\t'
f'mem {memory_used:.0f}MB')
@torch.no_grad()
def eval_epoch(*, config, data_loader, model, accelerator: Accelerator):
model.eval()
acc1_meter = AverageMeter()
acc5_meter = AverageMeter()
for idx, (images, target) in enumerate(tqdm(data_loader, disable=accelerator.is_main_process)):
output = model(images)
# convert 22k to 1k to evaluate
if output.size(-1) == 21841:
convert_file = './meta_data/map22kto1k.txt'
with open(convert_file, 'r') as f:
convert_list = [int(line) for line in f.readlines()]
output = output[:, convert_list]
acc1, acc5 = accuracy(output, target, topk=(1, 5))
acc1 = accelerator.gather(acc1).mean(0)
acc5 = accelerator.gather(acc5).mean(0)
acc1_meter.update(acc1.item(), target.size(0))
acc5_meter.update(acc5.item(), target.size(0))
if (idx + 1) % config.PRINT_FREQ == 0 or idx + 1 == len(data_loader):
logger.info(f'Test: [{idx+1}/{len(data_loader)}]\t'
f'Acc@1 {acc1_meter.val:.3f} ({acc1_meter.avg:.3f})\t'
f'Acc@5 {acc5_meter.val:.3f} ({acc5_meter.avg:.3f})\t'
)
return acc1_meter.avg
def eval(config, accelerator: Accelerator):
_, _, _, _, validate_dataloader, _, _ = build_loader2(config)
model = build_model(config)
model, validate_dataloader = accelerator.prepare(model, validate_dataloader)
model = load_model_checkpoint(config, model, accelerator)
log_model_statistic(accelerator.unwrap_model(model))
eval_epoch(config=config, data_loader=validate_dataloader, model=model, accelerator=accelerator)
def train(config, accelerator: Accelerator):
_, _, _, training_dataloader, validate_dataloader, _, mixup_fn = build_loader2(config)
model = build_model(config)
optimizer = build_optimizer(config, model)
criterion = build_criterion(config)
model, optimizer, training_dataloader, validate_dataloader = accelerator.prepare(
model, optimizer, training_dataloader, validate_dataloader)
effective_update_steps_per_epoch = len(training_dataloader) // config.TRAIN.ACCUMULATION_STEPS
lr_scheduler = build_scheduler(config, optimizer, effective_update_steps_per_epoch)
try:
model.register_comm_hook(state=None, hook=fp16_compress_hook)
logger.info('using fp16_compress_hook!')
except:
logger.info('cannot register fp16_compress_hook!')
max_acc = load_checkpoint_if_needed(accelerator, config, lr_scheduler)
logger.info(f'Created model:{config.MODEL.TYPE}/{config.MODEL.NAME}')
logger.info(str(model))
logger.info('Effective Optimizer Steps: {}'.format(effective_update_steps_per_epoch))
logger.info('Start training')
logger.info('Max accuracy: {}'.format(max_acc))
log_model_statistic(accelerator.unwrap_model(model))
for epoch in range(config.TRAIN.START_EPOCH, config.TRAIN.EPOCHS):
train_epoch(model=model, optimizer=optimizer, data_loader=training_dataloader,
scheduler=lr_scheduler, criterion=criterion, mixup_fn=mixup_fn,
accelerator=accelerator, epoch=epoch, config=config)
acc = eval_epoch(config=config, data_loader=validate_dataloader, model=model,
accelerator=accelerator)
accelerator.wait_for_everyone()
if acc > max_acc:
max_acc = acc
save_checkpoint(os.path.join(config.OUTPUT, 'best'), accelerator, epoch, max_acc, config, lr_scheduler)
logger.info(f'Max Acc@1 {max_acc:.3f}')
save_checkpoint(os.path.join(config.OUTPUT, 'last'), accelerator, epoch, max_acc, config, lr_scheduler)
def main():
args, config = parse_option()
os.makedirs(config.OUTPUT, exist_ok=True)
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
filename=os.path.join(config.OUTPUT, 'run.log'),
level=logging.INFO,
)
loggers = ['tensorboard']
accelerator = Accelerator(
log_with=loggers,
project_dir=config.OUTPUT,
gradient_accumulation_steps=config.TRAIN.ACCUMULATION_STEPS,
# When use deepspeed, you could not comment this out
# even if you set loss scale to 1.0 in deepspeed config.
kwargs_handlers=[GradScalerKwargs(enabled=not args.disable_grad_scalar)],
)
logger.info(accelerator.state, main_process_only=False)
scale_learning_rate(config, accelerator.num_processes)
seed_everything(config.SEED, accelerator.process_index)
save_config(config)
logger.info(config.dump())
if config.EVAL_MODE:
eval(config, accelerator)
else:
train(config, accelerator)
if __name__ == '__main__':
main()