forked from paulvangentcom/python_corona_simulation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
path_planning_demo.py
438 lines (350 loc) · 15.6 KB
/
path_planning_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
import os
import sys
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from infection import infect, recover_or_die, compute_mortality
from motion import update_positions, out_of_bounds, update_randoms,\
set_destination, check_at_destination, keep_at_destination
from population import initialize_population, initialize_destination_matrix
def update(frame, population, destinations, pop_size, infection_range=0.01,
infection_chance=0.03, recovery_duration=(200, 500), mortality_chance=0.02,
xbounds=[0.02, 0.98], ybounds=[0.02, 0.98], wander_range_x=0.05, wander_range_y=0.05,
risk_age=55, critical_age=75, critical_mortality_chance=0.1,
risk_increase='quadratic', no_treatment_factor=3,
treatment_factor=0.5, healthcare_capacity=250, age_dependent_risk=True,
treatment_dependent_risk=True, visualise=True, verbose=True):
#add one infection to jumpstart
if frame == 100:
#make C
#first leg
destinations[:,0][0:100] = 0.05
destinations[:,1][0:100] = 0.7
population[:,13][0:100] = 0.01
population[:,14][0:100] = 0.05
#Top
destinations[:,0][100:200] = 0.1
destinations[:,1][100:200] = 0.75
population[:,13][100:200] = 0.05
population[:,14][100:200] = 0.01
#Bottom
destinations[:,0][200:300] = 0.1
destinations[:,1][200:300] = 0.65
population[:,13][200:300] = 0.05
population[:,14][200:300] = 0.01
#make O
#first leg
destinations[:,0][300:400] = 0.2
destinations[:,1][300:400] = 0.7
population[:,13][300:400] = 0.01
population[:,14][300:400] = 0.05
#Top
destinations[:,0][400:500] = 0.25
destinations[:,1][400:500] = 0.75
population[:,13][400:500] = 0.05
population[:,14][400:500] = 0.01
#Bottom
destinations[:,0][500:600] = 0.25
destinations[:,1][500:600] = 0.65
population[:,13][500:600] = 0.05
population[:,14][500:600] = 0.01
#second leg
destinations[:,0][600:700] = 0.3
destinations[:,1][600:700] = 0.7
population[:,13][600:700] = 0.01
population[:,14][600:700] = 0.05
#make V
#First leg
destinations[:,0][700:800] = 0.35
destinations[:,1][700:800] = 0.7
population[:,13][700:800] = 0.01
population[:,14][700:800] = 0.05
#Bottom
destinations[:,0][800:900] = 0.4
destinations[:,1][800:900] = 0.65
population[:,13][800:900] = 0.05
population[:,14][800:900] = 0.01
#second leg
destinations[:,0][900:1000] = 0.45
destinations[:,1][900:1000] = 0.7
population[:,13][900:1000] = 0.01
population[:,14][900:1000] = 0.05
#Make I
#leg
destinations[:,0][1000:1100] = 0.5
destinations[:,1][1000:1100] = 0.7
population[:,13][1000:1100] = 0.01
population[:,14][1000:1100] = 0.05
#I dot
destinations[:,0][1100:1200] = 0.5
destinations[:,1][1100:1200] = 0.8
population[:,13][1100:1200] = 0.01
population[:,14][1100:1200] = 0.01
#make D
#first leg
destinations[:,0][1200:1300] = 0.55
destinations[:,1][1200:1300] = 0.67
population[:,13][1200:1300] = 0.01
population[:,14][1200:1300] = 0.03
#Top
destinations[:,0][1300:1400] = 0.6
destinations[:,1][1300:1400] = 0.75
population[:,13][1300:1400] = 0.05
population[:,14][1300:1400] = 0.01
#Bottom
destinations[:,0][1400:1500] = 0.6
destinations[:,1][1400:1500] = 0.65
population[:,13][1400:1500] = 0.05
population[:,14][1400:1500] = 0.01
#second leg
destinations[:,0][1500:1600] = 0.65
destinations[:,1][1500:1600] = 0.7
population[:,13][1500:1600] = 0.01
population[:,14][1500:1600] = 0.05
#dash
destinations[:,0][1600:1700] = 0.725
destinations[:,1][1600:1700] = 0.7
population[:,13][1600:1700] = 0.03
population[:,14][1600:1700] = 0.01
#Make 1
destinations[:,0][1700:1800] = 0.8
destinations[:,1][1700:1800] = 0.7
population[:,13][1700:1800] = 0.01
population[:,14][1700:1800] = 0.05
#Make 9
#right leg
destinations[:,0][1800:1900] = 0.91
destinations[:,1][1800:1900] = 0.675
population[:,13][1800:1900] = 0.01
population[:,14][1800:1900] = 0.08
#roof
destinations[:,0][1900:2000] = 0.88
destinations[:,1][1900:2000] = 0.75
population[:,13][1900:2000] = 0.035
population[:,14][1900:2000] = 0.01
#middle
destinations[:,0][2000:2100] = 0.88
destinations[:,1][2000:2100] = 0.7
population[:,13][2000:2100] = 0.035
population[:,14][2000:2100] = 0.01
#left vertical leg
destinations[:,0][2100:2200] = 0.86
destinations[:,1][2100:2200] = 0.72
population[:,13][2100:2200] = 0.01
population[:,14][2100:2200] = 0.01
###################
##### ROW TWO #####
###################
#S
#first leg
destinations[:,0][2200:2300] = 0.115
destinations[:,1][2200:2300] = 0.5
population[:,13][2200:2300] = 0.01
population[:,14][2200:2300] = 0.03
#Top
destinations[:,0][2300:2400] = 0.15
destinations[:,1][2300:2400] = 0.55
population[:,13][2300:2400] = 0.05
population[:,14][2300:2400] = 0.01
#second leg
destinations[:,0][2400:2500] = 0.2
destinations[:,1][2400:2500] = 0.45
population[:,13][2400:2500] = 0.01
population[:,14][2400:2500] = 0.03
#middle
destinations[:,0][2500:2600] = 0.15
destinations[:,1][2500:2600] = 0.48
population[:,13][2500:2600] = 0.05
population[:,14][2500:2600] = 0.01
#bottom
destinations[:,0][2600:2700] = 0.15
destinations[:,1][2600:2700] = 0.41
population[:,13][2600:2700] = 0.05
population[:,14][2600:2700] = 0.01
#Make I
#leg
destinations[:,0][2700:2800] = 0.25
destinations[:,1][2700:2800] = 0.45
population[:,13][2700:2800] = 0.01
population[:,14][2700:2800] = 0.05
#I dot
destinations[:,0][2800:2900] = 0.25
destinations[:,1][2800:2900] = 0.55
population[:,13][2800:2900] = 0.01
population[:,14][2800:2900] = 0.01
#M
#Top
destinations[:,0][2900:3000] = 0.37
destinations[:,1][2900:3000] = 0.5
population[:,13][2900:3000] = 0.07
population[:,14][2900:3000] = 0.01
#Left leg
destinations[:,0][3000:3100] = 0.31
destinations[:,1][3000:3100] = 0.45
population[:,13][3000:3100] = 0.01
population[:,14][3000:3100] = 0.05
#Middle leg
destinations[:,0][3100:3200] = 0.37
destinations[:,1][3100:3200] = 0.45
population[:,13][3100:3200] = 0.01
population[:,14][3100:3200] = 0.05
#Right leg
destinations[:,0][3200:3300] = 0.43
destinations[:,1][3200:3300] = 0.45
population[:,13][3200:3300] = 0.01
population[:,14][3200:3300] = 0.05
#set all destinations active
population[:,11] = 1
elif frame == 400:
population[:,11] = 0
population[:,12] = 0
population = update_randoms(population, pop_size, 1, 1)
#define motion vectors if destinations active and not everybody is at destination
active_dests = len(population[population[:,11] != 0]) # look op this only once
if active_dests > 0 and len(population[population[:,12] == 0]) > 0:
population = set_destination(population, destinations)
population = check_at_destination(population, destinations)
if active_dests > 0 and len(population[population[:,12] == 1]) > 0:
#keep them at destination
population = keep_at_destination(population, destinations,
wander_factor = 1)
#update out of bounds
#define bounds arrays
_xbounds = np.array([[xbounds[0] + 0.02, xbounds[1] - 0.02]] * len(population))
_ybounds = np.array([[ybounds[0] + 0.02, ybounds[1] - 0.02]] * len(population))
population = out_of_bounds(population, _xbounds, _ybounds)
#update randoms
population = update_randoms(population, pop_size)
#for dead ones: set speed and heading to 0
population[:,3:5][population[:,6] == 3] = 0
#update positions
population = update_positions(population)
#find new infections
population = infect(population, pop_size, infection_range, infection_chance, frame,
healthcare_capacity, verbose)
infected_plot.append(len(population[population[:,6] == 1]))
#recover and die
population = recover_or_die(population, frame, recovery_duration, mortality_chance,
risk_age, critical_age, critical_mortality_chance,
risk_increase, no_treatment_factor, age_dependent_risk,
treatment_dependent_risk, treatment_factor, verbose)
fatalities_plot.append(len(population[population[:,6] == 3]))
if visualise:
#construct plot and visualise
spec = fig.add_gridspec(ncols=1, nrows=2, height_ratios=[5,2])
ax1.clear()
ax2.clear()
ax1.set_xlim(xbounds[0], xbounds[1])
ax1.set_ylim(ybounds[0], ybounds[1])
healthy = population[population[:,6] == 0][:,1:3]
ax1.scatter(healthy[:,0], healthy[:,1], color='gray', s = 2, label='healthy')
infected = population[population[:,6] == 1][:,1:3]
ax1.scatter(infected[:,0], infected[:,1], color='red', s = 2, label='infected')
immune = population[population[:,6] == 2][:,1:3]
ax1.scatter(immune[:,0], immune[:,1], color='green', s = 2, label='immune')
fatalities = population[population[:,6] == 3][:,1:3]
ax1.scatter(fatalities[:,0], fatalities[:,1], color='black', s = 2, label='fatalities')
#add text descriptors
ax1.text(xbounds[0],
ybounds[1] + ((ybounds[1] - ybounds[0]) / 100),
'timestep: %i, total: %i, healthy: %i infected: %i immune: %i fatalities: %i' %(frame,
len(population),
len(healthy),
len(infected),
len(immune),
len(fatalities)),
fontsize=6)
ax2.set_title('number of infected')
ax2.text(0, pop_size * 0.05,
'https://github.com/paulvangentcom/python-corona-simulation',
fontsize=6, alpha=0.5)
ax2.set_xlim(0, simulation_steps)
ax2.set_ylim(0, pop_size + 100)
ax2.plot(infected_plot, color='gray')
ax2.plot(fatalities_plot, color='black', label='fatalities')
if treatment_dependent_risk:
#ax2.plot([healthcare_capacity for x in range(simulation_steps)], color='red',
# label='healthcare capacity')
infected_arr = np.asarray(infected_plot)
indices = np.argwhere(infected_arr >= healthcare_capacity)
ax2.plot(indices, infected_arr[infected_arr >= healthcare_capacity],
color='red')
#ax2.legend(loc = 1, fontsize = 6)
#plt.savefig('render/%i.png' %frame)
return population
if __name__ == '__main__':
###############################
##### SETTABLE PARAMETERS #####
###############################
#set simulation parameters
simulation_steps = 5000 #total simulation steps performed
#size of the simulated world in coordinates
xbounds = [0, 1]
ybounds = [0, 1]
visualise = True #whether to visualise the simulation
verbose = True #whether to print infections, recoveries and fatalities to the terminal
#population parameters
pop_size = 3300
mean_age=45
max_age=105
#motion parameters
mean_speed = 0.01 # the mean speed (defined as heading * speed)
std_speed = 0.01 / 3 #the standard deviation of the speed parameter
#the proportion of the population that practices social distancing, simulated
#by them standing still
proportion_distancing = 0
#when people have an active destination, the wander range defines the area
#surrounding the destination they will wander upon arriving
wander_range_x = 0.05
wander_range_y = 0.1
#illness parameters
infection_range=0.01 #range surrounding infected patient that infections can take place
infection_chance=0.03 #chance that an infection spreads to nearby healthy people each tick
recovery_duration=(200, 500) #how many ticks it may take to recover from the illness
mortality_chance=0.02 #global baseline chance of dying from the disease
#healthcare parameters
healthcare_capacity = 300 #capacity of the healthcare system
treatment_factor = 0.5 #when in treatment, affect risk by this factor
#risk parameters
age_dependent_risk = True #whether risk increases with age
risk_age = 55 #age where mortality risk starts increasing
critical_age = 75 #age at and beyond which mortality risk reaches maximum
critical_mortality_chance = 0.1 #maximum mortality risk for older age
treatment_dependent_risk = True #whether risk is affected by treatment
#whether risk between risk and critical age increases 'linear' or 'quadratic'
risk_increase = 'quadratic'
no_treatment_factor = 3 #risk increase factor to use if healthcare system is full
######################################
##### END OF SETTABLE PARAMETERS #####
######################################
#initalize population
population = initialize_population(pop_size, mean_age, max_age, xbounds, ybounds)
population[:,13] = wander_range_x #set wander ranges to default specified value
population[:,14] = wander_range_y #set wander ranges to default specified value
#initialize destination matrix
destinations = initialize_destination_matrix(pop_size, 1)
#create render folder if doesn't exist
if not os.path.exists('render/'):
os.makedirs('render/')
#define figure
fig = plt.figure(figsize=(5,7))
spec = fig.add_gridspec(ncols=1, nrows=2, height_ratios=[5,2])
ax1 = fig.add_subplot(spec[0,0])
plt.title('infection simulation')
plt.xlim(xbounds[0] - 0.1, xbounds[1] + 0.1)
plt.ylim(ybounds[0] - 0.1, ybounds[1] + 0.1)
ax2 = fig.add_subplot(spec[1,0])
ax2.set_title('number of infected')
ax2.set_xlim(0, simulation_steps)
ax2.set_ylim(0, pop_size + 100)
infected_plot = []
fatalities_plot = []
#define arguments for visualisation loop
fargs = (population, destinations, pop_size, infection_range, infection_chance,
recovery_duration, mortality_chance, xbounds, ybounds,
wander_range_x, wander_range_y, risk_age, critical_age,
critical_mortality_chance, risk_increase, no_treatment_factor,
treatment_factor, healthcare_capacity, age_dependent_risk,
treatment_dependent_risk, visualise, verbose,)
animation = FuncAnimation(fig, update, fargs = fargs, frames = simulation_steps, interval = 33)
plt.show()