Magnitude Scaling¶
Often, the raw amplitude of a signal in the time- or frequency-domain is not as perceptually relevant to humans as the amplitude converted into other units, e.g. using a logarithmic scale.
For example, let's consider a pure tone whose amplitude grows louder linearly. Define the time variable:
In [3]:
T = 4.0 # duration in seconds
sr = 22050 # sampling rate in Hertz
t = numpy.linspace(0, T, int(T*sr), endpoint=False)
Create a signal whose amplitude grows linearly:
In [4]:
amplitude = numpy.linspace(0, 1, int(T*sr), endpoint=False) # time-varying amplitude
x = amplitude*numpy.sin(2*numpy.pi*440*t)
Listen:
Out[5]:
Your browser does not support the audio element.
Plot the signal:
In [6]:
librosa.display.waveplot(x, sr=sr)
Out[6]:
<matplotlib.collections.PolyCollection at 0x111179198>
Now consider a signal whose amplitude grows exponentially, i.e. the logarithm of the amplitude is linear:
In [7]:
amplitude = numpy.logspace(-2, 0, int(T*sr), endpoint=False, base=10.0)
x = amplitude*numpy.sin(2*numpy.pi*440*t)
Out[8]:
Your browser does not support the audio element.
In [9]:
librosa.display.waveplot(x, sr=sr)
Out[9]:
<matplotlib.collections.PolyCollection at 0x1111cdfd0>
Even though the amplitude grows exponentially, to us, the increase in loudness seems more gradual. This phenomenon is an example of the Weber-Fechner law (Wikipedia) which states that the relationship between a stimulus and human perception is logarithmic.
Let's plot a magnitude spectrogram where the colorbar is a linear function of the spectrogram values, i.e. just plot the raw values.
In [10]:
x, sr = librosa.load('audio/latin_groove.mp3', duration=8)
ipd.Audio(x, rate=sr)
Out[10]:
Your browser does not support the audio element.
In [11]:
X = librosa.stft(x)
X.shape
Out[11]:
(1025, 345)
Raw amplitude:
In [12]:
Xmag = abs(X)
librosa.display.specshow(Xmag, sr=sr, x_axis='time', y_axis='log')
plt.colorbar()
Out[12]:
<matplotlib.colorbar.Colorbar at 0x114f156a0>
Now let's plot a magnitude spectrogram where the colorbar is a logarithmic function of the spectrogram values.
Decibel (Wikipedia)
In [13]:
Xdb = librosa.amplitude_to_db(Xmag)
librosa.display.specshow(Xdb, sr=sr, x_axis='time', y_axis='log')
plt.colorbar()
Out[13]:
<matplotlib.colorbar.Colorbar at 0x110fa1780>
One common variant is the
In [14]:
Xmag = numpy.log10(1+10*abs(X))
librosa.display.specshow(Xmag, sr=sr, x_axis='time', y_axis='log', cmap="gray_r")
plt.colorbar()
Out[14]:
<matplotlib.colorbar.Colorbar at 0x111058710>
In [15]:
freqs = librosa.core.fft_frequencies(sr=sr)
In [16]:
Xmag = librosa.perceptual_weighting(abs(X)**2, freqs)
librosa.display.specshow(Xmag, sr=sr, x_axis='time', y_axis='log')
plt.colorbar()
Out[16]:
<matplotlib.colorbar.Colorbar at 0x11a184400>