-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_preprocess.py
103 lines (91 loc) · 3.75 KB
/
data_preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import logging
from collections import defaultdict
import numpy as np
from sklearn.preprocessing import (
MinMaxScaler,
RobustScaler,
StandardScaler,
)
def normalize(data_dict, method="minmax"):
if method == "none":
return data_dict
logging.info("Normalizing data with {}".format(method))
normalized_dict = defaultdict(dict)
for k, subdata_dict in data_dict.items():
# method: minmax, standard, robust
# fit_transform using train
est = None
if method == "minmax":
est = MinMaxScaler()
elif method == "standard":
est = StandardScaler()
elif method == "robust":
est = RobustScaler()
train_ = est.fit_transform(subdata_dict["train"])
test_ = est.transform(subdata_dict["test"])
# assign back
normalized_dict[k]["train"] = train_
normalized_dict[k]["test"] = test_
for sub_k in subdata_dict.keys():
if sub_k not in ["train", "test"]:
normalized_dict[k][sub_k] = subdata_dict[sub_k]
return normalized_dict
def get_windows(ts, labels=None, window_size=128, stride=1, dim=None):
i = 0
ts_len = ts.shape[0]
windows = []
label_windows = []
while i + window_size < ts_len:
if dim is not None:
windows.append(ts[i: i + window_size, dim])
else:
windows.append(ts[i: i + window_size])
if labels is not None:
label_windows.append(labels[i: i + window_size])
i += stride
if labels is not None:
return np.array(windows, dtype=np.float32), np.array(
label_windows, dtype=np.float32
)
else:
return np.array(windows, dtype=np.float32), None
def generate_windows(data_dict, window_size=100, nrows=None, stride=1, positive_label=False):
logging.info("Generating sliding windows (size {}).".format(window_size))
results = defaultdict(dict)
for dataname, subdata_dict in data_dict.items():
for k in ["train", "valid", "test"]:
if k not in subdata_dict:
continue
data = subdata_dict[k][0:nrows]
if k == "train":
if not positive_label:
data_windows, _ = get_windows(
data, window_size=window_size, stride=stride
)
results[dataname]["train_windows"] = data_windows
else:
train_label = subdata_dict["train_label"][0:nrows]
data_windows, train_label = get_windows(
data, train_label, window_size=window_size, stride=stride
)
results[dataname]["train_windows"] = data_windows
results[dataname]["train_label"] = train_label
logging.info("Windows for {} #: {}".format(k, data_windows.shape))
if k == "valid":
data_windows, _ = get_windows(
data, window_size=window_size, stride=stride
)
results[dataname]["valid_windows"] = data_windows
logging.info("Windows for {} #: {}".format(k, data_windows.shape))
if k == "test":
test_label = subdata_dict["test_label"][0:nrows]
test_windows, test_label = get_windows(
data, test_label, window_size=window_size, stride=1
)
results[dataname]["test_windows"] = test_windows
results[dataname]["test_label"] = test_label
logging.info("Windows for {} #: {}".format(k, test_windows.shape))
return results
def minmax_score(score):
normalize_score = [(i - min(score)) / (max(score) - min(score)) for i in score]
return normalize_score