forked from junxia97/DiscoGNNs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataloader.py
126 lines (111 loc) · 5.09 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import torch.utils.data
from torch.utils.data.dataloader import default_collate
from batch import BatchSubstructContext, BatchMasking, BatchAE
class DataLoaderSubstructContext(torch.utils.data.DataLoader):
r"""Data loader which merges data objects from a
:class:`torch_geometric.data.dataset` to a mini-batch.
Args:
dataset (Dataset): The dataset from which to load the data.
batch_size (int, optional): How may samples per batch to load.
(default: :obj:`1`)
shuffle (bool, optional): If set to :obj:`True`, the data will be
reshuffled at every epoch (default: :obj:`True`)
"""
def __init__(self, dataset, batch_size=1, shuffle=True, **kwargs):
super(DataLoaderSubstructContext, self).__init__(
dataset,
batch_size,
shuffle,
collate_fn=lambda data_list: BatchSubstructContext.from_data_list(data_list),
**kwargs)
from util import MaskAtom
class DataLoaderMaskingPred(torch.utils.data.DataLoader):
r"""Data loader which merges data objects from a
:class:`torch_geometric.data.dataset` to a mini-batch.
Args:
dataset (Dataset): The dataset from which to load the data.
batch_size (int, optional): How may samples per batch to load.
(default: :obj:`1`)
shuffle (bool, optional): If set to :obj:`True`, the data will be
reshuffled at every epoch (default: :obj:`True`)
"""
def __init__(self, dataset, batch_size=1, shuffle=True, mask_rate=0.0, mask_edge=0.0, **kwargs):
self._transform = MaskAtom(num_atom_type = 119, num_edge_type = 5, mask_rate = mask_rate, mask_edge=mask_edge)
super(DataLoaderMaskingPred, self).__init__(
dataset,
batch_size,
shuffle,
collate_fn=self.collate_fn,
**kwargs)
def collate_fn(self, batches):
# batchs_origin = batches
batchs = [self._transform(x) for x in batches]
return BatchMasking.from_data_list(batchs)
# class DataLoaderMasking(torch.utils.data.DataLoader):
# r"""Data loader which merges data objects from a
# :class:`torch_geometric.data.dataset` to a mini-batch.
# Args:
# dataset (Dataset): The dataset from which to load the data.
# batch_size (int, optional): How may samples per batch to load.
# (default: :obj:`1`)
# shuffle (bool, optional): If set to :obj:`True`, the data will be
# reshuffled at every epoch (default: :obj:`True`)
# """
# def __init__(self, dataset, batch_size=1, shuffle=True, **kwargs):
# super(DataLoaderMasking, self).__init__(
# dataset,
# batch_size,
# shuffle,
# collate_fn=lambda data_list: BatchMasking.from_data_list(data_list),
# **kwargs)
class DataLoaderMasking(torch.utils.data.DataLoader):
r"""Data loader which merges data objects from a
:class:`torch_geometric.data.dataset` to a mini-batch.
Args:
dataset (Dataset): The dataset from which to load the data.
batch_size (int, optional): How may samples per batch to load.
(default: :obj:`1`)
shuffle (bool, optional): If set to :obj:`True`, the data will be
reshuffled at every epoch (default: :obj:`True`)
"""
def __init__(self, dataset, batch_size=1, shuffle=True, **kwargs):
super(DataLoaderMasking, self).__init__(
dataset,
batch_size,
shuffle,
collate_fn=lambda data_list: BatchMasking.from_data_list(data_list),
**kwargs)
class DataLoaderAE(torch.utils.data.DataLoader):
r"""Data loader which merges data objects from a
:class:`torch_geometric.data.dataset` to a mini-batch.
Args:
dataset (Dataset): The dataset from which to load the data.
batch_size (int, optional): How may samples per batch to load.
(default: :obj:`1`)
shuffle (bool, optional): If set to :obj:`True`, the data will be
reshuffled at every epoch (default: :obj:`True`)
"""
def __init__(self, dataset, batch_size=1, shuffle=True, **kwargs):
super(DataLoaderAE, self).__init__(
dataset,
batch_size,
shuffle,
collate_fn=lambda data_list: BatchAE.from_data_list(data_list),
**kwargs)
class DataLoaderFinetune(torch.utils.data.DataLoader):
r"""Data loader which merges data objects from a
:class:`torch_geometric.data.dataset` to a mini-batch.
Args:
dataset (Dataset): The dataset from which to load the data.
batch_size (int, optional): How may samples per batch to load.
(default: :obj:`1`)
shuffle (bool, optional): If set to :obj:`True`, the data will be
reshuffled at every epoch (default: :obj:`True`)
"""
def __init__(self, dataset, batch_size=1, shuffle=True, **kwargs):
super(DataLoaderFinetune, self).__init__(
dataset,
batch_size,
shuffle,
collate_fn=lambda data_list: BatchFinetune.from_data_list(data_list),
**kwargs)