Skip to content

Latest commit

 

History

History
78 lines (63 loc) · 6.56 KB

extra_materials.md

File metadata and controls

78 lines (63 loc) · 6.56 KB

En:

  1. Deep Learning book - classics. Delivers comprehensive overview of almost all vital themes in ML and DL. Available online at https://www.deeplearningbook.org
  2. The Hundred-page Machine Learning book: link (available online, e.g. on the github)
  3. Stanford lectures on Probability Theory: link
  4. Matrix calculus notes from Stanford: link
  5. Derivatives notes from Stanford: link
  6. Reinforcement Learning: An introduction by Richard S. Sutton and Andrew G. Barto: link

Ru:

  • Отличные лекции Жени Соколова. Читать pdf, лучше всего наиболее актуальный год: link
  • “Рукописный учебник” от студентов нашего курса на ФИВТе: link
  • Методичка Воронцова, link
  • Замечательная книжка В.Г. Спокойного про линейные оценки: link

Basics:

  • [en] Naive Bayesian classifier explained: link
  • Stanford notes on linear models: link

Bootstrap and bias-variance decomposition:

  • [en] Detailed description of bootstrap procedure: link
  • [en] Bias-variance tradeoff in more general case: A Unified Bias-Variance Decomposition and its Applications link

Gradient Boosting and Feature importances:

Deep Learning:

Natural Language Processing:

Graph Neural Networks: