Skip to content

Latest commit

 

History

History
81 lines (62 loc) · 2.91 KB

README.md

File metadata and controls

81 lines (62 loc) · 2.91 KB

mmw-geoprocessing

Build Status

A Spark Job Server job for Model My Watershed geoprocessing.

Usage

First, build the assembly JAR for this project:

$ git clone https://github.com/WikiWatershed/mmw-geoprocessing.git
$ cd mmw-geoprocessing
$ ./sbt assembly

To use a Docker based Scala build environment, you can use:

$ docker run \
    --rm \
    --volume ${HOME}/.ivy2:/root/.ivy2 \
    --volume ${PWD}:/mmw-geoprocessing \
    --workdir /mmw-geoprocessing \
    quay.io/azavea/scala:2.10.5 ./sbt assembly

Next, use the latest Spark Job Server (SJS) Docker image to launch an instance of SJS locally:

$ docker run \
    --detach \
    --env AWS_PROFILE=nondefault \
    --volume ${HOME}/.aws:/root/.aws:ro \
    --volume ${PWD}/examples/conf/spark-jobserver.conf:/opt/spark-jobserver/spark-jobserver.conf:ro \
    --publish 8090:8090 \
    --name spark-jobserver \
    quay.io/azavea/spark-jobserver:0.6.1

Note: Ensure that the default credentials in your $HOME/.aws/credentials file is set with the appropriate AWS API keys. Otherwise, you may have to set the AWS_PROFILE environment variable to your custom credential profile.

Now that the SJS service is running in the background, upload the assembly JAR and create a long-lived Spark context named geoprocessing:

$ curl --silent \
    --data-binary @summary/target/scala-2.10/mmw-geoprocessing-assembly-0.1.0.jar \
    'http://localhost:8090/jars/geoprocessing'
$ curl --silent --data "" \
    'http://localhost:8090/contexts/geoprocessing-context'

Once that process is complete, try submitting a job to the geoprocessing-context:

$ curl --silent \
    --data-binary @examples/request.json \
    'http://localhost:8090/jobs?sync=true&context=geoprocessing-context&appName=geoprocessing&classPath=org.wikiwatershed.mmw.geoprocessing.SummaryJob'

Deployments

Deployments to GitHub Releases are handled through Travis-CI. The following git-flow commands signal to Travis that we want to create a release:

$ git flow release start 0.1.0
$ vim CHANGELOG.md
$ vim project/build.scala
$ git add CHANGELOG.md project/build.scala
$ git commit -m "0.1.0"
$ git flow release publish 0.1.0
$ git flow release finish 0.1.0

You should now check the develop and master branches on github to make sure that they look correct. In particular, they should both contain the changes that you made to CHANGELOG.md. If they do not, then the following two steps may also be required:

$ git push origin develop:develop
$ git push origin master:master

To actually kick off the deployment, ensure that the newly created Git tags are pushed remotely with git push --tags.