-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_elm.py
95 lines (78 loc) · 3.18 KB
/
model_elm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import tensorflow as tf
import numpy as np
# CHECK : Constants
omega = 1.
class ELM(object):
def __init__(self, sess, batch_size, input_len, hidden_num, output_len):
'''
Args:
sess : TensorFlow session.
batch_size : The batch size (N)
input_len : The length of input. (L)
hidden_num : The number of hidden node. (K)
output_len : The length of output. (O)
'''
self._sess = sess
self._batch_size = batch_size
self._input_len = input_len
self._hidden_num = hidden_num
self._output_len = output_len
# for train
self._x0 = tf.placeholder(tf.float32, [self._batch_size, self._input_len])
self._t0 = tf.placeholder(tf.float32, [self._batch_size, self._output_len])
# for test
self._x1 = tf.placeholder(tf.float32, [None, self._input_len])
self._t1 = tf.placeholder(tf.float32, [None, self._output_len])
self._W = tf.Variable(
tf.random_normal([self._input_len, self._hidden_num]),
trainable=False, dtype=tf.float32)
self._b = tf.Variable(
tf.random_normal([self._hidden_num]),
trainable=False, dtype=tf.float32)
self._beta = tf.Variable(
tf.zeros([self._hidden_num, self._output_len]),
trainable=False, dtype=tf.float32)
self._var_list = [self._W, self._b, self._beta]
self.H0 = tf.matmul(self._x0, self._W) + self._b # N x L
self.H0_T = tf.transpose(self.H0)
self.H1 = tf.matmul(self._x1, self._W) + self._b # N x L
self.H1_T = tf.transpose(self.H1)
# beta analytic solution : self._beta_s (K x O)
if self._input_len < self._hidden_num: # L < K
identity = tf.constant(np.identity(self._hidden_num), dtype=tf.float32)
self._beta_s = tf.matmul(tf.matmul(tf.matrix_inverse(
tf.matmul(self.H0_T, self.H0) + identity/omega),
self.H0_T), self._t0)
# _beta_s = (H_T*H + I/om)^(-1)*H_T*T
else:
identity = tf.constant(np.identity(self._batch_size), dtype=tf.float32)
self._beta_s = tf.matmul(tf.matmul(self.H0_T, tf.matrix_inverse(
tf.matmul(self.H0, self.H0_T)+identity/omega)), self._t0)
# _beta_s = H_T*(H*H_T + I/om)^(-1)*T
self._assign_beta = self._beta.assign(self._beta_s)
self._fx0 = tf.matmul(self.H0, self._beta)
self._fx1 = tf.matmul(self.H1, self._beta)
self._cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(self._fx0, self._t0))
self._init = False
self._feed = False
# for the mnist test
self._correct_prediction = tf.equal(tf.argmax(self._fx1,1), tf.argmax(self._t1,1))
self._accuracy = tf.reduce_mean(tf.cast(self._correct_prediction, tf.float32))
def feed(self, x, t):
'''
Args :
x : input array (N x L)
t : label array (N x O)
'''
if not self._init : self.init()
self._sess.run(self._assign_beta, {self._x0:x, self._t0:t})
self._feed = True
def init(self):
self._sess.run(tf.initialize_variables(self._var_list))
self._init = True
def test(self, x, t=None):
if not self._feed : exit("Not feed-forward trained")
if t is not None :
print("Accuracy: {:.9f}".format(self._sess.run(self._accuracy, {self._x1:x, self._t1:t})))
else :
return self._sess.run(self._fx1, {self._x1:x})