-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_lstm.py
29 lines (20 loc) · 902 Bytes
/
model_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# Model LSTM
import tflearn
def get_sgd():
return tflearn.SGD(learning_rate=0.1, lr_decay=0.96, decay_step=1000)
def simple_lstm():
input_layer = tflearn.input_data(shape=[None, 5, 19])
lstm_layer = tflearn.lstm(input_layer, 128, dropout=0.8)
fc = tflearn.fully_connected(lstm_layer, 11, activation='sigmoid')
sgd = get_sgd()
reg = tflearn.regression(fc, optimizer=sgd, learning_rate=0.001, loss='categorical_crossentropy')
model = tflearn.DNN(reg, tensorboard_verbose=3)
return model
def time_distributed_lstm():
input_layer = tflearn.input_data(shape=[None, 13, 7])
model = tflearn.time_distributed(input_layer, tflearn.lstm(128))
model = tflearn.fully_connected(model, 7, activation='sigmoid')
sgd = get_sgd()
reg = tflearn.regression(model, optimizer=sgd, learning_rate=0.001, loss='categorical_crossentropy')
model = tflearn.DNN(model, tensorboard_verbose=3)
return model