-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun.py
241 lines (222 loc) · 7.7 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
""" Wrapper to train and test a medical image segmentation model. """
import argparse
import os
from argparse import Namespace
import torch
import nni
import yaml
from lightning.pytorch.loggers import WandbLogger, TensorBoardLogger, CSVLogger
from lightning.fabric.utilities.seed import seed_everything
import wandb
from utils.train_utils import get_rank
from workers.test_net import test_aug_worker, test_worker
from workers.train_net import train_aug_worker, train_worker
torch.set_float32_matmul_precision("high")
def main():
parser = argparse.ArgumentParser(description="2D Medical Image Segmentation")
parser.add_argument(
"--cfg",
default="./configs.yaml",
type=str,
help="Config file used for experiment",
)
parser.add_argument(
"--workers",
default=10,
type=int,
metavar="N",
help="number of data loading workers",
)
parser.add_argument("--gpu", default=None, type=int, help="GPU id to use.")
# training configuration
parser.add_argument(
"-b",
"--batch_size",
default=128,
type=int,
metavar="N",
help="mini-batch size (default: 128), this is the total "
"batch size of all GPUs on the current node when "
"using Data Parallel or Distributed Data Parallel",
)
parser.add_argument(
"--test_batch_size",
default=12,
type=int,
metavar="N",
help="inference mini-batch size (default: 1)",
)
parser.add_argument(
"--epoch",
default=100,
type=int,
metavar="N",
help="training epoch (default: 100)",
)
parser.add_argument(
"--resume",
default=-1,
type=int,
metavar="N",
help="resume from which fold (default: -1)",
)
parser.add_argument("--lr", type=float, default=1e-3, help="learning rate")
parser.add_argument(
"--optimizer",
default="ADAM",
choices=("SGD", "ADAM", "RMSprop"),
help="optimizer to use (SGD | ADAM | RMSprop)",
)
parser.add_argument("--pretrained", default="", help="pretrained model weights")
parser.add_argument("--size", type=int, default=512, help="size of input image")
parser.add_argument(
"--dice_loss", action="store_true", help="using dice loss or not"
)
# model specifications
parser.add_argument("--model", type=str, default="UNet", help="model name")
parser.add_argument(
"--encoder", type=str, default="resnet50", help="encoder name of the model"
)
parser.add_argument(
"--no_crop", action="store_true", help="disable random resized cropping"
)
# experiment configuration
parser.add_argument(
"--save_results", action="store_true", help="save context results or not"
)
parser.add_argument("--save_name", default="smoke", help="experiment name")
parser.add_argument(
"--dataset_name",
default="staining134",
help="dataset name [staining134 / dataset / HRF]",
)
parser.add_argument(
"--eval_metric",
type=str,
default="rotation",
help="evaluation metric [inpainting / rotation / colirization]",
)
parser.add_argument("--kfold", action="store_true", help="5-fold cross-validation")
parser.add_argument("--smoke_test", action="store_true", help="debug mode")
parser.add_argument(
"--description", default="", type=str, help="description of the experiment"
)
parser.add_argument(
"--aug_k", type=int, default=40, help="number of generating superpixels"
)
parser.add_argument(
"--aug_n",
type=int,
default=1,
help="number of superpixel selected for inpainting",
)
parser.add_argument("--patch", action="store_true", help="mask using random patch")
parser.add_argument(
"--seed", type=int, default=436, help="global setting for random seed"
)
parser.add_argument(
"--percent",
type=float,
default=100,
help="percentage of training data used for training",
)
# Wandb configuration
parser.add_argument(
"--log_name", default="", type=str, help="description of the wandb logger"
)
parser.add_argument("--tags", default=[], help="tags for wandb")
parser.add_argument(
"--resume_wandb", action="store_true", help="resume experiment for wandb"
)
parser.add_argument(
"--id", type=str, default="wzh is hangua", help="resume id for wandb"
)
parser.add_argument(
"--update_config",
action="store_true",
help="update wandb config for existing experiments",
)
parser.add_argument(
"--optimization", action="store_true", help="doing nni optimization"
)
parser.add_argument("--evaluate", action="store_true", help="evaluate only")
parser.add_argument(
"--inpainting",
action="store_true",
help="doing inpainting and other self supervised progress",
)
args = parser.parse_args()
with open(args.cfg, encoding="utf-8") as f:
config = yaml.load(f.read(), Loader=yaml.FullLoader)
opt = vars(args)
opt.update(config)
args = Namespace(**opt)
for arg in vars(args):
if vars(args)[arg] == "True":
vars(args)[arg] = True
elif vars(args)[arg] == "False":
vars(args)[arg] = False
dirname = "{}".format(args.save_name)
if not os.path.isdir(dirname):
os.makedirs(dirname)
if not args.smoke_test and not args.update_config:
if args.resume_wandb:
print("=> Resuming Wandb logger")
# Need modification if you want to use WandB
args.logger = WandbLogger(
project="your_project_name",
entity="your_entity_name",
name=args.log_name,
tags=args.tags,
resume=True,
id=args.id,
notes=args.description,
)
if get_rank() == 0:
args.logger.experiment.config.update(args, allow_val_change=True)
wandb.run.log_code(".")
else:
print("=> Making Wandb logger")
args.logger = WandbLogger(
project="your_project_name",
entity="your_entity_name",
name=args.log_name,
tags=args.tags,
notes=args.description,
)
if get_rank() == 0:
args.logger.experiment.config.update(args, allow_val_change=True)
wandb.run.log_code(".")
else:
print("=> Using local csv logger")
args.logger = CSVLogger(
save_dir=args.save_name,
name=args.log_name,
flush_logs_every_n_steps=50
)
seed_everything(args.seed, workers=True)
if args.inpainting:
if args.evaluate:
test_aug_worker(args, aug_k=args.aug_k, aug_n=args.aug_n)
else:
print("=> Start inpainting and self supervised evaluation")
train_aug_worker(args)
print("=> Process finished")
elif args.optimization:
print("=> Running nni for optimization")
params = nni.get_next_parameter()
print("=> Param: ", params)
nni_result = test_aug_worker(args, **params)
nni.report_final_result(nni_result)
elif args.evaluate:
print("=> Only evaluating")
test_worker(args)
else:
print("=> Start segmentation training process")
train_worker(args)
print("=> Segmentation training process finished")
print("=> Start testing segmentation model")
test_worker(args)
print("=> Segmentation model test finished")
if __name__ == "__main__":
main()