forked from Wenchao-M/SAGE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_refiner.py
106 lines (87 loc) · 4.21 KB
/
train_refiner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import os
import random
import numpy as np
import torch
import time
import datetime
# os.environ["CUDA_VISIBLE_DEVICES"] = '2'
from diffusion_stage.parser_util import get_args, merge_file
from dataloader.dataloader_refiner import get_dataloader
from VQVAE.transformer_vqvae import TransformerVQVAE
from diffusion_stage.wrap_model import MotionDiffusion
from diffusion_stage.do_train_refiner import do_train
from diffusion_stage.transformer_decoder import TransformerDecoder
from diffusion_stage.refinenet import Refinenet
lower_body = [0, 1, 2, 4, 5, 7, 8, 10, 11]
upper_body = [0, 3, 6, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]
def main():
args = get_args()
torch.backends.cudnn.benchmark = False
random.seed(args.SEED)
np.random.seed(args.SEED)
torch.manual_seed(args.SEED)
print("USE OURS", hasattr(args, 'USE_OURS') and args.USE_OURS)
if args.SAVE_DIR is None:
raise FileNotFoundError("save_dir was not specified.")
elif not os.path.exists(args.SAVE_DIR):
os.makedirs(args.SAVE_DIR)
print(f"Saving to:{args.SAVE_DIR}")
output_dir = args.SAVE_DIR
timestamp = time.time()
dt = datetime.datetime.fromtimestamp(timestamp)
formatted_dt = dt.strftime("%Y%m%d_%H%M")
log_path = os.path.join(output_dir, f"{args.name}_{formatted_dt}.log")
with open(log_path, 'w') as f:
f.write(str(args) + '\n')
print(f"Args saving to {log_path}")
print("creating data loader...")
motions, sparses, all_info = load_data(
args.DATASET_PATH,
"train",
protocol=args.PROTOCOL,
input_motion_length=args.INPUT_MOTION_LENGTH,
)
if hasattr(args, 'USE_OURS') and args.USE_OURS:
from dataloader.dataloader_our_wrapper import load_data
from dataloader.dataloader_refiner import TrainDataset_Our as TrainDataset
else:
from dataloader.dataloader_refiner import load_data, TrainDataset
train_dataset = TrainDataset(
motions,
sparses,
args.INPUT_MOTION_LENGTH,
args.FULL_MOTION_LENGTH
)
train_dataloader = get_dataloader(
train_dataset, "train", batch_size=args.BATCH_SIZE, num_workers=args.NUM_WORKERS
)
print("creating model...")
print("creating model and diffusion...")
device = "cuda" if torch.cuda.is_available() else "cpu"
num_gpus = torch.cuda.device_count()
args.num_workers = args.NUM_WORKERS * num_gpus
vqcfg = args.VQVAE
vq_model_upper = TransformerVQVAE(in_dim=len(upper_body) * 6, n_layers=vqcfg.n_layers, hid_dim=vqcfg.hid_dim,
heads=vqcfg.heads, dropout=vqcfg.dropout, n_codebook=vqcfg.n_codebook,
n_e=vqcfg.n_e, e_dim=vqcfg.e_dim, beta=vqcfg.beta)
vq_model_lower = TransformerVQVAE(in_dim=len(lower_body) * 6, n_layers=vqcfg.n_layers, hid_dim=vqcfg.hid_dim,
heads=vqcfg.heads, dropout=vqcfg.dropout, n_codebook=vqcfg.n_codebook,
n_e=vqcfg.n_e, e_dim=vqcfg.e_dim, beta=vqcfg.beta)
diff_model_upper = MotionDiffusion(cfg=args.DIFFUSION, input_length=args.INPUT_MOTION_LENGTH,
num_layers=args.DIFFUSION.layers_upper, use_upper=False)
diff_model_lower = MotionDiffusion(cfg=args.DIFFUSION, input_length=args.INPUT_MOTION_LENGTH,
num_layers=args.DIFFUSION.layers_lower, use_upper=True)
decoder_model = TransformerDecoder(in_dim=132, seq_len=args.INPUT_MOTION_LENGTH, **args.DECODER)
refiner_model = Refinenet(n_layers=args.REFINER.n_layers, hidder_dim=args.REFINER.hidden_dim)
vq_model_upper = vq_model_upper.to(device)
vq_model_lower = vq_model_lower.to(device)
diff_model_upper = diff_model_upper.to(device)
diff_model_lower = diff_model_lower.to(device)
decoder_model = decoder_model.to(device)
refiner_model = refiner_model.to(device)
print("Training...")
do_train(args, diff_model_upper, diff_model_lower, vq_model_upper,
vq_model_lower, decoder_model, refiner_model, train_dataloader, log_path)
print("Done.")
if __name__ == "__main__":
main()