forked from 3b1b/manim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
example_scenes.py
674 lines (586 loc) · 24.1 KB
/
example_scenes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
from manimlib import *
import numpy as np
# To watch one of these scenes, run the following:
# manimgl example_scenes.py OpeningManimExample
# Use -s to skip to the end and just save the final frame
# Use -w to write the animation to a file
# Use -o to write it to a file and open it once done
# Use -n <number> to skip ahead to the n'th animation of a scene.
class OpeningManimExample(Scene):
def construct(self):
intro_words = Text("""
The original motivation for manim was to
better illustrate mathematical functions
as transformations.
""")
intro_words.to_edge(UP)
self.play(Write(intro_words))
self.wait(2)
# Linear transform
grid = NumberPlane((-10, 10), (-5, 5))
matrix = [[1, 1], [0, 1]]
linear_transform_words = VGroup(
Text("This is what the matrix"),
IntegerMatrix(matrix, include_background_rectangle=True),
Text("looks like")
)
linear_transform_words.arrange(RIGHT)
linear_transform_words.to_edge(UP)
linear_transform_words.set_stroke(BLACK, 10, background=True)
self.play(
ShowCreation(grid),
FadeTransform(intro_words, linear_transform_words)
)
self.wait()
self.play(grid.animate.apply_matrix(matrix), run_time=3)
self.wait()
# Complex map
c_grid = ComplexPlane()
moving_c_grid = c_grid.copy()
moving_c_grid.prepare_for_nonlinear_transform()
c_grid.set_stroke(BLUE_E, 1)
c_grid.add_coordinate_labels(font_size=24)
complex_map_words = TexText("""
Or thinking of the plane as $\\mathds{C}$,\\\\
this is the map $z \\rightarrow z^2$
""")
complex_map_words.to_corner(UR)
complex_map_words.set_stroke(BLACK, 5, background=True)
self.play(
FadeOut(grid),
Write(c_grid, run_time=3),
FadeIn(moving_c_grid),
FadeTransform(linear_transform_words, complex_map_words),
)
self.wait()
self.play(
moving_c_grid.animate.apply_complex_function(lambda z: z**2),
run_time=6,
)
self.wait(2)
class AnimatingMethods(Scene):
def construct(self):
grid = Tex(r"\pi").get_grid(10, 10, height=4)
self.add(grid)
# You can animate the application of mobject methods with the
# ".animate" syntax:
self.play(grid.animate.shift(LEFT))
# Alternatively, you can use the older syntax by passing the
# method and then the arguments to the scene's "play" function:
self.play(grid.shift, LEFT)
# Both of those will interpolate between the mobject's initial
# state and whatever happens when you apply that method.
# For this example, calling grid.shift(LEFT) would shift the
# grid one unit to the left, but both of the previous calls to
# "self.play" animate that motion.
# The same applies for any method, including those setting colors.
self.play(grid.animate.set_color(YELLOW))
self.wait()
self.play(grid.animate.set_submobject_colors_by_gradient(BLUE, GREEN))
self.wait()
self.play(grid.animate.set_height(TAU - MED_SMALL_BUFF))
self.wait()
# The method Mobject.apply_complex_function lets you apply arbitrary
# complex functions, treating the points defining the mobject as
# complex numbers.
self.play(grid.animate.apply_complex_function(np.exp), run_time=5)
self.wait()
# Even more generally, you could apply Mobject.apply_function,
# which takes in functions form R^3 to R^3
self.play(
grid.animate.apply_function(
lambda p: [
p[0] + 0.5 * math.sin(p[1]),
p[1] + 0.5 * math.sin(p[0]),
p[2]
]
),
run_time=5,
)
self.wait()
class TextExample(Scene):
def construct(self):
# To run this scene properly, you should have "Consolas" font in your computer
# for full usage, you can see https://github.com/3b1b/manim/pull/680
text = Text("Here is a text", font="Consolas", font_size=90)
difference = Text(
"""
The most important difference between Text and TexText is that\n
you can change the font more easily, but can't use the LaTeX grammar
""",
font="Arial", font_size=24,
# t2c is a dict that you can choose color for different text
t2c={"Text": BLUE, "TexText": BLUE, "LaTeX": ORANGE}
)
VGroup(text, difference).arrange(DOWN, buff=1)
self.play(Write(text))
self.play(FadeIn(difference, UP))
self.wait(3)
fonts = Text(
"And you can also set the font according to different words",
font="Arial",
t2f={"font": "Consolas", "words": "Consolas"},
t2c={"font": BLUE, "words": GREEN}
)
fonts.set_width(FRAME_WIDTH - 1)
slant = Text(
"And the same as slant and weight",
font="Consolas",
t2s={"slant": ITALIC},
t2w={"weight": BOLD},
t2c={"slant": ORANGE, "weight": RED}
)
VGroup(fonts, slant).arrange(DOWN, buff=0.8)
self.play(FadeOut(text), FadeOut(difference, shift=DOWN))
self.play(Write(fonts))
self.wait()
self.play(Write(slant))
self.wait()
class TexTransformExample(Scene):
def construct(self):
to_isolate = ["B", "C", "=", "(", ")"]
lines = VGroup(
# Passing in muliple arguments to Tex will result
# in the same expression as if those arguments had
# been joined together, except that the submobject
# hierarchy of the resulting mobject ensure that the
# Tex mobject has a subject corresponding to
# each of these strings. For example, the Tex mobject
# below will have 5 subjects, corresponding to the
# expressions [A^2, +, B^2, =, C^2]
Tex("A^2", "+", "B^2", "=", "C^2"),
# Likewise here
Tex("A^2", "=", "C^2", "-", "B^2"),
# Alternatively, you can pass in the keyword argument
# "isolate" with a list of strings that should be out as
# their own submobject. So the line below is equivalent
# to the commented out line below it.
Tex("A^2 = (C + B)(C - B)", isolate=["A^2", *to_isolate]),
# Tex("A^2", "=", "(", "C", "+", "B", ")", "(", "C", "-", "B", ")"),
Tex("A = \\sqrt{(C + B)(C - B)}", isolate=["A", *to_isolate])
)
lines.arrange(DOWN, buff=LARGE_BUFF)
for line in lines:
line.set_color_by_tex_to_color_map({
"A": BLUE,
"B": TEAL,
"C": GREEN,
})
play_kw = {"run_time": 2}
self.add(lines[0])
# The animation TransformMatchingTex will line up parts
# of the source and target which have matching tex strings.
# Here, giving it a little path_arc makes each part sort of
# rotate into their final positions, which feels appropriate
# for the idea of rearranging an equation
self.play(
TransformMatchingTex(
lines[0].copy(), lines[1],
path_arc=90 * DEGREES,
),
**play_kw
)
self.wait()
# Now, we could try this again on the next line...
self.play(
TransformMatchingTex(lines[1].copy(), lines[2]),
**play_kw
)
self.wait()
# ...and this looks nice enough, but since there's no tex
# in lines[2] which matches "C^2" or "B^2", those terms fade
# out to nothing while the C and B terms fade in from nothing.
# If, however, we want the C^2 to go to C, and B^2 to go to B,
# we can specify that with a key map.
self.play(FadeOut(lines[2]))
self.play(
TransformMatchingTex(
lines[1].copy(), lines[2],
key_map={
"C^2": "C",
"B^2": "B",
}
),
**play_kw
)
self.wait()
# And to finish off, a simple TransformMatchingShapes would work
# just fine. But perhaps we want that exponent on A^2 to transform into
# the square root symbol. At the moment, lines[2] treats the expression
# A^2 as a unit, so we might create a new version of the same line which
# separates out just the A. This way, when TransformMatchingTex lines up
# all matching parts, the only mismatch will be between the "^2" from
# new_line2 and the "\sqrt" from the final line. By passing in,
# transform_mismatches=True, it will transform this "^2" part into
# the "\sqrt" part.
new_line2 = Tex("A^2 = (C + B)(C - B)", isolate=["A", *to_isolate])
new_line2.replace(lines[2])
new_line2.match_style(lines[2])
self.play(
TransformMatchingTex(
new_line2, lines[3],
transform_mismatches=True,
),
**play_kw
)
self.wait(3)
self.play(FadeOut(lines, RIGHT))
# Alternatively, if you don't want to think about breaking up
# the tex strings deliberately, you can TransformMatchingShapes,
# which will try to line up all pieces of a source mobject with
# those of a target, regardless of the submobject hierarchy in
# each one, according to whether those pieces have the same
# shape (as best it can).
source = Text("the morse code", height=1)
target = Text("here come dots", height=1)
self.play(Write(source))
self.wait()
kw = {"run_time": 3, "path_arc": PI / 2}
self.play(TransformMatchingShapes(source, target, **kw))
self.wait()
self.play(TransformMatchingShapes(target, source, **kw))
self.wait()
class UpdatersExample(Scene):
def construct(self):
square = Square()
square.set_fill(BLUE_E, 1)
# On all frames, the constructor Brace(square, UP) will
# be called, and the mobject brace will set its data to match
# that of the newly constructed object
brace = always_redraw(Brace, square, UP)
text, number = label = VGroup(
Text("Width = "),
DecimalNumber(
0,
show_ellipsis=True,
num_decimal_places=2,
include_sign=True,
)
)
label.arrange(RIGHT)
# This ensures that the method deicmal.next_to(square)
# is called on every frame
always(label.next_to, brace, UP)
# You could also write the following equivalent line
# label.add_updater(lambda m: m.next_to(brace, UP))
# If the argument itself might change, you can use f_always,
# for which the arguments following the initial Mobject method
# should be functions returning arguments to that method.
# The following line ensures thst decimal.set_value(square.get_y())
# is called every frame
f_always(number.set_value, square.get_width)
# You could also write the following equivalent line
# number.add_updater(lambda m: m.set_value(square.get_width()))
self.add(square, brace, label)
# Notice that the brace and label track with the square
self.play(
square.animate.scale(2),
rate_func=there_and_back,
run_time=2,
)
self.wait()
self.play(
square.animate.set_width(5, stretch=True),
run_time=3,
)
self.wait()
self.play(
square.animate.set_width(2),
run_time=3
)
self.wait()
# In general, you can alway call Mobject.add_updater, and pass in
# a function that you want to be called on every frame. The function
# should take in either one argument, the mobject, or two arguments,
# the mobject and the amount of time since the last frame.
now = self.time
w0 = square.get_width()
square.add_updater(
lambda m: m.set_width(w0 * math.sin(self.time - now) + w0)
)
self.wait(4 * PI)
class CoordinateSystemExample(Scene):
def construct(self):
axes = Axes(
# x-axis ranges from -1 to 10, with a default step size of 1
x_range=(-1, 10),
# y-axis ranges from -2 to 2 with a step size of 0.5
y_range=(-2, 2, 0.5),
# The axes will be stretched so as to match the specified
# height and width
height=6,
width=10,
# Axes is made of two NumberLine mobjects. You can specify
# their configuration with axis_config
axis_config={
"stroke_color": GREY_A,
"stroke_width": 2,
},
# Alternatively, you can specify configuration for just one
# of them, like this.
y_axis_config={
"include_tip": False,
}
)
# Keyword arguments of add_coordinate_labels can be used to
# configure the DecimalNumber mobjects which it creates and
# adds to the axes
axes.add_coordinate_labels(
font_size=20,
num_decimal_places=1,
)
self.add(axes)
# Axes descends from the CoordinateSystem class, meaning
# you can call call axes.coords_to_point, abbreviated to
# axes.c2p, to associate a set of coordinates with a point,
# like so:
dot = Dot(color=RED)
dot.move_to(axes.c2p(0, 0))
self.play(FadeIn(dot, scale=0.5))
self.play(dot.animate.move_to(axes.c2p(3, 2)))
self.wait()
self.play(dot.animate.move_to(axes.c2p(5, 0.5)))
self.wait()
# Similarly, you can call axes.point_to_coords, or axes.p2c
# print(axes.p2c(dot.get_center()))
# We can draw lines from the axes to better mark the coordinates
# of a given point.
# Here, the always_redraw command means that on each new frame
# the lines will be redrawn
h_line = always_redraw(lambda: axes.get_h_line(dot.get_left()))
v_line = always_redraw(lambda: axes.get_v_line(dot.get_bottom()))
self.play(
ShowCreation(h_line),
ShowCreation(v_line),
)
self.play(dot.animate.move_to(axes.c2p(3, -2)))
self.wait()
self.play(dot.animate.move_to(axes.c2p(1, 1)))
self.wait()
# If we tie the dot to a particular set of coordinates, notice
# that as we move the axes around it respects the coordinate
# system defined by them.
f_always(dot.move_to, lambda: axes.c2p(1, 1))
self.play(
axes.animate.scale(0.75).to_corner(UL),
run_time=2,
)
self.wait()
self.play(FadeOut(VGroup(axes, dot, h_line, v_line)))
# Other coordinate systems you can play around with include
# ThreeDAxes, NumberPlane, and ComplexPlane.
class GraphExample(Scene):
def construct(self):
axes = Axes((-3, 10), (-1, 8))
axes.add_coordinate_labels()
self.play(Write(axes, lag_ratio=0.01, run_time=1))
# Axes.get_graph will return the graph of a function
sin_graph = axes.get_graph(
lambda x: 2 * math.sin(x),
color=BLUE,
)
# By default, it draws it so as to somewhat smoothly interpolate
# between sampled points (x, f(x)). If the graph is meant to have
# a corner, though, you can set use_smoothing to False
relu_graph = axes.get_graph(
lambda x: max(x, 0),
use_smoothing=False,
color=YELLOW,
)
# For discontinuous functions, you can specify the point of
# discontinuity so that it does not try to draw over the gap.
step_graph = axes.get_graph(
lambda x: 2.0 if x > 3 else 1.0,
discontinuities=[3],
color=GREEN,
)
# Axes.get_graph_label takes in either a string or a mobject.
# If it's a string, it treats it as a LaTeX expression. By default
# it places the label next to the graph near the right side, and
# has it match the color of the graph
sin_label = axes.get_graph_label(sin_graph, "\\sin(x)")
relu_label = axes.get_graph_label(relu_graph, Text("ReLU"))
step_label = axes.get_graph_label(step_graph, Text("Step"), x=4)
self.play(
ShowCreation(sin_graph),
FadeIn(sin_label, RIGHT),
)
self.wait(2)
self.play(
ReplacementTransform(sin_graph, relu_graph),
FadeTransform(sin_label, relu_label),
)
self.wait()
self.play(
ReplacementTransform(relu_graph, step_graph),
FadeTransform(relu_label, step_label),
)
self.wait()
parabola = axes.get_graph(lambda x: 0.25 * x**2)
parabola.set_stroke(BLUE)
self.play(
FadeOut(step_graph),
FadeOut(step_label),
ShowCreation(parabola)
)
self.wait()
# You can use axes.input_to_graph_point, abbreviated
# to axes.i2gp, to find a particular point on a graph
dot = Dot(color=RED)
dot.move_to(axes.i2gp(2, parabola))
self.play(FadeIn(dot, scale=0.5))
# A value tracker lets us animate a parameter, usually
# with the intent of having other mobjects update based
# on the parameter
x_tracker = ValueTracker(2)
f_always(
dot.move_to,
lambda: axes.i2gp(x_tracker.get_value(), parabola)
)
self.play(x_tracker.animate.set_value(4), run_time=3)
self.play(x_tracker.animate.set_value(-2), run_time=3)
self.wait()
class SurfaceExample(Scene):
CONFIG = {
"camera_class": ThreeDCamera,
}
def construct(self):
surface_text = Text("For 3d scenes, try using surfaces")
surface_text.fix_in_frame()
surface_text.to_edge(UP)
self.add(surface_text)
self.wait(0.1)
torus1 = Torus(r1=1, r2=1)
torus2 = Torus(r1=3, r2=1)
sphere = Sphere(radius=3, resolution=torus1.resolution)
# You can texture a surface with up to two images, which will
# be interpreted as the side towards the light, and away from
# the light. These can be either urls, or paths to a local file
# in whatever you've set as the image directory in
# the custom_config.yml file
# day_texture = "EarthTextureMap"
# night_texture = "NightEarthTextureMap"
day_texture = "https://upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Whole_world_-_land_and_oceans.jpg/1280px-Whole_world_-_land_and_oceans.jpg"
night_texture = "https://upload.wikimedia.org/wikipedia/commons/thumb/b/ba/The_earth_at_night.jpg/1280px-The_earth_at_night.jpg"
surfaces = [
TexturedSurface(surface, day_texture, night_texture)
for surface in [sphere, torus1, torus2]
]
for mob in surfaces:
mob.shift(IN)
mob.mesh = SurfaceMesh(mob)
mob.mesh.set_stroke(BLUE, 1, opacity=0.5)
# Set perspective
frame = self.camera.frame
frame.set_euler_angles(
theta=-30 * DEGREES,
phi=70 * DEGREES,
)
surface = surfaces[0]
self.play(
FadeIn(surface),
ShowCreation(surface.mesh, lag_ratio=0.01, run_time=3),
)
for mob in surfaces:
mob.add(mob.mesh)
surface.save_state()
self.play(Rotate(surface, PI / 2), run_time=2)
for mob in surfaces[1:]:
mob.rotate(PI / 2)
self.play(
Transform(surface, surfaces[1]),
run_time=3
)
self.play(
Transform(surface, surfaces[2]),
# Move camera frame during the transition
frame.animate.increment_phi(-10 * DEGREES),
frame.animate.increment_theta(-20 * DEGREES),
run_time=3
)
# Add ambient rotation
frame.add_updater(lambda m, dt: m.increment_theta(-0.1 * dt))
# Play around with where the light is
light_text = Text("You can move around the light source")
light_text.move_to(surface_text)
light_text.fix_in_frame()
self.play(FadeTransform(surface_text, light_text))
light = self.camera.light_source
self.add(light)
light.save_state()
self.play(light.animate.move_to(3 * IN), run_time=5)
self.play(light.animate.shift(10 * OUT), run_time=5)
drag_text = Text("Try moving the mouse while pressing d or s")
drag_text.move_to(light_text)
drag_text.fix_in_frame()
self.play(FadeTransform(light_text, drag_text))
self.wait()
class InteractiveDevelopment(Scene):
def construct(self):
circle = Circle()
circle.set_fill(BLUE, opacity=0.5)
circle.set_stroke(BLUE_E, width=4)
square = Square()
self.play(ShowCreation(square))
self.wait()
# This opens an iPython termnial where you can keep writing
# lines as if they were part of this construct method.
# In particular, 'square', 'circle' and 'self' will all be
# part of the local namespace in that terminal.
self.embed()
# Try copying and pasting some of the lines below into
# the interactive shell
self.play(ReplacementTransform(square, circle))
self.wait()
self.play(circle.animate.stretch(4, 0))
self.play(Rotate(circle, 90 * DEGREES))
self.play(circle.animate.shift(2 * RIGHT).scale(0.25))
text = Text("""
In general, using the interactive shell
is very helpful when developing new scenes
""")
self.play(Write(text))
# In the interactive shell, you can just type
# play, add, remove, clear, wait, save_state and restore,
# instead of self.play, self.add, self.remove, etc.
# To interact with the window, type touch(). You can then
# scroll in the window, or zoom by holding down 'z' while scrolling,
# and change camera perspective by holding down 'd' while moving
# the mouse. Press 'r' to reset to the standard camera position.
# Press 'q' to stop interacting with the window and go back to
# typing new commands into the shell.
# In principle you can customize a scene to be responsive to
# mouse and keyboard interactions
always(circle.move_to, self.mouse_point)
class ControlsExample(Scene):
def setup(self):
self.textbox = Textbox()
self.checkbox = Checkbox()
self.color_picker = ColorSliders()
self.panel = ControlPanel(
Text("Text", font_size=24), self.textbox, Line(),
Text("Show/Hide Text", font_size=24), self.checkbox, Line(),
Text("Color of Text", font_size=24), self.color_picker
)
self.add(self.panel)
def construct(self):
text = Text("text", font_size=96)
def text_updater(old_text):
assert(isinstance(old_text, Text))
new_text = Text(self.textbox.get_value(), font_size=old_text.font_size)
# new_text.align_data_and_family(old_text)
new_text.move_to(old_text)
if self.checkbox.get_value():
new_text.set_fill(
color=self.color_picker.get_picked_color(),
opacity=self.color_picker.get_picked_opacity()
)
else:
new_text.set_opacity(0)
old_text.become(new_text)
text.add_updater(text_updater)
self.add(MotionMobject(text))
self.textbox.set_value("Manim")
# self.wait(60)
# self.embed()
# See https://github.com/3b1b/videos for many, many more