forked from NVlabs/MUNIT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
388 lines (357 loc) · 19.7 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
"""
Copyright (C) 2017 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
from networks import AdaINGen, MsImageDis, VAEGen
from utils import weights_init, get_model_list, vgg_preprocess, load_vgg16, get_scheduler
from torch.autograd import Variable
import torch
import torch.nn as nn
import os
class MUNIT_Trainer(nn.Module):
def __init__(self, hyperparameters):
super(MUNIT_Trainer, self).__init__()
lr = hyperparameters['lr']
# Initiate the networks
self.gen_a = AdaINGen(hyperparameters['input_dim_a'], hyperparameters['gen']) # auto-encoder for domain a
self.gen_b = AdaINGen(hyperparameters['input_dim_b'], hyperparameters['gen']) # auto-encoder for domain b
self.dis_a = MsImageDis(hyperparameters['input_dim_a'], hyperparameters['dis']) # discriminator for domain a
self.dis_b = MsImageDis(hyperparameters['input_dim_b'], hyperparameters['dis']) # discriminator for domain b
self.instancenorm = nn.InstanceNorm2d(512, affine=False)
self.style_dim = hyperparameters['gen']['style_dim']
# fix the noise used in sampling
self.s_a = torch.randn(8, self.style_dim, 1, 1).cuda()
self.s_b = torch.randn(8, self.style_dim, 1, 1).cuda()
# Setup the optimizers
beta1 = hyperparameters['beta1']
beta2 = hyperparameters['beta2']
dis_params = list(self.dis_a.parameters()) + list(self.dis_b.parameters())
gen_params = list(self.gen_a.parameters()) + list(self.gen_b.parameters())
self.dis_opt = torch.optim.Adam([p for p in dis_params if p.requires_grad],
lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay'])
self.gen_opt = torch.optim.Adam([p for p in gen_params if p.requires_grad],
lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay'])
self.dis_scheduler = get_scheduler(self.dis_opt, hyperparameters)
self.gen_scheduler = get_scheduler(self.gen_opt, hyperparameters)
# Network weight initialization
self.apply(weights_init(hyperparameters['init']))
self.dis_a.apply(weights_init('gaussian'))
self.dis_b.apply(weights_init('gaussian'))
# Load VGG model if needed
if 'vgg_w' in hyperparameters.keys() and hyperparameters['vgg_w'] > 0:
self.vgg = load_vgg16(hyperparameters['vgg_model_path'] + '/models')
self.vgg.eval()
for param in self.vgg.parameters():
param.requires_grad = False
def recon_criterion(self, input, target):
return torch.mean(torch.abs(input - target))
def forward(self, x_a, x_b):
self.eval()
x_a.volatile = True
x_b.volatile = True
s_a = Variable(self.s_a, volatile=True)
s_b = Variable(self.s_b, volatile=True)
c_a, s_a_fake = self.gen_a.encode(x_a)
c_b, s_b_fake = self.gen_b.encode(x_b)
x_ba = self.gen_a.decode(c_b, s_a)
x_ab = self.gen_b.decode(c_a, s_b)
self.train()
return x_ab, x_ba
def gen_update(self, x_a, x_b, hyperparameters):
self.gen_opt.zero_grad()
s_a = Variable(torch.randn(x_a.size(0), self.style_dim, 1, 1).cuda())
s_b = Variable(torch.randn(x_b.size(0), self.style_dim, 1, 1).cuda())
# encode
c_a, s_a_prime = self.gen_a.encode(x_a)
c_b, s_b_prime = self.gen_b.encode(x_b)
# decode (within domain)
x_a_recon = self.gen_a.decode(c_a, s_a_prime)
x_b_recon = self.gen_b.decode(c_b, s_b_prime)
# decode (cross domain)
x_ba = self.gen_a.decode(c_b, s_a)
x_ab = self.gen_b.decode(c_a, s_b)
# encode again
c_b_recon, s_a_recon = self.gen_a.encode(x_ba)
c_a_recon, s_b_recon = self.gen_b.encode(x_ab)
# decode again (if needed)
x_aba = self.gen_a.decode(c_a_recon, s_a_prime) if hyperparameters['recon_x_cyc_w'] > 0 else None
x_bab = self.gen_b.decode(c_b_recon, s_b_prime) if hyperparameters['recon_x_cyc_w'] > 0 else None
# reconstruction loss
self.loss_gen_recon_x_a = self.recon_criterion(x_a_recon, x_a)
self.loss_gen_recon_x_b = self.recon_criterion(x_b_recon, x_b)
self.loss_gen_recon_s_a = self.recon_criterion(s_a_recon, s_a)
self.loss_gen_recon_s_b = self.recon_criterion(s_b_recon, s_b)
self.loss_gen_recon_c_a = self.recon_criterion(c_a_recon, c_a)
self.loss_gen_recon_c_b = self.recon_criterion(c_b_recon, c_b)
self.loss_gen_cycrecon_x_a = self.recon_criterion(x_aba, x_a) if hyperparameters['recon_x_cyc_w'] > 0 else 0
self.loss_gen_cycrecon_x_b = self.recon_criterion(x_bab, x_b) if hyperparameters['recon_x_cyc_w'] > 0 else 0
# GAN loss
self.loss_gen_adv_a = self.dis_a.calc_gen_loss(x_ba)
self.loss_gen_adv_b = self.dis_b.calc_gen_loss(x_ab)
# domain-invariant perceptual loss
self.loss_gen_vgg_a = self.compute_vgg_loss(self.vgg, x_ba, x_b) if hyperparameters['vgg_w'] > 0 else 0
self.loss_gen_vgg_b = self.compute_vgg_loss(self.vgg, x_ab, x_a) if hyperparameters['vgg_w'] > 0 else 0
# total loss
self.loss_gen_total = hyperparameters['gan_w'] * self.loss_gen_adv_a + \
hyperparameters['gan_w'] * self.loss_gen_adv_b + \
hyperparameters['recon_x_w'] * self.loss_gen_recon_x_a + \
hyperparameters['recon_s_w'] * self.loss_gen_recon_s_a + \
hyperparameters['recon_c_w'] * self.loss_gen_recon_c_a + \
hyperparameters['recon_x_w'] * self.loss_gen_recon_x_b + \
hyperparameters['recon_s_w'] * self.loss_gen_recon_s_b + \
hyperparameters['recon_c_w'] * self.loss_gen_recon_c_b + \
hyperparameters['recon_x_cyc_w'] * self.loss_gen_cycrecon_x_a + \
hyperparameters['recon_x_cyc_w'] * self.loss_gen_cycrecon_x_b + \
hyperparameters['vgg_w'] * self.loss_gen_vgg_a + \
hyperparameters['vgg_w'] * self.loss_gen_vgg_b
self.loss_gen_total.backward()
self.gen_opt.step()
def compute_vgg_loss(self, vgg, img, target):
img_vgg = vgg_preprocess(img)
target_vgg = vgg_preprocess(target)
img_fea = vgg(img_vgg)
target_fea = vgg(target_vgg)
return torch.mean((self.instancenorm(img_fea) - self.instancenorm(target_fea)) ** 2)
def sample(self, x_a, x_b):
self.eval()
x_a.volatile = True
x_b.volatile = True
s_a1 = Variable(self.s_a, volatile=True)
s_b1 = Variable(self.s_b, volatile=True)
s_a2 = Variable(torch.randn(x_a.size(0), self.style_dim, 1, 1).cuda(), volatile=True)
s_b2 = Variable(torch.randn(x_b.size(0), self.style_dim, 1, 1).cuda(), volatile=True)
x_a_recon, x_b_recon, x_ba1, x_ba2, x_ab1, x_ab2 = [], [], [], [], [], []
for i in range(x_a.size(0)):
c_a, s_a_fake = self.gen_a.encode(x_a[i].unsqueeze(0))
c_b, s_b_fake = self.gen_b.encode(x_b[i].unsqueeze(0))
x_a_recon.append(self.gen_a.decode(c_a, s_a_fake))
x_b_recon.append(self.gen_b.decode(c_b, s_b_fake))
x_ba1.append(self.gen_a.decode(c_b, s_a1[i].unsqueeze(0)))
x_ba2.append(self.gen_a.decode(c_b, s_a2[i].unsqueeze(0)))
x_ab1.append(self.gen_b.decode(c_a, s_b1[i].unsqueeze(0)))
x_ab2.append(self.gen_b.decode(c_a, s_b2[i].unsqueeze(0)))
x_a_recon, x_b_recon = torch.cat(x_a_recon), torch.cat(x_b_recon)
x_ba1, x_ba2 = torch.cat(x_ba1), torch.cat(x_ba2)
x_ab1, x_ab2 = torch.cat(x_ab1), torch.cat(x_ab2)
self.train()
return x_a, x_a_recon, x_ab1, x_ab2, x_b, x_b_recon, x_ba1, x_ba2
def dis_update(self, x_a, x_b, hyperparameters):
self.dis_opt.zero_grad()
s_a = Variable(torch.randn(x_a.size(0), self.style_dim, 1, 1).cuda())
s_b = Variable(torch.randn(x_b.size(0), self.style_dim, 1, 1).cuda())
# encode
c_a, _ = self.gen_a.encode(x_a)
c_b, _ = self.gen_b.encode(x_b)
# decode (cross domain)
x_ba = self.gen_a.decode(c_b, s_a)
x_ab = self.gen_b.decode(c_a, s_b)
# D loss
self.loss_dis_a = self.dis_a.calc_dis_loss(x_ba.detach(), x_a)
self.loss_dis_b = self.dis_b.calc_dis_loss(x_ab.detach(), x_b)
self.loss_dis_total = hyperparameters['gan_w'] * self.loss_dis_a + hyperparameters['gan_w'] * self.loss_dis_b
self.loss_dis_total.backward()
self.dis_opt.step()
def update_learning_rate(self):
if self.dis_scheduler is not None:
self.dis_scheduler.step()
if self.gen_scheduler is not None:
self.gen_scheduler.step()
def resume(self, checkpoint_dir, hyperparameters):
# Load generators
last_model_name = get_model_list(checkpoint_dir, "gen")
state_dict = torch.load(last_model_name)
self.gen_a.load_state_dict(state_dict['a'])
self.gen_b.load_state_dict(state_dict['b'])
iterations = int(last_model_name[-11:-3])
# Load discriminators
last_model_name = get_model_list(checkpoint_dir, "dis")
state_dict = torch.load(last_model_name)
self.dis_a.load_state_dict(state_dict['a'])
self.dis_b.load_state_dict(state_dict['b'])
# Load optimizers
state_dict = torch.load(os.path.join(checkpoint_dir, 'optimizer.pt'))
self.dis_opt.load_state_dict(state_dict['dis'])
self.gen_opt.load_state_dict(state_dict['gen'])
# Reinitilize schedulers
self.dis_scheduler = get_scheduler(self.dis_opt, hyperparameters, iterations)
self.gen_scheduler = get_scheduler(self.gen_opt, hyperparameters, iterations)
print('Resume from iteration %d' % iterations)
return iterations
def save(self, snapshot_dir, iterations):
# Save generators, discriminators, and optimizers
gen_name = os.path.join(snapshot_dir, 'gen_%08d.pt' % (iterations + 1))
dis_name = os.path.join(snapshot_dir, 'dis_%08d.pt' % (iterations + 1))
opt_name = os.path.join(snapshot_dir, 'optimizer.pt')
torch.save({'a': self.gen_a.state_dict(), 'b': self.gen_b.state_dict()}, gen_name)
torch.save({'a': self.dis_a.state_dict(), 'b': self.dis_b.state_dict()}, dis_name)
torch.save({'gen': self.gen_opt.state_dict(), 'dis': self.dis_opt.state_dict()}, opt_name)
class UNIT_Trainer(nn.Module):
def __init__(self, hyperparameters):
super(UNIT_Trainer, self).__init__()
lr = hyperparameters['lr']
# Initiate the networks
self.gen_a = VAEGen(hyperparameters['input_dim_a'], hyperparameters['gen']) # auto-encoder for domain a
self.gen_b = VAEGen(hyperparameters['input_dim_b'], hyperparameters['gen']) # auto-encoder for domain b
self.dis_a = MsImageDis(hyperparameters['input_dim_a'], hyperparameters['dis']) # discriminator for domain a
self.dis_b = MsImageDis(hyperparameters['input_dim_b'], hyperparameters['dis']) # discriminator for domain b
self.instancenorm = nn.InstanceNorm2d(512, affine=False)
# Setup the optimizers
beta1 = hyperparameters['beta1']
beta2 = hyperparameters['beta2']
dis_params = list(self.dis_a.parameters()) + list(self.dis_b.parameters())
gen_params = list(self.gen_a.parameters()) + list(self.gen_b.parameters())
self.dis_opt = torch.optim.Adam([p for p in dis_params if p.requires_grad],
lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay'])
self.gen_opt = torch.optim.Adam([p for p in gen_params if p.requires_grad],
lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay'])
self.dis_scheduler = get_scheduler(self.dis_opt, hyperparameters)
self.gen_scheduler = get_scheduler(self.gen_opt, hyperparameters)
# Network weight initialization
self.apply(weights_init(hyperparameters['init']))
self.dis_a.apply(weights_init('gaussian'))
self.dis_b.apply(weights_init('gaussian'))
# Load VGG model if needed
if 'vgg_w' in hyperparameters.keys() and hyperparameters['vgg_w'] > 0:
self.vgg = load_vgg16(hyperparameters['vgg_model_path'] + '/models')
self.vgg.eval()
for param in self.vgg.parameters():
param.requires_grad = False
def recon_criterion(self, input, target):
return torch.mean(torch.abs(input - target))
def forward(self, x_a, x_b):
self.eval()
x_a.volatile = True
x_b.volatile = True
h_a, _ = self.gen_a.encode(x_a)
h_b, _ = self.gen_b.encode(x_b)
x_ba = self.gen_a.decode(h_b)
x_ab = self.gen_b.decode(h_a)
self.train()
return x_ab, x_ba
def __compute_kl(self, mu):
# def _compute_kl(self, mu, sd):
# mu_2 = torch.pow(mu, 2)
# sd_2 = torch.pow(sd, 2)
# encoding_loss = (mu_2 + sd_2 - torch.log(sd_2)).sum() / mu_2.size(0)
# return encoding_loss
mu_2 = torch.pow(mu, 2)
encoding_loss = torch.mean(mu_2)
return encoding_loss
def gen_update(self, x_a, x_b, hyperparameters):
self.gen_opt.zero_grad()
# encode
h_a, n_a = self.gen_a.encode(x_a)
h_b, n_b = self.gen_b.encode(x_b)
# decode (within domain)
x_a_recon = self.gen_a.decode(h_a + n_a)
x_b_recon = self.gen_b.decode(h_b + n_b)
# decode (cross domain)
x_ba = self.gen_a.decode(h_b + n_b)
x_ab = self.gen_b.decode(h_a + n_a)
# encode again
h_b_recon, n_b_recon = self.gen_a.encode(x_ba)
h_a_recon, n_a_recon = self.gen_b.encode(x_ab)
# decode again (if needed)
x_aba = self.gen_a.decode(h_a_recon + n_a_recon) if hyperparameters['recon_x_cyc_w'] > 0 else None
x_bab = self.gen_b.decode(h_b_recon + n_b_recon) if hyperparameters['recon_x_cyc_w'] > 0 else None
# reconstruction loss
self.loss_gen_recon_x_a = self.recon_criterion(x_a_recon, x_a)
self.loss_gen_recon_x_b = self.recon_criterion(x_b_recon, x_b)
self.loss_gen_recon_kl_a = self.__compute_kl(h_a)
self.loss_gen_recon_kl_b = self.__compute_kl(h_b)
self.loss_gen_cyc_x_a = self.recon_criterion(x_aba, x_a)
self.loss_gen_cyc_x_b = self.recon_criterion(x_bab, x_b)
self.loss_gen_recon_kl_cyc_aba = self.__compute_kl(h_a_recon)
self.loss_gen_recon_kl_cyc_bab = self.__compute_kl(h_b_recon)
# GAN loss
self.loss_gen_adv_a = self.dis_a.calc_gen_loss(x_ba)
self.loss_gen_adv_b = self.dis_b.calc_gen_loss(x_ab)
# domain-invariant perceptual loss
self.loss_gen_vgg_a = self.compute_vgg_loss(self.vgg, x_ba, x_b) if hyperparameters['vgg_w'] > 0 else 0
self.loss_gen_vgg_b = self.compute_vgg_loss(self.vgg, x_ab, x_a) if hyperparameters['vgg_w'] > 0 else 0
# total loss
self.loss_gen_total = hyperparameters['gan_w'] * self.loss_gen_adv_a + \
hyperparameters['gan_w'] * self.loss_gen_adv_b + \
hyperparameters['recon_x_w'] * self.loss_gen_recon_x_a + \
hyperparameters['recon_kl_w'] * self.loss_gen_recon_kl_a + \
hyperparameters['recon_x_w'] * self.loss_gen_recon_x_b + \
hyperparameters['recon_kl_w'] * self.loss_gen_recon_kl_b + \
hyperparameters['recon_x_cyc_w'] * self.loss_gen_cyc_x_a + \
hyperparameters['recon_kl_cyc_w'] * self.loss_gen_recon_kl_cyc_aba + \
hyperparameters['recon_x_cyc_w'] * self.loss_gen_cyc_x_b + \
hyperparameters['recon_kl_cyc_w'] * self.loss_gen_recon_kl_cyc_bab + \
hyperparameters['vgg_w'] * self.loss_gen_vgg_a + \
hyperparameters['vgg_w'] * self.loss_gen_vgg_b
self.loss_gen_total.backward()
self.gen_opt.step()
def compute_vgg_loss(self, vgg, img, target):
img_vgg = vgg_preprocess(img)
target_vgg = vgg_preprocess(target)
img_fea = vgg(img_vgg)
target_fea = vgg(target_vgg)
return torch.mean((self.instancenorm(img_fea) - self.instancenorm(target_fea)) ** 2)
def sample(self, x_a, x_b):
self.eval()
x_a.volatile = True
x_b.volatile = True
x_a_recon, x_b_recon, x_ba, x_ab = [], [], [], []
for i in range(x_a.size(0)):
h_a, _ = self.gen_a.encode(x_a[i].unsqueeze(0))
h_b, _ = self.gen_b.encode(x_b[i].unsqueeze(0))
x_a_recon.append(self.gen_a.decode(h_a))
x_b_recon.append(self.gen_b.decode(h_b))
x_ba.append(self.gen_a.decode(h_b))
x_ab.append(self.gen_b.decode(h_a))
x_a_recon, x_b_recon = torch.cat(x_a_recon), torch.cat(x_b_recon)
x_ba = torch.cat(x_ba)
x_ab = torch.cat(x_ab)
self.train()
return x_a, x_a_recon, x_ab, x_b, x_b_recon, x_ba
def dis_update(self, x_a, x_b, hyperparameters):
self.dis_opt.zero_grad()
# encode
h_a, n_a = self.gen_a.encode(x_a)
h_b, n_b = self.gen_b.encode(x_b)
# decode (cross domain)
x_ba = self.gen_a.decode(h_b + n_b)
x_ab = self.gen_b.decode(h_a + n_a)
# D loss
self.loss_dis_a = self.dis_a.calc_dis_loss(x_ba.detach(), x_a)
self.loss_dis_b = self.dis_b.calc_dis_loss(x_ab.detach(), x_b)
self.loss_dis_total = hyperparameters['gan_w'] * self.loss_dis_a + hyperparameters['gan_w'] * self.loss_dis_b
self.loss_dis_total.backward()
self.dis_opt.step()
def update_learning_rate(self):
if self.dis_scheduler is not None:
self.dis_scheduler.step()
if self.gen_scheduler is not None:
self.gen_scheduler.step()
def resume(self, checkpoint_dir, hyperparameters):
# Load generators
last_model_name = get_model_list(checkpoint_dir, "gen")
state_dict = torch.load(last_model_name)
self.gen_a.load_state_dict(state_dict['a'])
self.gen_b.load_state_dict(state_dict['b'])
iterations = int(last_model_name[-11:-3])
# Load discriminators
last_model_name = get_model_list(checkpoint_dir, "dis")
state_dict = torch.load(last_model_name)
self.dis_a.load_state_dict(state_dict['a'])
self.dis_b.load_state_dict(state_dict['b'])
# Load optimizers
state_dict = torch.load(os.path.join(checkpoint_dir, 'optimizer.pt'))
self.dis_opt.load_state_dict(state_dict['dis'])
self.gen_opt.load_state_dict(state_dict['gen'])
# Reinitilize schedulers
self.dis_scheduler = get_scheduler(self.dis_opt, hyperparameters, iterations)
self.gen_scheduler = get_scheduler(self.gen_opt, hyperparameters, iterations)
print('Resume from iteration %d' % iterations)
return iterations
def save(self, snapshot_dir, iterations):
# Save generators, discriminators, and optimizers
gen_name = os.path.join(snapshot_dir, 'gen_%08d.pt' % (iterations + 1))
dis_name = os.path.join(snapshot_dir, 'dis_%08d.pt' % (iterations + 1))
opt_name = os.path.join(snapshot_dir, 'optimizer.pt')
torch.save({'a': self.gen_a.state_dict(), 'b': self.gen_b.state_dict()}, gen_name)
torch.save({'a': self.dis_a.state_dict(), 'b': self.dis_b.state_dict()}, dis_name)
torch.save({'gen': self.gen_opt.state_dict(), 'dis': self.dis_opt.state_dict()}, opt_name)